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Abstract: The main objective of the present article is to prove some new V dynamic inequalities of
Hardy-Hilbert-type on time scales. We present and prove very important generalized results with
the help of the Fenchel-Legendre transform, submultiplicative functions, and Holder’s and Jensen’s
inequality on time scales. We obtain some well-known time scale inequalities due to Hardy—Hilbert
inequalities. For some specific time scales, we further show some relevant inequalities as special
cases: integral inequalities and discrete inequalities. Symmetry plays an essential role in determining
the correct methods for solutions to dynamic inequalities

Keywords: Hardy—Hilbert’s inequality; Holder’s and Jensen’s inequality; time scale

1. Background and Introduction to V-Time Scales Calculus

In this section, we give several foundational definitions and pieces of notation for basic
calculus of time scales. Stefan Hilger initiated the theory of time scales in his PhD thesis [1]
in order to unify discrete and continuous analysis (see [2]). Since then, this theory has
received a lot of attention. The basic notion is to establish a result for a dynamic equation
or a dynamic inequality where the domain of the unknown function is a so-called time
scale T, which is an arbitrary closed subset of the reals RR; see [3,4]. The three most common
examples of calculus on time scales are continuous calculus, discrete calculus, and quantum
calculus,ie, when T =R, T=Zand T = ¢4 = {¢* : z € Z} U{0} where g > 1. The book
by Bohner and Peterson [5] on the subject of time scales briefs and organizes much of time
scale calculus.

We begin with the definition of a time scale.

Definition 1. A time scale T is an arbitrary non-empty closed subset of the set of all real numbers R.
Now, we define two operators playing a central role in the analysis on time scales.
Definition 2. If T is a time scale, then we define the forward jump operator o : T — T by
o(t) =inf{s € T :s > t},
and the backward jump operator p : T — T by
p(t) =sup{s € T:s < t}.
In the previous two definitions, we set inf@ = sup T (i.e., if t is the maximum of T,

then o(t) = t) and sup@ = inf T (i.e., if  is the minimum of T, then p(t) = t), where @ is
the empty set.

Symmetry 2022, 14, 428. https:/ /doi.org/10.3390/sym14020428

https://www.mdpi.com/journal /symmetry


https://doi.org/10.3390/sym14020428
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/symmetry
https://www.mdpi.com
https://orcid.org/0000-0002-7251-9608
https://doi.org/10.3390/sym14020428
https://www.mdpi.com/journal/symmetry
https://www.mdpi.com/article/10.3390/sym14020428?type=check_update&version=1

Symmetry 2022, 14, 428

2 of 26

If T € {[a,b],[a,00),(—00,a],R}, then o(t) = p(t) = t. We note that o(t) and p(t) in T
when t € T because T is a closed nonempty subset of R.
Next, we define the graininess functions as follows:

Definition 3. (i) The forward graininess function y : T — [0, c0) is defined by

(ii) The backward graininess function v : T — [0, 00) is defined by
v(t) =t—p(t).

With the operators defined above, we can begin to classify the points of any time scale
depending on the proximities of their neighboring points in the following manner.

Definition 4. Let T be a time scale. A point t € T is said to be:
(1) Right-scattered if o(t) > t;

(2) Left-scattered if p(t) < t;

(3) Isolated if p(t) < t < o(t);

(4) Right-denseif o(t) = t;

(5) Left-dense if p(t) = t;

(6) Denseifp(t) =t=o0(t).

The closed interval on a time scale is defined by
[a,blr =[a,b]NT={teT:a<t<b}.

Open intervals and half-open intervals are defined similarly.

Two sets we need to consider are T* and T, which are defined as follows: T* = T \ {M}
if T has M as a left-scattered maximum, and T* = T otherwise. Similarly, Ty = T \ {m} if
T has m as a right-scattered minimum, and T, = T otherwise. In fact, we can write

T* _ T\ (o(supT),supT], if supT < oo,
T, if supT = oo,

and
T _{T\[inf'l[‘,a(infT)), if infT > —oo,
=

T, if infT = —oco.

Definition 5. Let f : T — R be a function defined on a time scale T. Then we define the function
f7:T—Rby

fr(t) = (foo)(t) = fle(t), teT,
and the function f° : T — R by

fo(t) = (fop)(t) = flp(t)),  teT.

We introduce the nabla derivative of a function f : T — R at a point ¢ € Ty as follows:

Definition 6. Let f : T — R be a function and let t € Ty. We define fV (t) as the real number
(provided it exists) with the property that for any € > 0, there exists a neighborhood N of t (i.e.,
N = (t —6,t+ &) for some 6 > 0) such that

P (8) = ()] = FY ()o(t) —s]| < elo(t) —s| forevery s & N.

We say that fV (t) is the nabla derivative of f at t.
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Theorem 1. Let f : T — R be a function, and t € T. Then:

(i)  f being nabla differentiable at t implies f is continuous at t.
(ii)  f being continuous at left-scattered t implies f is nabla differentiable at t with

f(8) = f(8)
v(t)

(iii) If t is left-dense, then f is nabla differentiable at t if and only if the limit

o £ = F6)

s—t t—s

) =

exists as a finite number. In such a case,

£9() = lim T =S

s—t t—s
(iv) fP(t) = f(t) —v(t)fY (t) whenever f is nabla differentiable at .
Example 1. (i) Let T = R. Then
(ii) Let T = 7Z. Then

FY(8) = V() = f(t) = f(t=1),

where V is the backward difference operator.

Theorem 2. Let f and g : T — R be functions that are nabla differentiable at t € Ty. Then:
(i) Thesum f + g : T — R is nabla differentiable at t with

(F+)V () =Y (1) +g" ().

(ii) If o € R is a constant, then the function af : T — R is nabla differentiable at t with
(af)¥(t) = af ¥ (b).
(iii) The product fg : T — R is nabla differentiable at t, and we get the product rule
(FRV (1) = FY(Dg(D) + fO(1)gY (1) = F(1)gY (1) + FY (1)gP (8).

(iv) The function 1 : T — R is nabla differentiable at t with

f
1\Y £ (1)

(7) O =—Frmm,  fOF) £0.
f

(v)  The quotient s : T — R is nabla differentiable at t, and we get the quotient rule

§) O, g £

([)V(t)_f (£)s(

t) —
g g(t

f(t)g
)8 (¢
Definition 7. We say that a function F : T — R is a nabla antiderivative of f : T — R if
FV(t) = f(t) forall t € Ty. In this case, the nabla integral of f is defined by

/'tf(t)vT —F(t)— F(a)  forall te Ty
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Now, we introduce the set of all 1d-continuous functions in order to find a class of
functions that have nabla antiderivatives.

Definition 8 (Ld-Continuous Function). We say that the function f : T — R is Id-continuous
if it is continuous at all left-dense points of T and its right-sided limits exist (finite) at all right-dense
points of T.

Theorem 3 (Existence of Nabla Antiderivatives). Every ld-continuous function possess a nabla
antiderivative.

Theorem 4. Let f : T — R be a Id-continuous function, and let t € Ty. Then
t
[ @V =ub)f(e).
p(t)

Theorem 5. If fV(t) > 0 (respectively, f¥(t) < 0), then f is nondecreasing (respectively,
nonincreasing).

Theorem 6. Ifa, b,c € T,a € R, and f, g € Cyy, then

W) fy [f(6) +8M]VE= [} F(O)VE+ [ g(H)VE
i) [} af(Vt=a [ f(H)VE

(i) [} f(5VE =~ [ F()VE;

(o) [} f(OVE= [; f(OVE+ [ F(VE
(0 [ f(H)VE=0;

(0i) if £(t) > g(t) on [a,b)y, then [ f(£)Vt
(vii) if f(t) > 0on € [a,b), then fabf(t)Vt

Theorem 7. Let f : T — R be a Id-continuous function, and a,b € T.
(i)  In the case that T = R, we have

I e(t)ve;

2
>0

>
>

/abf(t)Vt - /abf(t)dt,

where the integral on the right-hand side is the Riemann integral from calculus.
(i) In the case that [a, b]T consists of only isolated points, we have

Yo v()f(t), if a<b,

b te(ab]p

| fove=2<o, f a=b,
- (Z] v(t)f(t), if a>b.
te(b,al

(iii) In the case that T = hZ = {hk : k € Z}, where h > 0, we have

M:“\w

hf(hk), if a<b,
k=%+1

[ rve=1o, oot
C Y WGK), i asb.

_b
k=41

Il
=
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(iv) In the case that T = 7, we have

b
Y. f(t), i a<b
b t=a+1
| fove=1o, f a=b,
- Y f(t), if a>b.
t=b+1

The formula for nabla integration by parts is as follows:

[ 0870V = () ) - ()@ - [ T (9,

The following theorem gives a relationship between the delta and nabla derivative.

Theorem 8. (i) Let f : T — R be delta differentiable on T*. Then f is nabla differentiable at
tand fV(t) = f2(p(t)) for any t € Ty that satisfies o (p(t)) = t. If, in addition, f* is
continuous on T%, then f is nabla differentiable at t, and fY (t) = f2(p(t)) for each t € Ty.

(ii)) Let f : T — R be nabla differentiable on T,. Then f is delta differentiable at t and
fA(t) = fV(o(t)) for any t € T* that satisfies p(c'(t)) = t. If, in addition, fY is con-
tinuous on Ty, then f is delta differentiable at t, and f2(t) = £V (o(t)) for each t € T*.

We will use the following relations between calculus on time scales T and either
continuous calculus on R or discrete calculus on Z. Note that:

() TT =R, then
v(t) =0, fY(t)=f(t),

p(t) =t,
/b F(H)VE = / ! Fbyat. @

(i) IfT = Z, then
p(t)y=t—1, v(t)=1,

(0 = V),
b—1 b b
Lo, [ fovi= ¥ 50,

t=a+1

@)

where V are the forward difference operators.
Now, we present the Fenchel-Legendre transform that will be needed in the proof of
our results. We refer to example to [6-8] for more details.

Definition 9. The function f : R" — R U {—o0, 00} is called coercive iff
f(x) —> o0 as ||x|| — oo.

Definition 10. Suppose i : Ri — RU {+oo0} is a function:  # +oo; i.e., Dom(y) = {@ €
R!, |¢p(@) < oo} # @. Then the Fenchel-Legendre transform is defined as:

"R — RU {400}, z— ¢*(2) =sup{< Z,@ > —(d),® € Dom(¢p)}  (3)
The scalar product is denoted by < .,. > on RY, and  — * is said to be the conjugate operation.

The domain of 1* is the set of slopes of all affine functions minorizing the function
over R". An equivalent formula for (3) is obtained in the next corollary:
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Corollary 1. Let ¢ : R" — R be a strictly convex, differentiable and 1-coercive function. Then

Pi(y) =<, (V) (y) > —p((Ve) " (v)), )

forall y € Dom(y*), where < .,. > denotes the inner product in R".

Lemma 1 (Fenchel-Young inequality [6]). Suppose a function i and suppose p* Fenchel—
Legendre are transforms of 1, we get

<@,z >< Y(@) + 9 (2), (5)
forall @ € Dom(), and Z € Dom(yp™*).
Definition 11. We said Q) is submultiplicative function on [0, 00) if
Q(z) < Q(@)Q(2), ¥V @,z > 0. (6)

The celebrated Hardy-Hilbert integral inequality [9] is

/:o /ooo Wd"dy = smn; [ /Ooo f* (x)dX} % [ /Ooo g’ (y)dy} %, @)

wherep > 1,9 = % and the constant —"~ is best possible. As special case, if p =g = 2,

_T_
sin

the inequality (8) is reduced to the classical Hilbert integral inequality

/000 /ooo dey < ”[/Ooo fz(")dx] : [/Ooo gz(y)dy} %, ®)

where the coefficient 77 is the best possible.
In [10], Pachappte established a discrete Hilbert-type inequality and its integral version,
as in the following two theorems:

Theorem 9. Let {ay}, {by} be two nonnegative sequences of real numbers defined for m = 1,
s k,andn =1, r with ag = by = 0; and let {pn}, {qn}, be two positive sequences of
real numbers defined form =1,...,k. andn =1,...,r where k, r are natural numbers. Define
Py =Y psand Q, = Y} 1 q. Let ® and ¥ be two real-valued nonnegative, convex, and
submultiplicative functions defined on [0,00). Then

= D(ay)¥(by)

3y Sla¥ <M<k,r>(f(k—m+1>(;omeb(Vp”m)z)é ©)

m=1n=1 ) i
(Eemrrnor ()
where
wen=3(£(5)) (£

and Vay, = ay, — ay—1, Vby = by — by_q.

Theorem 10. Let f € C'[[0,x],R*], ¢ € C'[[0,y], R*] with f(0) = g(0) = 0, and let p(¢),
q(T) be two positive functions defined for & € [0,x) and T € [0,y). Let P(s) = [, p(&)d& and
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fo T)dt fors € [0,x) and t € [0,y) where x, y are positive real numbers. Let ®, and ¥
be as in Theorem 9. Then

p
/ 2 3
8 (t)) dt) (10)

1 2 1
L ¢<P<s>>)2 ) ([ (DY)
Ly =5 ( | as) (] dt) .
e =3 (L () «) (F (g
In[11], Handley et al. gave general versions of inequalities (9) and (10) in the following
two theorems:

where

Theorem 11. Let {a;,, } (i = 1,2,...,n) be n sequences of nonnegative real numbers defined
for mi = 1,...,kj with a1y = azg...a,0 = 0, and let {p;,, } be n sequences of positive
real numbers defined for m; = 1, .. kl, where k; are natural numbers. Set P, = Zsl Pis;-
Let ®; (i = 1,2,...,n) be n real valued nonnegative convex and supmultzpllcatlve functions
deﬁned on (0 o). Let a; € (0,1), and set ) = 1 —w;, (i = 1,2,...,n), « = Y1 a;, and
W = al,=n—a. Then

)

111’

P‘H

Z Z —a”"z) < M(ky, ... kn) nl ( i (ki _mi“!‘l)(pi,miq)i(vélml)

o
myp=1 my=1 i= m;=1 L
( i=1 “imz)

where

Mky, ... k) = (“})a/ﬁ< 5 <d>1()1’mm)>>

Theorem 12. Let f; € CY([0,k],R:])i =1,...,n, with fi(0) = 0; let p;i(&;) be n positive
functions defined for ; € [0,x;] (i =1,...,n). Set Pi(s fo pi(&i)dg; for s; € [0, x;], where
x; are positive real numbers. Let ®;, w;, D(;, oc, and o' be as in Theorem 11. Then

/"1' I @il G)
o 0 1...08y

lX,
n .
( Yl txis,>

<L) ] (/Oxi(xl. ) (pi(si)q)i<f;/((:ii))> T d5i>“i,

i=1

L(xi,...,x,) = ([X/l)w ﬁ (/(;xi (W) “§d5i>”‘§-

Hamiaz et al. [12] discussed the inequalities:

where
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Theorem 13. Letrp, 11 > 1, > B > 5 and (&i)1<j<rs (0i)1<i<k be sequences of non-negative
real numbers where k, r € N. Define 0; = 25 195, §j = Zt 1 Gt- Then

k 2714)21'2
Z Z l/J ]) < Cik(rl/rZ)(

i=1j=1
>< <

(k—i+1) (600 )

IS ugly

u—wn@wlﬂ

j=1
and
kor 91?1(1;?2 koor 9{1(])?2
> ) T <L)
i=1j=1 <|1/J( )‘zﬁ + lp*(])2/3> i=1j=1 ¢(1)+¢ (])

k 3
< Cy(ry,12,k,7) ( Y (k—i+ 1)((51.91(11)2)

i=1
. ro—1\2 %
(L= e ?)
j=1
where (j) and *(j) are defined as in Definition 10. Unless (6;) or (§;) is null, where
Ci(r1,12) = (r1r2)? and Ci(r1,1,k, 1) = riraVkr.

Over several decades, Hilbert-type inequalities have attracted many researchers and
several refinements, and the previous results have been extended. We refer the reader to
the works on classical refinements and extensions of Hilbert-type inequalities [12-22] and
time scale versions of Hilbert-type inequalities [23-26].

Lemma 2. [27] (Holder’s inequalities) Let 6,¢ € T and 9, € Ci4([6, ¢, [0,00)). Ifr1, 12 > 1
with % + % =1, then

/fﬂ(t)g(t)Vt < [/fﬂﬁ(t)w]'ll [/f g”(t)Vt} g

Lemma 3. [14] (Jensen’s inequality) Let 6, ¢ € T,and ¢, d € R. Assumethat { € Cy4([6, ], [c, d])

and r € Ci4([0, |1, R) are nonnegative with fé H)Vt > 0. If & € Cy((c,d),R) is a convex
function, then

(A ne(e) >\ﬁ0)( )Vt
Ji r(

r(H)V 0N

Lemma 4 ([14]). Suppose the time scales T with w, s € T: w > 6. Let & : T — R be left-dense
continuous function with ¢ > 0 and & > 1, then

(/(Sw ﬁ(%)Vf)a <af 19(;7)(/; 0(f)w>qu_ an

Lemma 5 ([14]). Let ¢ : T — R be a left-dense continuous function. Then the equality that allows
interchanging the order of nabla integration given by

/: (/t: 19(’7)V71))Vs = /tow (/p?;) ﬁ(n)Vs))V;y = /tow[w —po(m)]8(n)Vy (12)
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holds for all s, w, ty € T.

Lemma 6 ([22]). Let wand z € R be such that w+z > 1and 0 < y; then

20

(w—l—z)% < (|w|21/3~¢—|z|21ﬂ>7 for all <B<a (13)

1
2

In this important article, by implying (5), we study some new dynamic inequalities
of Hardy-Hilbert-type by using the nabla integral on time scales. We further show some
relevant inequalities as special cases: discrete inequalities and integral inequalities. These
inequalities may be be used to get more generalized results of several obtained inequalities
before by replacing ¢, p* with specific substitution.

Now, we are ready to state and proof our main results.

2. Main Results
In the following, we will let r{ > 1,7, > 1 and % + % =1.
Theorem 14. Suppose the time scales T with ¢, € > 1 and s, t, ty, w, z € T. Assume 5(t) > 0
and &(T) > 0 are r-d continuous [to, w] and [to, z]T, respectively, and define
s t
B(s) := / S(F)VE, and ¢(t) = / E(1)VE,

fo to

then for s € [to, w|r and t € [to, z]T, we have that

w oz 1€ ol
/ / 07(s)¢™ (1) VsVt
tg Jitp 1 1

(|¢<s Cho)|% (e — f0)|2’5>

"1

<t ([ w=p) (e ()7s)

<( [ - pn e @) w) )
and
/tw /t 0°(s)9" (1) VsV

(|w(s )| 4 [g(t— f0)|21‘3)

< Cz(é,e,rl)(/w(w —p(s)) (96_1(5)(5(5))rzvs) 5

fo

<([-p) (¢>“<t>c<t>)r2w) : (15)

1 1
T

where C1(¢,€,12) = (€)™ and Cy({,€,11) = el(w —ty)" (z —tg)"1.

Proof. By using the inequality (11), we obtain

0°(s) < e [ 6(me )V, (16)
t
(D) <] St Vi (17)

fo
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We use Lemma 2. Then, from (16), we get
€ L s v\ne—1 27~ %
or(s) < (s —to) ([ @ne )2V )" as)
0
Apply Lemma 2. Thus, from (17), we get
¢ " ' x\ pl—1 27 %
o' <t -0 ([ @ne~ )V )" 19)
0

From (18) and (19), we get

0°(5)9" (1) < el(s — to) T (£ — o)
<( [ wenetonyen)”
<( [ €ne =) )

From inequality (20), we have

==

7

()7 (1) < (e0)(s — ) (1~ 1)
<( [ weneta)vi)

X( /tt (EGne" (m) Vi ). 1)

Using Lemma 1 in (20) and (21) gives
(610 (1) < et (9l —t0) + 97 (- 1))

s v\ne—1 "2~
X (/to (6016~ () Vﬂ)

o( [ ey, @)

WS-

]

()9 (0) < (e (wls = t0) + 97 (= 10))
x ( A (6<ﬁ>9€‘1<n>)“w)
<( [ @e o). @)
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Using Lemma 6 in (22) and (23) gives

X ( /tt (6(ﬁ)¢“(v>)’2w) (24)

026 (5)¢7 (1) < (el (¢<s — o)+ (¢ - f0)|21) "
«(f @enetonyen)

t
X (/to (5(17)4>£_1(77))72V77>- (25)
By dividing both sides of (24) and (25) by <|¢(s — to)|ﬁ + |p*(t — to)|21ﬁ> " nd
(W’(S — to)ﬁ + [p*(t — t0)|21ﬁ) K , respectively, we get that
6°(s)9" (¢) < €£</s (5(;7)9”('7))72%7) )
1 1\ " to
(lP(s — £0) |7 + [ (t — t0)|2ﬁ)
<( [ e rorn)”, e

9726(5)(])7250) - < (ez)rz(/'s (5(17)96_1(;7))r2vﬁ)
(|¢<s—to>21ﬁ+w*<t—to>|fﬁ) "

X ( /tt (6(77>4>“<n>)’2w)- (27)

From (26) by using Lemma 2, we obtain

/w / 0°(s)9(t) Vs
U (v — iy - )

<erto—wpte—wt ([ [ e wyw) )

([ ([ @oneronren)ve) es)

=
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From (27), we get

| / /to 672 (s)9" (1) —

2rya
ty - 2

T

"/’(S%)I;le*(tto)lzlﬁ) |
< (68)’2/ </t: (‘5(’7)961(77))72%7) s

to

([ et ) v 9)

to

w

Applying Lemma 5 on (28) and (29) gives

/w / 0°(s)9" (1) vy
v (Ip6s =)l + 17— )

1 1
;

< el(w — 1) T (z — to) ¥ ( [ =) (5(5)96‘1(s))72v5> g

w oz 1€ ol

/ / 07¢(s)¢™ (1) VsVt

to Jto 1 1\ 7"
(|¢<s oty — tow)

<tetyx( [ po) e 9) V)
<( [ - pentetie = )2w).

This completes the proof. O

2 2
Remark 1. In (15), as a special case, if we take {(w) = w7, we have P*(w) = Y see [71, so

2
we get

/to /to 6°(s)9" (1) Vst

T

(|¢<s_t0>|z% +|¢*<t—t0>fﬁ) 1

<( [ e (o 0e0)) ) J (30)
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Consequently, for « = B = 1, inequality (57) produces

bk (Ht_%)'ﬁw
< (;) %cz(e, &) (/t:'(w —0(s)) (96—1(5)5(5))72%) g

<( [ e-en (s wa) vr)”

By putting r1 = ry = 2, we get

/to /tz f:—s—Zt‘ov vt
<get(-m) " <w—p<s>>(9€1<s>5<s>)2vS)2

<(G= 1) [ == p0) (¢“<t>c<t>)2w) g

which is [14] (Theorem 3.3).

Theorem 15. Suppose &(i7), 0(s), ¢(t) and 5(T), are defined as in Theorem 14; thus,

/t:’ /t: 072(s)¢"(t) VsVt

2rpu

T

(|¢(Sto)|21ﬁ+|1p*(tt0)|zlﬁ> !

< ([ w-per=evs) ( [=-pnemve)

/w / 0(s)(t) VsVt
U (- - )

and

< (=) (= = 10)7 /t:%w—p(s))s@(s)w)’lz ( /t:<z—p<t>>¢fz<t>w)'lz

Proof. In (14) and (15) taking e = ¢ = 1, this grants our claim. [

In Theorem 14, if we chose T = R, then the following results:

Corollary 2. If5(s) >0, &(t) > 0. Define 0(s) := [ 6(f)dij and ¢(t) fo i7)dij; then

/w / 072¢(s)¢™" () _dsdt
o (|w<s>\fﬂ+¢*<t>|ﬁ)

< Ci(L,e,1) (/Ow(w - s)(é(s)eel(s))rzds>
<( [ newew)ar).
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/w /Z 6°(s)¢" (t) —dsdt
Jo Jo <|lp(s)|zlﬁ+|1/)*(t)zlﬁ)rl

<astben)( [w-9 (e w00 @) :

T

<([e-n(otwen) @)

1

Cs(l,e,11) = el(wz)".

N =

where

In Theorem 14, if we chose T = Z, then we get (2), and the next result:

Corollary 3. If6(i) > 0 and &(j) > 0. Define

i j
0(i) = ;)5(5) ¢(j) = ;Jé(a)
Then

- (|¢(i+1>fﬁ + |¢*<j+1>|21ﬁ)

g o' (1)9° ()
R (ERERTRRSIEY

1

il o
= < Cile o) LIV G+ D)6

y L
x ( Y (M- (j+ 1))(6(1’)«?“(]’))’2)

j=1

where )
Ca(e, l,r1) =el(NM)".

Corollary 4. With the hypotheses of Theorem 14, we have:

w zZ o€ rzf
/ / 67¢(s)¢™ (1) VsVt
tgy Jto

e

(1965 = ) 41y - )1 ) "
<alter o [ w-pe)Eee o)
([ - pnee o)) |
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and

/w / 6°(s)¢" (1) _vevi
U (- -l )

<atben{o( [ @-po) (¢ 600) v)

vy ([ o) (¢ 020 ) }

Proof. Use the Fenchel-Young inequality (5) in (14) and (15). This proves the claim. O

Theorem 16. Assume the time scale T with s, t, ty, w, z € T, 6(s), and ¢(t) defined as in
Theorem 14. Suppose 9(t) > 0and {(7j) > 0 are right-dense continuous functions on [ty, w|y and
[to, z), respectively. Suppose that @ > 0 and ¥ > 0 are convex, and submultiplicative on [0, ).
Furthermore, assume that

t

F(s) = /Sﬁ(%)V%, and G(t) ::/ L) V7; (31)

fo fo

then for s € [to, w|T and t € [ty, z]1, we have that

/w/z <i)(9(5)>q!(¢(t>) _VsVt
" (-0 - )
)

<o) [t (o [50]) ")

<([e-p) (at)‘if[ggg])mw)é 32)

o= S50 [ )

Proof. From the properties of ® and using (3), we obtain

where

] _(F(s) [ 0(0) 58 v
fo
g (Jn 8DV
< <I>(P(s)c1>< t“s;(;)(v)% )
fo
B(F(s) % 4 iuvi (6()\ or
< o) /toz?(r)CD 19(%)>v7. (33)

Using (2) in (33), we see that

<

(o
—~
>
—
[9
S—
S—
/
»e«
paz{ic
w» [—
~| »n
SN—
SN—
—
9
|
~
o
SN—
=
7N\
=
N
()
—
<
S—
B
L—
| ™
—
~<| XK
S~— | ~—
—_
N———
S
<
~<
N——
WS

(34)
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Additionally, from the convexity and submultiplicative property of ¥, we get by using

(2) and (3):

From (34) and (35), we have
oot < c-wto-ut (I a5 )
X (‘?E;G(S)) (/t: (C(ﬁ)‘?[%} )rzvﬁ) B

Using (5) on (s — o)™ (t — to)% gives:

s < (se-o0sv1-0) (2 (i) o)’

(2 (L (o i) )

Applying Lemma 6 on the right-hand side of (37), we see that

B(6(s))¥(9(1)) < (|¢<s ol 4 |t — fo)|21ﬁ)

1

(R (L (ews[55]) )
t

(2 co[E]) =)

From (38), we have

D(6(s)¥(o(t)) . SF(s) [ [ " o) s 1
(‘lp(s*to‘ﬁ+|4’*(t—t0)|ﬁ)q <( F </t0 (‘9 q{ D v)

(TG o i) )

From (39), we obtain

rr POFPW) oo,
v (|¢(Sf0|21‘3+|¢*(ft0)|2“>r1

<J R (U (oo 5]

L IERL v ) o) e

(35)

(36)

(37)

(38)

(39)

(40)
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v

From (40), by using (2), we have
B(0(:)) ¥ ((1)) .

‘/fo ~/f0 1 1\ 77
(|¢<s ol 4 |yt - to>|2ﬁ)

(L CRY (L (i)
Lo (L (o 2] )‘ @

From (41), by using Lemma 5, we obtain

/w /z D(0(s) ¥ (¢p(t)) VsVt
o <|¢(s—tozlﬁ+¢*(t—to)lzlﬁ

where

o= (S50 ([ (18w

This completes the proof. [

Remark 2. In Theorem 16, as special case, if we take (w) = %, Pv*(w) = w7/ and by following
the same procedure employed in Remark 1, then we get [14] (Theorem 3.5).

In Theorem 16, taking T = R, we have the result:

Corollary 5. Assume that 5(s) > 0, &(t) > 0, 9(t) > 0, and {(ij) > 0. We define

o) = [ oUnan, o0):= [ cnan, F) = [ ot and 60) = [ cpa

Then

/ / P(t)) 5 dsdt < Mz(ﬁ)(/ow(ws)(lg(s)é(ggz)O)ers)rZ
(1/1( )7+ [yt )|1ﬁ>’1 .
x (/OZ(z—t) (g(t)‘?(ggg)yzdt)é
= (R o} L CER) e

In Theorem 16, taking T = Z, gives (2) and the result:

where
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Corollary 6. Assume that 5(i) > 0, (j) > 0, 9(i) > 0, {(j) > 0 are sequences of real
numbers. Define

Then

ii d(0(i)¥(9(j)) = <M3(r1){ i(N—(iJrl))(ﬁ(i)é M)z}z
o <|¢(1+1)2f‘ +y* (]+1)|ﬂ> |

where

==

e = { £ (S0 V£ (M)

Remark 3. In Corollary 6, if r1 = rp = 2 we get the result due to Hamiaz and Abuelela [12]
(Theorem 5).

Corollary 7. Under the hypotheses of Theorem 16 the following inequalities hold:

/w / $(6(s)) ¥ (9(t)) = VsVt
o <|lp(s—t0)2]ﬁ+1/)*(t—t0)|zlﬁ '

<) [o( [ pen (0600 (55)) vs)

([ oo (e (50)) )]

Proof. Use (5) in (32). This proves our claim. [

N"—'

Lemma 7. With hypotheses of Theorem 16, we get:

/to /to ( ))2 VsVt

(s—tp) +v,b*(t—t0))
<w{ [ e (o0 [20]) w5}
| fe-son(on[f5]) 7} @

where
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Proof. From (34) and (35) and by using the Fenchel-Young inequality with 7y = r, = 2,
we have

(6(s))*F (p(1))? 2 o
< (v (S (om0
(0P ] )

From (43), by using (2) with r; = rp = 2, we obtain

2

//( o to)vSw

F(s)) fo
L CE e (L (€<ﬁ>‘i’{%})4vv)Vf}l- w

By applying Lemma 5 on (44), we obtain

O ’ VsVt
//(

(- to>+¢<t to>)

<{ [} (G e} { [ omron(ews 53] vf
<L (e e }{ [e—ew(zo¥[B0])'w
< [l oon (e [5]) 5o} e

where

This proves our claim.
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Theorem 17. Let 6, & G, F,{, 9, ¥, and ® be as in Theorem 16. Furthermore, assume that fort,
s, to,w,z€T

1

0(s) = pgy [ SOOOVE and gl0) = s [ eV 69

S

then for s € [to, w|r and t € [to, z]T, we have that

/W/z SOE)FPUNEEIGE) o o
o (|1/)(s_to)|zlrsJrltlf*(t—to)lzlﬁ)r1

SUAETOIEGHED) Qw) : (46)

where

$(6(s)) = cp(F(ls) /t: ﬁ(%)é(%)V%). 47)
By applying (2) to (47), we obtain
(0(s)) < <;(";0)>( I (ﬁ(f)é[&(f)})rZW)é- (a8)
From (48), we get that
S(O6)FE) < (st [ (0(%)@[5(%)1)7%) g (49)
Similarly, we obtain
wpw)c) < o)t ([ (cnvieon) vi) g 50)

From (49) and (50), we observe that

* (/t (‘9(%[5(%)]) ZW)é ( /f (é(ﬁ)‘i’[é(ﬁ)]szﬁ)é. (51)
Applying Lemma 1 on the term (s — to)% (t— tO)% gives:

1 r

SOEFeOCOFE < (ve-w+ye-w)" ([ (emesn]) ve)

W=

1

<( [ (constewnr) )" 2)
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From 6 and (52), we obtain

BOE)YPUGIFE) < (Ip(s— )l + 1y~ 1) )

o [ (owwien) o) ([ (emveon)'va) . e

1 1 T
Through dividing both sides of (53) by <|1p(s — to)| % + [Pp*(t — to)| 215) " we get that

BONYOOCOFS) ([ (aepiay) ve g
(1966 =) + 1yt = )1 )" (L )™

o[ (snwizn) "wa)* o

Taking the double nabla-integral for (54) yields:

[ GOFE) g
(w(s bo) | + [y (£ — t>ﬁ)1

(7 ( (ocmuean) or) e
([ (f (eonview) vi)" Vt) )

Using (2) in (55), yield:

/ / )G(t)E(s) vy
<|¢(s f0)|2F + |9 (t — to)ﬁ) "

<twwie-wi(f1(] (ﬁ(fﬁ’[&ﬁﬂ)mw)vsy
([ ([ (eonviewn) vi)ve) g
= (1, <‘9<f>¢>[5<f>1)72w> vs) 7

([ ([ (envieem) va)ve) ™. )
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From Lemma 5 and (56), we get:

/.w /z B(0(s)) ¥ (9(1))G(t)F(s) VsVt
P (- -l )

s ([ o—ote) (0001000 "5)

1
2

< [ e (ewwizan) wi)*,

This completes the proof. 0

2 2
Remark 4. In Theorem 17, as a special case, if we take p(w) = w?, P*(w) = %, and by

following the same procedure employed in Remark 1, then we get [14] (Theorem 3.7).
Taking T = R in Theorem 17, we have:

Corollary 8. Assume {(t) > 0,&(t) > 0,9(s) > 0,(s) > 0. Define

00) = 55 /O 8(2)6(2)d and P(t) = G}t)/otg(%)g(f)d%,

)dt and G(t) := /0 ‘e,

T
=
Il
o\m
=
<

where

Taking T = Z in Theorem 17 gives:

Corollary 9. Assume {(i) >0, ¢(i) > 0, 9(i) > 0, 6(i) > 0. Define
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%% dO()¥(p(j))E()G()) _ <M7(ﬁ)<i(z\f—(z'+1))(19(z')q“><z5(i))>r2>’2.
' (wo+nW++wo+nﬁ)' |

where )
My(r1) = (NM)"t

Remark 5. In Corollary 9, if r1 = rp = 2, we get the result due to Hamiaz and Abuelela [12]
(Theorem 7).

Corollary 10. With the hypotheses of Theorem 17, we get:

[r DYQUFECN oo,
to Jto =

(Ws—fow+|¢*<t_t0>|;)m
) )
@)’

<M5(71){1P(/t (w—p(s < <
0
Proof. We apply the Fenchel-Young inequality (5) in (46). This completes the proof. [

wy ([fe=ro) (0¥ (cm))

3. Some Applications

We can apply our inequalities to obtain different formulas of inequalities by suggesting
$*(z) and ¥(w) by some functions:

2 2
In (15), as a special case, if we take ¢(w) = %, we have ¢*(w) = w? (see [7]), so
we get
w oz € 14
/ / 6°(s)¢' (1) VsV
to Jto 1 1\
(1966 =t o+ lye = o) )
w oz € 14
Y 0T G
t(] tO IZ3

(6= t)f + =)

< <;) TCz(f/ €,11) ( /:(w —0(s)) (96_1(5)5(s))r2Vs> g

x(/?mqw»(ﬂ*awaﬂhvgé. ®)

to
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Consequently, for « = g = 1, inequality (57) produces

/w / gy
P (-

< (;)ACz(&Gﬂl)( /t:"(w—p(s))(ee-%s)é(s))hw)’12

<( [ (4>“<t>¢<t>)r2w)é. (58)

to

On the other hand, if we take ¢ (i) = %,r > 1, then ¢*(j) = %, where % + % =1and
i,j R4, then (15) gives

/w / 0°(s)¢" (1) vyt
" (sl iy - ) )
_ /w / 0°(s)¢" (1) _vsvt

((a(s o)) 4 (ot tow)fﬂ) "

<[ [e-en (s wen) w1) " )

Clearly, when = i, the inequality (59) becomes

/w / 0°(s)9" (1) s
U (@ 40— )

2

< (jk)z’alczw,e,m( /t:"@_p@))(@e1<S)5(S)>”v5>é
<([e=p0) (¢“<t>a<t>)72w) g (60)

to

If B =« = 1. From (59), we get

/w / 6°(s)¢" (1) Vs
T (@t n?)”

< (rlk> %cz(e, ) (/:(w —0(s)) <9€_1(s)5(s)>r2Vs> g

<( [ e-een (s w0 1) g

4. Conclusions and Discussion

In this important work, we discussed some new dynamic inequalities of Hardy—
Hilbert-type by using the nabla integral on time scales. We further presented some relevant
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inequalities as special cases: discrete inequalities and integral inequalities. These results
may be used to get more generalized results of several obtained inequalities by replacing the
Fenchel-Legendre transform with specific substitution. Furthermore, all results obtained
in this manuscript may be generalized by using fractional conformable derivative calculus.
Symmetry plays an essential role in determining the correct methods for solutions to
dynamic inequalities.
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