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Abstract: The fractional integral is prolific in giving rise to interesting outcomes when associated
with different operators. For the study presented in this paper, the fractional integral is associated
with the convolution product of multiplier transformation and the Ruscheweyh derivative. Using the
operator obtained as a result of this association and inspired by previously published results obtained
with similarly introduced operators, the class of analytic functions ZR(u, A, B, 7, «, 1, m, n) is defined
and investigated concerning various characteristics such as distortion bounds, extreme points and
radii of close-to-convexity, starlikeness and convexity for functions belonging to this class.

Keywords: analytic functions; univalent functions; radii of starlikeness and convexity; neighborhood
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1. Introduction

The fractional integral was recently investigated in relation with many different func-
tions. Interesting results were obtained when applying the fractional integral to a confluent
hypergeometric function [1], in connection with Sdldgean and Ruscheweyh operators [2], re-
lated to Bessel functions [3] or for the Mittag-Leffler Confluent Hypergeometric Function [4].
Applications of fractional calculus emerged in many studies related to convexity [5,6] and
involving generalized fractional integral operators [7-9].

The applications of the fractional integral involved in the present study are related
to a previously introduced operator obtained as a convolution product of a multiplier
transformation and a Ruscheweyh derivative. In order to present the original results of the
study, known notations and known definitions are used.

Consider H(U), the class of analytic function in U = {z € C: |z| < 1}, the open unit
disc of the complex plane, (a, n), the subclass of 7 (U) of functions with the form f(z) =
a+apz" +a, 12"+ and A, = {f € H(U) : f(z) = z+a, 12" +..., z € U} with
A=A

The Hadamard product (or convolution) of analytic functions in the open unit disc U,
f(z) =z+ 2, azF and g(z) = z + Y3, byzk, denoted by f * g, is defined as:

F(2)+8(z) = (F+9)(2) =2+ Y. axbyc®

k=2

The operators used for the present study are the following.

Definition 1 ([10]). For f € A, m € NU{0}, a,1 > 0, the multiplier transformation I(m, a,1) f (z)
is defined by the following infinite series:

m
I(m,a,1)f(z) ==z + 2(%) azF,
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Remark 1. For | = 0, « > 0, the operator DJ} = I(m,,0) was introduced and studied by
Al-Oboudi [11], and was reduced to the Saldgean differential operator S™ = 1(m,1,0) [12] for
x=1

Definition 2 ([13]). For f € Aand n € N, the Ruscheweyh derivative R" is defined by R" :
A— A,

Rf(z) = f(2)
R'f(z) = zf(2)

(n+1R"™f(z) = z(R'f(z)) +nR"f(z), ze€U.

Remark 2. If f € A, f(z) = z+ L2, az¥, then R'f(z) = z+ ¢ n+1 Y, rrﬁ)k arZ~ for
ze U

Definition 3 ([14]). Let a,] > 0 and n,m € N. Denote by IR]}" : A — A the operator
given by the Hadamard product of the multiplier transformation I (m 1) and the Ruscheweyh
derivative R",

IRZTf(z) = (I(m,a, 1)« R")f(2),

for any z € U and each of the nonnegative integers m, n.

Remark 3. If f € Aand f(z) =z + Y50, axz¥, then
0 1+a(k—1)+1 k
IRZZ’an(z) =z+ % Zk:2< el DY ) (n(:) )a%zk ze U

I+1

Definition 4 ([15,16]). The fractional integral of order A (A > 0) is defined for a function f by

D *f(z) = r(lA) /oz (z - 2t @

—

where f is an analytic function in a simply-connected region of the z-plane containing the origin,
and the multiplicity of (z — £)* " is removed by requiring log(z — t) to be real, when (z —t) > 0.

Definition 5. The fractional integral associated with the convolution product of a multiplier
transformation and a Ruscheweyh derivative is defined by:

Y ! z IRZZ}"f(t) 1 z ¢
DM, f(z)_rm/o (Z_t)l_Adt_r(A)/O Al

1 d 1+1X(k—1)—|—l mr(n+k) z k
r(/\)r(n—l—l)lc_zé( I+1 ) I (k) ”%/0 (Z—t)l_/\dt,

which has the following form, after a simple calculation:

1
D;*R™, Vf(z) = o) My

1 i Ltatk=1)+1\" k(n+k) 540
T(n+1) = I+1 T(k+A+1) 7

for the function f(z) =z + Y, az* € A. We note that D; MR f(z) € A(A +1,1).

Inspired by the results seen in [17], a new subclass of analytic functions is defined
using the operator given in Definition 5.
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Definition 6. For y,a,l > 0, A,m,n € N, v € C— {0} and % < B <1, let

IR(u, A, B,v,a,1,m,n) be the subclass of A consisting of functions that satisfy the following
inequality:

I HZVI

) — m,n !
21— ) IO (DoMRE ()

D; )\IRmn ’
PO (DRI £(2)) =

<p )
A1 —p)

The study of the newly introduced subclass ZR (y, A, B, v, a,1,m, n) is presented in
the next sections of the paper. Section 2 contains a new outcome of the coefficient-related
studies and extreme points of the functions in the class ZR (y, A, B, v, &, 1, m, n). In Section 3,
distortion properties for the functions in class ZR (y, A, B, 7, «,1,m, n) are given and proper-
ties of starlikeness and the convexity of this class are presented in Section 4.

2. Coefficient Bounds

In this section, coefficient bounds and extreme points for functions in
IR(u, A, B,v,a,1,m,n) are obtained.

Theorem 1. The function f € A belongs to the class TRy, A, B, v, «, 1, m, n) if and only if

o (A4 k() TR, pair(ns 1) (e or(e+1)

< 3
Pl T(k+A+1) Tk B+1 T(A+2) ®)
The result is sharp for the function
Bl _ A \F (4 1)D(k+ A+ 1)
F(z) =z+ (ﬁH (AH)) 2, k>2. 4)

(A + yk)k(%)mr(n +k)

Proof. Assume that function f € A and that Inequality (3) holds. Then we obtain:

/\I mnf( ) B /
A=) = (DR (2))
D AIRmnf( )

: =
A=) +u(DTMRY(2)
a(k—1)+1
Atp A 1 (A+pk) k() T ()
r()»Jrﬂz)Z D k=2 ( (k++)\+1)>
A 1 (A pkk (DY (g
o ? + T Tz <F(k++/\+1)>

2 k+A—1
{IlkZ

2 —
a2z A1y

(k— n\m
Atp (A+p)(E2EDE L (k)

A 1 2_k+A-1
i ? T gt k=2 T(k+AT1) Az

— m
A ) (/\+#k)k<1+a(li<+]1)+z> T(n+k)
a2 1 e k=2 T ATT)

2 _
a2k A1 oy

‘ Aty

_ m
A Ot (Z4E) TR 5 gy
T(112)? + aiz

r(n1+1) Lik=2 T(k+A+1)

1 wee e )
T(n+1) ~k=2 T(k+A+1)

|_’ At Z)“

2 k4+A-1
T(A+2) ayz
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A+yk)k(M) T(n+k)

/\+y A 2| k+A—-1
o |2+ r(n+1) Yilo T(k+AT1) ak’Z - ‘ “pzeu
At g Ok () Ty ’ '
vl = T(A+2) I? = n+1) Lo T(kHA+1) ai|z |
Choosing values of z on the real axis and considering z — 17, we have:
Ta(k—1)+1\"
At 1 & (A k() I"(n+k)a2<
T(A+2) T(n+1) 5 T(k+A+1) k
T4a(k—1)+1\™
p_p At g 1 (A + )k (LoD ) Tinth) ,
F(A+2) "T(n+1) = T(k+A+1) ks

equivalently with

1T+a(k—1)+1\™
= () TOR) L i+ 1) (4 (4 )
= T(k+A+1) k B+1 r(A+2)

obtaining that f € ZR(u, A, B, v, &, 1, m, n).
Conversely, suppose that f € ZR(u, A, B, 7, «,1,m,n), then we obtain the following

inequality:
AIRMf(2) B /
. A = o) = 4 (DMRYF(2)) ;
e J—
D IR} f(2) /
A1 = ) =22 4 (DR f(2)) =
A _A 1 (/\ﬂ‘k)k(%)mr(nH() 2 k+A—-1
Red _TO#D” * T k=2 N (ZSES)) Tz plso
Tra(k—1)+1\"
Ay Atk (B2 )
roi? + rrT D TTA+T) aZ A —y
14a(k—1)+I
Ay 1+B ()\Jrﬂk)k(T) T (n-+k) 2 SktA-1
Re (1+B)r T(A+2) 2 T T Yo T(k+A+1) =By 50
1+a(k—1)+I :
Atp 1 Atk (D Py
a2+ T Lhe T ATT) gzt Al —y

Taking account that Re(—¢'®) > —|e!®| = —1, the above inequality reduces to:

r

(Apk)k (DY
(1+5) Adp oA 148 o ( I+1 ) a%rk+)\fl +ﬁ|')’|

I'(A+2) T(n+1) ~k=2 T'(k+A+1)
14a(k—1)+1
A+l A o G = e B G a2pk+A—1
r(A+z)r Fn+1 Yilo T(RTA+T) i -7

Letting r — 17 and applying the mean value theorem, we have the desired inequality (3).
This completes the proof of Theorem 1. [J

Corollary 1. Function f € TR(u, A, B,v,a,1,m,n) implies:

, k=2, ©)

(% - g&_}%)r(n F1T(k+A+1)
(A + p)ke () T (n 4+ k)

with equality only for functions defined by (4).
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Theorem 2. Consider f1(z) = z and

fr(z) =z~

(654 - S )T+ DT (ke +A+1)
NG z, k>2, (6)
(A+ k) (ZEE) (0 + k)

I+1
foru,a,1 >0,A,mneN,yeC—{0}and0 < B <1
Then, f € TR(u, A, B,y,a, 1, m,n) if and only if it can be written in the form:

f(z) = ki wifil2), )
=1

where wy > 0and Y ;> ; wy = 1.

Proof. Assume f can be written as in (7). Then:

M
0 (%_IE(A+H2)))r(n+1)r(k+A+l)zk

k
P (A+yk)k(%)mr(n+k)

fz)=2-

Now,

(A+ yk)k(%)mr(n +k)

=\ (B4 - S )T+ )T (k+ 2 +1)

Wi

(6 - S )T+ )T (ke + A+ 1) Fu 1w
= W =1—w1 = 1.
(A+yk)k(w>mr(n+k) =

Thus, f € ZR(u, A, B, v, a,1,m,n).
Conversely, let f € ZR(p, A, B, v, «,1,m,n). Then by using (5), setting

(M - é?;ﬁ%)l“(n F1T(k+A+1)

+1
(A+ yk)k(%)mr(n +k)

Wy = ag, k>2

and wy; = 1—Y;2,w, we obtain f(z) = Y2, wifk(z), completing the proof of
Theorem 2. [

3. Distortion Bounds

In this section distortion bounds for the class ZR (u, A, B, 7, «,1,m, n) are obtained.

Theorem 3. For f € TR (u, A, B,v,a,1,m,n), inequality

At
(% - 1"(()\+V2)))r(/\ +3)

2(n+1)(A +2p) (L4

a2 < |f(2)] ®)
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holds if the sequence {oy.(u, A, a1, m, n) };“’:2 is non-decreasing, and

(5‘7‘ (A+p) )1"()L+3)

B B+l ~ T(A+2) 2 ,
1-2 L] < |f2)
2(n+1)(A +2;41)(
A
% - r(()\fz)))r()‘ +3)
sit2 Lracl)"
2(n+1)(A +20) (1)
holds if the sequence {M }%° , is non- decreasing, where
. B (A+yk)k(%)mr(n+k)
o (Ao, l,mmn) = Tk A+) .

The bounds in (8) and (9) are sharp, for f given by

o
(ﬁ‘ll‘ ((Afz)) )F(A T

3
2(n+1)(A+ ) (125

Proof. Using Theorem 1, we obtain:

(27 rz\)\+2) (A+3) '

[ee]
Y oa <
k=2

We have - .
2| = 1217 Y a2 < |f(2)] < |2 + |2 ) @
k=2 k=2
Thus,
M (A+p)
r— | ot >)r<A+3> < If(z)|
2(n+1)(A+ <1+a+l)
Atp
. -
20n+1) (A +2p0) (L)
Hence (8) follows from (12). Furthermore,
Blvl _ (A+w)
" kay < (,BH (A+z))r()‘ 3)
= T\ 2+ 1A +2p) ( +a )

Hence (9) follows from

1—r Y kap < |f'(z)| <1+7) kay.
k=2 k=2

)

(10)

(11)

(12)
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4. Radius of Starlikeness and Convexity

In this section we give the radii of close-to-convexity, starlikeness and convexity for

the class ZR(u, A, B, v, &, 1,m, n).

Theorem 4. The function f € TR (u, A, B,v,a,1,m,n) is close-to-convex of the order 5,0 < § <

1in the disc |z| < r, where:

(Vl—l—])( 5)%)\4—;4]{)(%)1%

A+
k22 (654 - &5 kT (k+ A+ 1)

The result is sharp, with the extremal function f given by (4).
Proof. For the function f € A, we have to show that:
If'(z) —1| <1-0.

By a simple calculation we obtain

|f'(z) —1] < Zkak\z|

which is less than 1 — ¢ if

ak\z| <L

Function f € ZR(u, A, B, v, «,1,m,n) if and only if

(A+ yk)k(%) I'(n+k)

ar
(5+1 - (/\erz)) )r(k +A+1)

2
ap <1,

(e
n—l—l ;

relation (14) is true if

o | (At yk)k(%)mr(n +k)

—z] < ,
1-0¢ k;z (654 — S5 )T+ D (k+ A+ 1)

or, equivalently,

| (1= 8) (0 -+ puk) () T+ k)

T\ (B - SR+ DT (R A+ 1)

7

which completes the proof. [

Theorem 5. Consider f € ZR(p, A, B, v, «,1,m,n). Then:
1. f is starlike of order 6,0 < 6 < 1, in the disc |z| < ry where:

alk— m
R (1= 8)* (A + i)k (222 ) " (n + k)
1:
| B

k>2 (g%_rmﬁ))(k—i—& 2T(n+1)T(k+A+1)

(13)

(14)
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2. f is convex of order 6,0 < § < 1, in the disc |z| < ry where:

S 8 (A + k) () r(n +- k)
2:

(1-
k=2 (% gwg))k(k—1)2r(n+1)r(k+A+1)

Each of these results is sharp for the extremal function f given by (4).

Proof. 1. For 0 < é < 1 we have to prove that

2f(2) ‘
-1 <1-56. (15)
f(z)
We obtain -
)y o [Ealt U
f(z) T 14+, arz
which is less than 1 — ¢ if
2 (k+6—2)
k=2 -

Function f € ZR(u, A, B, 7y, «,1, m, n) if and only if:

(A+ yk)k(%)mr(n +k)

1 d 2
Z ap < 1.
T+ iz (B4 - 5T+ A+1)
Relation (15) holds if:
k=1)+1\™
keo-2 | O+ )k (L) T+ k)
1-5 (64 - S )T+ T (e + A +1)
equivalently,
|lz| < (1-9) ()t—i—yk)k(%)mr(n—i-k)
z

(g‘jl‘ i )))(k+5 2)2T(n+1)T(k+A+1)

which yields the starlikeness of the family.
2. The function f is convex if and only the function zf’ is starlike; therefore it is enough
to prove (2) with a similar method as that of the proof of (1). Thus, the function f is convex

if and only if:
|zf"(z)] <1-36. (16)
We obtain
|zf" (z)] < k—1)aglz|| <1-39,
equivalently

ak|z\ <L

i

Function f € ZR(u, A, B, v, a,1, m,n) if and only if
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References

(A + yk)k(w)mr(n +k)

1 i [+1 2 <1
k
L(n+1) = (% _ F(()\A+V))) (k+A+1)
and relation (16) is true if
al(k— m ]
k1), (A+ )k (HE) T+ ) "
-z zl,
1-9 (54 - S5 )T+ )T+ A +1)

equivalently with

(1= 02 (A -+ puk) (Z242) "+ 1)

(
(g'jl' <(AA++’*2>))k<k —12T(n+1)T(k+A+1)

2] <

which yields the convexity of the family. O

5. Conclusions

The study presented in this paper followed the line of research regarding introduc-
ing new classes of univalent functions using different operators. The operator used for
obtaining the original results of this paper is part of the celebrated family of fractional
integral operators, much investigated in recent years. Using the operator presented in
Definition 5, the new subclass of analytic functions under investigation in this paper,
IR(u, A, B, v, a,1,m,n), was introduced in Definition 6. The paper presented the results of
the studies carried out on coefficients, for finding the distortion bound of the functions in
the new class and for establishing domains of starlikeness, convexity and close-to-convexity
for the functions in the class ZR(y, A, B, v, «,1,m,n) and finding radii associated with
those domains.

As future lines of study involving the class IR(V, A, B,v,&,1,m,n), aspects related to
subordination and superordination properties could be investigated. Interesting results
related to the relatively new concepts of fuzzy differential subordinations and superordina-
tions might be also obtained.

The symmetry properties of the functions defined by an equation or inequality to ob-
tain solutions with particular properties could be studied. The study of special functions by
the differential subordinations method could give interesting results about their symmetry
properties. In a future paper, the symmetry properties for different functions using the
concept of quantum computing could be studied.
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