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Abstract: The performance of artificial nanomotors is still far behind nature-made biomolecular
motors. A mechanistic disparity between the two categories exists: artificial motors often rely on
a single mechanism to rectify directional motion, but biomotors integrate multiple mechanisms
for better performance. This study proposes a design for a motor-track system and shows that
by introducing asymmetric compound foot-track interactions, both selective foot detachment and
biased foot-track binding arise from the mechanics of the system. The two mechanisms are naturally
integrated to promote the motility of the motor towards being unidirectional, while each mechanism
alone only achieves 50% directional fidelity at most. Based on a reported theory, the optimization of
the motor is conducted via maximizing the directional fidelity. Along the optimization, the directional
fidelity of the motor is raised by parameters that concentrate more energy on driving selective-foot
detachment and biased binding, which in turn promotes work production due to the two energies
converting to work via a load attached. However, the speed of the motor can drop significantly after
the optimization because of energetic competition between speed and directional fidelity, which
causes a speed-directional fidelity tradeoff. As a case study, these results test thermodynamic
correlation between the performances of a motor and suggest that directional fidelity is an important
quantity for motor optimization.

Keywords: nanomotor; directional fidelity; entropy production; optimization; tradeoff

1. Introduction

A frontier of nano science and technology is developing nanomotors that utilize local
energy supply but generate long-range directional motion [1–3]. A particularly research
interest is fabricating bio-mimicking nanomotors [4–13] that move along linear tracks for
transportation, force generation or perform other functions. Applications of the nanomo-
tors have been demonstrated, including cargo sorting and assembly [14,15], landscape
navigation [16,17] and chemical synthesis and catalysis [18–20]. Despite the progresses,
performances of the artificial nanomotors are magnitudes behind bio-molecular motors.

An important reason for the advanced performance of biomotors is the integration of
multiple mechanisms for direction rectification. For example, cellular motor kinesin [21]
is a bipedal motor that walks along the filamentous track of the cytoskeleton in a hand-
over-hand fashion. Although the two feet of kinesin are identical and equally capable of
catalyzing fuel reaction (ATP hydrolysis) for driving, kinesin as a whole achieves both
preferential detachment of the rear foot (fuel-gating mechanism) and forward binding
of the detached foot (zippering mechanism). As a result, the two identical feet avoid
random stepping but cooperate with each other for unidirectional walking. A recent
theory [22] shows that a bipedal nanomotor rectifying directional motion singly by selective
detachment or forward binding are generally subject to a directional-fidelity limit, namely
50% probability for forward steps at most. The limit can be broken by the integration of
the two mechanisms together. Moreover, the mechanistic integration also relates to the
optimality of a nanomotor. A thermodynamic study [23] suggests that the directional
fidelity of a motor is correlated with other performances of the motor, i.e., work production,
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energy efficiency and speed, while the value of directional fidelity mainly depends on the
actual energy used for driving the selective foot detachment and biased binding. The result
suggests that the optimization of a nanomotor can be conducted by maximizing the motor’s
directional fidelity. Some predictions of the study have been verified by experimental data
from kinesin [23] and F1-ATPase [24], which display advanced performances shown by
many experiments. Since optimized artificial nanomotors are desirable for real applications,
the mechanistic integration as well as the quantity of directional fidelity may provide a
potential path for realizing advanced artificial nanomotors.

However, in the aim of studying upper limit of performances, the reported studies [22,23]
use simplified kinetic pictures for treating working processes of nanomotors, in which
foot detachment and binding are independent of each other, and the overall working of
a motor follows a single cycle. In reality, the movement of a nanomotor is governed by
mechanics, which correlates the foot detachment with the binding, and the dynamics of
a nanomotor usually includes multiple pathways, which are entangled with each other.
Under realistic conditions, how to design both a biased foot detachment and binding
inside a single motor and avoid negative restrictions between them is not clear, and the
possibility of optimizing the working of a motor that may go through different pathways
is not known. To demonstrate the possibilities is meaningful for developing advanced
artificial nanomotors.

This study proposes a general design of a motor-track system that integrates both
selective foot detachment and biased binding. The two mechanisms arise from intrinsic
mechanics of the motor via an asymmetric compound foot–track interaction. The two
mechanisms are unified in a single working cycle and coherently add each other beyond
the directional fidelity limit of 50%. Based on the reported study [23], the optimization of
the motor is conducted via scanning parameters of the motor for maximizing the directional
fidelity. The optimization shows that the directional fidelity is enlarged by parameters that
concentrate more energy for driving selective foot detachment and biased binding. The
two energies meanwhile contribute to output work, and thus the optimization promotes
work production. However, energetic competition between directional fidelity and speed
occurs when the fidelity is extremely close to 100%, which displays a tradeoff between the
two performances. A detailed model and results are shown below.

2. Theoretical Model and Methods
2.1. The Motor-Track System

The motor comprises of two identical compound feet and a soft linker for connecting
the two feet (Figure 1A). Each compound foot contains a soft and a rigid component,
which refer to “foot chain” (gray line in Figure 1A) and “foot bone” (black rod Figure 1A),
respectively. The foot chain and foot bone connect with the linker at one end, while the
other ends can bind to the track (Figure 1A). The track is assembled by two basic units (the
white and gray bricks in Figure 1A), which contain different binding sites for the foot chain
and foot bone, respectively. The binding sites are periodically positioned along the track,
which is quantified by lattice constants d0 and d1 (Figure 1A). The track is polar because
the two basic units are chemically different. Thus, a plus and a minus end are defined as
shown in Figure 1A.

Because of the compound foot design, a motor-track binding state is asymmetric in
general, referring to the two opposite moving directions along the track (Figure 1A). The
asymmetry enables the biased motility of the motor along the track. For example, the
two feet react differently when facing contracting forces from the linker (Figure 1A). More
mechanical analysis will be shown later. Steps of the motor along the track are driven by
the contraction and extension of the linker, which pull one foot off track during contraction
and release the detached foot binding back to track during extension.
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of the motor. (B) Shown are the total free energies of the major motor-track binding states. Both 
binding energies of the foot chain and bone are 12.5 kBT. (C) Shown is the designed working cycle 
of the motor. “contract” and “extend” refer to operation of linker. 
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Figure 1. Mechanical analysis of the motor-track binding states. (A) The red line and gray line are the
linker and foot chain of the motor, and the thick black line is the foot bone of the motor. The white
and gray bricks are the two assembled units of the track. The gray arrows indicate inner forces of the
motor. (B) Shown are the total free energies of the major motor-track binding states. Both binding
energies of the foot chain and bone are 12.5 kBT. (C) Shown is the designed working cycle of the
motor. “contract” and “extend” refer to operation of linker.

2.2. Free Energy of Motor-Track Binding State

Free energies of the motor-track binding states (e.g., Figure 1B) are computed for
analyzing the working mechanism of the motor as well as for constructing a kinetic model.
The total free energy of a state (Ftotal) is the sum of foot-track binding energy (Fbind) and
the free energy caused by the inner strain of the motor (Finner), namely Ftotal = Fbind + Finner.
For each state, Fbind is the sum of all bindings between the foot chains/bones and the track.
Each binding is assumed either completely broken (zero binding energy), if the binding
site is not attached, or completely formed (with full binding energy) if the binding site is
attached (Figure 1B). The inner strain of the motor can deform the structure of the motor,
which generates the inner free energy (Finner) of the motor. The foot bone is assumed rigid,
and thus avoids deformation. Its contribution to Finner is neglected. The linker and foot
chain are assumed to be flexible, and the free energy to vary significantly under inner
strain. Their contribution to Finner is calculated by the worm-like-chain model via the
function of kBT(lc/lp)(z/lc)2(3 − 2z/lc)(1 − z/lc)−1/4. The free energy is captured by three
parameters of the flexible chains: contour length (lc), persistence length (lp) (describing
bending rigidity) and end-to-end distance (z).

With the above modeling, the total free energy (Ftotal) of a motor-track state has not
been quantitatively defined yet. The free energy still depends on the geometry of the state;
namely, the end-to-end distances (z) of the linker and foot chains depend on the orientations
of the two feet bones (θ1 and θ2 in Figure 1A). As an approximation, the geometry with
minimal Ftotal is assumed functional for each motor-track state, and the minimal Ftotal is
assumed to be the total free energy of the state. For each state, the functional geometry and
minimal Ftotal are derived by free-energy minimization via scanning θ1 and θ2.

2.3. Mechanical–Kinetic Model

Based on the mechanics of the motor, a mechanical–kinetic model is developed for
analyzing performances of the motor. All motor-track binding states are considered in
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the kinetics, including 12 states in total (Figure 2). The contraction–extension operation
switches the linker between two lengths, which generates two sets of such states (2 × 12
states in Figure 2). The binding or dissociation of a foot chain or a foot bone causes a
transition within each set of states, while the operation causes a transition between the
two sets of states (Figure 2). The overall kinetic network contains (Figure 2) all possible
pathways with the two opposite moving directions for the motor’s stepping-along track
and thus is used to test the possibility of biased motion.
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Figure 2. Kinetic network of the motor. Shown are possible motor-track binding states for short linker
(upper box) and long linker (lower box). The red arrows indicates operation-caused transitions
between the two ensembles. The black arrows indicates transitions within either ensemble.

Transitions within each set of states are spontaneous processes that are assumed
reversible and obey the detailed-balance condition. Namely kij/kji = e∆Fij/kBT, where kij
is the transition rate from state i to state j, and ∆Fij is the free-energy difference between
state i and state j. The condition ensures the equilibrium when no operation is applied.
Within each set of states, the dissociation rates for foot-chain and foot-bone are assumed
in the form of kd0·e fp·ld/kBT, where f p is the pulling force on the chain or bone; ld is the
force-coupling distance, and kd0 is the zero-force rate. The rates for the reverse binding are
derived from the detailed-balance condition via ∆Fij. f p and ∆Fij for all the motor-track
states are calculated by the mechanical model. As for the operation, the contraction and
extension of the linker is assumed to be enforced externally, and thereby a constant rate is
assigned to all the inter-sets transitions that are caused by the operation.

Performance of the motor is evaluated at a steady state. Since all transition rates
are clearly defined, the steady-state solution for the probabilities (pi for state i) of each
motor-track state is derived via a master equation, namely dpi/dt = ∑j (pjkji − pikij) = 0. The
average speed and directional fidelity of the motor are derived from the solution of the
probability (pi) (which will be shown later).
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3. Results
3.1. Selective Foot Detachment and Biased Binding

The designed asymmetry inside the motor-track system gives rise to the biased de-
tachment and binding behavior of the motor. For a two-foot bound state (Figure 1A), the
contraction of the linker causes uneven strains to the two feet. For the front foot (towards
the plus end of the track), the foot bone is pressed down towards the track and so is
stabilized, but the foot chain is pulled (f chain) up away from the track and so is destabilized.
For the rear foot (towards minus end of the track), the foot bone is pulled (f link) up away
from the track, while the foot chain is relaxed. As a consequence, the chain of the front foot
and the bone of the rear foot are engaged in a tug of war. Mechanical equilibrium requires
f chain·sinα = f link·sinβ (Figure 1A). If the size parameters are chosen to ensure α > β, and
thereby f link > f chain, the rear-foot bone tends to be preferentially dissociated. After the
dissociation, the tug of war is between the two foot chains (Figure 1A). Similarly, if the size
parameters are chosen properly, the rear-foot chain tends to be preferentially dissociated
even if both binding components are equally stable on the track. Hence, the combined
consequence is the selective detachment of the whole rear foot.

After rear-foot detachment, the one-foot bound state (state 1 in Figure 1B) is not stable
yet. The free-energy hierarchy (Figure 1B) suggests that the detached foot bone will bind
forward to form the most stable state (state 2 in Figure 1B) under the short linker. In
contrast, backward binding forms less-stable states (state 3 or 4) than state 1, which is not
likely. If linker extension occurs after state 2 is reached, the detached foot chain will bind to
track to form the most stable state (state 3’) under the long linker. Hence, the motor-track
system also facilitates a biased binding for the detached foot. If the contraction–extension
operations are applied on the linker, the motor can make sustained forward steps along a
working cycle of 3′→3→4→1→2→2′→3′ (Figure 1C). Parameters that produce the results
are realistic for nanomotor systems (Table 1).

Table 1. Parameters. The value of lp is derived from refs. [25,26].

Size parameters

length of linker 15.5 nm after contract
30 nm after extend

length of foot chain 4 nm
length of foot bone 5 nm
lattice constant (d0) 14nm

separation distance (d1) 5 nm

Mechanical
parameters

persistence length of
soft chains lp 0.8 nm

Kinetic parameters zero-load dissociation rate (kd0) 0.1 s−1 for both foot bone and chain
force-coupling length (ld) 1 nm for both foot bone and chain

3.2. Mechanistic Integration of Selective Foot Detachment and Biased Binding

Integration of the selective foot detachment and biased binding for unidirectional
stepping is tested by the mechanical–kinetic model (Figure 2). The model considers all
stepping pathways and motor-track binding states. If the both mechanisms function,
stepping of the motor can be unidirectional. The directional fidelity (D) of the motor is
defined by the net probability of forward steps over all steps [22,23], which is formulated
below for this model:

D =
∑ij J+ij −∑ij J−ij
∑ij J+ij + ∑ij J−ij

(1)

Jij denotes the transition flux from state i to state j (Jij = pikij). Only detachment for
an entire foot (e.g., 4→1 or 6→1 in Figure 2) and binding of a completely detached foot
(e.g., 1→2 or 1→8 in Figure 2) are counted in Equation (1), as these transitions are real
steps along the track. The “+” and “−” signs denote the stepping direction (forward or
backward) of the transition. Unidirectional stepping occurs when D approaches one.
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The binding energy of the foot as well as operation rates of the linker are scanned for
testing whether unidirectional stepping is possible for the motor (Figure 3A,B). The result
shows that the directional fidelity approaches one with binding energies (10–20 kBT) and
operation rates (>10 s−1) that are applicable to nanomotors. For comparison, the speed
of the motor is derived via v = ∑i pikij∆xij, where ∆xij is the average displacement of the
motor during the transition i→j. Dependences of the speed on the parameters (Figure 3C,D)
qualitatively follow that of the directional fidelity (Figure 3A,B), which is rational as high
speed occurs for unidirectional motility.
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Figure 3. Mechanistic integration of the motor. (A–D) Illustration of directional fidelity and speed
of the motor. Operation rate of either linker contraction (rs) or extension (rl) is 50 s−1 for (A,C).
Binding energy of either foot bone (Eb1) or chain (Eb2) is 12.5 kBT for (B,D). Other parameters are
listed in Table 1. (E) Contributions of foot detachment (Dd) and binding (Db) to overall D is shown.
(F) Shown is directional fidelity of the motor with zero force-coupling distance (ld = 0) for both foot
bone and foot chain. Parameters used for (E) and (F) are the same as for (A) and (C), except ld = 0
for (F).

For direct testing of the integration, the total directional fidelity (D) is decomposed
into the contributions from foot detachment (Dd) and binding (Db). The contributions are
defined by Dd = (∑ij Jd+

ij − ∑ij Jd−
ij )/(∑ij J+ij + ∑ij J−ij ) and Db = (∑ij Jb+

ij − ∑ij Jb−
ij )/(∑ij J+ij +

∑ij J−ij ), where “d” and “b” denote transitions for foot detachment and binding, respectively.
It is not difficult to derive D = Dd + Db. The decomposition shows that both Dd and Db
are limited below 0.5 (Figure 3E), which suggests that D is capped below 0.5 if only one
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mechanism works. Moreover, the selective-foot detachment is deliberately discarded in
modeling by assigning a zero force-coupling distance (ld = 0) to both the foot chain and foot
bone. Solely by the biased-binding mechanism, the directional fidelity of the motor cannot
exceed 0.5 (Figure 3F). Thus, the total D that approaches one (Figure 3A,B) is attributed to
integration of the selective foot detachment and biased binding.

For identifying an exact stepping process out of the many possibilities in the 2 × 12
kinetic network (Figure 2), the overall kinetics is decomposed into contributions from
individual cycles (by the method from ref. [27]). The designed cycle (Figure 1C) largely
dominates the overall working of the motor (Figure 4A). One can find that the binding-
energy dependence of the cycle flux of the designed cycle (Figure 4A) is consistent with that
of the directional fidelity (Figure 3A) and the speed (Figure 3C), and the maximum cycle
flux (~3.5 s−1 in Figure 4A) matches the maximum speed (~50 nm·s−1 in Figure 3C, 14 nm
step size). These results confirm that the selective foot detachment and biased binding are
integrated within the designed working cycle.
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3→6→1→2→2′→3′, 3′→3→2→1→1′→4′→3′ and 3′→3→4→1→8→8′→3′. Parameters are kept
the same as Figure 3A. (B) The line indicates y = x, and the symbols are results from the mechanical–
kinetic model. The modeling results are varied by adjusting binding energies (Eb1 and Eb2), operation
rates (rl and rs), force-coupling distances of the foot chain and bone (ld) and linker length (lc).

3.3. Optimization of the Motor

The shown result suggests that the improvement of directional fidelity can bring the
improvement of other performance, e.g., speed (Figure 3). From this section, the optimiza-
tion of the motor is conducted by maximizing the directional fidelity, and thermodynamic
correlation between the directional fidelity and other performances, e.g., work production
and speed, is analyzed. Before the optimization, thermodynamics of directional fidelity are
analyzed first. The study from ref. [23] proposes that the directional fidelity of a bipedal
motor depends on entropy productions accompanying rear foot detachment and forward
binding. The relation is expressed below for the motor of this study:

D =
(e∆S4,1/kB − 1)(e∆S1,2/kB − 1)

e(∆S4,1+∆S1,2)/kB − 1
(2)

Here, ∆Sij = kBln(pikij/pjkji) [28,29], which is the average entropy production of a
transition from state i to state j. Equation (2) uses transitions 4→1 and 1→2 to represent all
the rear foot detachment processes and forward binding processes. This approximation
is apply because the designed cycle dominates the working of the motor (Figure 4A). For
most chosen parameters in this study, ∆S4,1 is larger than ∆S1,2. Thus, Equation (2) is well
approximated into D ≈ 1 − e−∆S1,2/kB or, inversely, ∆S1,2 ≈ −kBln(1 − D). The equality
is tested by computation results from the mechanical–kinetic model (Figure 4B), which
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achieves remarkable consistency. The computation result is derived by scanning the binding
energies, force-coupling lengths, linker length and operation rates over sufficient ranges
(Figure 4B). Small deviations from the D-∆S1,2 equality appear, which is reasonable since the
equality is exact for strictly a single cycle plus an infinitely large ∆S4,1, and both conditions
are not perfectly met by the model. The analysis suggests that the quantity of entropy
productions can be potentially key for the thermodynamic analysis of the optimization.

For the optimization of the motor, the directional fidelity is maximized via scanning
parameters of the system, including binding energies (Eb1 and Eb2), dissociation rates (kd0),
force-coupling distances (ld) and operation rates (rl and rs) (Table 2). The work production
of the motor after the optimization is analyzed. For output work, a load force is attached to
the motor in modeling. The load force is attached in the middle of the linker, as is often the
case for force-clamp experiments of biological motors. The load force modifies the inner
strain of the motor (f p) as well as the free energy gaps between the 24 motor-track states
(∆Fij). The quantities are still obtained by the mechanical model, which in turn govern
the kinetics as for the zero-load case. Beside the inner free energy of the motor, the load
force build an external potential field for the motor, which contributes an extra amount of
free energy, namely f ·∆xij, where f is the load, and ∆xij is the displacement of the motor in
transition i→j. The extra free energy is also considered in modeling.

Table 2. Parameters after optimization at zero load. The parameters that maximized directional
fidelity at zero load are shown in the table. Scanning ranges of the parameters for the maximization are
0 to 30 kBT for binding energies, 0.1 to 1 s−1 for dissociation rates (kd0), 0.1 to 1 nm for force-coupling
distance (ld) and 1 to 107 s−1 for operation rates.

Mechanical parameters binding energies 25 kBT for foot bone
24 kBT for foot chain

Kinetic parameters

zero-load dissociation rate (kd0) 0.1 s−1 for foot bone
0.9 s−1 for foot chain

force-coupling length (ld) 1.0 nm for foot bone
0.1 nm for foot chain

operation rate 3.6 × 106 s−1 for contract
5.9 × 106 s−1 for extend

As for the first step, the scanning of parameters for the maximization of directional
fidelity is performed when no load is attached. Performances of the motor before and after
the zero-load optimization are compared (Figure 5). Before the optimization, the directional
fidelity of the motor under a zero load was already close to one, and thus the improvement
of the directional fidelity after the optimization is rather limited (Figure 5A). However,
the directional fidelity of the motor extends, obviously, further against the load after the
optimization (Figure 5A). Hence, the motor achieves a larger stall force (the force stops the
motor (D = 0)) and maximum output work (stall force multiplied by the step size) after
the optimization. The result indicates that the work production of the motor is largely
improved after the zero-load optimization.

The correlation between work production and zero-load directional fidelity is analyzed.
After the zero-load optimization, ∆S4,1 and ∆S1,2 at zero load are increased significantly
(Figure 5B). Note that the directional fidelity only relies on the two entropy productions
(Equation (2)). However, after the optimization, ∆S4,1 and ∆S1,2 remain linearly reduced
against the load with an approximately conserved slope (Figure 5B). The conserved load
dependences naturally lead to larger stall forces if the values of ∆S4,1 and ∆S1,2 at zero
load are increased. One can find that the stall force is close to the location where ∆S1,2
approaches zero (Figure 5B). This is because either a zero ∆S4,1 or zero ∆S1,2 leads to zero
directional fidelity (Equation (2), and ∆S1,2 is just the smaller one out of the two entropy
productions. For understanding the improvement of work production from a physics
perspective, the total amount of T∆S4,1 (energy dissipation of rear foot detachment), T∆S1,2
(energy dissipation of forward binding) and output work (W = fd0) are derived (Figure 5C).
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As the result, the total amount of energy remains stable against load (Figure 5C). Since
T∆S4,1 and T∆S1,2 reduces linearly against load, and the output work increases linearly
with load, the stable total amount of energy suggests it is the energy used for driving rear-
foot detachment (T∆S4,1), and forward binding (T∆S1,2) converts to work after the load is
attached. The stable total amount of energy also suggests that other processes (transitions)
in the working cycle are not likely relevant to work production. Hence, directional fidelity
and work production of the motor are correlated via the two entropy productions that
contribute to both of the performances. The result indicates the directional fidelity is a
meaningful quantity for the optimization of the motor.
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Figure 5. Optimality of the motor. (A) Load dependences of the directional fidelity for cases before
and after the optimization. Parameters of the cases are listed in Tables 1 and 2, except that before the
optimization, the binding energies are 15 kBT for both foot bone and chain. The arrows mark the stall
forces. (B) Load dependences of ∆S4,1 and ∆S1,2 for cases shown in (A). (C) Load dependences of
summation of T∆S4,1, T∆S1,2 (∆Strans = ∆S4,1 + ∆S1,2) and output work (W = fd0 with f as the load
force and d0 as the motor step size) for the cases shown in (A). (D) Load dependences of the speed
for the cases shown in (A). (E) Load dependences of contraction and extension rates (rl and rs) for the
case optimized for arbitrary load.

Secondly, after the zero-load optimization, a load-dependent optimization is further
conducted to the motor, in which the directional fidelity of the motor under a finite load is
further optimized by scanning the two operation rates. The scanning generates two load-
dependent operation rates (Figure 5E), which further maximizes the directional fidelity.
Such load-dependent driving is possible for biological nanomotors [30] because load can
influence the catalysis of the fuel molecule that drives the motor. However, the improve-
ments brought by the load-dependent optimization in directional fidelity (Figure 5A), stall
force (Figure 5A), T∆S4,1, T∆S1,2 (Figure 5B,C) and speed (Figure 5D) are marginal. Note
that the resultant load dependences of the operation rates (Figure 5E) after the optimization
are continuous and smooth, which produces locally maximized directional fidelity. Hence,
the zero-load optimization approximately achieves the load-dependent optimization. The
effect is understandable if considering that only T∆S4,1 and T∆S1,2 contribute to directional
fidelity and work production, and their load dependences remain stable against the ad-
justment of operation rates for all cases (before optimization, zero-load optimization and
load-dependent optimization) (Figure 5B).

3.4. Speed-Directional Fidelity Tradeoff

After optimization, despite the improvement of directional fidelity and stall force,
the speed of the motor, however, drops more than two magnitudes (Figure 5D). For the
analysis of the speed drop, a trace of optimization is recorded (Figure 6A). The trace is
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produced by scanning the binding energies (Eb1 and Eb2) and operation rates (rl and rs)
with a performance point recorded only if the present directional fidelity is higher than
the preceding one. The parameters of zero-load dissociation rates (kd0) and force-coupling
distances (ld) are not applied in the optimization because these parameters can directly
amplify or reduce all transition rates for stepping (detachment and binding), which strongly
destabilizes the value of speed. When the directional fidelity of the motor increases along
the present trace (Figure 6A), the speed also increases. However, the increasing trend
remains up to D~0.99. When the fidelity further approaches one, the speed decreases
steeply toward zero (Figure 6A).
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Figure 6. Speed-directional fidelity tradeoff. (A) Shown are the directional fidelity, speed and
entropy productions of the motor following a trace of optimization (no load is applied). During the
optimization, the binding energies and operation rates are scanned linearly. The trace starts from a
poor case of zero directional fidelity by parameters listed in Table 1, except that zero operation rates
are used. The empty arrow shows the evolution direction of the trace. ∆Strans is the total amount of
fidelity-relevant entropy productions, namely ∆Strans = ∆S1,2 + ∆S4,1, and ∆Slocal is the total amount
of fidelity-irrelevant entropy productions, namely ∆Slocal = ∆S2,2’ + ∆S2’,3’ + ∆S3’,3 + ∆S3,4. ∆Stotal is
the sum of ∆Strans and ∆Slocal. (B) The panel shows the last part of the trace (marked by dash-line
box in (A)) where the speed decreases from 18 nms−1 to 0. The trace is shown with ∆Slocal as x axis.
(C) Shown are still the optimization trace, but displayed with entropy productions as y axis.

During the maximization of directional fidelity, the speed of the motor is not controlled
by any procedure, and thus both increase and decrease of the speed can be seen in the
details of the trace. In fact, the detailed functional form of the D-v trace (Figure 6A)
depends on the choice of how the parameters are scanned for the optimization. However,
the shown increasing trend of speed vs. directional fidelity for small directional fidelity is
understandable, namely higher directional fidelity requires higher probability for forward
steps and lower probability for backward steps, which benefits the speed. The trend is
consistent with the result shown in Figure 3A–D. The speed drop when the directional
fidelity approaches one is also understandable, which is explained by the thermodynamic
analysis shown below.

The dependence of directional fidelity on entropy productions is approximated by
Equation (2), and the dependence for speed is approximated by the equation below,

v = d0/∑ij kij
−1(1− e−∆Sij/kB)

−1
(3)

Here the summation of ij only include the six transitions along the designed cycle
(Figure 1C), as taking dominance of the cycle for approximation. The derivation of Equa-
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tion (3) can be found in ref. [31]. Unlike the directional fidelity (Equation (2)), which only
relies on entropy productions of rear-foot detachment (∆S4,1) and forward binding (∆S1,2),
the speed depends on all the six entropy productions of the cycle (Equation (3)) and decays
to zero if any one of the six entropy productions approaches zero. Thus, finite speed
requires a certain balance among all six entropy productions if the total amount is limited,
and a crisis for speed breaks out if all energy is exhausted solely by ∆S4,1 and ∆S1,2 for
raising the directional fidelity toward the ultimate limit.

Results from the mechanical–kinetic model support the above analysis. Along the
entire trace, the total entropy production of the six transitions (∆Stotal) remains a constant
(Figure 6A). This is because the operation is unchanged during the optimization and thus
provides constant total driving energy to the system. When the directional fidelity increases
along the trace, the fidelity-relevant entropy production (∆Strans = ∆S4,1 + ∆S1,2) increases
as expected, while the fidelity-irrelevant entropy production (∆Slocal = ∆S2,2’ + ∆S2’,3’ +
∆S3’,3 + ∆S3,4) decreases as the total entropy production (∆Stotal) is limited (Figure 6A).
When D approaches extremely close to one, ∆Strans indeed exhausts almost all energy,
which produces a crisis for ∆Slocal and in turn for speed (Figure 6A). The speed–∆Slocal
plot (Figure 6B) clearly displays that the speed drops more than two magnitudes when
∆Slocal decreases from 3 kB to 2 kB, while the speed decreases with drastically reduced pace
when ∆Slocal decreases from 7 kB to 3 kB. Detailed variations of each entropy production are
summarized in Figure 6C. The above speed-directional fidelity tradeoff is consistent with
the reported study [23] based on single-cycle kinetics, while here the tradeoff is displayed
based on a mechanical model with all possible stepping pathways considered and detailed
processes showing how the tradeoff occurs.

4. Discussion
4.1. Implementation of the Motor-Track System

The design of the motor-track system is implementable in experiments. One probable
option for implementation is assembling from predesigned DNA sequences. Tracking with
compound binding sites has been demonstrated in experiments [10–12]. The contraction–
extension operation can be implemented by alternately forming and breaking a folded
structure of DNA [32–37] or by directly varying the contour length if the DNA strands
are embedded with light-responsive moieties [38,39]. Examples of the operation can be
found in reported experimental systems [11]. The unique design in the present system is
the compound foot plus the rigid component of the foot bone, which have not been used
as a single foot in experiments. The compound foot can be implemented by designing
forking at either end of a double-strand DNA, while one overhang strand from the forking
must be duplexed with the complementary strand, as a DNA duplex is rigid enough for
being the foot bone. The structure of forking was used as two feet in early types of DNA
nanomotors [40].

Options [11,41,42] for testing the proposed selective-foot detachment and biased
binding are also reachable. One option [11] is attaching different dye molecules to different
binding sites of the track and quencher molecules to both feet of the motor. Due to that
the dye molecules can emit fluorescence, and the quencher can block the fluorescence,
the rear/front foot detachment as well as forward/backward binding can be, respectively,
marked by different variations of the fluorescence. A reliable simulation method [43] also
can be found for the testing. Examples of such testing on other DNA nanomotor systems
have been reported [41,42].

The well-known Brownian motor model [44] may provide a simple test of the speed-
directional fidelity tradeoff. In the model, a directional flow of particle can be generated by
flashing a ratchet potential. If an optimization trace (similar to Figure 6A) of the Brownian
motor is generated by scanning the flashing rate from slow to fast, one can find that the
trace will start from zero speed and zero directional fidelity because the system maintains
equilibrium under super slow driving. Both speed and directional fidelity will increase
with the flashing rate as the model can generate a directional flow at a finite flashing rate.
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However, when the flashing rate becomes superfast, the speed will decrease, as the particle
can only go across the front barrier when the ratchet is shut down, and the crossing time
under superfast flashing is too short for successive crossing. Meanwhile, the directional
fidelity is not likely to reduce, as the ratchet potential is asymmetric in space and backward
flow is always much weaker than the forward one under fast flashing rate.

4.2. Motor Optimality

Experimental data of bionanomotor kinesin [23] and F1-ATPase [24] show that the di-
rectional fidelity of a motor can be maximized throughout a pre-stalemate load. Since great
research effort is spent on producing artificial nanomotors in the laboratory, a universal
optimized artificial nanomotor is desirable for widespread applications in nanotechnology.
However, to realize universal optimality in artificial system seems difficult because a motor
is required to be optimized for arbitrary loads. An interesting result from this study is
that the universal optimality is approximately approached by the zero-load optimization.
The result suggests that adjusting a motor’s construction and operation associated with
zero-load performance is likely the key for the optimization of a motor.

The kinetic model (Figure 2) in this study considers all the working pathways con-
sisting of the 2 × 24 motor-track state rather than singly the designed cycle. The multiple
pathways can bring energy dissipation to the motor, as driving energy might be wasted
by futile cycles or backward-moving cycles. Please note that energy dissipation caused
by the forward displacement of a motor (e.g., T∆S4,1 and T∆S1,2) should not be simply
counted as pure dissipation or waste, because the energy can be converted to work after
load is attached. If a single cycle is used in modeling, the maximum work production of
a motor usually matches the input driving to the cycle, and thus no real waste of energy
is caused. The single-cycle modeling is often applied on biological nanomotors, which is
reasonable as it is a good approximation for highly efficient nanomotors. However, the
multi-pathway modeling of this study suggests that only the energy used for generating
actual displacement (rear-foot detachment and forwarding binding) can be converted to
work after the load is attached, while energy used for other processes is likely dissipated.
The result is consistent with classic thermodynamics for heat engines where only the energy
used for cylinder expansion can convert to work, while the energy used for other processes,
such as changing temperature, is irrelevant to work production. The information might be
useful to studies on nanomotors as it specifies the processes for work production, which is
unlikely to be given by single-cycle modeling.

5. Summary

In summary, a simple bipedal motor was designed from a polymer structure that forks
at either end into a soft and a rigid binding component. The linear track only requires
alternate binding sites for the soft and the rigid binding components. When the size
of the motor-track system is properly chosen, the binding mechanics coupled with the
alternating extension and contraction of the inter-feet linker give rise to the directional
motion of the motor. Firstly, the mechanisms rectify the motor’s motion to directionally
include selective foot detachment and biased binding. Neither of the two mechanisms
is assumed by hand. Each of the two mechanisms alone rectifies directional motion, but
the motor performance based on a single mechanism is capped by a general limit (0.5)
in terms of directional fidelity. The simplistic motor-track system is able to additively
integrate the mechanisms by coupling them sequentially into the energy-consuming cycle,
which promotes the motor’s performance beyond the limit. Secondly, a motor can be
optimized by maximizing the directional fidelity, which promotes the working production.
A motor’s directional fidelity can be optimized simultaneously for different values of
external loads by adjusting parameters associated with the motor’s physical construction
regardless of external operation. Thirdly, when a motor’s directional fidelity becomes
perfect, its speed approaches infinitely slowness. Such a speed-directional fidelity tradeoff
is caused by an energetic crisis: optimal directional fidelity maximizes entropy productions
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of some transitions but abolishes other speed-limiting transitions for a finite amount of
energy supply. When the speed-limiting entropy productions gain finite values linearly,
the motor’s speed recovers exponentially from zero.
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