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Abstract: Algebraic discrete variable representation (DVR) methods that have been recently proposed
are applied to describe 1D and 2D piecewise potentials. First, it is shown that it is possible to use a
DVR approach to describe 1D square well potentials testing the wave functions with exact results.
Thereafter, Morse and Pöschl-Teller (PT) potentials are described with multistep piecewise potentials
in order to explore the sensibility of the potential to reproduce the transition from a pure square well
energy pattern to an anharmonic energy spectrum. Once the properties of the different algebraic DVR
approaches are identified, the 2D square potential as a function of the potential depth is studied. We
show that this system displays natural degeneracy, accidental degeneracy and systematic accidental
degeneracy. The latter appears only for a confined potential, where the symmetry group is identified
and irreducible representations are constructed. One particle confined in a rectangular well potential
with commensurate sides is also analyzed. It is proved that the systematic accidental degeneracy
appearing in this system is removed for finite potential depth.

Keywords: algebraic DVR method; piecewise potentials; natural degeneracy; accidental degeneracy;
systematic accidental degeneracy

1. Introduction

The quantum box, also known as the 1D infinite square well, is the simplest quantum
mechanical system used in textbooks to exemplify the solution of the Schrödinger equation.
This system has only bound states and its generalization to 2D and 3D Cartesian infinite
square well potentials is straightforward [1–4]. Although the energy spectra are indeed
easy to obtain, the 2D and 3D cases present a degeneracy pattern not explained by the
geometrical point group associated with square and cubic geometrical symmetries; the
degeneracy degree is expected to correspond to the dimension of one of the irreducible
representations (irrep) of the symmetry group. In situations where the latter is not fulfilled,
degeneracy is identified as accidental. However the appearance of systematic accidental
degeneracy signals the presence of hidden symmetries, a fact that always deserves further
physical insight [5]. In such cases, a new symmetry group is expected to exist where the
accidental degeneracy is rendered normal. The non-relativistic hydrogen atom is repre-
sentative of this situation where the SO(3) geometrical symmetry should be extended to a
four-dimensional SO(4) group, in which its generators correspond to angular momentum
and Runge–Lenz components [6–8]. Surprisingly, the considerably more simple system
of one particle in an impenetrable 2D square box presents a similar situation where the
geometrical symmetry group C4v had to be extended to the semidirect group G = T ∧ C4v,
where T is a one-dimensional compact continuous group [9]. The fact that this group
contains discrete as well as continuum elements makes the construction of its irreps a non
trivial task, which from a formal point of view has a close analogy with the construction
of irreps for space groups [10]. A similar situation is present for the case of a cubic box,
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where the extended group turns out to be G = T ∧ Oh, where T is a two dimensional
compact continuous group for which generators correspond to linear combinations of
one-dimensional Hamiltonians [11].

An interesting situation emerges when the potential depth becomes finite either for the
square or cubic well potentials. In this study, we shall prove that, in the high region of the
spectrum , degenerate levels split to render normal degeneracy with respect to the geomet-
rical symmetry group, albeit with the possibility of remaining an accidental degeneracy as
energy decreases. Hence, the symmetry group becomes the expected geometrical group C4v
or Oh for the square and cubic potentials, respectively, although with possible presence of
accidental degeneracy, which is completely removed by enough decreases in the potential
depth. This behavior is also present for a particle in an impenetrable rectangular well
potential with commensurate sides [12].

Although analyses of the square, rectangular and cubic impenetrable well potentials
have been presented in a more or less degree of formality [9,11,12], their study for finite
wells has not been worked out. One of the reasons for this may be that the solutions cannot
be obtained in a straightforward manner but also because their study requires the use of
the machinery of group representation theory, a background beyond the scope of standard
textbooks. In contrast, 1D piecewise constant potentials do not present degeneracy for the
bound states, an ideal situation to simplify the analytic manipulations for illuminating
features of both the postulates and properties of eigenfunctions; the study of piecewise
potentials provides the background to estimate, in a qualitative form, the behavior of wave
functions for arbitrary potentials. In particular, a half-square well potential, symmetric
square well and the delta function potentials provide common systems in textbooks to
illustrate the concepts of quantum mechanic. Even though the general solutions in each
region of the potential are easily obtained, the eigenvalues are determined only by solving
transcendental equations after imposing the matching conditions in wave functions and
derivatives. When the piecewise potential presents two or three regions, this approach
is feasible, but as regions increases, the procedure become somewhat cumbersome in 1D
systems, but much worse in 2D and 3D potentials. Hence, alternative approaches that
avoid the explicit matching of the wave functions and their derivatives are welcome.

A powerful method that allows the solutions of piecewise potentials to be obtained
is the discrete variable representation approach (DVR). The feature of this approach is
that it provides a discrete basis where the coordinate is diagonal and, consequently, the
representation of the potential too. The DVR method has a long story, with original
ideas proposed in the 1960s [13,14] and becoming widely used in the 1980s with the
works of J.C. Light and others [15–23]. However, this method has been independently
developed with different names: quadrature discretization method [24–29], Lagrange mesh
method [30–33] and configuration localized states [34–36]. The main ingredient of these
methods is the use of orthonormal polynomials with the Gaussian quadrature method to
establish a grid associated with the zeros of the polynomials. The common features and
differences between the DVR methods are provided by Baye [33]. The fundamentals of the
DVR methods can be identified in 1D systems, but its extension to higher dimensions was
immediate. However it is convenient to highlight two routes to extend the method to higher
dimensions. One possibility consists in considering systems that intrinsically are defined
in 3D, such as the solution of the non-relativistic hydrogen atom. Another possibility for
proceeding to higher dimensions consists in taking direct products of 1D systems. This
situation is present in the description of the vibrational degrees of freedom where for each
internal coordinate an oscillator is associated [37], although the direct product has also
been employed to determine ro-vibrational spectra [38]. The direct product basis has the
advantage of simplicity, but it has the disadvantage of the large basis dimension to obtain
converged energy levels. It is possible to overcome this problem at least in part by the use
of the Lanczos algorithm, which does not require storage of the Hamiltonian matrix [39,40],
a method that combined with a procedure to exclude functions that do not significantly
contribute to the physical description allows the computational cost to be reduced [41].
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Recently, an alternative DVR method based on dynamical groups U(n + 1) for nD
systems was proposed. These groups emerge when the number of bosons n̂ associated
with the harmonic oscillator is constrained by introducing an extra scalar boson s†(s),
imposing a constant total of number of bosons N̂ = n̂ + s†s [42]. In this manner, number N
characterizes the Hilbert space where the physical description is carried out. This scheme
to construct a dynamical group has two advantages; on one hand, the dynamical group
is identified with a compact unitary group and, on the other hand, three physical group
chains are identified. The key to derive a DVR method relies on the connection of the
U(n+ 1) algebraic scheme with the configuration space in the N large limit. This connection
leads us to associate the U(n) chain with energy representation, the SO(n + 1) chain
with coordinate representation and the SO(n + 1) chain with momentum representation.
The diagonalization of the coordinate and momentum in the U(n) basis provides bases
where the coordinate and momentum are diagonal. In this scheme, it is through the
transformation brackets connecting the different bases that makes it possible to obtain the
representation of the Hamiltonian matrix in a simple form in terms of diagonal matrices, a
feature characterizing a DVR approach. This approach has been called the unitary group
approach (UGA), and it has been presented in detail for nD potentials [43–48]. A natural
alternative to this approach consists in projecting the harmonic oscillator basis to a subspace
of finite dimension. The discrete variable representation —called the HO-DVR approach
due to the fact that it is purely defined in the space of Harmonic oscillator wave functions—
is obtained through the diagonalization of the algebraic representation of operators r2 and
p2. The resulting discrete basis exactly corresponds to localized states related with the
zeros of the polynomials associated with the solutions of the harmonic oscillator. Both the
U(n + 1)-UGA and HO-DVR methods are defined in terms of the harmonic oscillator basis,
but they provide different discrete representation bases and consequently one method
may be more suitable for a specific problem [49]. In fact, in the description of the Stark
effect in the non-relativistic Hydrogen atom, U(4)-UGA turns out to be more suitable
for describing the breaking of spherical symmetry due to the electric field [50], while in
all tested potentials where the angular momentum is conserved, HO-DVR offers better
convergence [49].

Although the Harmonic oscillator basis has proved to be useful in applications from
atoms to quarks [51], it is not expected to be suitable for any potential. A basis to be used
in a given problem depends on the boundary conditions and, consequently, the alternative
algebraic DVR methods associated with different bases are needed in order to improve
convergence. In this venue, two more algebraic DVR approaches for 1D systems have
been proposed, one associated with the Morse potential (M-DVR) and the other one to
the Pöschl-Teller potential (PT-DVR), both based on the realization of the coordinate and
momentum in terms of the generators of the U(1, 1) dynamical group [49]. As expected, the
M-DVR approach is more appropriate for asymmetric potentials while the PT-DVR method
represents an improvement to symmetric potentials where bound and continuous energies
are present. These methods, although constrained to 1D systems, provide useful bases to
deal with multidimensional problems such as nD square well potentials with finite wells.

In this contribution, we present a study of one particle under 1D and 2D piecewise
potentials. This work has two goals. First, we are interested in studying convergence in
these kind of systems. This is a nontrivial question given the fact that potentials that are
not analytic do not provide exponential convergence [52]. On the other hand, the algebraic
DVR approach provide us with a simple and powerful method to study symmetry breaking
T ∧ C4v ↓ C4v appearing when the walls of a confined particle in a 2D square well potential
become finite. We intend to show that this simple system exemplifies the concepts of
natural, accidental and systematic accidental degeneracy, which constitute fundamental
concepts in establishing a connection between symmetry and degeneracy. In addition, we
present the study of a particle confined in a rectangular well potential with commensurate
sides, a system where a systematic accidental degeneracy also appears, and it is removed
when the depth of the potential becomes finite.
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This article is organized as follows. Section 2 is devoted to presenting the salient
features of 1D-DVR approaches to be used in the description of piecewise potentials,
presenting as an example the HO-DVR approach based on the harmonic oscillator basis.
Alternative methods are provided in the Appendix A. In Section 3, the analysis of con-
vergence for a symmetric and asymmetric well potentials using the different 1D algebraic
DVR approaches is presented. In the same section, the transition from the spectrum charac-
terizing the square well potentials to an anharmonic spectrum provided by PT and Morse
potentials is also analyzed. In Section 4, the analysis of the energy spectrum for square
well potential as a function of the potential depth in terms of the direct product of 1D
systems is presented. Section 5 is devoted to presenting a similar analysis for a particle in
a rectangular well potential with commensurate sides. Finally, in Section 6, the summary
and our conclusions are presented.

2. Algebraic DVR Methods in 1D Systems

The aim of this section is to provide the basic ingredients characterizing algebraic
DVR methods that will be applied to obtain the solutions of systems defined in terms
of piecewise potentials. We shall take as an example the HO-DVR method. Additional
methods known as PT-DVR, M-DVR and SU(2)-UGA are presented in the Appendix A.
The basic idea of these methods consists in diagonalizing the matrix representation of
the coordinate and momentum to generate discrete variable representation bases, which
allows the matrix representation of the Hamiltonian to be expressed in terms of diagonal
matrices for both kinetic and potential terms. The relevant aspect of this approach is that the
matrix elements are obtained with purely algebraic means, avoiding the intrinsic numerical
problems of integration.

The 1D harmonic oscillator with reduced mass µ and frequency ω is defined through
the following Hamiltonian:

Ĥh.o. =
1

2µ
p2 +

ω2µ

2
q2, (1)

with eigenfunctions given by the following [1]:

ψn(q) = Nn e
− q2

2λ2
0 Hn(q/λ0), (2)

where Hn(x) stands for Hermite polynomials, with λ0 =
√

h̄/(ωµ) and normalization
constant Nn = (n!2nλ0

√
π)−1/2. Introducing the bosonic operators {a†, a} with the usual

realization:

a† =
1√
2

(
1

λ0
q− i

λ0

h̄
p
)

; a =
1√
2

(
1

λ0
q + i

λ0

h̄
p
)

, (3)

the Hamiltonian takes the following simple form:

Ĥh.o.
Fock = h̄ω(n̂ + 1/2); n̂ = a†a, (4)

with eigenkets [1]

|n〉 = 1√
n!

(a†)n|0〉. (5)

Using this algebraic representation, the matrix elements for the coordinate and momenta
are easily obtained

〈n′|q|n〉 = λ0√
2

(√
n + 1 δn′ ,n+1 +

√
n δn′ ,n−1

)
, (6)

〈n′|p|n〉 = i√
2

h̄
λ0

(√
n + 1 δn′ ,n+1 −

√
n δn′ ,n−1

)
. (7)



Symmetry 2022, 14, 445 5 of 47

If we now consider the projection to a finite space of the following:

Lh.o.
N = {|n〉, n = 0, 1, . . . , N − 1}, (8)

and carry out their diagonalization, we obtain the discrete representation of the coordinate
and momenta given by the following eigenvectors:

|qi〉 =
N−1

∑
n=0
〈n|qi〉|n〉, (9)

|pi〉 =
N−1

∑
n=0
〈n|pi〉|n〉, (10)

where matrices T = ||〈n|qi〉|| and W = ||〈n|pi〉|| correspond to the coefficients that define
the basis transformations (9) and (10) where coordinates and momentum are diagonal.

q|qi〉 = qi|qi〉, p|pi〉 = pi|pi〉. (11)

Equation (11) establishes the discrete variable representation characterized by the
following:

〈qj|V(q)|qi〉 = V(qi)δi,j, 〈pj|G(p)|pi〉 = G(pi)δi,j (12)

for any function of either coordinates V(q) or momentum G(p). The matrix representation
of a Hamiltonian associated with a general potential V(q) in the harmonic oscillator basis
thus takes the following form:

H = W†Λ(p)W + T†Λ(q)T, (13)

where the diagonal matrices are given by ||Λ(p)|| = (p2
i /2µ)δij and ||Λ(q)|| = V(qi)δij

in momentum and coordinate representations, respectively. In Appendix A, alternative
methods following the same idea are presented.

3. 1D Square Well Potentials

Here, we start considering a particle with mass µ inside a symmetric square well
potential defined as follows:

V(x) =
{

0 ; x ∈ [−a/2, a/2]
V0 ; x > a/2, x < −a/2,

(14)

and depicted in Figure 1. Because of the invariance of the potential under inversion, the
solutions are expected to have good parity. Following the usual procedure of imposing the
boundary matching relations of both continuity and derivatives for the functions at the
limits of the regions, we have the following for the even functions:

Ψe
I(x) = Aeαx,

Ψe
I I(x) = Ae−αa/2 sec(ka/2) cos(kx),

Ψe
I I I(x) = Ae−αx,

with the definitions α2 = 2µE/h̄2 and k2 = 2µVo/h̄2 − α2. The energies are obtained by the
following transcendental equation.

tan(ka/2) = α/k. (15)
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Figure 1. Symmetric square well potential. The origin was chosen in order to obtain wave functions
with good parity.

On the other hand, for the odd functions, we have the following:

Ψo
I (x) = Aeαx,

Ψo
I I(x) = −Ae−αa/2 csc(ka/2) sin(kx),

Ψo
I I I(x) = −Ae−αx,

with the corresponding transcendental equation for energies

tan(ka/2) = −k/α. (16)

In both cases, amplitude A is determined by normalization. A particular case of
academic interest is the confined particle corresponding to infinite potential barriers. In
this case, the eigenvalues take the following form:

En =
h̄2π2

2µa2 n2, (17)

with eigenfunctions carrying good parity:

Ψ(e)
n (x) =

√
2
a

cos
(

nπ

a
x
)

; n = 1, 3, 5, . . . (18)

Ψ(o)
n (x) =

√
2
a

sin
(

nπ

a
x
)

; n = 2, 4, 6, . . . (19)

for even and odd parity, respectively.
The procedure to obtain the solutions for the potential (14), although relatively easy

to obtain, has two inconveniences: On one hand, energies are obtained by transcenden-
tal equations and, on the other hand, this approach becomes very cumbersome when
additional piecewise steps in the potential are involved. We now proceed to obtain the
bound states of potential (14) using algebraic DVR approaches presented in Appendix A.
Because of the symmetry of the potential, the appropriate methods satisfying the boundary
conditions of potential (14) are the HO-DVR, PT-DVR and SU(2)-UGA approaches. The
Hamiltonian matrix representation in HO-DVR and SU(2)-UGA-DVR approaches takes
the general form:

H = Λ(E) + T†Λ(q)T, (20)
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where Λ(E) is the diagonal contribution of the harmonic oscillator contribution with an
explicit expression depending on the method in the following form:

HO-DVR : ||Λ(E)|| = h̄ω

[
n +

1
2

]
δnn′ , (21)

U(2)−UGA : ||Λ(E)|| = h̄ω

[
n +

1
2
− ε

n2

N

]
δnn′ , (22)

where ε = 1 for n < N/2 and ε = 0 for n ≥ N/2 in accordance with (A36). The diagonal
matrix Λ(q) corresponds to the modified potential in the coordinate representation given
by the following.

HO-DVR : ||Λ(q)|| = h̄ω

[
V(xi)−

1
2

µω2q2
i

]
δij, (23)

U(2)-UGA : ||Λ(q)|| = h̄ω

[
V
(

ζ

√
2
N

)
− 1

N
µω2ζ2

]
δζζ ′ . (24)

Accordingly the transformation coefficients involved in (20) are defined as follows.

HO-DVR : T = ||〈n|qi〉||; Equation (9) (25)

U(2)-UGA : T = ||〈[N]n|[N]ζ〉||; Equation (A34). (26)

Regarding the PT-DVR method, the Hamiltonian matrix representation takes the
form (13), where we have for the diagonal matrix Λ(p) in the momentum representation,

||Λ(p)|| = p2
i

2µ δij, while for the diagonal matrix for the potential in the position represen-

tation, we have ||Λ(q)|| = V(qi)δij. In this case, both transformation coefficients defined
in (A15) are needed. In every case, the potential in discretized representation V(xi) cor-
responds to the square well potential defined in (14). Diagonalization is carried out in a
truncated basis specified by N, the dimension of the finite projected space. Each dimension
space provides a particular set of discretized points that are distributed along the piecewise
potential in an inhomogeneous form. This feature does not allows a smooth convergence,
as we shall see.

In order to test the methods, we start the application of DVR methods to the square well
potential with infinite walls, which in practice were taken to have a height of V0 = 108 cm−1

with the length of the box at a = 4 Å. In all cases of this contribution, the mass was taken
to be µ = 1.6726219× 10−27 kg, an approximation to the proton mass. The comparisons
between the spectrum generated by the three approaches (HO-DVR, PT-DVR and SU(2)-
UGA) and the exact energies are displayed in Table 1. The criterion to obtain convergence in
energies for HO-DVR and PT-DVR methods was to reach less than 1 % of errors in all states.
Both methods are similar in both quality and basis dimension. However, SU(2)-UGA does
not provide reasonable results even when considering a much larger basis of N = 2483.
Increasing the basis dimension does not result in a stable calculation, albeit the chosen basis
dimension corresponds to a minimum in the rms. Since SU(2)-UGA provides a discretized
basis but is not localized, these results mean that localized discrete bases are indeed the
best option to describe piecewise potentials.

We now consider the case of a 1D square well potential with finite potential
V0 = 1000 cm−1 and length a = 4 Å. This system presents 10 bound states that can
be obtained in exact form by solving transcendental Equations (15) and (16). The compar-
isons between the exact energies and the ones obtained using DVR methods are provided in
Table 2. As expected, for SU(2)-UGA, a much larger basis is needed to obtain comparable
errors. In contrast, the HO-DVR and PT-DVR approaches provide a pretty good description
of the system. The criterion to obtain convergence in the energies for both HO-DVR and
PT-DVR methods was again to reach less than 1 % of error in all states. In order to obtain a
more detailed comparison between the HO-DVR and PT-DVR methods, in Figure 2, a plot
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of the errors is depicted. This shows that the PT-DVR approach provides a better uniform
description in most of the states. Only in the last state was the error observed to increase
over the error provided by the HO-DVR approach.

Table 1. Description of the 1D potential well with infinite walls with the algebraic DVR methods:
HO-DVR, PT-DVR and SU(2)-UGA. The parameters for the potential were taken to be a = 4 Å
and V0 = 108 cm−1, with µ = 1.6726219× 10−27 kg. In addition, the fitted parameters associated
with the algebraic DVR methods were found to be ω = 2.0× 1013 s−1, α = 4.5× 109 m−1 and
ω = 1.6× 1012 s−1 for HO-DVR, PT-DVR and SU(2)-UGA, respectively. In each case, Ec is the
calculated energy in cm−1. The zero of the energy was taken to be at the bottom of the well. The basis
dimension N needed to obtain the displayed description was also included.

HO-DVR PT-DVR SU(2)-UGA
N = 58 N = 60 N = 2483

n Exact Ec(cm−1) % Error Ec(cm−1) % Error Ec(cm−1) % Error

1 10.32 10.37 0.45 10.32 0.04 18.73 81.41
2 41.30 41.37 0.16 41.16 0.33 49.35 19.50
3 92.92 93.34 0.45 92.88 0.04 100.13 7.76
4 165.19 165.43 0.14 164.62 0.35 170.66 3.31
5 258.11 259.30 0.46 258.02 0.03 260.43 0.90
6 371.67 372.05 0.10 370.28 0.37 368.68 0.80
7 505.89 508.31 0.48 505.75 0.03 494.70 2.21
8 660.75 660.80 0.01 657.97 0.42 637.34 3.54
9 836.26 840.45 0.50 836.11 0.02 795.73 4.85

10 1032.43 1030.30 0.21 1027.25 0.50 968.36 6.21

Table 2. Description of the 1D potential well using algebraic DVR methods: HO-DVR, PT-DVR and
SU(2)-UGA. The parameters for the potential were taken to be a = 4 Å and V0 = 1000 cm−1. In
this case the fitted parameters associated with the algebraic DVR methods were the same as in the
previous case. The zero of the energy was located at the bottom of the well. The basis dimension N
needed to obtained the displayed description was also included.

HO-DVR PT-DVR SU(2)-UGA
N = 58 N = 94 N = 2483

n Exact Ec(cm−1) % Error Ec(cm−1) % Error Ec(cm−1) % Error

1 9.11 9.02 0.99 9.07 0.44 17.79 95.28
2 36.43 36.07 0.99 36.25 0.49 45.58 25.12
3 81.83 81.13 0.86 81.51 0.39 91.64 11.99
4 145.27 144.03 0.85 144.69 0.40 155.55 7.08
5 226.53 224.90 0.72 225.76 0.34 236.75 4.51
6 325.34 323.16 0.67 324.26 0.33 334.44 2.80
7 441.25 439.07 0.49 440.13 0.25 447.65 1.45
8 573.49 571.19 0.40 572.19 0.23 575.08 0.28
9 720.62 719.82 0.11 719.86 0.11 714.90 0.79

10 878.85 878.85 0.00 878.18 0.08 863.81 1.71

Convergence in energy does not imply convergence in wave functions. Wave functions
are tested with fidelity. Fidelity Fα(N) for a given state |Ψα〉 parameterized with the basis
dimension N is defined as the overlap between consecutive eigenstates separated by ∆N:

Fα(N) = 〈ΨN+∆N
α |ΨN

α 〉. (27)

For the basis dimension given in Table 2, we have calculated the fidelity for each
state taking ∆N = 20. The results are displayed in Figure 3. The better quality of the
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wave functions provided by the PT-DVR methods is manifested in the closer values to
unity. In order to show the impact of fidelity on the quality of the wave functions, we
display in Figure 4 the calculation of wave functions 〈q|Ψ1〉, 〈q|Ψ5〉 and 〈q|Ψ10〉 provided
by both methods, indicating fidelity. In order to identify the best approach, at the right of
the wave functions, the absolute value of the difference between the exact and calculated
wave function is also shown. From these results, it is clear that PT-DVR provides a better
description in both energies and wave functions. This is a somewhat expected result, given
the fact that the PT basis carries information about the continuum. From these results, it is
clear that PT-DVR provides a better description in both energies and wave functions.
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Figure 2. Comparison between the errors associated with the HO-DVR (solid circles) and PT-DVR
(triangles) methods in accordance with the results provided in Table 2.
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Figure 3. Fidelity obtained for each state displayed in Table 2 taking a step of ∆ = 20. The solid
circles correspond to the HO-DVR method while the triangles stand for the PT-DVR approach.

One feature of this system is the peculiar N-dependence of convergence. In Figure 5,
we present as an example the error dependence of basis dimension N for state |Ψ5〉. The
oscillations become evident as well as the fact that each method displays a characteristic
pattern. We thus have to be careful in selecting the appropriate dimension N: it may be the
case that increasing the basis does not imply a better convergence since, in these systems,
an exponential convergence is not present [52], and a DVR method does not imply an
variational approach [53]. Hence, in order to take full advantage of the DVR methods, a
study of the errors should be conducted. It is only through this analysis that N can be
appropriately chosen to obtain the best description.
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Figure 4. Particular wave functions provided by the HO-DVR and PT-DVR approaches taking equal
basis dimension. The dashed lines correspond to the analytic wave functions. Values of the fidelity
are included. At the right of the wave functions, the absolute value of the difference between the
calculated and exact wave functions are also shown, reflecting a better description for PT-DVR.
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Figure 5. Errors associated with bound state 〈q|Ψ5〉 as a function of basis dimension N. The second
row corresponds to a zoom of the results given in the first row.



Symmetry 2022, 14, 445 11 of 47

Multistep Piecewise Potentials

The potential displayed in Figure 1 may be compared with a realistic PT-potential.
In a similar manner, the half-space square well potential may be compared with the
Morse potential, as shown in Figure 6. This comparison is based on the same boundary
conditions as well as the presence of continuum states. However, the corresponding spectra
are completely different: While PT and Morse potentials have an anharmonic spectrum
characterized by a negative slope in a Birge–Sponer plot involving difference Ev+1 − Ev =
h̄ωe − 2xeωe(v + 1) vs. number of state, the square well potentials present a positive slope
α in En+1 − En = α(2n + 1). This fact results in the conclusion that anharmonicity is not
only a consequence of the presence of the continuum but is fundamental result of the
form of the potential curve in particular regions. In order to elucidate the region of the
potential responsable to the anharmonic behavior, we propose to represent both the PT and
Morse potentials in terms of multipiecewise potentials, as displayed in Figure 7, where in
the limit of infinite steps, true potentials are expected to be recovered. Our goal is to use
the DVR approach to study the number of steps (degree of smoothness) to reproduce the
anharmonicity pattern characterizing the molecular spectra.
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Figure 6. Comparison between the PT (left plot) and Morse (right plot) potentials with the simplest
approximation in terms of piecewise potentials.
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Figure 7. Representation of the PT and Morse potentials in terms of multistep-piecewise potentials.

First, we consider the PT potential approximated by a piecewise potential following
the potential curve. We have divided the range of the potential in equals steps, a partition
that implies a better approximation for the potential near the continuum. In Figure 8, the
energy correlation as a function of the number of steps using both HO-DVR and PT-DVR
methods is displayed. In these plots, the left limit corresponds to the exact energy spectrum
for the square well potential, while the right limit corresponds to the exact PT spectrum.
The first feature we notice is that the anharmonic energy pattern is reached with relatively
few steps. As a consequence the anharmonic spectrum is determined by the form of the
potential near the continuum. This analysis resembles the notch test used to establish the
confident limits of different regions of the potential [48].
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Although the general correlation pattern displayed in Figure 8 by both methods is the
same, there are some subtle differences concerned with the smoothness of the oscillations
associated with the convergence previously discussed and depicted in Figure 5. Beyond
this subtle differences, it is clear that there is an advantage of the PT-DVR approach over
the HO-DVR method.

Figure 8. Correlation diagrams between the spectrum generated by the square well potential depicted
in Figure 6 and the exact PT-potential as a function of the number of steps using the HO-DVR method
(left figure) and the PT-DVR approach (right figure). In both cases, the basis dimension was taken to
be N = 230. The levels with gray color correspond to states in the square well potential that move to
the continuum region as the number of steps are increased.

We have also carried out the corresponding analysis by approximating the Morse
potential with a piecewise potential using the M-DVR approach. The corresponding energy
correlation diagram is displayed in Figure 9. Again, the anharmonic pattern is reached with
relatively few steps due to the fact that the approximation displayed in Figure 7 implies a
better approximation near the continuum. It is worth stressing the fact that the description
of the bound states for the half-space square well potential strongly depends on the basis
dimension. In order to show this dependence, we present two diagrams corresponding
to N = 150 and N = 2500, respectively, where in the latter case the best description of the
half-space square well potential becomes. The number of bound states for the half-space
square well potential is much greater that the corresponding Morse spectrum. As the
number of steps increases to approximate the Morse potential, most of the bound states
move to the discretization description of the continuum.
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Figure 9. Correlation diagram between the spectrum generated by the half-space square well potential
and the Morse potential as a function of the number of steps using the Morse-DVR approach. The
left figure corresponds to the analysis using a basis dimension N = 150, while in the right figure,
N = 2500 is used. The levels with gray color correspond to states in the half square well potential
that move to the continuum region as the number of steps increases.
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4. 2D-Square Well Potential

The square 2D potential, although seldom discussed in detail in textbooks, represents
a quite interesting problem from the symmetry point of view [9]. The solutions for the
confined case with infinite walls are straightforwardly obtained in terms of the direct
product of 1D solutions with energies.

En1n2 =
h̄2π2

2µL2 (n
2
1 + n2

2). (28)

This solution presents a degeneracy far from being trivial to be explained. In fact, from
the point of view of the geometrical group C4v, the eigenstates present a systematic acciden-
tal degeneracy represented by the couple of degenerated levels carrying one-dimensional
irreducible representations (irreps), as it is shown in the energy diagram depicted in
Figure 10, where energy units were taken to be Ēn1n2 = En1n2 /(h̄2π2/2µL2). In order to
explained this degeneracy, the new symmetry group G = T ∧ C4v was proposed where the
accidental degeneracy with respect to the C4v group renders normal in the new group [9].
This peculiar property is particular to the confined system. When the walls become finite,
degeneracy is either partially or completely removed depending of the depth and wide
of the well. However, the description of the 2D system for a finite wall is a nontrivial task
that will be considered in this work. The aim of this study is to provide physical insight
into the symmetry breaking phenomenon induced by the depth of the potential. Starting
with a confined particle with symmetry group G = T ∧ C4v, which is analyzed in detail in
Appendix B, we shall proceed to present the general approach to tackle the 2D system in
the framework of algebraic DVR approaches. We strongly recommend reading Appendix B
in order to take full advantage of the discussion of this section.

Figure 10. Irreducible representations associated with the energy levels of a particle confined in a
square well potential. Systematic accidental degeneracy with irreps (A1, B1) and (A2, B2) has been
remarked. See Leybraz et al. [9].

4.1. Application of the Algebraic DVR Approaches to 2D Systems

Here, we consider a particle in a square well potential with potential depth V0. This
problem will be solved in terms of the direct product of 1D bases corresponding to the x
and y axes. In the following discussion, we shall use the HO-DVR method. The procedure
using the PT-DVR approach is analogous, and we only have to establish the following
mapping: |nx〉 ⊗ |ny〉 → |Φσ

nx 〉 ⊗ |Φ
σ
ny〉.
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The Hamiltonian associated with 2D square potential will be diagonalized in the direct
product space of harmonic oscillators given by the following.

|nxny〉 = |nx〉 ⊗ |ny〉. (29)

In order to generate the DVR basis, we first consider the discrete basis associated with
the x coordinate, which takes the following form:

|xi〉 =
N−1

∑
nx=0
〈nx|xi〉|nx〉, (30)

|pxi〉 =
N−1

∑
nx=0
〈nx|pxi〉|nx〉, (31)

with a similar basis for the y degree of freedom.

|yi〉 =
N−1

∑
ny=0
〈ny|yi〉|ny〉, (32)

|pyi〉 =
N−1

∑
ny=0
〈ny|pyi〉|ny〉. (33)

In terms of discrete bases, the direct product (29) takes the following form.

|nxny〉 =
N

∑
i=1

N

∑
j=1
〈xi|nx〉〈yj|ny〉 |xi〉 ⊗ |yj〉. (34)

It is now convenient to introduce the following notation for the matrix elements
involved in the following (34):

Ai,nx = 〈xi|nx〉, (35)

Bj,ny = 〈yj|ny〉, (36)

Tij,nxny = 〈xi|nx〉〈yj|ny〉, (37)

with the following relation.
T = A⊗ B. (38)

In terms of the T matrix, the direct product (29) is recast in the following form:

|α〉 =
N2

∑
β=1

Tβ,α|β〉, (39)

where |α〉 = |nx〉 ⊗ |ny〉 and |β〉 = |xi〉 ⊗ |yj〉, with the following mapping.

α = (nx − 1)N + ny, (40)

β = (i− 1)N + j. (41)

Following, the same procedure for the momentum representation, we define the
following:

Ci,nx = 〈pxi|nx〉, (42)

Dj,ny = 〈pyj|ny〉, (43)

Wij,nxny = 〈pxi|nx〉〈pyj|ny〉, (44)
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with the direct product basis:

|α〉 =
N2

∑
β=1

Wγ,α|γ〉, (45)

where |α〉 = |nx〉 ⊗ |ny〉, |γ〉 = |pxi〉 ⊗ |pyj〉, and γ = (i− 1)N + j with the following.

W = C⊗D. (46)

Using the direct product bases, the Hamiltonian matrix representation in the frame-
work of the HO-DVR approach takes the following form:

H = W†Λ(p)W + T†Λ(V)T, (47)

where the matrix elements of Λ(p) in the momentum representations are as follows:

||Λ(p)|| = 1
2µ

(p2
xi + p2

yj)δii′δjj′ , (48)

while, for the potential in the coordinate representation, we have the following.

||Λ(V)|| = V(xi, yj)δii′δjj′ . (49)

Hence, the diagonalization of the coordinate and momentum for the 1D systems in x
and y provides the discrete localized bases to obtain the Hamiltonian matrix representation
in terms of diagonal matrices. The direct product bases possess the relevant property of
simplicity; however, the basis dimension increases as N2, and it may happen that a very
large number of direct product functions are necessary for energy convergence. In order
to reduce the cost of explicit diagonalization, the Lanczos algorithm may be used, which
does not require storage of the Hamiltonian matrix [39]. In addition, it may be possible to
reduce the size of the direct product by excluding functions that do not contribute to the
associated wave functions involved in the energy levels of interest [41]. Instead, in this
contribution, we are simplifying our analysis by introducing symmetry adapted functions.
In the framework of this point of view, the projected basis takes the following form:

|qφ
(Γ)
γ 〉 = ∑

nx ,ny

Snxny ;qΓγ|nxny〉, (50)

where Γ and γ are the irrep and component, respectively, of group C4v. Index q refers to the
multiplicity of the irreps and it provides the dimension of the matrix representation to be
diagonalized. In this context, the Hamiltonian matrix has the following form:

Hs = S†[W†Λ(p)W + T†Λ(V)T]S, (51)

which is in blocked form:
Hs = ∑

Γ
⊕HΓ

s , (52)

where each block is characterized by the one irrep of the group taking the first component
for the degenerate irreps. The dimension of each block is given by q(Γ)2. We should remark
that the use of symmetry, beyond the fact that simplifies the calculation, is a compulsory
task because we are interested in identifying the degeneracy associated with symmetry and
consequently the levels must carry the corresponding irrep. Symmetry projection, however,
is not a trivial task due to the large amount of basis functions involved. Hence, we consider
it to be convenient to present a highly efficient symmetry projection approach, which is
called the eigenfunction method.
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4.2. Symmetry Adapted Basis

In this section, we shall present the application of the eigenfunction method to project
the direct product basis (29), which consists in diagonalizing a complete set of commuting
operators (CSCO) given in terms of a linear combination of classes [54–57].

The CSCO used to project the basis is defined in accordance with a suitable canonical
subgroup chain, which in our case has been chosen to be the following:

C4v ⊃ Cd
s , (53)

where the following is the case:
Cd

s = {E, σa
d}, (54)

with symmetry elements depicted in panel (b) of Figure A1. Denoting the i-th class of
group C4v as Ki and the classes of the subgroup Cd

s as k j, we have, for the CSCO called CI I ,
the following linear combination:

ĈI I = ĈC4v
I + ĈC

d
s

I , (55)

where the following is the case:

ĈC4v
I = K̂2 + 3K̂5; ĈC

d
s

I = k̂2, (56)

with the following classes:

K̂2 = Ĉ4 + Ĉ3
4 ; K̂5 = σ̂a

d + σ̂b
d ; k̂2 = σ̂a

d , (57)

following the standard class numbering for character tables. Operators ĈC4v
I and ĈC

d
s

I
distinguish the irreps of groups C4v and Cd

s , respectively, while operator ĈI I distinguishes
the irreps and components of group C4v. Their simultaneous diagonalization leads to
eigenkets |µν〉 defined by the eigensystem:

ĈC4v
I |µν〉 = µ|µν〉; ĈC

d
s

I |µν〉 = ν|µν〉,
ĈI I |µν〉 = (µ + ν)|µν〉, (58)

where µ = µ(Γ) and ν = ν(γ) are functions of the group and the subgroup characters:

µ =
2χ

(Γ)
2

nΓ
+

3χ
(Γ)
5

nΓ
; ν = χ

(γ)
2 , (59)

where γ stands for the irrep of subgroup Cd
s , nΓ refers to the dimension of the Γ-th irrep

and γ ∈ D(Γ)(C4v) ↓ Cd
s . Hence, the symmetry-adapted functions are equally expressed

either with |Γγ〉 or |µν〉.
We now have to establish the effect of the operators involved in (55). Since Ĉ4 and σ̂a

d
are generators of the group, it will not be necessary to consider operator σ̂b

d . Formally, we
start establishing the effect of these operators over the following basis.

Ĉ4|x〉 = |C4x〉 = |y〉; σ̂a
d |x〉 = |σ

a
d x〉 = |y〉,

Ĉ4|y〉 = |C4y〉 = | − x〉; σ̂a
d |y〉 = |σ

a
d y〉 = |x〉. (60)
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Hence, for rotation C4, we have the following.

〈n′xn′y|Ĉ4|nxny〉 =
∫

4
dxdydx′dy′〈n′xn′y|x′y′〉〈x′y′|C4|xy〉〈xy|nxny〉

=
∫

4
dxdydx′dy′〈n′xn′y|x′y′〉〈xy|nxny〉δ(y− x′)δ(y′ + x)

= (−1)nx δn′ynx
δn′xny

. (61)

In the similar form, we obtain the following.

〈n′xn′y|Ĉ3
4 |nxny〉 = (−1)ny δn′ynx

δn′xny
, (62)

〈n′xn′y|σ̂a
d |nxny〉 = δn′ynx

δn′xny
, (63)

〈n′xn′y|σ̂b
d |nxny〉 = (−1)(nx+ny)δn′xny

δn′ynx
. (64)

Gathering all these matrix elements in operator ĈI I , we obtain the following.

〈n′xn′y|ĈI I |nxny〉 = [(−1)nx + (−1)ny + 4 + 3(−1)nx+ny ]δn′xny
δn′ynx

. (65)

Although this matrix representation has dimension N2, in practice, it is a block di-
agonal with N one-dimensional matrices and a number of N(N − 1)/2 two-dimensional
matrices for even N, for instance. This fact significantly simplifies the projection. For
example, taken N = 4 with dimension space N2 = 16, the symmetry projection reduces to
the following:

L12 = LA1
3 ⊕L

A2
1 ⊕L

B1
1 ⊕L

B2
3 ⊕L

E1
4 , (66)

where of course only the first component of the degenerate irrep E is necessary. Hence, the
original Hamiltonian matrix of dimension N2 given by (47) reduces to the diagonalization
of five matrices of dimension aΓ in accordance to the reduction in representation ∆(red)(CI I)
given by the following (65).

S−1∆(red)(CI I)S = ∑
µ

⊕aΓDΓ(CI I). (67)

We now proceed to take advantage of this projection to obtain the description of the
square well potential in the framework of the DVR approach through the diagonalization
of the representation matrix (51).

4.3. Results and Discussion

In order to evaluate the validity of our approach, we start considering the case of a
square well potential with infinite walls with exact energies given by (28). The parameters
were chosen to be a = 4 Å and V0 = 108 cm−1, with the same mass previously considered.
As in the 1D case, we describe the system using both HO-DVR and PT-DVR methods,
fitting the parameters ω and α, respectively. The results are displayed in Table 3, where
the criterion for the extension of the basis was given by obtaining errors of 1 %. We have
carried out calculations with the criterion of choosing the basis dimensions as close as
possible but in accordance with an absolute minimum in rms. The basis dimensions are
N = 52 and N = 60 for the HO-DVR and PT-DVR approaches respectively. The results are
evaluated at the level of energies and wave functions. Concerning the energy spectrum,
both methods present similar errors.
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Table 3. Results for one particle confined in a 2D square well potential using both HO-DVR and
PT-DVR methods. The fitted parameters were chosen to be ω = 2.0× 1013 s−1 for the HO-DVR
method and α = 4.5× 109 m−1 for the PT-DVR method. The basis dimensions were chosen to obtain
the absolute minimum of rms. Hence, for HO-DVR, we have taken N = 52, while for PT-DVR, we
have N = 60.

HO-DVR PT-DVR
N2 = 2704 N2 = 3600

Irrep (n1, n2) Exact (cm−1) Ec(cm−1) % Error Ec(cm−1) % Error

A1 (1,1) 20.65 20.62 0.14 20.64 0.04
E (2,1) 51.62 51.57 0.10 51.48 0.27
B2 (2,2) 82.59 82.49 0.12 82.32 0.33
A1 (3,1) 103.24 103.25 0.01 103.20 0.04
B1 (3,1) 103.24 103.25 0.01 103.20 0.04
E (3,2) 134.22 134.17 0.03 134.04 0.13
E (4,1) 175.51 175.29 0.13 175.94 0.24

A1 (3,3) 185.84 186.85 0.54 185.77 0.04
A2 (4,2) 206.48 206.21 0.13 205.78 0.34
B2 (4,2) 206.48 206.21 0.13 205.78 0.34

In order to show that the energy convergence showed in Table 3 provides also the
correct wave functions, we have projected the eigenvectors to the position representation.
Each eigenvector |ψΓγ

α 〉 of Hamiltonian (51) is given in terms of a linear combination of the
symmetry adapted basis (50).

|ψΓ,γ
α 〉 = ∑

q
Vqα |qφ

(Γ)
γ 〉. (68)

The wave functions are obtained through the following projection:

ψ
Γ,γ
α (x, y) = 〈xy|ψΓ,γ

α 〉 = ∑
q

Vqα 〈xy|qφ
(Γ)
γ 〉 (69)

with the following:
〈xy|qφ

(Γ)
γ 〉 = ∑

n1,n2

Sn1n2;qΓγψnx (x)ψny(y), (70)

where ψnx (x) and ψny(y) are 1D harmonic oscillator functions. In Figure 11, a selected
set of eigenstates has been depicted. These wave functions are identical to the ones
obtained by projecting the exact functions (A52). For the first levels, we have the following
correspondence.

|ψA1
1 〉 → |φA1

11 〉; |ψB2
1 〉 → |φ

B2
22 〉 (71)

|ψA1
2 〉 → |φA1

31 〉; |ψB2
2 〉 → |φ

B2
42 〉 (72)

|ψA1
3 〉 → |φA1

33 〉; |ψE,A′
1 〉 → |φE,A′

21 〉 (73)

|ψA2
1 〉 → |φA2

42 〉; |ψE,A′
2 〉 → |φE,A′

32 〉 (74)

|ψB1
1 〉 → |φB1

31 〉; |ψE,A′
3 〉 → |φE,A′

41 〉. (75)

It should be clear that the labels of these wave functions have their correspondence
with the labeling of group G in accordance with Table A6.
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Figure 11. Selected symmetry projected wave functions associated with a particle in a square well
potential. Both HO-DVR and PT-DVR provide the same plots at this level of resolution using the
parameters associated with Table 3. The pair of wave functions are distributed in accordance with
(a) accidental degeneracy with irreps (A1, B1), (b) natural degeneracy with components (EA′ , EA′′ ),
(c) accidental degeneracy with irreps (A2, B2) and (d) totally symmetric single state.
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Figure 12. Absolute value of the difference between the exact and calculated wave functions for
selected states. The differences show that the PT-DVR approach is more appropriate to describe this
system. Hence, for HO-DVR, we have taken N = 52, while for PT-DVR, we have N = 60.

In Figure 11, we show a set of representative wave functions illustrating the different
types of degeneracy. The first row (a) shows the degenerate wave functions (3,1) with irreps
(A1, B1) and energy E = 103.24 cm−1. This degeneracy is accidental from the point of view
of the C4v group but natural with respect to the G group with irrep A1

k G. In the second row,

(b) we show degenerate wave functions |ψE,A′
3 〉 → |φE,A′

41 〉, which in both groups render a
natural degeneracy, a feature manifested by the fact that they are connected by rotation C4.
In (c), we show the degenerate wave functions (4, 2) corresponding to |ψA2

1 〉, |ψ
B2
2 〉 with

energy E = 206.48 cm−1, which span the two dimensional irrep A2
k G, but with accidental

degeneracy with respect to the C4v group. Finally, we show in the last row wave function
|ψA1

3 〉 with energy E = 185.84 cm−1, which span the one dimensional irrep A1
k0
G ↓ A1. On

the other hand, the wave functions are compared by plotting the absolute value for the
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difference between the exact and calculated wave functions displayed in Figure 12, a result
that shows that the PT-DVR approach provides better wave functions.

It is interesting to show the N-dependence of the root mean square deviation, which
is displayed in Figure 13. In both methods, the general pattern is similar but the detailed
structure is quite different. The PT-DVR approach provides a somewhat more regular
pattern. In this approach, potential V(xi, yj) is evaluated at the discrete points. From the
total number of points N2, a number of points Nin fall inside the box (region with V0 = 0).
We may thus define the following:

% P =
Nin
N2 × 100, (76)

as the percentage of points falling inside the box. A significant feature of the N-
dependence of convergence is that % P is correlated to rms: a minimum in % P corresponds
to minimum in rms. This fact has been pointed out with dashed lines in Figure 13. We
should observe, however, that several minima in rms are possible for choosing the basis
dimension. We have chosen the criterion to select the first absolute minimum, selecting
basis dimensions of the same order for both methods. This is a remarkable feature because
it provides us with a criterion to select the appropriate basis dimension N to obtain an
improvement. This information can be known before carrying out the calculation, since
% P is obtained with the zeros of the polynomials [49]. This fact makes DVR methods
efficient.
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Figure 13. Root mean square deviation as a function of basis dimension N using both HO-DVR
and PT-DVR approaches. In the upper panels, the basis dimension N2 taken to obtain the results of
Table 3 is pointed out. The average is included taking into account seven points to the right and to
the left when possible. In the lower panels, the corresponding zooms are shown together with the
percentage of points % P defined in Equation (76), where its correlation with rms is evident. Notice
that several possibilities for the minimum in rms are possible. We have chosen the first absolute
minimum in choosing the basis dimension.

The spectrum depicted in Figure 10 is characteristic of the confined particle. When
the potential depth becomes finite, the spectrum is expected to be modified in both energy
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and degeneracy. The latter feature will be proven by carrying out the calculation with the
PT-DVR method.

In Figure 14, we show energy levels as a function of potential depth V0. It is worth
stressing the splitting of the levels (A1, B1) and (A2, B2) as potential decreases. This means
that the true symmetry group becomes geometrical group C4v. In order make the symmetry
breaking G ↓ C4v in Figure 15 transparent, a zoom-in of levels (A1, B1) and (A2, B2) is
shown. Notice that levels (A2, B2) split sooner than levels (A1, B1), which is explained by
the fact that states {|φA2

42 〉, φB2
42 〉} have higher energies. While the splitting of these levels

manifests around V0 = 450 cm−1, the splitting of states {|φA1
31 〉, φB1

31 〉} are clearly manifested
until V0 = 250 cm−1. This means that, at some values of potential V0, the systematic
accidental degeneracy disappears, but near-degeneracy remains at the low lying region
of the spectrum. In order to quantify this statement, we introduce parameter ζ defined as
follows [58,59].

ζ =

∣∣∣∣ 2
π

arctan
(

(E1 − E2)

(E1 + E2)/2

)∣∣∣∣. (77)

Figure 14. Correlation diagram of energy levels as a function of the potential depth.

This parameter measures the relative splitting between a couple of levels E1 and
E2. For complete degeneracy ζ = 0, while as splitting increases ζ → 1. In the same
Figure 15, the parameters ζA1B1 and ζA2B2 associated with the degenerate levels for the
square well potential are depicted as a function of the potential depth. As the potential
depth decreases, the first parameter ζA2B2 starts increasing before ζA1B1 . It is until the
value of V0 = 350 cm−1 that ζA1B1 shows splitting, establishing the limit of accidental
degeneracy. Using the PT-DVR approach, we have chosen four potential depths, namely
V0 = 108, 350, 250 and 180 cm−1, to exemplify the order of splitting induced by the finite
potential depth. It is clear that, for potential depth V0 = 350 cm−1, the levels A1 and
A2 are nearly degenerate, while the splitting of levels A2 and B2 becomes manifest. This
degeneracy pattern was displayed with a given set of parameters V0 and wide a, but with
the appropriate parameters involving a larger number of bound states and the lower states
A1, B1 are expected to remain degenerate for finite potential depths. In such situations, an
accidental degeneracy remains in the low lying are of the spectrum, with broken degeneracy
in the rest of the spectrum. This correlation diagram is has been carried out without taking
into account the criterion of % P, and consequently, it cannot be considered as a definitive
result. However, it provides proof of symmetry breaking.



Symmetry 2022, 14, 445 23 of 47

Figure 15. (a) A zoom-in of Figure 14 to show the correlation diagram of energy levels {A2, B2} and
{A1, B1} as a function of the potential. In (b), the associated parameters ζ for these couple of levels
are shown together with the corresponding energy splitting.

5. 2D-Rectangular Well Potential

In this section, we pay attention to the case of a rectangular square well potential with
commensurate sides, as depicted in Figure 16. This case is interesting because systematic
accidental degeneracy is also present. As in the square well potential case, the eigenstates
—taking the origin in the left bottom corner of the rectangle with sides L1 and L2— are
given by the following:

Φn1n2(x, y) =
2√

L1L2
sin
(

n1πx
L1

)
sin
(

n2πy
L2

)
, (78)

where n1 and n2 are positive integers. The energies levels are given by the following.

En1n2 =
h̄2π2

2µ

(
n2

1
L2

1
+

n2
2

L2
2

)
. (79)

The commensurate sides may be imposed by considering the following:

nL1 = mL2 = L0, (80)

in such a manner that energy takes the following form.

En1n2 =
h̄2π2

2µL2
0
(n2n2

1 + m2n2
2). (81)
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Figure 16. Rectangular well potential and symmetry elements associated with the geometrical
symmetry C4v . Two reference systems are shown: (a) the origin is located at the left corner with
solutions given by (78) and (b) the origin is located at the center of the rectangle.

Hence, states |ψn1n2〉 and |ψn1n2〉 are degenerate if the following is the case.

(nn1)
2 + (mn2)

2 = (nn′1)
2 + (mn′2)

2. (82)

As an example, we shall consider the case where the length in the y direction is twice
the length in the x direction, as depicted in Figure 16. In this case, we have n = 2 and
m = 1, which lresults in the following energy expression:

Ēn1n2 =
En1n2

E0
= (4n2

1 + n2
2), (83)

where E0 = h̄2π2

2µL2
0
. The corresponding spectrum is shown in Figure 17, where the levels with

accidental degeneracy have been remarked with broader lines. In this case, the geometrical
symmetry is C2v with eigenfunctions (78) already spanning the irreps shown in Table 4 in
accordance with the character in Table 5. The search of a dynamical symmetry leads to
operator F̂(A1), spanning the A1 irrep:

F̂(A1) =
1
4

√
5
π

(
∂2

∂x2 −
∂2

∂y2

)
, (84)

which connects states B2. In contrast, it is not possible to find an operator D̂(B1) from the
set of spherical harmonics that preserve the boundary conditions. In Lemus et al. [12], the
dynamical operation σ̂a

d was suggested and it connects states A2 with B2. Here, we do not
intend to obtain irreps based on this idea. Instead, we address the problem of describing
accidental degeneracy using DVR approaches and prove that, for finite depth potential, a
accidental degeneracy is removed.

To accomplish this task we proceed in similar form to the square well potential. The
Hamiltonian associated with the 2D rectangular well potential will be diagonalized in the
direct product basis of harmonic oscillators given by the following.

|nxny〉 = |nx〉 ⊗ |ny〉. (85)

In terms of this basis, the Hamiltonian matrix representation takes the following form:

H = W†Λ(p)W + T†Λ(V)T, (86)

with the same meaning as in the square well potential. Again, the analysis will be simplified
by introducing a symmetry adapted functions through (51), a procedure that should be
followed in order to identify accidental degeneracy.
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Figure 17. Irreducible representations associated with the energy levels of a particle confined in
rectangular wells with n = 1 and m = 2. Systematic accidental degeneracy with irreps (A2, B2) and
(B2, B2) has been highlighted. The parenthesis (n1n2) corresponds to the labels associated with wave
functions (78).

Table 4. Irreps spanned by the functions (78).

Irrep C2v n1 n2

A1 odd odd
A2 even even
B1 even odd
B2 odd even

Table 5. Character table for group C2v.

C2v E C2 σv(xz) σv(yz)

A1 1 1 1 1 z x2; y2; z2

A2 1 1 −1 −1 Rz xy
B1 1 −1 1 −1 x; Ry xz
B2 1 −1 −1 1 y; Rx yz

5.1. Symmetry Adapted Basis

We shall proceed to apply the eigenfunction method to project the direct product
basis (29). Since group C2v presents only one-dimensional irreps, it is enough to consider
the following combination of classes.

Ĉ = 3Ĉ2 + σ̂a
v . (87)

The diagonalization of operators (87) leads to eigenkets |µ〉 defined by the eigensystem:

Ĉ|µ 〉 = µ|µ〉, (88)

where µ = µ(Γ) is a function of group characters:

µ = 3χ
(Γ)
2 + χ

(Γ)
3 , (89)
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where, here, Γ stands for the irrep of the group C2v. Hence, symmetry-adapted functions
are equally expressed either with |Γ〉 or |µ〉.

We now have to establish the effect of the operators involved in (87). Formally, we
start establishing the effect of these operators over the following basis.

Ĉ2|x〉 = |C2x〉 = | − x〉; σ̂a
v |x〉 = |σa

v x〉 = | − x〉,
Ĉ2|y〉 = |C2y〉 = | − y〉; σ̂a

v |y〉 = |σa
v y〉 = |y〉. (90)

Hence, we have the following.

〈n′xn′y|Ĉ4|nxny〉 = (−1)nx+ny δn′xnx
δn′yny

, (91)

〈n′xn′y|σ̂a
v |nx, ny〉 = (−1)ny δn′xnx

δn′yny
. (92)

Gathering all these matrix elements in operator Ĉ, we obtain the following.

〈n′xn′y|Ĉ|nxny〉 = [3(−1)nx+ny + (−1)ny ]δn′xnx
δn′yny

. (93)

Notice that this representation matrix is diagonal and, consequently, we use (93) to
assign the corresponding irreps to construct the subspaces of symmetry adapted functions.

We now proceed to obtain the description of the rectangular well potential through
the diagonalization of the representation matrix (51).

5.2. Results and Discussion

We first consider the case of a rectangular well potential with infinite walls where the exact
energies are given by (83). The parameters were chosen to be as follows: a = 1 Å , b = 2 Å and
V0 = 108 cm−1. Again, we described the system with both HO-DVR and PT-DVR methods,
fitting parameters ω and α, respectively. In this system, because of the different dimensions
of the box, two parameters corresponding to the different directions are free to be fitted.
The results are displayed in Table 6, where the basis dimension was chosen in accordance
with the criterion of % P to obtain a minimum error of 1 %. It is important to remark that
the absolute minimum of rms in HO-DVR corresponds to N = 97, which is much larger
than N = 73. For the sake of comparison, we decided to take the values chosen in Table 6
in order to have similar dimensions for both methods.

From these results, we notice that the convergence of the expected degenerate states is
difficult to be obtained although, it is quite clear that using the PT-DVR approach results
in a better description: with a lower basis dimension, the expected degenerate values are
pretty close. In the same venue, in Figure 18, the root mean square deviation is presented,
where a similar behavior as in the square well potential is manifested: % P is correlated
with the rms. Indeed the best description is obtained for a minimum % P, a fact that allows
the search for the best dimension basis before carrying out the calculation.

In order to prove that the energy convergence shown in Table 6 provides the correct
wave functions, we proceeded to project the eigenvectors to the position representation. In
Figure 19, the functions associated with accidental degeneracy are shown. These functions
coincide with the ones obtained by Cartesian solutions (78) and correspond to the following.

|ΦB2
14 〉 ; |ΦA2

22 〉, (94)

|ΦB2
16 〉 ; |ΦB2

32 〉. (95)

It is clear that there is no geometrical transformation connecting these functions. The
differential operator (84) connects the degenerate B2 functions but not the states |φB2

14 〉
and |φA2

22 〉. In Lemus et al. [12], it was suggested that operator σ̂a
d corresponding to the

reflection with symmetry element depicted in Figure 20 with the previso that the space
must be considered with periodic boundary conditions, which is explained by the need to
have well defined functions in the original rectangular box.
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Table 6. Results of the energies in cm−1 for one particle confined in a rectangular square well potential
using both HO-DVR and PT-DVR methods. The dimensions of the rectangular well were chosen
to be a = 1 Å and b = 2 Å with the fitted parameters ωx = 2.0× 1013 s−1, ωy = 4.0× 1013 s−1,
and N = 73 for the HO-DVR method and αx = 9.0× 109, αx = 4.5× 109 m−1 and N = 60 for the
PT-DVR method.

HO-DVR PT-DVR
N2 = 5329 N2 = 3600

Irrep (n1, n2) Exact (cm−1) Ec(cm−1) % Error Ec(cm−1) % Error

A1 (1, 1) 51.62 51.18 0.85 51.60 0.04
B2 (1, 2) 82.59 82.11 0.58 82.44 0.19
A1 (1, 3) 134.22 133.60 0.46 134.16 0.04
B1 (2, 1) 175.51 173.99 0.87 174.96 0.31
B2 (1, 4) 206.49 205.82 0.32 205.90 0.28
A2 (2, 2) 206.49 204.92 0.76 205.80 0.33
B1 (2, 3) 258.11 256.40 0.66 257.52 0.23
A1 (1, 5) 299.40 298.43 0.32 299.30 0.03
A2 (2, 4) 330.38 328.63 0.53 329.25 0.34
A1 (3, 1) 382.00 378.19 1.00 381.85 0.04
B2 (1, 6) 413.00 409.12 0.94 411.56 0.34
B2 (3, 2) 413.00 412.01 0.24 412.69 0.07
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Figure 18. Root mean square deviation as a function of the basis dimension N using both HO-DVR
and PT-DVR approaches. In the upper panels, basis dimension N2 taken to obtain the results of
Table 6 are pointed out. The average is included by taking into account seven points to the right and
to the left when possible. In the lower panels, the corresponding zooms are shown together with the
percentage of points % P defined in Equation (76), where its correlation with rms is evident.

The spectrum of Figure 17 corresponds to a confined particle. When the potential
depth becomes finite, the spectrum is modified in both energy and degeneracy. In Figure 21,
we show the energy levels as a function of potential depth V0. As the potential decreases, the
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accidental degeneracy associated with levels {|ΦB2
16 〉, ΦB2

32 〉} as well as with {|ΦB2
14 〉, ΦA2

22 〉}
is broken. Again, the true symmetry group for the confined particle becomes geometrical
group C2v and no degeneracy appears. The splitting of these couple of levels becomes more
evident in the zooms depicted in Figure 22. It is clear that the splitting manifested through
function ζ is grater for levels {B2, B2} than for levels {A2, B2}.

The analysis we have presented for the rectangular well has been limited to ratio
L1/L2 = m/n = 1/2. In order to take into account other possibilities, we shall consider
case m : n = 1/p with p = 1, 2, 3, 4. In order to achieve this goal, we introduce continuous
parameter τ defined as the following.

L2/L1 = τ; τ : [0.5, 4]. (96)
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Figure 19. Wave functions associated with a particle in a rectangular well potential calculated with
the PT-DVR approach with N = 60, in accordance with the results of Table 6. In general, the HO-DVR
approach does not provide wave functions of similar quality.

In this manner, we not only consider rectangular boxes with ratios L2/L1 = 2, 3, 4
but also the case of a square well potential with τ = 1. In Figure 23, we present the
energy levels as a function of parameter τ. The diagram was generated using the PT-DVR
approach with parameters N = 60, αx = 9× 109 m−1 and αy = 4.5× 109 m−1. The labeling
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scheme was chosen in accordance with the C2v group. For τ = 1, we have the case of a
square box. The degenerate states are pointed out with circles and correspond to the pair
of levels E and {A2, B2}, which subduce to B1 ⊕ B2 and {A1, A1}, respectively, in C2v. For
relation τ = 2, we identify degenerate levels {A2, B2} and {B2, B2}, which are previously
analyzed and provided in Figure 17. For relation τ = 3, two pairs of degenerate levels
appear, corresponding to the following levels.

|ΦB2
16 〉; |ΦB1

23 〉, (97)

|ΦB1
27 〉; |ΦB2

32 〉. (98)
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Figure 20. Action of reflection σa
d (with symmetry element in red) over the eigenfunctions with

accidental degeneracy of the rectangular well potential. At the right of the wave functions the overlap
between the original and the resulting wave functions are shown. Although they are coincidental,
the space must be extended.
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Figure 21. Correlation diagram of the energy levels as a function of the potential depth.

Figure 22. (a) A zoom of Figure 21 to show the correlation diagram of the energy levels {B2, B2} and
{A2, B2} as a function of the potential. In (b), the associated parameters ζ for these couple of levels
are shown together with the corresponding energy splitting.

Finally, for τ = 4, we have a degeneracy associated to the following states:

|ΦA1
17 〉; |ΦB1

21 〉, (99)

|ΦB2
18 〉; |ΦA2

24 〉, (100)

which are pointed out in the correlation figure. Hence, the diagram of Figure 23 not only
allows us to identify the accidental degeneracy due to the commensurate sides, but also
shows symmetry breaking when ratio L2/L1 stops being an integer. It should be clear that
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the accidental degeneracy with respect to group C2v renders it natural with respect to the
true symmetry group.

Figure 23. Correlation diagram of the energy levels for a given potential depth as a function of
parameter τ defined in (96). The calculation was carried out with the PT-DVR method with parameters
N = 60, αx = 9× 109 m−1 and αy = 4.5× 109 m−1. Degeneracy is pointed out with circles. However,
for τ = 4, degeneracy is not evident because of lack of convergence.

6. Conclusions

In this contribution, we have presented a quantum mechanical analysis of one particle
under 1D and 2D piecewise potentials. First, the benchmark problem of a particle confined
in a 1D square well potential was studied in the framework of three methods: HO-DVR,
PT-DVR and SU(2)-UGA. It was found that the PT-DVR method is the most appropriate
approach, albeit the HO-DVR method also provides reasonable results. SU(2)-UGA turns
out to be inappropriate for these type of potentials. Henceforth, the 1D square well potential
with finite walls was studied using these methods. The general trend regarding the
advantage of each method remained: A localized discrete basis is the best choice to describe
these kind of systems. The next issue we considered was the energy correlation between
a spectrum provided by a square and half-space well potentials and the anharmonic
spectra associated with realistic interactions such as the case of PT and Morse potentials,
respectively. To achieve this task, we have used a multistep piecewise potential. We have
shown that the anharmonic spectrum is dominated by the form of the potential near the
continuum but not by the presence of the continuum itself. In addition, we confirm the lack
of exponential convergence as the basis dimension increases.

As a second issue in our analysis, we have considered a particle confined in a 2D
square well potential, a system that is characterized by presenting systematic accidental
degeneracy with respect to the geometrical point group C4v. The accidental degeneracy is
explained by the identification of a new symmetry group, T ∧ C4v [9]. In contrast to the
representation analysis provided by Leybraz et al. [9], a formal procedure to construct its
irreducible representations is provided. The identification of group T ∧ C4v allows us to
render systematic accidental degeneracy normal. We have proved that, when the walls
of the square well potential become finite, symmetry breaking is present, a phenomenon
formally described by the subduction T ∧ C4v ↓ C4v. A relevant aspect of this system
with finite walls is that partial symmetry breaking may be manifested depending of the
depth of the potential; the low lying levels may still keep accidental degeneracy for a given
potential V0 and width a. Regarding convergence, we have found that the oscillations
of the rms displayed in Figure 13 are correlated with the number of discretized points
xi falling inside the square box. Since this number of points corresponds to the zeroes
of either the Hermite or Gegenbauer polynomials, the appropriate selection of the basis
dimension can be determined before carrying out the calculation. This fact compensates
for the lack of exponential convergence. The comparison between the exact results and the
calculations obtained by HO-DVR and PT-DVR methods for the confined particle provides
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similar results in energy but the PT-DVR approach provides a better description for wave
functions.

A square well potential is a quite simple albeit interesting system where all types of
degeneracy may be present, a feature that can be used to exemplify the concept of symmetry
group and the consequences of not having appropriately identified such group.

It should be stressed that a crucial aspect of this treatment is not only the symmetry
projection of the basis to identify degeneracy but also to simplify calculations. The eigen-
function method turns out to be the best option that consists in diagonalizing a complete
set of commuting operators defined in terms of a linear combination of classes associated
with a chain of groups.

An additional system that we have included in our discussion is the case of a particle
confined in a rectangular well potential with commensurate sides. This system also presents
systematic accidental degeneracy. We have shown that this degeneracy is removed by the
effect of the presence of finite walls. Choosing appropriately the potential depth V0 and
width a, a near-accidental degeneracy may remain for finite walls. We have also shown a
correlation of energy levels when, for a given potential depth, the width of the well in the y
direction is increased in order to obtain several multiples of the width in the x direction.
The depicted correlation plot allows us to identify accidental degeneracy in the form of
crossing of levels, a quite enlightening diagram showing the appearance of degeneracy due
to commensurability.

Hence, the present analysis shows that algebraic DVR approaches are suitable for
dealing with piecewise potentials. In particular, the PT-DVR approach seems to be more
appropriate than the HO-DVR method due the fact that the PT-basis carries information of
both anharmonicity and the continuum. An analogous situation occurs for the asymmetric
square well potential described with the M-DVR approach.

The study we have presented paves the way to explore future applications in the
field of quantum chemistry. In particular, the H+

2 molecule is a good candidate because
the evaluation of electron–nuclei interactions is provided as an expansion in terms of
spherical harmonics with coefficients depending on the radial coordinate, which behaves
as a piecewise potential from the point of view of a DVR approach. A similar situation
is present in the Helium atom, although in this case it will be necessary to combine this
approach with the transformation brackets introduced by M. Moshinsky [51].
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Appendix A. Alternative DVR Methods

In this appendix, we present the main features of the algebraic Pöschl-Teller-DVR
(PT-DVR), Morse-DVR (M-DVR) and the SU(2)-UGA approaches. With the exception of
M-DVR approach, these methods are appropriate for symmetric potentials. We start with
the PT-DVR approach.
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Appendix A.1. PT-DVR Method

The bound states of the Pöschl-Teller potential do not form a complete set of states in
the Hilbert space [60–62]. The DVR approach needs a complete basis, which is provided
by the following [63]:

Φσ
n(u) = Aσ

n(1− u2)
σ
2 Cσ−1/2

n (u); n = 0, 1, 2, . . . , (A1)

where Cσ−1/2
n (u) are the Gegenbauer polynomials [64] with argument u = tanh(αq), and

σ is taken to be σ = 1 in order to decouple the bound from the continuum spectrum [63],
while the normalization constant is as follows.

Aσ
n =

√
αn!(σ + n− 1/2)(Γ[σ− 1/2])2

π22−2σΓ[2σ + n− 1]
. (A2)

Using the factorization method, it is possible to obtain ladder operators {K̂±, K̂0} with
the following effect [63]:

K̂+Φσ
n(u) =k+Φσ

n+1(u), (A3)

K̂−Φσ
n(u) =k−Φσ

n−1(u), (A4)

K̂0Φσ
n(u) =k0Φσ

n(u), (A5)

with the following being the case.

k+ =
√
(n + 1)(2σ + n− 1), (A6)

k− =
√

n(2σ + n− 2), (A7)

k0 =(n + σ− 1/2). (A8)

Based on these results, the momentum and natural variable u take the following
form [63]:

p̂ =
ih̄α

2
[B̂+ − B̂−]; û =

1
2
[Â+ + Â−]; (A9)

where the new operators are defined by the following actions over the basis.

Â+Φσ
n(u) =

√
(n + 1)(2σ + n− 1)

(n + σ− 1/2)(n + σ + 1/2)
Φσ

n+1(u), (A10)

Â−Φσ
n(u) =

√
n(2σ + n− 2)

(n + σ− 1/2)(n + σ− 3/2)
Φσ

n−1(u), (A11)

B̂+Φσ
n(u) =(σ + n)Â+Φσ

n(u), (A12)

B̂−Φσ
n(u) =(σ + n− 1)Â−Φσ

n(u). (A13)

Using these expressions, we can obtain the matrix elements of the coordinate and
momentum, which induces diagonalization in the following subspace:

LCPT
N = {|Φσ

n〉, n = 0, 1, . . . , N − 1}, (A14)

and it induces the following eigenvectors:

|ui〉 =
N−1

∑
n=0
〈Φσ

n|ui〉|Φσ
n〉, (A15)

|pi〉 =
N−1

∑
n=0
〈Φσ

n|pi〉|Φσ
n〉, (A16)
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which provide momentum and coordinate representations characterized by the following.

u|ui〉 = ui|ui〉, p|pi〉 = pi|pi〉. (A17)

For the coordinate, we have relation u = tanh(αq) and, consequently, the following:

〈uj|V(q)|ui〉 = V[qi(ui)]δij, 〈pj|G(p)|pi〉 = G(pi)δij, (A18)

with the following being the case.

qi =
1
α

arctanh(ui). (A19)

Accordingly, the matrix representation of a Hamiltonian associated with a general
potential takes the same form (13), albeit with new definitions T = ||〈Φσ

n|ui〉|| and W =
||〈Φσ

n|pi〉||, with ||Λ(p)|| = (p2
i /2µ)δij and ||Λ(q)|| = V[qi(ui)]δij in the momentum and

coordinate representations, respectively.

Appendix A.2. SU(2)-UGA-DVR Method

The 1D unitary group approach has already been established by Lemus [43,44]. Here,
we present salient features of the method. In this approach, a scalar boson s†(s) is added
to the physical space of a 1D harmonic oscillator with bosonic operators t†(t), called a†(a)
in Section 2. The bilinear products satisfy commutations relations associated with the
generators of the U(2) group with the constraint that N̂ = t†t + s†s ≡ n̂ + n̂s is preserved.
A convenient form to express its generators is the following:

GU(2) = {N̂, Ĵx, Ĵy, Ĵz}, (A20)

with the following being the case.

Ĵx =
1
2
(t†s + s†t); Ĵy = − i

2
(t†s− s†t); Ĵz =

1
2
(t†t− s†s). (A21)

From this perspective, any dynamical variable of a 1D system may be expanded in
terms of the generators (A20). The SU(2) group presents three group chains:

SU(2) ⊃ U(1), (A22)

SU(2) ⊃ SO(2), (A23)

SU(2) ⊃ SŌ(2), (A24)

and each of them is characterized by operators Ĵz, Ĵx and Ĵy, respectively, with the following
eigenkets:

Ĵz|[N]µ〉 =µ|[N]µ〉 = µ|[N]n〉, (A25)

Ĵx|[N]ζ〉 =ζ|[N]ζ〉, (A26)

Ĵy|[N]ζ̄〉 =ζ̄|[N]ζ̄〉, (A27)

and the following eigenvalues:

µ, ζ, ζ̄ = −N
2

,−N
2
+ 1, . . . .

N
2

, (A28)

with the following relation between µ and the physical quantum number n:

n = j + µ; N − n = j− µ, (A29)
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and j standing for the angular momentum associated with the SU(2) group. Since coordinate
q and momentum p have the following realization:

q→ Q̂ =
1√
2

√
h̄

ωµ

2 Ĵx√
N

, p→ P̂ = − 1√
2

√
h̄ωµ

2 Ĵy√
N

, (A30)

the bases (A26) and (A27) correspond to coordinate and momentum representations, respec-
tively. We stress that the spectra of the coordinate and momentum are discrete, establishing
a DVR approach.

The algebraic representation of any 1D system of the following:

ĤSU(2)

alg =
1

2µ
P̂2 + V(Q̂) (A31)

is obtained through mapping q → Q̂; p → P̂ . Here, it is necessary to add and subtract a
quadratic term in such a manner that the harmonic oscillator Hamiltonian is identified. We
thus obtain the following:

HSU(2)
alg = h̄ω

(
n̂ +

1
2
− n̂2

N

)
+ V′(Q̂), (A32)

where the following is the case.

V′(Q̂) = −ω2µ

2
Q̂2 + V(Q̂). (A33)

Using transformation brackets of the following:

T = ||〈[N]ζ|[N]n〉||, (A34)

associated with the coordinates, the Hamiltonian in the energy representation takes the
following form [43,44].

H = Λ(E) + T†Λ(Q)T. (A35)

A remarkable fact of this approach is that the kets |[N]n〉 are identified with the 1D
harmonic oscillator, and consequently, it is possible to project kets |[N]ζ〉 and |[N]ζ̄〉 to
position representations. It is important to take into account that, in the UGA, an accidental
degeneracy appears, which must be removed [43,44]. This goal is achieved by introducing
parameter ε in the matrix representation of the deformed oscillator contribution:

||Λ(E)|| =
[

h̄ω

(
n +

1
2
− ε

n2

N

)]
δn′ ,n, (A36)

where ε = 1 for n < N/2 and ε = 0 for n ≥ N/2.

Appendix A.3. Morse DVR Method (M-DVR)

As in the case of the PT potential, the bound states of the Morse potential do not
form a complete set of states in the Hilbert space [65,66]. The DVR approach needs a
complete basis, which is provided by the tridiagonal Morse basis (TMB) given by the
following [67–70]:

Φσ
n(y) = Aσ

n L2σ−1
n (y) yσe−y/2, (A37)

with the following normalization constant: Aσ
n =

√
(βn!)/Γ(2σ + 1), where σ is a param-

eter that is chosen to be σ = 1 since, in this case, the bound states and the continuum
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part of the spectrum are decoupled [69]. Natural variable y is connected with the physical
coordinate q through the following:

y = (2j + 1)e−βq, (A38)

where j is related to the potential depth and β stands for the range of the Morse potential.
It is possible to construct ladder operators {K̂±, K̂0} satisfying the su(1, 1) commuta-

tion relations with the following effect over the following basis (A37).

K̂−Φσ
n(y) =k−(n) Φσ

n−1(y) with k−(n) =
√

n(2σ + n− 1), (A39)

K̂+Φσ
n(y) =k+(n) Φσ

n+1(y) with k+(n) =
√
(n + 1)(2σ + n), (A40)

K̂0Φσ
n(y) =k0Φσ

n(y) with k0 = σ + n. (A41)

On the other hand, natural variable y and momentum p = −ih̄ d
dq are related to the

operators (A39)–(A41) in the following form:

p =
ih̄β

2
(K̂+ − K̂−), (A42)

y = 2K̂0 − (K̂+ + K̂−), (A43)

with the following matrix elements.

〈Φσ
n′ |y|Φ

σ
n〉 =2(σ + n)δn,n′ − (k+(n) δn′ ,n+1 + k−(n) δn′ ,n−1), (A44)

〈Φσ
n′ |p|Φ

σ
n〉 =

ih̄β

2
(k+(n) δn′ ,n+1 − k−(n) δn′ ,n−1). (A45)

The diagonalization of these matrix representations in the following subspace:

LTMB
N = {|Φσ

n〉, n = 0, 1, . . . , N − 1}, (A46)

produces the following eigenvectors:

|yi〉 =
N−1

∑
n=0
〈Φσ

n|yi〉|Φσ
n〉, (A47)

|pi〉 =
N−1

∑
n=0
〈Φσ

n|pi〉|Φσ
n〉, (A48)

where matrices T = ||〈Φσ
n|yi〉|| and W = ||〈Φσ

n|pi〉|| correspond to the coefficients that
define basis transformations (A47) and (A48), which provide the coordinate and momentum
representations characterized by the following.

y|yi〉 = yi|yi〉, p|pi〉 = pi|pi〉. (A49)

For the coordinate, we have relation (A38) and, consequently, the following:

〈yj|V(q)|yi〉 = V[qi(yi)]δij, 〈pj|G(p)|pi〉 = G(pi)δij, (A50)

with the following being the case.

qi = −
1
β

ln
yi

(2j + 1)
. (A51)

Equations (A50) establish the discrete variable representation and relation (A51) allows
the description of systems beyond the Morse potential. Following the same procedure,
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the matrix representation of a Hamiltonian takes the same form (13) with the appropriate
identification of the transformation coefficients and connection (A51).

Appendix B. Symmetry Group and Irreducible Representations

In this section, we present the symmetry group of particle in a 2D square potential with
infinite walls together with the construction of its irreducible representations. Although
this problem has already been presented in heuristic manner [9], it has not been formally
presented in the framework of induced representations as it was for the cubic 3D square
well potential [11].

Let us first start by presenting the solutions of one particle inside the potential depicted
in Figure A1, where the origin is located at the left corner of the square. In this reference
framework, the solutions take the following simple form:

ψn1n2(x, y) = ψn1(x)ψn2(y), (A52)

where the following is the case.

ψn1(x) =

√
2
L

sin
(

n1πx
L

)
, (A53)

ψn2(y) =

√
2
L

sin
(

n2πy
L

)
. (A54)

Figure A1. Square well potential and symmetry elements associated with geometrical symmetry
C4v. Two reference systems are shown: (a) the origin is located at the left corner with solutions given
by (A53) and (A54); and (b) the origin is located at the center of the square.

The symmetry projection of functions (A52) allows the assignment of irreducible
representation to the energy spectrum depicted in Figure 10 [9]. In this system, we are able
to identify two subspaces. The one-dimensional space of the following:

L1 = {|ψnn〉} (A55)

with the following reduction:

|ψB2,A′
nn 〉 = n even (A56)

|ψA1,A′
nn 〉 = n odd, (A57)

and the following two dimensional subspaces:

L2 = {|ψnm〉}; n 6= m, (A58)



Symmetry 2022, 14, 445 38 of 47

with reductions provided in Table A1 is provided. The first 13 energy levels obtained with
Equation (28) in dimensionless units Ē = E/(h̄2π2/2mL2) are displayed in Figure 10. It is,
thus, clear that double degeneracy A1 ⊕ B1 and A2 ⊕ B2 represent accidental degeneracy.

Table A1. Irreducible representations (irreps) of the geometrical group C4v contained in the sub-
spaces (A58). The reduction depends of the parity of n and m with p and q integers.

Irrep n m

E 2p 2q + 1
E 2p + 1 2q

A1 ⊕ B1 2p + 1 2q + 1
A2 ⊕ B2 2p 2q

However, since this degeneracy is systematic over the entire spectrum, we have the
presence of systematic accidental degeneracy, which implies that symmetry group C4v is a
subgroup of the true symmetry group. In order to obtain the true symmetry group, it is
necessary to identify the operator connecting the accidental degenerate states. In order to
achieve this goal, we start establishing that such operators F̂(ρ), carrying the ρ-th irreducible
representation (irrep), must satisfy the following.

〈ψΓ|F̂(ρ)|ψΓ′〉 6= 0; for (Γ = A1, Γ′ = B1) and (Γ = A2, Γ′ = B2). (A59)

In other words, the operator must span the irrep ρ satisfying the following.

Γ ∈ ρ⊗ Γ′. (A60)

In accordance with the character in Table A2, such operators should span the irre-
ducible representation ρ = B1. Notice that degenerate states |ψE

i 〉 are left unaltered by the
B1 tensor.

Table A2. Character table of group C4v.

C4v E 2C4 C2 2σv 2σd

A1 1 1 1 1 1 z x2 + y2; z2

A2 1 1 1 −1 −1 Rz
B1 1 −1 1 1 −1 x2 − y2

B2 1 −1 1 −1 1 xy
E 2 0 −2 0 0 (x, y); (Rx, Ry) (xz, yz)

From the character in Table A2, we see that the Cartesian harmonic x′2 − y′2 spans
irrep B1, where the primes mean that the function is referred to the origin located in panel
(b) of Figure A1. However, the same linear combination in terms of the square momenta
transforms according to B1 and, consequently, we have the following operator.

F̂(B1) =
1
4

√
5
π

(
∂2

∂x2 −
∂2

∂y2

)
. (A61)

This operator commutes with the following Hamiltonian:

[Ĥ, F̂(B1)] = 0, (A62)
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and conserves boundary conditions. Consequently, it is suitable to be added to the symme-
try elements of the C4v group. Operator (A61) generates continuous group T with elements
obtained by exponentiation in the following manner.

Û(α) = eiαF̂(B1) . (A63)

In order to elucidate the structure of the new group it is convenient to observe whether
subgroup T is invariant. Taking into account that elements R ∈ C4v are isomorphic to
operators ÔR that act over the space of functions, the conjugation of Û(α) with respect to
the elements of C4v yields the following:

ÔRÛ(α)Ô−1
R = Û(α′) ∈ T , (A64)

with the following being the case:

α′ = αχB1(R), (A65)

where χB1(R) denotes the character of the irrep B1 in group C4v. This result means that
group T is invariant, a fact that allows the new symmetry group G to be expressed as a
semidirect product:

G = T ∧ C4v, (A66)

and in terms of an expansion of left cosets.

G =
|λ|

∑
λ=1

sλ T ; |λ| = |G||T | ; sλ ∈ C4v. (A67)

Hence, any element g ∈ G can be written in the following form:

ĝ = ÔRÛ(α); R ∈ C4v, (A68)

where we have simplified the following notation ĝ = Ôg.
We now proceed to construct irreducible representations of group G. To accomplish

this task, we shall proceed through the induction method by constructing the irreps of
group G from the irreps of subgroup T . We start with the construction of the irreps of the
invariant subgroup, T .

First, let us consider the two dimensional representation spaces.

L2 = {|ψn1n2〉, |ψn2n1〉}; n1 6= n2. (A69)

The action of the elements of T over this space is given by the following:

Û(α)|ψn1n2〉 = D(kn)(α)|ψn1n2〉 (A70)

where the following is the case:
D(kn)(α) = eiαkn (A71)

with the following.

kn = ζ0(n2
1 − n2

2); ζ0 =
π2

L2
1
4

√
5
π

. (A72)

We, thus, have states |ψn1n2〉 spanning representation kn. It is, thus, convenient to label
the states according to this representation in the following form |ψkn

n1n2〉 in such a manner
that the following is the case.

Û(α)|ψkn
n1n2
〉 = eiαkn |ψkn

n1n2
〉. (A73)
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For the sake of convenience, we introduce the following definitions.

k1 = kn1n2 = ζ0(n2
1 − n2

2); k2 = kn2n1 = ζ0(n2
2 − n2

1) = −k1. (A74)

Hence, the two-dimensional space (A69) is a representation space spanning the diago-
nal irreps of the subgroup T .

D(k)(α) =

(
eiαk1 0

0 eiαk2

)
(A75)

On the other hand, it is clear that for n1 = n2 = n, we have a one-dimensional space
L1 = {|ψk0

nn〉} spanning representation D(k0)(α) = 1 with k0 = 0.

Û(α)|ψk0
nn〉 = D(k0)(α)|ψk0

nn〉 = |ψk0
nn〉. (A76)

Once we count on the irreps of subgroup T , we are ready to proceed to construct the
irreps of the group G. However, to accomplish this task, it is necessary to recall the concept
of conjugate representation.

Let H ⊂ G, with H invariant. Given D(µ)(h), the µ-th irrep of h ∈ H, the matrix
D(µ)(ghg−1) ≡ µD(g)(h) called conjugate representation is also a representation of H. In
our case, H → T is an invariant subgroup with representations D(kn)(α) = eiαkn . We, thus,
have to identify the conjugate representation. In order to achieve this goal, consider the
representation k1 defined by the following.

Û(α)|ψk1
n1n2〉 = eiαk1 |ψk1

n1n2〉. (A77)

From (A64), we have the following.

ORÛ(α)O−1
R = U(α′); α′ = αχB1(R). (A78)

Hence, we have the following for the conjugate representation.

k1 D(R)(α) = D(k1)(α′). (A79)

This result can be reinterpreted in the following form:

k1 D(R)(α) = eiαR̂F̂(B1) R̂−1
= eiαχB1 (R)F̂(B1) = eiαk′ = D(k′)(α), (A80)

where the following is the case:
k′ = k1χB1(R), (A81)

with the proviso that the operators involved act over state |ψk1
n1n2〉. Here, we have used

simplified notation, OR = R̂. In addition, it is worth noticing that the following is the case:

〈ψk1
n1n2 |R̂F̂(B1)R̂−1|ψk1

n1n2〉 = 〈R̂
−1ψk1

n1n2 |F̂
(B1)|R̂−1ψk1

n1n2〉, (A82)

which means that the state spanning the conjugate representation k′ is obtained by the
following.

R̂−1|ψk1
n1n2〉 = |ψ

k′
n′1n′2
〉. (A83)

We notice that two irreps are identified, namely k1 and k2. Starting with k1, we obtain
conjugate representations k1 D(R)(α) = D(k1)(RU(α)R−1), ∀R ∈ C4v, although some of
them are equivalent. The set of nonequivalent representations, denoted by k1S , is called the
star of k1. In our case, from (A81), only two nonequivalent representations are obtained: k1
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itself and k′ = k2 = −k1 , the latter generated with R ∈ C4v in (A81) satisfying χB1(R) = −1.
The star is then given by the following:

kS = k1S = {k1, k2}, (A84)

where each element is called the prong of the star. Starting with k2, the same star is obtained.
This explains that the star will be referred as kS without specifying the particular ki from
which it is generated. It should be clear that |C4v| = 8 conjugations are carried out to
obtain (A84) of order |kS| = 2. Consequently, there should be a set of elements that
transform k1 to either an equivalent or identical representation. Indeed this set of elements
corresponds to the elements of T as well as the elements of subgroup C2v. This set of
transformation form a group, the little group of k1, denoted by K(k) and is given by the
following.

K(k) = T ∧ C2v. (A85)

Each prong in star (A84) has associated its own little group, but they are isomorphic, a
fact that explains the notation of K(k). The little group of k is infinite. To deal with a finite
group, we consider the factor group called little co-group K(k):

K(k) = K(k)
T ≈ C2v. (A86)

in which its elements are provided by the left cosets in the following expansion.

K(k) =
|λ|

∑
λ

sλT ; sλ ∈ C2v. (A87)

On the other hand, the factor group is isomorphic to group C4v:

G
T ≈ C4v, (A88)

with the following expansion in left cosets:

C4v =
|λ|

∑
λ

pλC2v; |λ| = |C4v|
|C2v|

, (A89)

a fact that allows confrontation with finite groups. This is the basic background in the
construction of the irreps of G. Expansion (A89) implies that every element g ∈ C4v can be
expressed in terms of a product of the following form:

g = pλ h; h ∈ C2v, (A90)

and in the following explicit form:

C4v = C2v + σa
dC2v, (A91)

with identification p1 = E, p2 = σa
d .

Let us now consider the ket |ψk1
n1n2〉. All the elements of C2v leave it invariant. On the

other hand the action of the coset representatives in the expansion (A89) yields

OE|ψk1
n1n2〉 = |ψk1

n1n2〉, (A92)

Oσa
d
|ψk1

n1n2〉 = |ψk2
n2n1〉. (A93)

Hence, the set of functions {|ψk1
n1n2〉, |ψ

k2
n2n1〉} form a representation space of G. How-

ever, for the construction of irreps, it is convenient to consider the basis in the following
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form: { p̂λ|ψk1
n1n2〉; λ = 1, 2}. The procedure to obtain the irreps of element g ∈ C4v con-

sists in applying operator ĝ over the representation space. In this manner, we obtain the
following:

ĝ p̂λ|ψk1
n1n2〉 = p̂µ ĥ|ψk1

n1n2〉; h ∈ C2v, (A94)

where identity follows from expansion (A89). Here, h is called the sub-element of g in pλ

denoted by hλ(g). All sub-elements involved are listed in Table A3. We should remark that
the action over states |ψk1

n1n2〉 are well defined since they carry irreps of C2v.

Table A3. Sub-elements hλ(g) defined in (A94) through expansion (A89).

g pλ pλh hλ(g)

E E E E E
C4 E σa

d σa
v σa

v
C3

4 E σa
d σb

v σb
v

σa
v E Eσa

v σa
v

σb
v E Eσb

v σb
v

σa
d E σa

d E E
σb

d E σa
d C2 C2

E σa
d σa

d E E
C4 σa

d Eσb
v σb

v
C3

4 σa
d Eσa

v σa
v

σa
v σa

d σa
d σb

v σb
v

σb
v σa

d σa
d σa

v σa
v

σa
d σa

d EE E
σb

d σa
d EC2 C2

We are now prepared to carry out the induction. However, before we accomplish this
goal, it is convenient to present the general procedure. Let us consider the general situation
of generating representations of a group G from the irreps D(µ) = µH of H ⊂ G [10]. First,
we expand group G in cosets of H.

G =
|λ|

∑
λ

sλH; |λ| = |G||H| . (A95)

The set of cosets {sλH} span a representation of G:

ĝ(sλH) =
|λ|

∑
λ′

∆(b)
H (g)λ′λ (sλ′H), (A96)

where ∆(b)(g) is called the basal representation given by the following.

∆(b)
H (g)λ′λ = δλ′τ ; gsλ = sτhλ(g). (A97)

Let us now consider a set of kets |φ(µ)
i 〉 spanning the µ-th irrep µH = D(µ)(H) of

subgroup H.

ÔR|φ
(µ)
i 〉 =

nµ

∑
j

D(µ)
ji (R)|φ(µ)

j 〉. (A98)

Hence, set {ŝλ|φ
(µ)
i 〉} is a representation the space of group G:

ĝ(ŝλ|φ
(µ)
i 〉) = ∑

λ′
∑

j
∆(µ H↑G)(g)λ′ j;λi(ŝ

′
λ|φ

(µ)
j 〉) (A99)
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where ∆(µ H↑G)(g) is called the induced representation with the following elements.

∆(µ H↑G)(g)λ′ j;λi = ∆(b)
H (g)λ′λD(µ)

ji (hλ(g)). (A100)

In general, the induced representation is reducible. However, when induction is
carried out through the little co-groups associated with the irreps of the subgroup, the
induced representations are complete and irreducible. We may, thus, sketch the general
procedure as follows. In the frame work of our group G = T ∧ C4v, we begin these states,
|ψk1

n1n2〉, by carrying irreps of the invariant subgroup T . Then, the little group K(k) is
identified. This group in infinite; consequently, to deal with a finite group, it is considered
the little co-group isomorphic to a subgroup of point group C4v. The states |ψk1

n1n2〉 span irreps
Γ of the little co-group, a fact that permits a labeling scheme, |ψk1;Γ,γ

n1n2 〉. Finally, induction is
carried out by obtaining all irreducible representations of G.

Γ,γ
k1
G =Γ,γ K(k1T ) ↑ G. (A101)

Here, there are two labels, the prong corresponding to the irrep k1T , and the irrep and
component {Γ, γ} associated with the little co-group.

We now proceed to generate irreps (A101). In our previous analysis, we were dealing
with two-dimensional space (A69) leading to the star (A84), which may be identified
with vectors {k1, k2 = −k1}, as shown in Figure A2. In this figure, we denote k = k1 in
accordance with the notation for the little co-group. Each prong of the two dimensional star
is called a general vector with little co-group C2v. On the other hand, the irrep k0T spanned
by the kets |ψk0

nn〉 leads to the star S0 = {k = 0}. Because this irrep k0 = 0 is invariant
under full point group C4v, it is called a special point.

Figure A2. Irreducible representations of the group T labeled by the corresponding little co-groups.
Two little co-groups have been identified: K(k) corresponding to a general vector and K(k0) corre-
sponding to special point k0 = 0.

We start considering general points associated with the star (A84). Since in this case
the co-group is C2v, states {|ψk1

n1n2〉, |ψ
k2
n2n1〉} by itself carry irreps of C2v. Indeed, considering

the generators {C2, σa
v} of the little co-group C2v, we obtain diagonal representations.

∆(C2) =

(
(−1)n1+n2 0

0 (−1)n1+n2

)
; ∆(σa

v) =

(
(−1)n2+1 0

0 (−1)n1+1

)
. (A102)

This representation is of course reducible and contains the two irreps given by the
following:

µ : D(µ)(C2) = (−1)n1+n2 ; D(µ)(σa
v) = (−1)n2+1; (A103)

ν : D(ν)(C2) = (−1)n1+n2 ; D(ν)(σa
v) = (−1)n1+1, (A104)

which have to be identified with the irreps of the C2v group in accordance to the character
in Table A4. Since the little co-groups for k1 and k2 are isomorphic, it is enough to consider
the reduction associated with k1, which is displayed in Table A5.
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Table A4. Character table for group C2v.

C2v E C2 σv(xz) σv(yz)

A1 1 1 1 1 z x2; y2; z2

A2 1 1 −1 −1 Rz xy
B1 1 −1 1 −1 x; Ry xz
B2 1 −1 −1 1 y; Rx yz

Table A5. Identification of the irreps of C2v in accordance with parity.

n1 = 2m + 1 n1 = 2m n1 = 2m n1 = 2m + 1
n2 = 2n + 1 n2 = 2n n2 = 2n + 1 n2 = 2n

D(µ)(C2) 1 1 −1 −1
D(µ)(σa

v) 1 −1 1 −1

k1 : µ A1 A2 B1 B2

We proceed to obtain the representations of G that are completely specified by the
matrix representation of generators {U(α), C4, σa

d}. Let us start considering element g = C4.
In accordance with the coset expansion (A89), the representation space is {E|ψk1〉, σa

d |ψ
k1〉}.

From Table A3 for the sub-elements, we obtain the following:

C4[E|ψk1,µ〉] = σa
d σa

v |ψk1,µ〉 = χ(µ)(σa
v)[σ

a
d |ψ

k1,µ〉], (A105)

C4[σ
a
d |ψ

k1,µ〉] = Eσb
v |ψk1,µ〉 = χ(µ)(σb

v )[E|ψk1,µ〉], (A106)

from which we obtain the matrix representation for element C4.

D(
µ
k G)(C4) =

(
0 χ(µ)(σb

v )

χ(µ)(σa
v) 0

)
. (A107)

In similar manner for element σa
d , we have the following:

σa
d [E|ψ

k1,µ〉] = χ(µ)(E)[σa
d |ψ

k1,µ〉], (A108)

σa
d [σ

a
d |ψ

k1,µ〉] = χ(µ)(E)[E|ψk1,µ〉], (A109)

and, consequently, we have the following.

D(
µ
k G)(σa

d) =

(
0 χ(µ)(E)

χ(µ)(E) 0

)
. (A110)

Finally, we have to obtain the matrix representation of element U(α). The action of an
element of T over an element of the basis is given by the following:

Û(α)R̂|ψk1,µ
n1n2〉 = R̂Û(α′)|ψk1,µ

n1n2〉; R = E, σa
d . (A111)

where we have taken into account the invariance of T . Nevertheless, from (A83), the new
element U(α′) is associated with the inverse of R.

Û(α′)|ψk1,µ
n1n2〉 = k1 D(R−1)(α)|ψk1,µ

n1n2〉 = eiαk′ |ψk1,µ
n1n2〉. (A112)

However, in this case, R−1 = R and, consequently, the following is the case.

D(
µ
k G)(α) =

(
eiαk 0
0 e−iαk

)
. (A113)
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We now consider the special point k0 = 0. In this case, the little co-group is C4v and
the basal representation is generated by element EC4v with basis |ψk0,µ

nn 〉. The action of the
generators is as follows.

Û(α) = 1, (A114)

Ĉ4(E|ψk0,µ
nn 〉) = (−1)n+1(E|ψk0,µ

nn 〉), (A115)

σ̂a
d(E|ψk0,µ

nn 〉) = (E|ψk0,µ
nn 〉). (A116)

From the character in Table A2, we have identifications for the following representa-
tions:

n even D(
B2
k0
G)
(C4) = −1; D(

B2
k0
G)
(σa

d) = 1; (A117)

n odd D(
A1
k0
G)
(C4) = 1; D(

A1
k0
G)
(σa

d) = 1, (A118)

and in compact form in terms of characters.

D(
µ
k0
G)
(α) = 1; (A119)

D(
µ
k0
G)
(C4) = χ(µ)(C4); ; D(

µ
k0
G)
(σa

d) = χ(µ)(σa
d). (A120)

Finally, we present subduction µ
kG ↓ C4v in order to make clear that the accidental

degeneracy previously identified in C4v renders a natural degeneracy in group G. In
Table A6, we present subduction µ

kG ↓ C4v where we can observe that the accidental
degeneracy in accordance with geometrical group C4v is indeed a natural degeneracy in the
new symmetry group, G.

Table A6. Subduction µ
kG ↓ C4v.

C4v E C4, C3
4 C2

4 σa
v , σb

v σa
d , σb

d
µ
kG ↓ C4v

χ(
A1
ko
G) 1 1 1 1 1 A1

χ(
B2
ko
G) 1 −1 1 −1 1 B2

χ(
A1
k G) 2 0 2 2 0 A1 ⊕ B1

χ(
A2
k G) 2 0 2 −2 0 A2 ⊕ B2

χ(
B1
k G) 2 0 −2 0 0 E

χ(
B2
k G) 2 0 −2 0 0 E

Remark A1. In the construction of irreps of space groups, an induction process is followed from
the irreps of the translational group to the space group. The procedure we have presented has a close
analogy with space groups. Our group T corresponds to the translational group while irreps k
corresponds to the momentum space involved in the Bloch functions. This is the reason we have used
the language of solid state physics to developed the representation theory of the new group, T ∧ C4v.
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