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Abstract: In this paper, a new 4D hyperchaotic nonlinear dynamical system with two positive
Lyapunov exponents is presented. Exhaustive dynamic analyses of the novel hyperchaotic model
using several dynamical studies are described. The dynamics of the system considered are first
investigated analytically and numerically to explore phenomena and the selection of hyperchaotic
behavior utilized for designing image cryptosystem. Since the proposed hyperchaotic model has rich
dynamics, it displays hidden attractors. It emerges from this dynamic the existence of a single unstable
equilibrium point giving rise to self-excited attractors, hysteresis phenomenon, and hyperchaotic
behavior strongly recommended for securing information by its character. Furthermore, the feasibility
and synchronization of the proposed system are also presented by developing, respectively, Raspberry
surveys and an adaptive synchronization approach of two identical hyperchaotic systems. By
employing the hyperchaotic behavior of the 4D map, an image encryption scheme is proposed as
well. It is one round of a pixel-based permutation and a bit-wise diffusion phase. The secret key of
the 4D map is derived from the SHA-256 value of the input image. It acts as the signature of the input
image. Hence, the secret key exhibits high sensitivity to single-bit alteration in the image, which
makes the cryptosystem robust against chosen/known-plaintext attacks. Performance analyses prove
that the proposed cryptosystem provides the best in terms of the performance/complexity trade-off,
as compared to some recently published algorithms.

Keywords: image cryptosystem; hyperchaotic system; self-excited attractors; adaptive synchroniza-
tion; hysteresis phenomenon; SHA-256

1. Introduction

With accelerated cybercrimes due to the rapid growth of the Internet and the latest
technologies, multimedia information is increasingly transmitted online. Digital images
are widely used daily due to their usefulness. Spying affects a wide range of data, notably
passwords, email messages, bank codes, digital images, videos, etc. These attachments
generally used daily can enter the individual or public sectors, institutions, or states in
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diverse sectors such as the medical, military, industrial, and many others; hence, there is
an obligation to preserve and secure the data exchanged. Image encryption is one of the
leading solutions. Still, due to the high correlation between the pixels of the image, the high
redundancy of the exchanged images, and the particular type of image format, classic text
encryption technology such as Advanced Encryption Standard (AES), IDES (International
Data Encryption Standard), Data Encryption Standard (DES), and many others prove inef-
fective for the needs of image encryption [1,2]. Therefore, the development of new secure,
robust, and efficient image encryption techniques will always be at the center of trade and
communications [3,4]. Chaos-based cryptography is an occasion as a chaotic model has
some fundamental features (sensitivity to primary conditions and parameters, randomness,
and non-periodicity) for keeping communications secure. Therefore, there is a familiar
presence among chaos and cryptography within several studies [5]. Numerous scholars
have dedicated themselves to studying chaotic systems for reliable knowledge of these
systems to grow nonlinear science [6–18]. As an outcome, chaotic models have developed,
following the wanted task. Chaotic models are categorized into two classes depending on
the type of equilibrium points: systems with hidden attractors and self-excited attractors.
Self-excited attractors are correlated with a saddle or unstable equilibria while hidden
attractors are not [19–21]. Other scholars have focused on the nature of nonlinearities such
as hyperbolic, quadratic, cubic, and exponential nonlinearity systems [22,23]. Latterly,
a class of scholars has focused on the development and study of novel chaotic models
without linear features [8,24].

The stochastic properties of chaotic or hyperchaotic systems are generally utilized
for securing data [25]. One-dimensional systems, chaotic or hyperchaotic models with
multi-dimensions, have been used for designing various cryptosystems [26–28]. Image
encryption techniques have vast applications in many areas of everyday life, such as
electronic medical records, to name a few. Such medical records are used for diagnosis,
transmission, treatment, and sometimes even to reproduce patients’ medical history. This
should be performed in strict patient privacy. The use of hyperchaotic behavior in image
encryption techniques can improve the security of such cryptosystems.

One-dimensional chaotic systems have a simplistic structure and are straightforward
to execute. However, they have a small secret keyspace, a low chaotic behavior, a low
Lyapunov exponent, and, therefore, a low-security level [29]. Accordingly, improved
encryption techniques for one-dimensional chaotic maps have been presented. Thus, Wu
and colleagues in their work have improved the existing one-dimensional chaotic behavior
and subsequently proposed a new image encryption scheme [30]. As a result, Hua and
coworkers proposed combining two chaotic one-dimensional maps in parallel to obtain a
new one-dimensional chaotic map for image encryption [31], which broadened the scope
of the chaotic mapping of the system. This enlargement method, similarly to many others,
improves chaotic characteristics to some extent, but the system parameters remain limited.

As for chaotic or hyperchaotic multidimensional systems, their parameters have
more flexibility, their phase space is complex, and their dynamic behavior is difficult to
predict. In addition, dynamic systems with better hyperchaotic characteristics have two
or more positive Lyapunov exponents, which are better than one-dimensional chaotic
maps. Such a multidimensional system can produce several chaotic sequences (keys) at the
same time, which can be used in scrambling and broadcasting images, respectively, with
high-security [32].

Motivated by limits observed in one-dimensional chaotic models, a new encryption
technique based on hyperchaotic behavior in addition to permutation and diffusion op-
erations is presented in this study. It consists of pixel-based permutation and bit-wise
diffusion phases under one round. The secret key of the cryptosystem is derived from
the input image signature, i.e., its 256-bit long hash value. This dependence improved
sensitivity to tiny changes in the original image and the initial keys, limiting the impact of
known/chosen plaintext attacks.

Analytical and numerical analyzes reveal the following:
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• The dynamic system is considered at a single unstable equilibrium point, with two
positive Lyapunov exponents and, therefore, is hyperchaotic;

• The feasibility and synchronization of the model under investigation are, respectively,
confirmed and justified.

• The proposed cryptosystem meets the criteria of a robust encryption scheme, including
a large keyspace, resistance to statistical, differential, and chosen/known-plaintext
attacks.

Furthermore, the proposed cryptosystem possesses a linear running time, indicating
its low complexity and fitness for practical use.

The layout of this paper is as follows: Section 2 provides the investigated system.
An analytical study of the system consisting of dissipativity, symmetry, fixed points, and
stability is presented in Section 3. Section 4 investigates the complete dynamic performance,
as well as the numerous phenomena observed and Raspberry studies for the effectiveness of
the suggested hyperchaotic system. An adaptive synchronization scheme of two identical
systems studied is presented in Section 5. Section 6 describes the proposed encryption
image scheme, while Section 7 reports the outcomes of statistical and differential tests.
Finally, Section 8 concludes the paper.

2. The Hyperchaotic System

The dynamic system studied in this article is obtained from the oscillator previously
presented by Liu et al. [33] by replacing the cubic nonlinearity with a hyperbolic sine
nonlinearity. This modification is performed to simplify the practical circuit design, given
that the hyperbolic sine nonlinearity is realized by two diodes connected in antiparallel.
In contrast, cubic nonlinearity is realized by analog multipliers:

ẋ1 = β1(x2 + 0.2(x1 − ε sinh(x1))),
ẋ2 = β2x1 − x2 + x3 + x4,
ẋ3 = −β3x2 + x4,
ẋ4 = −β4x1,

(1)

where the state variables are x1, x2, x3, and x4 and positive parameters are β1, β2, β3, and β4.
The only state variable responsible for the complex behavior is x1 linked to the hyperbolic
nonlinearity.

3. Characteristics of the Hyperchaotic System
3.1. Dissipativity and Symmetry

The condition to investigate the dissipation of (1) is described as in (2):

∇.V =
∂ẋ1

∂x1
+

∂ẋ2

∂x2
+

∂ẋ3

∂x3
+

∂ẋ4

∂x4
= −0.8− ε cosh(x1) (2)

by integrating (2), we obtain a unique solution as follows.

V(t) = V(0) exp[(−0.8− ε cosh(x1))t] (3)

From (3), it is evident that V(t)→ 0 exponentially as t→ ∞ when ε > 0 regardless of
the model state variable. As a result, all trajectories are confined to a space for which its
volume is zero; therefore, existing attractors can be chaotic. By applying the transformation
(x1, x2, x3, x4)↔ (−x1, −x2, −x3, −x4) on (1), the solution settles the same. It indicates
that (1) is symmetric about the entire coordinate.
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3.2. Fixed Points and Stability

To examine the stability of fixed points of (1), we start by solving a system of equations
ẋ1 = ẋ2 = ẋ3 = ẋ4 = 0. The unique solution E0(0, 0, 0, 0) represents the equilibrium point
of (1). The Jacobian matrix of (1) at E0 is defined by the following.

M =


0.2β1(1− ε) β1 0 0

β2 −1 1 1
0 −β3 0 1
−β4 0 0 0

 (4)

The characteristic polynomial (det (M− λId) = 0, with Id as the identity matrix 4 × 4)
associated with the above Jacobian matrix can be expressed as follows:

λ4 + a3λ3 + a2λ2 + a1λ + a0 = 0. (5)

with a3 = 0.2β1ε − 0.2β1 + 1, a2 = β3 − 0.2β1 − β1β2 + 0.2εβ1, a1 = 0.2εβ1β3 + β1β4 −
0.2β1β3, and a0 = β1β4. For some ranges of system parameters, the eigenvalues, as well as
the stability of fixed point E0, are summarized in Table 1. In light of this table, fixed point
E0 is unstable and the system is, thus, classified in the category of self-excited systems.

Table 1. Eigenvalues and stability of fixed point E0 for some set parameters when keeping ε = 0.5.

System Parameters
(β1, β2, β3, β4)

Eigenvalues Stability

(1, 0.1, 1, 0.1)
λ1,2 = 0.07478± 0.3373i
λ3,4 = −0.5248± 0.7498i Unstable

(5, 0.5, 5, 0.5)
λ1,2 = 0.4458± 1.033i
λ3,4 = −0.6958± 1.221i Unstable

(8.5, 0.9, 8, 0.8)
λ1,2 = 1.159± 1.088i
λ3,4 = −1.234± 1.081i Unstable

(10, 1.5, 10, 1)
λ1,2 = 1.755± 0.2848i
λ3,4 = −1.755± 0.2848i Unstable

(15, 2, 15, 1.5)
λ1 = 1.199, λ2 = 4.156,

λ3 = −1.254, λ2 = −3.601 Unstable

4. Numerical Outcomes
4.1. Bifurcation Diagrams and Multistability

(1) is solved numerically by performing the standard fourth-order Runge–Kutta inte-
gration algorithm and the Lyapunov exponent the Wolf algorithm at ∆t = 10−3. The system
shows complex and diverse dynamics, which indicates bifurcation diagrams according
to the parameters of the system β1 to β4, respectively. Thus, Figure 1 presents bifurcation
diagrams (ai) and their corresponding spectra of Lyapunov exponents (bi) for i = 1 to 4.
From these figures, each parameter has an impact on the dynamics of the system (1). In light
of the different spectra of the exponents, all behaviors (periodic, chaotic, and hyperchaotic)
are observed according to the nature of the Lyapunov exponents [34]. In particular, the
hyperchaotic performance of which a sample is represented in Figure 2a–f by the phase
portraits on all planes of coordinates system is observed (see the caption of figures for
more details).

By carefully observing the previous bifurcation diagrams, a more or less wide window
(by superimposing two datum obtained by increasing and decreasing the values of the
control parameter) showing the coexistence of the attractors is highlighted according to the
color difference. For the set parameters β1 = 8.15, β2 = 0.8, β3 = 12.5, β4 = 0.5, and ε = 0.5,
by changing only the original condition x1(0), a coexistence of three different attractors
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(a chaotic attractor that coexists with two other periodic) is observed and presented in
Figure 3a–d.

Figure 1. Bifurcation diagrams (ai) and the corresponding spectra of Lyapunov exponents (bi)

plotted in the different ranges 7.5 ≤ β1 ≤ 10 , 0.6 ≤ β2 ≤ 1, 11.5 ≤ β3 ≤ 13.5, and 0.1 ≤ β4 ≤ 0.7
for different fixed parameters: (a1,b1) β2 = 0.8, β3 = 12.5, β4 = 0.5, and ε = 0.5; (a2,b2) β1 = 9,
β3 = 12.5, β4 = 0.5, and ε = 0.5; (a3,b3) β1 = 9, β2 = 0.8, β4 = 0.5, and ε = 0.5; (a4,b4) β1 = 9,
β2 = 0.8, β3 = 12.5, and ε = 0.5 respectively.

4.2. Raspberry Simulation

Raspberry Pi is a mini-computer that can be connected to a monitor and is used as a
standard computer. It is important to note that there are multiple variations of this mini-
computer. It needs a minimum number of elements to function and a micro SD memory
card compatible with the chosen model, which is used as a hard disk; a keyboard to enter
commands; and a monitor to view them. A 5V DC power supply is required to operate
the card, not to mention power and connection cables. Raspberry Pi is used for multiple
purposes as needed, particularly in computer programming and these related fields [35].
The hyperchaotic oscillator used in this work is solved by using the integration algorithm
of Runge–Kutta under a Python programming environment. The phase portrait obtained
is observed on the monitor of Figure 4 with a remarkable similarity to that previously
observed in Figure 2b.
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Figure 2. Phase trajectories of the hyperchaotic attractors on system coordinates plane projection for
β1 = 9, β2 = 0.759, β3 = 12.5, β4 = 0.5, and ε = 0.5.

Figure 3. Phase portraits representing the coexistence of four symmetric attractors (chaotic (a) and
cycle limit of period-3 (b) and period-1 (c)) and bifurcation such as the sequence showing the local
maxima of the coordinate x1versus initial state x1(0) plotted in the range 0 ≤ x1(0) ≤ 3 obtained
for the set parameters β1 = 8.15, β2 = 0.8, β3 = 12.5, β4 = 0.5, and ε = 0.5. Initial conditions are
(0.2, 0, 0, 0), (0.8, 0, 0, 0), (2.5, 0, 0, 0), and (x1(0), 0, 0, 0), respectively.
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Figure 4. The Raspberry Pi card used in operation (a); the chaotic portrait obtained by raspberry
simulations (b).

5. Adaptive Synchronization

In this section, the adaptive synchronization of the hyperchaotic system (1) with
unknown parameters newly introduced is discussed. Thus, the master system is considered
as follows. 

ẋ1 = β1(x2 + 0.2(x1 − ε sinh(x1)))
ẋ2 = β2x1 − x2 + x3 + x4
ẋ3 = −β3x2 + x4
ẋ4 = −β4x1

(6)

The introduced model is hyperchaotic for β1 = 9, β2 = 0.759, β3 = 12.5, β4 = 0.5, and
ε = 0.5. The slave system of the previous system is given by the following:

ẏ1 = β1(y2 + 0.2(y1 − ε sinh(y1))) + u1
ẏ2 = β2y1 − y2 + y3 + y4 + u2
ẏ3 = −β3y2 + y4 + u3
ẏ4 = −β4y1 + u4

(7)

where ui and (i = 1, 2, 3, 4) are the adaptive controls to be designed to ensure the syn-
chronization of the coupled oscillators. The complete synchronization error is defined
as follows.

ei = yi − xi (8)

Then, the error dynamics is expressed as follows.
ė1 = β1(e2 + 0.2(e1 − ε(sinh(y1)− sinh(x1)))) + u1
ė2 = β2e1 − e2 + e3 + e4 + u2
ė3 = −β3e2 + e4 + u3
ė4 = −β4e1 + u4

(9)



Symmetry 2022, 14, 424 8 of 23

The adaptive control functions u1(t), u2(t), u3(t), and u4(t) are defined as follows:
u1 = β1(e2 + 0.2(e1 − ε(sinh(y1)− sinh(x1))))− k1e1
u2 = β̂2e1 − e2 + e3 + e4 − k2e2
u3 = −β̂3e2 + e4 − k3e3
u4 = −β̂4e1 − k4e4

(10)

where β̂2, β̂3, and β̂4 are estimates of the parameters β2, β3, and β4, respectively, and ki
(i = 1, 2, 3, 4) are positive constants. Substituting the control law (10) into (9), the closed-
loop error dynamics are obtained as follows.

ė1 = −k1e1
ė2 =

(
β2 − β̂2

)
e1 − k2e2

ė3 = −
(

β3 − β̂3
)
e2 − k3e3

ė4 = −
(

β4 − β̂4
)
e1 − k4e4

(11)

From (11), the errors of parameter estimations are defined as follows.

eβ2 = β2 − β̂2, eβ3 = β3 − β̂3, and eβ2 = β4 − β̂4 (12)

Substituting (12) into (11), the error dynamics simplifies into the following.
ė1 = −k1e1
ė2 = eβ2 e1 − k2e2
ė3 = −eβ3 e2 − k3e3
ė4 = −eβ4 e1 − k4e4

(13)

The candidate quadratic Lyapunov function is a positive function on <7 that can be
defined as the following:

V
(
ei, eβ2 , eβ3 , eβ4

)
=

1
2

(
e2

1 + e2
2 + e2

3 + e2
4 + e2

β2
+ e2

β3
+ e2

β4

)
. (14)

where ( i = 1, 2, 3, 4). With ėβ2 = − ˙̂β2, ėβ3 = − ˙̂β3, and ėβ2 = − ˙̂β4, the derivative function
along the trajectories of (14) is obtained by the following.

V̇ = −k1e2
1 − k2e2

2 − k3e2
3 − k4e2

4 + eβ2

(
˙̂β2 − e1e2

)
− eβ3

(
˙̂β3 + e2e3

)
+ eβ4

(
˙̂β3 + e1e4

)
(15)

From (15), the determined parameters are modernized according to the following law.
˙̂β2 = e1e2 + k5eβ2
˙̂β3 = −e2e3 + k6eβ3
˙̂β4 = −e1e4 + k7eβ4

(16)

Substituting (16) into (15), we obtain the following.

V̇ = −k1e2
1 − k2e2

2 − k3e2
3 − k4e2

4 − k5e2
β2
− k6e2

β3
− k7e2

β4
(17)

This shows that V̇ is a negative specific function on <7. Thus, by Lyapunov stability
theory [36], it is essential that the synchronization error and the parameter error decay to
zero exponentially with time for all primary conditions. Hence, the following outcomes
are established.

The parameter values of the master and response hyperchaotic dynamics are chosen
as follows: for β1 = 9, β2 = 0.759, β3 = 12.5, β4 = 0.5, and ε = 0.5; the constants
ki(i = 1...7) = 1. In addition, the initial conditions of the master system are fixed as follows:
x1(0) = 0.2, x2(0) = 0, x3(0) = 0, and x4(0) = 0; the ones for the slave system are fixed as
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y1(0) = 1, y2(0) = 0.3, y3(0) = 0.5, and y4(0) = 1. The primary values of the determined
parameters are β̂2(0) = 0.1, β̂3(0) = 0.03, and β̂4(0) = 0.01.

The complete synchronization of the different master and slave system states is de-
scribed in Figure 5. Figure 6 displays that the determined values of parameters β̂2, β̂3, and
β̂4 converge to system parameters β2 = 3, β3 = 4.5, and β4 = 1.

Figure 5. Adaptive synchronization of the master and slave systems.

Figure 6. Evolution of the estimated parameters β̂2, β̂3, and β̂4.

6. Proposed Image Encryption Algorithm
6.1. Key Generation

A hash function called SHA-256 is applied to the input image to produce the secret
key of (1), (x0, y0, z0, w0). It generates a hash value of 256-bit, which behaves as the
signature of the image. Accordingly, for two pristine images that are distinct in one bit, the
corresponding hash values and the corresponding secret keys are dissimilar. The 204 first
bits of the hash value are divided into four sub-sequences with the same length of 51 bits.
The decimal representations of these sub-sequences are referred to as h1, h2, h3, and h4. The
secret key of (1) is obtained by (18)–(21).

x1 =
1
2
(x0 + h1) mod 3 (18)

y1 =
1
2
(y0 + h2) mod 3 (19)

z1 =
1
2
(z0 + h3) mod 3 (20)

w1 =
1
2
(w0 + h4) mod 3 (21)
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6.2. Encryption Procedure

In this part, the stepwise of the presented image cryptosystem, shown in Figure 7, is
provided. It consists of two main phases, i.e., pixel-based permutation and bit-wise diffusion:

1. Pixel-based permutation phase: the original image P of size M× N undergo a permu-
tation operation that works at the pixel level as given below.

• Iterate (1) M× N/4 times with the control parameters (β1, β2, β3, β4, ε) and the
initial conditions (x1, y1, z1, w1) (cf. (18)–(21)), which yields four chaotic matrices
X, Y, Z, and W each of size M× N/4;

• Concatenate matrices X, Y, Z, and W into a matrix V of size M× N. Then, map
V from [0, 3] to {0, 1, 2, . . . , 255} using (22), which produced a matrix S:

S =
[(

V × 1015
)

mod 256
]
, (22)

where [x] refers the integer part of x;
• Transform matrix S into a sequence s of length MN. The elements of s are then

arranged in ascending order to generate a new sequence denoted by s1. Let r be
an array that contains the indices of the elements of s in s1;

• After resizing the original image P into a sequence p of length MN, the permuted
process is applied as follows;

pr(i) = p(r(i)) i = 1, 2, . . . , MN (23)

• Next, we reshape pr into P1, an M× N matrix. In short, the permutation process
can be referred to as follows.

P1 = Fr(P) (24)

2. Bit-wise diffusion: Apply the diffusion function gs to the elements of P1 using S
as follows:

C = P1 ⊕ S, (25)

where ⊕ indicates the bit-wise XOR process and C is the encrypted image. Simply,
the diffusion process can be formulated as follows.

C = GS(P1) (26)

Pixel-based
permutation

Bit-wise 
XOR operation

4D map
 Eq. (1)

Eqs.(18)-(21)
Secret key

SHA-256

Figure 7. Block diagram of the proposed encryption algorithm.

6.3. Decryption Procedure

The decryption is usually a reverse of the encryption process. The decryption scheme
corresponding to the proposed encryption approach is displayed in Figure 8. The presented
algorithm is symmetric, which means that it utilizes the same cryptographic keys for both
encryption of plaintext and decryption of ciphertext. Accordingly, the secret key of (1)
(cf. (x0, y0, z0, w0)) along with the hash value of the pristine image should be communicated
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to the decryption part. By applying (18)–(21), the receiver produces the correct secret key
and can then recover the original image by using (27):

D = F−1
r (GS(C)), (27)

where D is the decrypted image, and F−1
r denotes the inverse function of Fr.

Bit-wise 
XOR operation

Inverse pixel-based
permutation

4D map
Eq. (1) 

Eqs.(18)-(21)
Secret key

Figure 8. Block diagram of the proposed decryption algorithm.

7. Performance and Security Analysis
7.1. Keyspace Analysis

The keyspace of the proposed scheme consists of the 256-bit hash value of the pristine
image and the primary conditions of (1), i.e., (x0, y0, z0, w0). Suppose that the double-
precision datatype used is the 51-bit floating-point format. The possible values of x0 are
more comprehensive than 51 bits, as are the values of y0, z0, and w0. The security claim
of the best possible collision attack on the SHA-256 hash function is 2128. Consequently,
the keyspace of the proposed algorithm is larger than 332 bits, which is sufficient against
brute-force attacks.

7.2. Sensitivity Analysis
7.2.1. Key Sensitivity

A secure cryptosystem should be highly sensitive to even the slight changes in the
secret key. Therefore, modifying a few bits in the secret key should completely alter the
cipher image or the original image in case of decryption. Figure 9a depicts the result
of hamming distance versus several altered bits of the proposed encryption scheme. To
conduct this test [37], the indices n (n = 1, · · · , 10) of the modified bits and the 512 × 512
test images are generated randomly for 200 iterations. It is noted that the hamming
distance is very close to the optimum value of 0.5, even for a single bit alteration in the
key. Consequently, the suggested approach is highly sensitive to the slight variations in the
secret keys.

7.2.2. Plaintext Sensitivity

Plaintext sensitivity refers to the change in the encrypted image with a single bit
variation in the original image. Encryption schemes with better plaintext sensitivity are
robust against chosen-plaintext attacks. Figure 9b depicts the plot of hamming distances
versus the number of modified bits in the plain image [37]. The indices n (n = 1, · · · , 10) of
the modified bits and the 512 × 512 images are generated randomly under 200 iterations.
It can be observed that with the proposed algorithm, the hamming distances are quite
close to the optimum value of 0.5, even with the modification of a single bit in the original
image. Hence, we can infer that the proposed approach is extremely sensitive to the minor
modification in the pristine image.
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Figure 9. Key sensitivity (a) and plaintext sensitivity (b) for the proposed cryptosystem, where
x0 = 1.167504546665441, y0 = 0.531351156161691, z0 = 1.264565351928468, and w0 = 2.697465174434910.

7.2.3. NPCR and UACI tests

In a secure image cryptosystem, the cipher image is susceptible to minor modifications
in the plain image. There are two well-known quantitative measures, namely UACI (Unified
Average Changing Intensity) and NPCR (Number of Pixel Change Rate), employed to test
sensitivity. UACI measures the difference in the average intensity while NPCR evaluates
the number of distinct pixels. The equations for computing the NPCR and UACI are as
follows:

NPCR =
1

MN

M

∑
i=1

N

∑
j=1
D(i, j), (28)

UACI =
1

255×MN

M

∑
i=1

N

∑
j=1
|C1(i, j)−C2(i, j)|, (29)

where M and N are the rows and columns in the image, respectively, and D(i, j) refers to
the difference between C1 and C2, given by the following equation.

D(i, j) =

{
0, if C1(i, j) = C2(i, j)
1, if C1(i, j) 6= C2(i, j)

Table 2 displays the comparative results of the mean and the variance of UACI and
NPCR employed on many grayscale images. It can be observed that the mean value of the
NPCR and the UACI exceed 99.6% and 33.46%, respectively, which indicates high sensitivity
to the smaller variations in the original image pixels. Consequently, the encrypted scheme
can produce entirely different cipher images even with a single bit difference in the two
source images.

Table 2. NPCR and UACI (mean and variance) of the ciphered images with a single-bit alteration in
the pristine image.

NPCR (%) UACI (%)

[38] [39] [40] Proposed [38] [39] [40] Proposed

Mean 99.6103 99.6100 99.2000 99.6095 33.4674 33.4526 31.9249 33.4615

Variance 0.0002 0.0002 0.0926 0.0002 0.0018 0.0020 0.4232 0.0019

7.3. Statistical Analysis
7.3.1. Bit Distribution within Each Bit-Plane

Grayscale image pixels are ordinarily represented in 8-bits; hence, an image comprises
eight bit-planes. The authors in [41] demonstrated that bit-planes corresponding to the most
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significant bits (MSBs) are highly correlated in the original images. Intruders can exploit
this fact to retrieve a considerable number of bits in higher bit-planes by comprehending its
neighboring bit-plane. Consequently, each bit plane in the cipher image should be highly
uniform in terms of bit distribution. The uniformity is measured in the percentage of 1’s
and 0’s in the bit-planes (expected value 50%). Table 3 shows the bit distributions of the
original images and their encrypted counterparts. It can be observed that the mean of
the bit uniformity in all the bit-planes is quite close to 50% in the encrypted images. The
algorithm also exhibits almost identical variances in the percentage of 1’s with values close
to zero.

Table 3. Percentage of 1’s (mean and variance) in several pristine images vs. their encrypted
equivalents for the presented scheme

8th Bit 7th Bit 6th Bit 5th Bit 4th Bit 3rd Bit 2nd Bit 1st Bit

Mean
Orig. 79.0880 20.9120 73.4399 26.5601 67.6198 32.3802 63.9955 36.0045

Encr. 50.0189 49.9811 49.9823 50.0177 49.9874 50.0126 50.0090 49.9910

Variance
Orig. 503.1185 503.1185 273.1839 273.1839 243.3089 243.3089 231.2194 231.2194

Encr. 0.0080 0.0080 0.0092 0.0092 0.0096 0.0096 0.0102 0.0102

Orig. refers to the original images and Encr. refers to the encrypted ones.

7.3.2. Correlation analysis

Adjacent pixels are highly correlated in the original images. This is because the
neighboring pixel values are very close to each other in natural images. Cryptanalysts can
exploit this feature to break the cipher. Therefore, neighboring pixels in the cipher image
should be highly uncorrelated. Cryptanalysts can use this feature to break the cipher. The
correlation coefficient between any two pixels in an image is calculated by utilizing the
following equation:

Cab =
∑K

i=1(ai −E{a})(bi −E{b})√
∑K

i=1(ai −E{a})2
√

∑K
i=1(bi −E{b})2

, (30)

where ai and bi denote grayscale values of the neighboring pixels, K is the total number
of pixels taken for the calculation, and E{.} indicates the expected values of the random
variables. Table 4 displays the mean values of the correlation coefficients between adjacent
pixels in the horizontal, vertical, and diagonal directions. We have taken 3000 random
samples each from the plain and the cipher images in these directions. It can be observed
from the table that the mean values of the correlation coefficient in the cipher images in all
three directions are pretty close to zero. Therefore, adjacent pixels in the ciphered image’s
horizontal, vertical, and diagonal directions are highly uncorrelated. Figure 10 shows this
property graphically where the plots of the adjacent pixel correlation of the pristine image
per direction are shown in Figure 10a–c, respectively. On the other hand, plots of their
encrypted counterparts are presented in Figure 10d–f. The encryption scheme satisfies
the requirement of almost zero correlation, making it resistant to various correlation-
based attacks.

Table 4. Average of the absolute values of the correlation between neighboring pixel pairs in the
pristine and ciphered images.

Scan Direction Original Images Encrypted Images

Hor. 0.9868 0.0021

Ver. 0.9889 0.0019

Dia. 0.9781 0.0021
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Figure 10. Distribution of adjacent pixel pairs in the pristine and ciphered images of Airplane.
Distributions of two horizontally (a), vertically (b), and diagonally (c) neighboring pixels in the
original image. Distributions of two horizontally (d), vertically (e), and diagonally (f) neighboring
pixels in the encrypted image.

7.3.3. Histogram and Chi-Square Test

The histogram of an image graphically describes the distribution of pixel intensities in
the image. Original images usually have non-uniform histograms because pixel intensities
are limited within some range. This property can be exploited by cryptanalysts to intercept
the cipher using histogram-based attacks. Therefore, a secure encryption scheme should
produce cipher images with uniform histograms. Figure 11 shows two grayscale images,
namely Airplane and Peppers, along with their histograms, while Figure 12 depicts the en-
crypted analogs of the original images along with their histograms. It can be observed that
the original images exhibit non-uniform histograms while encrypted images have highly
uniform distributions of pixel intensities. Histogram uniformity is usually characterized by
the Chi-square test [42] quantitatively and computed using the following equation:

χ2 =
Lp−1

∑
i=0

(oi − ei)
2

ei
, (31)

where L denotes the total number of pixel levels, oi indicates the frequency of occurrence
of a particular pixel value (within 0–255) in the histogram, and ei denotes the predicted
frequency of occurrence in the uniform distribution given by ei = (M × N)/256. The
distribution in the experiment is considered to be uniform such that, when the p-value
is found to be more than a significance level s (s ∈ [0, 1]), the null hypothesis is accepted.
p-value is the probability that summarizes the randomness strength of a test sample against
the perfect sample in the experiment. A zero p-value indicates the least randomness
and, hence, least amount of uniformity in the histogram, while a value more than 0.01
corresponds to sufficient randomness and uniformity. Table 5 shows the comparison of the
mean, variance, and the success rate of the chi-square test (p-value) of different encryption
schemes. The mean of the p-value is the highest (0.5339) in the proposed scheme with the
success rate of 97%. Hence, the proposed encryption is found to have a uniform histogram
and is robust against histogram-based attacks.
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Figure 11. Original images of (a) Airplane and (c) Peppers images; their histograms (b) and (d),
respectively.
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Figure 12. Ciphered images of (a) Airplane and (c) Peppers images; their histograms (b) and (d),
respectively.

Table 5. Chi-square test of the histograms (variance, success rate, and mean) for various image
cryptosystems.

χ2 Test (p-Value)

[38] [39] [40] Proposed

Mean 0.5115 0.5113 0.3661 0.5339
Variance 0.0837 0.0781 0.0958 0.0746
Success rate (%) 95 96 77 97

7.3.4. Global Entropy

Global entropy is the statistical test for calculating randomness in a sequence, defined
as given in (32):

H(X) = −
K

∑
i=1

p(xi) log2(p(xi)) [bits], (32)

where p(xk) denotes the occurrence probability of the symbol xk, and K is the number of
different symbols generated by source X. The ideal entropy for an encrypted image is
obtained when all pixel levels appear with an equal probability showing uniform pixel
distribution. The value of ideal entropy is given as log28

2 = 8 bits. The comparisons of
the mean and the variances of the global entropies of different encryption algorithms are
shown in Table 6. It is observed that the mean of the entropy is very close to the optimal
value of 8 and also the highest when compared to the other algorithms. The variance is
also found to be close to zero and is the lowest among other algorithms.

Table 6. Global entropy analysis (variance and mean).

Global Entropy

[38] [39] [40] Proposed

Mean 7.999300 7.999300 7.986154 7.999306

Variance (×10−9) 3.814091 3.197235 9646547 3.080179
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7.3.5. Local Entropy

The Local Shannon entropy is the qualitative tool of evaluating the randomness
in contrast to the global entropy, where randomness is measured quantitatively. The
evaluation of the local Shannon entropy is performed according to [37]. The comparison of
the mean and variance of the local entropy is displayed in Table 7. The mean of the local
entropy is very close to 8 and is the highest as compared to other algorithms. Similarly, the
variance is found to be almost equal to zero, which is lower than [39,40] and slightly higher
than [38].

Table 7. Local entropy analysis (variance and mean).

Local entropy

[38] [39] [40] Proposed

Mean 7.902454 7.902396 7.832426 7.902484

Variance (×10−7) 3.048803 3.820000 2080030 3.140462

7.4. Robustness Analysis
7.4.1. Occlusion Attack

When cipher images are transferred through a communication channel, they are prone
to data loss. These losses can affect the decryption process completely or partially. The
occlusion attack test is employed on the cipher images to measure the strength of the
presented cryptosystem in retrieving the plain image. Table 8 shows the comparison of
PSNR between the pristine and ciphered image after undergoing the occlusion attack.
The tests are conducted with 1/16, 1/8, 1/4, and 1/2 data losses, and it is observed that
the suggested algorithm defeats other cryptosystems with the highest PSNR in all cases.
Figure 13a–d show the encrypted images with above mentioned losses while Figure 13e–h
show analogous ciphered images. It can be observed that much of the visual information
is retained even after half of the encrypted image’s information is lost. Consequently, the
suggested scheme can efficiently withstand occlusion attacks.

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 13. Result of occlusion attacks: ciphered images with (a) 1/16, (b) 1/8, (c) 1/4, and (d) 1/2
data loss; corresponding decrypted images (e)–(h) as per (a)–(d).
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Table 8. The average value of PSNR among pristine and decrypted images resulting from occlusion
attacks.

Occlusion

Algorithm 1/16 1/8 1/4 1/2

PSNR (dB)

[38] 11.6162 9.6108 8.3915 8.0663

[39] 8.0552 8.0712 8.0885 8.0723

[40] 8.4625 8.3750 8.6850 7.9169

Proposed 20.2283 17.2355 14.1520 11.1497

7.4.2. Noise Attack

Digital images are transferred through various transmission media that are often
subjected to the noise present in the channel. This noise can affect the quality of the
decrypted image if the corresponding cipher image is subjected to it. To assess the capability
of the presented cryptosystem in order to resist such noise attacks, the cipher images are
contaminated by the salt and pepper noise with densities 0.005, 0.05, 0.1, and 0.3. Figure 14a–d
show the analogous decrypted images. It can be seen from the figures that these images
are noisy but still perceivable. Moreover, Table 9 shows the comparison among different
algorithms in terms of mean PSNR among the pristine and the decrypted images. The
proposed scheme outperforms other algorithms with the highest value of the PSNRs, and
it can withstand noise attacks.

(a) (b)

(c) (d)

Figure 14. Decrypted images submissive to salt and pepper noise with various noise densities:
(a) 0.005; (b) 0.05; (c) 0.100; and (d) 0.300.

Table 9. The average value of PSNR among the pristine and decrypted images retrieved from
ciphered images that were subjected to salt and pepper noise.

Density of the Salt and Pepper Noise

Algorithm 0.005 0.050 0.100 0.300

PSNR (dB)

[38] 21.5400 12.4184 10.1824 8.2172

[39] 8.0756 8.0452 8.0348 8.0473

[40] 11.8764 8.3019 8.2093 8.0887

Proposed 31.2223 21.0743 18.0256 13.2927
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7.4.3. Histogram Equalization

Histogram equalization is generally used to increase the image contrast utilizing the
histogram of the image. This technique is carried out to make a uniform intensity distribu-
tion in the image so that the areas suffering from lower contrast can be transformed to the
higher contrast. Figure 15a shows the cipher image under the histogram equalization attack,
while Figure 15b depicts the corresponding decrypted image that is slightly blurry but
easily recognizable. Moreover, Table 10 reports the comparison among different algorithms
in terms of PSNR among the pristine and the decrypted images subjected to the histogram
equalization attack. It can be observed that the mean PSNR in the suggested algorithm
is more than the schemes in [39,40] while slightly less than [38]. Therefore, the proposed
scheme is well capable of handling the histogram equalization attacks.

(a) (b)

Figure 15. Outcome of histogram equalization attack: (a) ciphered image under a histogram equal-
ization attack and (b) its decrypted image.

Table 10. The average value of PSNR among pristine and decrypted images retrieved from ciphered
images that were subjected to histogram equalization attacks.

[38] [39] [40] Proposed

PSNR (dB) 39.2943 8.0455 8.0995 32.4690

7.4.4. Contrast Adjustment

Contrast adjustment is performed to modify the contrast of an image using a process
called contrast stretching. To perform this operation, pixels with values less than a specified
value are usually mapped to the lowest (pure black) value. In contrast, pixels with more
than a specific value are fixed to the highest intensity (pure white). Encrypted images
can undergo such contrast adjustment attacks causing considerable contamination in the
corresponding decrypted images. Figure 16a,b show decrypted images that underwent the
contrast adjustment of 20% and 50%, respectively. It can be observed that the recovered
images are noisy but easily visible in both cases. Moreover, Table 11 shows a comparison
among different algorithms in terms of mean PSNR among the pristine image and the
decrypted image, which shows better performance than the schemes proposed in [39,40].

(a) (b)

Figure 16. Decrypted images under contrast adjustment of (a) 20% and (b) 50%.
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Table 11. The average value of PSNR among the pristine and decrypted images retrieved from
ciphered images that were subjected to the contrast adjustment attacks.

Contrast Increased by a Percentage of

Algorithm 20% 50%

PSNR (dB)

[38] 33.1248 21.0036

[39] 8.0603 8.0614

[40] 8.1098 8.0690

Proposed 26.5443 19.5175

7.5. Classical Attacks

According to Kerkhoff’s law of the cryptology [43], assuming all the encryption/
decryption algorithms are well known to the attackers, the confidence of the cryptosystem
relies only on the secret keys. Cryptanalysts can rebuild the secret key or its equivalent
form to decrypt a partial or total content effectively. They can even find a process to
recover the pristine image from the cipher image without seeing the key by analyzing
the correlations between the encrypted image and the pristine image or the secret key.
These search methods resulted in two well-known attacks: the known-plaintext attack
and chosen-plaintext attack. A robust cryptosystem should be capable of withstanding
these attacks. In the suggested scheme, the SHA256 hash function is adopted to derive
the primary values of the hyperchaotic system and its control parameters. Hence, they are
sensitive to even a tiny bit of modification in the key and the plain image. This ensures
completely different chaotic sequences for the distinctive plain images even if the same
secret keys are used. Therefore, a cryptanalyst would not retrieve helpful information about
the keys or the decrypted image by analyzing the proposed algorithm. This is because this
information highly depends on the input plain image. Consequently, the proposed scheme
can resist both the known-plaintext and the chosen-plaintext attacks.

In the case of an attack, the cryptanalysts use all-black and all-white pixel images to
make the cipher’s substitution and/or permutation processes invalid and infer valuable
information. Figure 17 shows the encrypted images and their histograms related to the
all-black and all-white images. It is observed that the encrypted images provide no helpful
information as they are random-like images, and also, their histograms are quite uniform.
The adjacent pixel correlation per direction is displayed in Figure 18 for the all-white and
the all-black images, and they all are found to be very close to zero. The p-value in the
chi-square test is sufficiently larger to pass the null hypotheses, and the global and the local
entropies are very close to the ideal value of 8 for both all-black and the all-white images, as
reported in Table 12. Moreover, Table 13 shows that UACI and NPCR values are very close
to the typical values of 99.6% and 33.4%, respectively, in both cases. This ensures the ability
of the proposed scheme to resist differential attacks effectively. Moreover, the proposed
encryption scheme can successfully encipher full-black and full-white images resisting the
known and chosen-plaintext attacks.
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Figure 17. Ciphered images of the (a) full-white and (c) full-black images; their histograms (b) and
(d), respectively.



Symmetry 2022, 14, 424 20 of 23

0 50 100 150 200 250
0

50

100

150

200

250

0 50 100 150 200 250
0

50

100

150

200

250

0 50 100 150 200 250
0

50

100

150

200

250

0 50 100 150 200 250
0

50

100

150

200

250

0 50 100 150 200 250
0

50

100

150

200

250

0 50 100 150 200 250
0

50

100

150

200

250

Figure 18. Correlation of neighboring pixel pairs (in the horizontal, vertical, and diagonal directions)
for the full-white and full-black images in row-major order.

Table 12. Statistical analyses of ciphered full-white and full-black images.

χ2 Test of Histogram Correlation Entropy

Image Algorithm p-Value Hor. Ver. Dia. Global Local

Full-white

[38] 0.7837 0.0043 −0.0007 0.0003 7.9993 7.9022

[39] 0.2299 0.0043 0.0028 0.0003 7.9993 7.9030

[40] 0 0.9991 0.0381 0.0366 3.1642 1.9065

Proposed 0.8086 0.0022 −0.0009 0.0009 7.9994 7.9015

Full-black

[38] 0 0.0002 −0.0009 0.0046 2.0000 1.9989

[39] 0 −0.0015 0.0004 −0.0004 0.0384 0.0381

[40] 0 NaN NaN NaN 0.0012 0.0002

Proposed 0.5935 −0.0048 0.0004 0.0018 7.9993 7.9025

Table 13. Differential analyses of ciphered full-white and full-black images.

Image Algorithm NPCR (%) UACI (%)

Full-white

[38] 99.5861 33.4615

[39] 99.5983 33.4682

[40] 62.5015 10.9806

Proposed 99.6113 33.3647

Full-black

[38] 75.0347 00.4900

[39] 0.7969 0.0031

[40] 12.5031 00.0505

Proposed 99.6227 33.4161

7.6. Time Complexity

A comparison of the time complexity and their magnitude for a 512× 512 grayscale
image is provided in Table 14. The complexities of the comparative algorithms [38–40] are
reported in [37,44]. Table 15 shows a count of frequencies for each elementary operation
according to the number of pixels in the image MN. The encryption schemes in [38,39]
demand sorting operations. Let v be a vector with l elements; the sorting of a such
vector requires, on average, a time complexity of l log(l) when considered the quicksort
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algorithm [45]. After collecting the frequencies shown in Table 15 and then disregarding
lower-orders terms, the complexity orders are summarized as follows [38–40].

O
(

MN
(

34 + log(L) + 2
√

L
))

O
(
108MN + 72L4)

O((36n + 2)MN)

O(65MN + 3× (M + N)) proposed.

(33)

It is observed that the suggested algorithm has the lowest complexity order compared
to the ones in [38–40].

Table 14. Orders of time complexity and their magnitude for a grayscale image of dimension
M× N = 512× 512. For the presented simulation outcomes in [38] and [40], L = MN and n = 1,
respectively.

Algorithm Complexity Order Order of Magnitude (×106)

[38] O
(

MN
(

34 + log(L) + 2
√

L
))

282

[39] O
(
108MN + 72L4) 45

[40] O((36n + 2)MN) 10
Proposed O((9.25 + log(MN))MN) 5

Table 15. Time complexity analysis for the suggested image cryptosystem.

Process Time Complexity

Addition 1.5MN + 4

Multiplication 2.5MN + 8

Trigonometric functions MN
4

Mod 2MN + 4

Rounding functions MN

XOR MN

Substitutions MN + 4

Sorting vector of length MN

SHA-256 operations 8
512 MN

8. Concluding Remarks

Exultant implementation of an image cryptosystem using the randomness of hyper-
chaotic system with hyperbolic nonlinearity and permutation and substitution operations
is presented. First, the system is investigated numerically and analytically for exploration
and the selection of hyperchaotic behavior utilized for encryption. From this examination
appears a rich dynamic, namely, the existence of a single unstable equilibrium point, the
hysteresis phenomenon giving rise to the coexistence of three different attractors, and
period-doubling bifurcation. Then, an encryption method is designed by using both the
hyperchaotic character well chosen previously and one round of permutation and diffusion
operations. The SHA-256 hash value of the original image is used to generate the secret
key of the cryptosystem, which renders chosen/known-plaintext attacks impossible. The
feasibility and synchronization of the proposed system are also presented by developing,
respectively, Raspberry surveys and an adaptive synchronization scheme of two identical
hyperchaotic systems. Experiment results were presented to show that the proposed al-
gorithm satisfied all required properties of a secure cryptosystem, in addition to its low
complexity and its merit for practical use. Comparisons with some state-of-the-art algo-
rithms demonstrated that the proposed algorithm offers the best performance/complexity
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trade-off. In future work, we aim to utilize the presented hyperchaotic system in designing
video cryptosystems for the Internet of Things applications.
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