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Abstract: Random forest is a simple and effective model for ensemble learning with wide potential
applications. Implementation of random forest evaluations while preserving privacy for the source
data is demanding but also challenging. In this paper, we propose a practical and fault-tolerant
privacy-preserving random forest evaluation scheme based on asymmetric encryption. The user can
use asymmetric encryption to encrypt the data outsourced to the cloud platform and specify who
can access the final evaluation results. After receiving the encrypted inputs from the user, the cloud
platform evaluates via a random forest model and outputs the aggregated results where only the
designated recipient can decrypt them. Threat analyses prove that the proposed scheme achieves the
desirable security properties, such as correctness, confidentiality and robustness. Moreover, efficiency
analyses demonstrate that the scheme is practical for real-world applications.

Keywords: privacy-preserving; robustness; fine grained access control; random forest; ensemble
learning

1. Introduction

Nowadays, data evaluation using Machine Learning (ML) has been used in many
real-world applications, such as spam classification[1], credit risk evaluation [2], medical-
aided [3,4], etc. People are using smart services more [5], and more AI-related papers are
being published [6]. This is because the evaluation results obtained by the users or data
analysts can be used to provide assistance for management and decision-making.

Generally speaking, it is desirable to derive a stable and well-performing model
directly after training a large amount of data. However, it is non-trivial in practice, because
these data are considered as a digital asset. In many circumstances, it is difficult to collect
enough data to train a well-performing machine learning model, and these collected data
may show homogeneity, which may also make the trained model not generalize well.
Therefore, the model generated by ML may not be satisfactory for the evaluation purpose.

Ensemble Learning [7] can be used to alleviate the above problem by integrating
multiple weak models into one with better quality. Although a weak model may generate
an unsatisfactory prediction, the other models can be used to balance the distortion (Note
that one needs to optimize the training phase in order to ensure that weak models can
indeed be combined into stronger ones, e.g., using the idea of Bagging). Suppose a patient
is suffering some serious diseases, it is normal practice for several doctors with different
experiences to diagnose together so that they can get a better overall view of the patient’s
health condition. The above method that uses group intelligence is very similar to the idea
of Ensemble Learning. Random forest [8] is a typical algorithm in Ensemble Learning that
contains many decision trees. Each of these decision trees evaluates the data individually
during prediction, and random forest decides which category the data belongs to by
running voting among these trees. Random forest also has similar limitations that require
further optimization when combining the decision trees. In this work, we assume that
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such optimizations have been carried out in the training phase. The random forest enjoys a
number of attractive properties, such as high performance, good adaptation and allowance
for parallel processing.

Recently, people are paying great attentions on user privacy, and many privacy regula-
tions (e.g., Health Insurance Portability and Accountability Act (HIPAA) [9] in the US and
General Data Protection Regulation (GDPR) [10] in the European Union) have been issued
worldwide, requiring the service providers in ML to protect user privacy when offering
services. If evaluation services cannot be provided on a privacy-protective basis, then they
may not only be illegal, but also lose their appeal to privacy-conscious people, especially in
the medical field [11]. Moreover, the trained models in ML are also valuable intellectual
assets for the service providers, and they are unwilling to disclose these models as this may
decrease their competitive advantages. Asymmetric encryption is the main building block
to achieve privacy-preserving computations [12,13]. Compared with symmetric encryption,
it can achieve homomorphic operations on ciphertext, which can solve the problem of
privacy-preserving data sharing, eliminate data silos and promote the effective use of data.

1.1. Our Contributions

To solve the above issue, we propose a distributed privacy-preserving random forest
evaluation scheme that achieves fine-grained access control by using asymmetric encryp-
tion. The protocol employs some novel cryptographic primitives and it provides accurate
evaluation results without leaking either users’ input data or service providers’ trained
models. Moreover, the evaluation results are only available to the designated recipients but
no one else.

In the proposed scheme, the user can be offline after submitting the encrypted data.
Once the evaluation is complete, the cloud platform can re-encrypt the results so that only
the designated recipients can decrypt it. Moreover, the scheme is robust, i.e., even if a few
servers drop out of the protocol due to temporary network problems, the rest of the servers
can continue to execute the protocol.

Our work has potential applications in many scenarios and we use the following
example to highlight our motivation. Suppose a user applies for loans from a bank, and the
bank wants to conduct a comprehensive credit risk evaluation for this user. The bank can
incorporate with multiple financial institutions, such as some other banks and insurance
companies, to evaluate the user’s data so that it can obtain comprehensive information to
decide whether to provide loans for this user.

1.2. Related Works

In privacy-preserving random forest evaluation, existing works mainly focus on the
privacy of base classifier within the decision tree algorithm. By constructing basis blocks,
the work in [14] implements a privacy-preserving scheme for three algorithms, including
decision trees. This work has demonstrated that polynomials can be used to represent
decision trees. One needs to compare the node values of the decision tree with the evalua-
tion data, and then uses the outputs to calculate the polynomial, obtaining the evaluation
results. For example, the decision tree in Figure 1 predicts that the result polynomial can
be represented as P = (1− b1)((1− b2)z1 + b2z1) + b1(b3z4 + (1− b3)((1− b4)z3 + b4z2)).
The main constructing blocks used in designing the protocol is fully homomorphic encryp-
tion (FHE) [15,16]. However, this scheme is impractical as it requires a lot of interactions
between the participants.

The work in [17] proposes a method to compare the results of decision node values
with the help of the client. The privacy of the decision tree is achieved using Paillier
encryption [18] and oblivious transfer (OT). When the scheme is extended to random forest
evaluation, the server uses random values to mask the results in order to hide each model
of decision tree as well as the evaluation results. The final aggregation eliminates all these
random values to obtain the random forest evaluation results.
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Figure 1. Decision tree model.

The work in [19] proposes a method to convert a decision tree into a series of linear
equations represented by paths; the complexity of the evaluation is linearly related to the
amount of nodes in the decision tree. Therefore, it is suitable for deep and sparse decision
tree models. For example, the linear equation of decision tree paths in Figure 1 can be
expressed as z1 = b1 + b2, z2 = b1 + (1− b2) or z2 = (1− b1) + b3 + (1− b4), z3 = (1−
b1) + b3 + b4, z4 = (1− b1)(1− b3). This protocol is designed using additive homomorphic
encryption, that reduces the number of interactions compared with the other relevant
schemes. Using the path equation and the OT protocol, the user can obtain the final
classification results. It has been suggested that the scheme can be extended to support
privacy-preserving evaluation of random forest, while the number of interactions can
remain unchanged. That is, the decision trees can be executed in parallel and the processed
information can be sent together for each interaction.

The work in [20] uses a commodity-based model to construct a two-party protocol in
which the authority sends relevant data to the participants in the initial stage. The authority
does not need to be involved in the subsequent execution of the protocol. The functionality
of the authority can be pre-computed, and this improves efficiency. This protocol uses
secret sharing as the main construct block to implement privacy-preserving classification
of decision trees, etc. However, it lacks the ability to protect full information of the decision
tree model and it does not support users to be offline.

For most interactive privacy-preserving decision tree protocols, only the client and
the server are required to participate. Therefore, the structure is simple and it is easy to
implement. However, it requires the client to remain online. However, without adding
virtual decision tree nodes, it may leak information about the number of nodes or depth of
the decision tree through the number of interactions between these two parties.

Nowadays, it is desirable to extend decision trees to random forest, and some re-
searchers have investigated privacy-preserving random forest evaluation. In [21], each
model owner sends her model in the encrypted form to an evaluator, and the user sends the
encrypted data to this evaluator. Using the Multi-Key BGV scheme [22,23], the evaluator
computes on the ciphertexts and performs random forest evaluation. The final result needs
to be processed by all model owners before it is decrypted. Note that if the evaluator or any
model owner fails during this period, the user may not be able to decrypt the result. We
have to note that the majority of the existing FHE-based schemes are not suitable in practice,
because FHE occurs heavy computational overheads and high storage costs [24]. Most
existing non-interactive privacy protection schemes are based on asymmetric encryption
(public key encryption with homomorphic properties), and we will also use this technology.
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1.3. Organization

The notations and technical concepts are presented in Section 2. Section 3 describes
the system model, security model and design goals. In Section 4, we first outline the
constructing blocks for the proposed scheme and then introduce the proposed privacy-
preserving random forest evaluation scheme. Security and efficiency analyses are given in
Sections 5 and 6, respectively. Finally, in Section 7, we summarized the work of this paper
and discussed the future work.

2. Preliminaries

In this section, we will introduce some preliminaries that will be used in the proposed
scheme. The notations and abbreviations used in the paper are listed in Table 1.

Table 1. Abbreviations and notations.

Symbols Description

SR Service requester
RR Result recipient
CP Cloud platform

ESPs Evaluation service providers
t Number of servers in the cloud platform

pkrr/skrr The key pair of RR
PK/SK The key pair of cloud platform

[m] or (A, B) Encryption of m under PK
〈SK〉i ESPi’s secret share of SK
‖m‖ Bit length of m
|I| Number of elements within I
mi The raw data provided by SR
P Polynomial expression of decision tree
vi The value of the non-terminal node in the tree

DCP Distributed comparison protocol
DMUP Distributed multiplication protocol
DMAX Distributed maximum protocol

DMAX_n Distributed maximum_n protocol
DRE Distributed re-encryption protocol

2.1. Decision Tree

Decision trees are a non-parametric supervised learning algorithm with a wide range of
applications that deals with nonlinear features, and its decision rules can be easily explained.
In this paper, we use the binary decision trees, for example, classification and regression
trees (CART), denoted as T (V ,Z). The non-leaf nodes are called decision nodes and we
assume that there are σ of these nodes, each containing a value vi ∈ V(i ∈ {1, 2, . . . , σ}).
Each branch represents the testing result of the decision node with respect to the value of
the data mj to be evaluated. Let ei = 1 represents mj < vi and the left branch is chosen,
while ei = 0 denotes mj ≥ vi and the right branch is chosen. The (σ + 1) terminal nodes
represent the |Z| = δ categories. When a decision tree model is used for evaluation, the
comparison starts from the root node, and the branch is selected based on the comparison
result, and then the comparison continues for the nodes on the branch until the leaf node is
obtained, and the category zk ∈ Z(k ∈ {1, 2, . . . , δ}) means that the node is taken as the
decision evaluation.

2.2. Ensemble Learning and Random Forest

Although decision trees have many advantages, the models obtained from training are
susceptible to overfitting by the data set. Therefore, ensemble learning, which ensembles
multiple models in an appropriate way to improve the evaluation performance has emerged.
Ensemble learning algorithms mainly include the parallel Bagging algorithm and the serial
Boosting algorithm.
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The Random forest algorithm proposed by Breiman [8] is one of the most representa-
tive and top performing algorithms among the bagging methods. It has been applied to
different tasks [2,25] due to its simple parameters and high adaptability. Random forest
builds multiple decision trees in the training phase and ensembles them to obtain more
accurate and stable prediction results. In the evaluation phase, the data are inputted into
each decision tree for evaluation individually, and the final evaluation results are obtained
by voting among the decision trees. We have to note that the privacy-preserving evaluation
scheme studied in this paper is based on plurality voting, which means that the output of
each model is treated as one vote, and the prediction is taking the one with most votes, and
ties are broken arbitrarily. Random forest address the performance bottleneck of decision
tree, and they have better tolerance to noise. Moreover, they can be executed in parallel.

2.3. Secret Sharing Scheme

Secret sharing divides a secret s into t secret shares by the secret sharing algorithm,
and sends the shares to t participants. When we want to recover s, we need a quorum of the
participants to use their shares to reconstruct the secret s. If (k, t) threshold is used, it needs
k participants to complete the secret reconstruction algorithm, while less than k participants
know nothing about the the secret s. It is not necessary for everyone to participate in each
reconstruct, which makes the scheme participants who use the threshold more flexible. In
this paper, we use the Shamir secret sharing scheme [26].

The Shamir secret sharing scheme is a (k, t) threshold scheme, which has a secret s to
be shared and t participants. There are mainly two algorithms:

Sharing(s, k, x1, x2, . . . , xt): The secret sharing algorithm first selects k − 1 random
numbers (a1, a2, . . . , ak−1) from Zp, and uses these random numbers to construct a poly-
nomial of degree k− 1: f (x) = s + ∑k−1

i=1 aixi (mod p), where xj(j ∈ {1, 2, . . . , t}) and the
polynomial is evaluated as f (xj). xj are public values associated with the participants. To
simplify the description, we set xi = i.

Recon({〈s〉i, xi}(i∈I), k): The secret reconstruction algorithm first verifies |I| ≥ k,
if not, it terminates. Otherwise, it uses the Lagrange interpolation formula to calculate
s = ∑i∈I (〈s〉i ∏j∈I ,j 6=i

xj
xj−xi

)

In addition, the scheme satisfies the homomorphic property that if c = a + b and
x1, x2, . . . , xt is consistent, then 〈c〉i = 〈a〉i + 〈b〉i.

2.4. Distributed BCP Cryptosystem with Threshold Decryption

The BCP cryptosystem [27] is an asymmetric cryptosystem, which we use as the
primary encryption scheme to construct our proposed privacy-preserving random forest
evaluation system in a distributed fashion. In order to match the system structure, we
modified the original scheme in order to support (k, t) threshold decryption. This modi-
fied algorithm is called Distributed Threshold Re-Encryption Scheme (DTRS) and mainly
includes the following algorithms.

Setup(κ): The Setup algorithm generates the public parameters pp according to the
security parameter κ. Two large strong primes p, q are randomly selected, satisfying
|p| = |q| = κ. Strong prime numbers require that p, q have the form of p = 2p′ + 1 and
q = 2q′ + 1, where p′ and q′ are also primes. Then, N = pq. G is the cyclic group of
quadratic residues modulo N2 and randomly selecting g to satisfy the maximum order is
ord(G) = pp′qq′. The public parameters pp are N, g.

KeyGen(pp): Key generation algorithm generates the public and private key pairs
for the users according to pp. The users randomly select a number ui ∈ Z∗N2 as the private
key ski and calculates gui as the corresponding public key pki.

Enc(m, PK): Given a plaintext m ∈ ZN , the ciphertext is generated using the encryp-
tion algorithm and the public key PK. One first chooses a random number r ∈ Z∗N , and
then the ciphertext (A, B) is computed as A = (1 + m · N)PKr,B = gr.

Dec((A, B), SK): With the knowledge of SK, m can be obtained as follows: m =
L(A/(B)SK (mod N2)) (mod N), where L(x) = x−1

N .
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PDec(B, 〈SK〉i): When the private key is secretly shared, the partial decryption al-
gorithm is executed according to the share of the private key. B(i) can be calculated
as:B(i) = B2∆〈SK〉i (mod N2).

CDec(A, {B(i)}i∈I ) When |I| is greater than k, i.e., no less than k copies of B(i)

are received, the plaintext m can be obtained by performing the combining algorithm.
m = L(A2∆/ ∏i∈S(B(i))Li(0)) (mod N2))/2∆ (mod N), ∆ = t!.

Remark: Here, ∆ = t! is introduced because it is infeasible to perform the inverse
operation when computing Lagrange interpolation on the exponent while executing CDec.
The solution is given in [28], which avoids computing the inverse element by multiplying
by ∆.

REnc((A, B), pkrr, SK): If we have the private key SK of ciphertext (A, B), one can
re-encrypt the ciphertext (A, B) into another ciphertext (Ã, B̃) without decryption. Only
the person who has the private key corresponding to the public key pkrr can decrypt
the ciphertext after re-encryption. The ciphertext after re-encryption is calculated as
Ã = A, B̃ = (B · pkrr)

SK. Obviously, re-encryption needs to be performed by multiple
parties, otherwise it has the same effect as decryption first and encryption later, which
makes no sense.

RDec
((

Ã, B̃
)

, skrr

)
: The private key skrr can decrypt the re-encrypted ciphertext(

Ã, B̃
)

, m can be obtained as follows: m = L((Ã · PK2∆·skrr )/B̃ (mod N2))/2∆ (mod N),

where L(x) = x−1
N .

CM([m]): Ciphertext can be modified without changing the corresponding plaintext.
Choose a number r′ ∈ Z∗N at random, and the new ciphertext can calculate by [m]new =
(1 + m · N)pkr · pkr′, gr · gr′

Furthermore, the scheme has the following properties:

•
[m]k = (((1 + m · N)pkr)k, (gr)k) mod N2

= ((1 + k ·m · N)pkrk, grk) mod N2

= [k ·m]

•

[m]N−1 = (((1 + m · N)pkr)(N−1), (gr)(N−1)) mod N2

= ((1 + (N − 1)mN)pkrN−r, grN−r) mod N2

= [−m]

• Additive homomorphism: If m = ∑n
i=1 mi, then [m] can be calculated by [mi]

[m] = (A, B) =
n

∏
i=1

[mi] =
n

∏
i=1

(Ai, Bi)

3. Models and Definitions
3.1. System Model

Our proposed privacy-preserving random forest evaluation scheme is constructed
using the system model as shown in Figure 2. There are three different types of entities in
the system we designed: Evaluation Service Providers (ESPs), Service Requestor (SR) and
Results Recipient (RR).
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Figure 2. System model.

3.1.1. Evaluation Service Providers (ESPs)

For external entities, all ESPs collaborate to form a cloud platform (CP), providing
random forest evaluation services. These ESPs are structured in a distributed fashion, and
they evaluate the encrypted data on their own models. The final results are re-encrypted
and sent to the RR.

Suppose there are t ESPs in CP, each ESP possesses some decision tree models that are
base learners of the random forest. Tij(V ,Z) denotes the j-th(j ∈ {1, 2, . . . , oi}) decision
tree model for the i-th(i ∈ {1, 2, . . . , t}) ESP. To simplify the description, it is assumed
that ESPi has only one counterpart model Ti. In reality, ESP may have more models, such
complicated cases can be composed of the simple cases with one model.

3.1.2. Service Requestor (SR)

SR encrypts the information needed for the evaluation and transmits the ciphertext
to the CP. Their purpose is to get the cloud platform’s random forest evaluation service
for their data. In this process, SR does not want their data or the evaluation results to be
leaked. For user data, they are discretized and hashed into binary values, we suppose that
this operation is public and the result is the same for the same data.

3.1.3. Results Recipient (RR)

RR is the designated entity to receive the evaluation results. It is determined according
to the specific use scenario, this entity can be the SR himself, or someone who can provide
guidance to SR based on the evaluation results, such as a doctor. Or it could be an institution
that is ready to accept SR’s business, such as bank, private doctor, etc.

3.2. Threat Model

In the proposed scheme, all entities need to be honest-but-curious. They will strictly
follow the protocols, but may record various data during the execution and intend to derive
information about the other entities. An external adversary A is considered, that can listen
to all exchanged messages. The data of the SR, the model of ESPs and the final evaluation
results are all elements that the adversary A wants to obtain.

ESPs are assumed in a competitive relationship with each other. Rationally, they would
incorporate to carry out the task but refuse to collude, because it may leak their machine
learning models, affecting their competitive advantages.

3.3. Security Requirements
3.3.1. Correctness

If all participants follow the protocol, the cloud platform can accurately perform the
evaluation of the SRs’ data.
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3.3.2. Confidentiality

SR and RR cannot obtain any information about the machine learning model of ESPs.
ESPs learn nothing about data of SR and evaluation results. Each ESP’s machine learning
model should not be exposed to the other ESPs.

3.3.3. Flexibility

The evaluation results of the cloud platform can be sent to any designated RR; In
practice, SRs and RR normally have only restricted computational power. They can remain
offline after the SR uploads the encrypted data and before the RR receives the re-encrypted
result.

3.3.4. Robustness

If a few servers are unable to participate in the designed security protocol due to a
temporary network failure, in order to maintain the efficiency of the implementation, the
remaining servers can continue to execute the protocol.

4. The Proposed Scheme
4.1. Constructing Blocks

DTRS enjoys the additive homomorphic property, but it cannot implement functions
such as multiplication and comparison between two plaintexts. To construct our pro-
posed scheme under honest-but-curious conditions, we modify the protocols to support
comparison, multiplication, and re-encryption as in [29–31].

4.1.1. Distributed Multiplication Protocol

The protocol Algorithm 1 is designed to calculate the product of two original data,
but in order to ensure that the protocol can be executed correctly in the final scheme, i.e.,
it is necessary to consider that the result remains in the plaintext space of the encryption
scheme after multiple multiplications (m = ∏a

i=1 mi). Therefore, it is necessary to limit the
length of each raw data to satisfy the ‖N‖/2a > ‖mi‖.

Algorithm 1 Distributed multiplication protocol (DMUP).
Input: ESPα gives two ciphertexts [a], [b] encrypted with PK; ESPi own the key sharing
share 〈SK〉i; Public sharing parameters x1, x2, . . . , xt.
Output: ESPα obtains [a · b].

1: ESPα randomly chooses two numbers ra ∈ ZN and rb ∈ ZN , computes (Aa, Ba) =
[a] · [ra] = [a + ra]; (Ab, Bb) = [b] · [rb] = [b + rb].

2: ESPα sends Aa and Ab to ESPβ(β ∈ {1, 2, . . . , t}\α), Ba and Bb to all ESPi(i ∈
{1, 2, . . . , t}\{α, β}).

3: When ESPi receives the Ba and Bb, they use SKi to calculate the B(i)
a =

PDec(Ba, 〈SK〉i), B(i)
b = PDec(Bb, 〈SK〉i). Then send the results to ESPβ.

4: When ESPβ receives no less than k copies of the B(i)
a and B(i)

b , calculate (a + ra) =

CDec(Aa, {B(i)
a }i∈S1), (b + rb) = CDec(Ab, {B(i)

b }i∈S2). Then, ESPβ calculates Z =
(a + ra)(b + rb), encrypts Z using PK, and sends [Z] to ESPα.

5: Once [Z] is received, ESPα computes [Z1] = [a](N−rb), [Z2] = [b](N−ra) and [Z3] =

[ra · rb]
(N−1). It can be easily verified that [a · b] = [Z] · [Z1] · [Z2] · [Z3] = [(a + ra)(b +

rb)− a · rb − b · ra − ra · rb]

As in the proposed PPRE scheme the product of multiple zeros or ones is calculated,
the result is always within the required range.
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4.1.2. Distributed Comparison Protocol

The purpose of this operation Algorithm 2 is to compare the size of two raw data a
and b. To ensure proper execution of the protocol, it is necessary to limit the length of the
original data to be less than ‖N‖

4 − 1.

Algorithm 2 Distributed comparison protocol (DCP).
Input: ESPα gives two ciphertexts [m1], [m2] encrypted with PK; ESPi own the key sharing
share 〈SK〉i; Public sharing parameters x1, x2, . . . , xt.
Output: ESPα obtains [e], We remark that e = 0 indicates m1 ≥ m2, and e = 1 indicates
m1 < m2.

1: ESPα randomly chooses σ
R← {0, 1} and an integer r ∈ ZN , s.t.‖r‖ < ‖N‖

4 and r 6= 0, If
σ = 1, then ESPα computes

[m]1−2 = [m1 −m2] = (A1 · AN−1
2 , B1 · BN−1

2 )

[l] = [r(2m1−2 + 1)] = ([m1−2]
2 · [1])r

= (Al , Bl)

Otherwise,ESPα computes

[m]2−1 = [m2 −m1] = (A2 · AN−1
1 , B2 · BN−1

1 )

[l] = [r(2m2−1 + 1)] = ([m2−1]
2 · [1])r

= (Al , Bl)

2: ESPα sends Al and Bl to ESPβ(β ∈ {1, 2, . . . , t}\{α}) and all ESPi(i ∈
{1, 2, . . . , t}\{α, β}) respectively.

3: When ESPi receives the Bl , they use Bl and 〈SK〉i to calculate the B(i)
l = PDec(Bl , 〈SK〉i).

Then send the results to ESPβ.

4: When ESPβ receives no less than k copies of the B(i)
l , calculate l = CDec(Al , {B

(i)
l }i∈I ).

If ‖l‖ > ‖N‖
2 , then ESPβ orders e∗ = 1, otherwise e∗ = 0. ESPβ encrypts e∗ using the

Enc and transmits the ciphertext to the ESPα.
5: Once [e∗] is received, if σ = 1, ESPα invokes CM to compute [e] = CM([e∗]), otherwise

compute [e] = [1] · [e∗]N−1 = [1− e∗].

4.1.3. Distributed Maximum Protocol

This protocol is Algorithm 3 similar as the above one where the larger number is
returned after comparing two numbers.

Algorithm 3 Distributed maximum protocol (DMAX).
Input: ESPα gives two ciphertexts ([num1], [z1]), ([num2], [z2]) encrypted with PK; ESPi
own the key sharing share 〈SK〉i; Public sharing parameters x1, x2, . . . , xt.
Output: ESPα obtains the([nummax], [zmax]) corresponding to the maximum num value.

1: ESPα run DCP([num1], [num2])→ [e].
2: ESPα calculates DMUP([e], [num2]) · DMUP([1] · [e]N−1, [num1]) → [nummax] and

DMUP([e], [z2]) ·DMUP([1] · [e]N−1, [z1])→ [zmax]

4.1.4. Distributed Maximum_n Protocol

Invoking the previous protocol, one can compare multiple raw data and obtain the
largest one Algorithm 4.
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Algorithm 4 Distributed maximum_n protocol (DMAX_n).
Input: ESPα gives some ciphertexts ([num1], [z1]), ([num2], [z2]), . . . , ([numn], [zn]) en-
crypted with PK; ESPi own the key sharing share 〈SK〉i; Public sharing parameters
x1, x2, . . . , xt.
Output: ESPα obtains the [zmax] corresponding to the maximum num value.

1: ESPα run DMAX(([num1], [z1]), ([num2], [z2]))→ ([NUM], [CLASS]).
2: for i = 3 to n do
3: DMAX(([NUM], [CLASS]), ([numi], [zi]))→ ([NUM], [CLASS]).
4: end for
5: return [zmax] = [CLASS].

4.1.5. Distributed Re-Encryption Protocol

Here, we implement proxy re-encryption in the distributed fashion Algorithm 5. The
ciphertext encrypted with the PK can be converted to the ciphertext encrypted with the
given public key with the cooperation of multiple servers that have a share of the master
private key SK.

Algorithm 5 Distributed re-encryption protocol (DRE).
Input: ESPα gives a ciphertext (A, B) encrypted with PK; Public key gu of the assigned
user; ESPi own the key sharing share 〈SK〉i; Public sharing parameters x1, x2, . . . , xt.
Output: ESPβ obtains the re-encrypted ciphertext (Ã, B̃) that can only be decrypted using
the user’s private key u.

1: ESPα computes B̄ = B · gu and Ã = A2∆.
2: ESPα sends Ã to ESPβ(β ∈ {1, 2, . . . , t}\{α}) and B̄ to all ESPi(i ∈ {1, 2, . . . , t}\{α, β}).
3: When ESPi receives the B̄, they use 〈SK〉i to calculate the B̄(i) = PDec(B, 〈SK〉i). Then

send the results to ESPβ.
4: When ESPβ receives Ã and no less than k copies of the B̄(i), reconstructing B̃ using
{B̄(i), i}i∈I . ESPβ obtains the re-encrypted ciphertext (Ã, B̃).

4.2. Initialization

Our proposed solution is structured in a distributed fashion without a trusted third
party (TTP), so all ESPs need to work together to generate the system parameters in a
distributed manner before providing the evaluation services.

4.2.1. Model Training

Our scheme addresses privacy-preserving in the evaluation phase, so it does not
impose any constraints on the training phase of the random forest, and the ESP can train
the model using the method in [32], etc. Regardless of the method used by the ESP to
obtain the model, we only require that it is compliant with the random forest. Having a
trained decision tree model for each ESP will serve as a precondition for us to design a
privacy-preserving random forest evaluation scheme.

4.2.2. Public Parameters

The setup phase can be executed using the method as in [33]. Parties agree on the
following information:Modulo N = pq, p, q are strong prime, but no one knows the exact
value of p, q. G is the cyclic group of quadratic residues modulo N2 and randomly selecting
g to satisfy the maximum order is ord(G) = pp′qq′. The system parameters are N, g,G.
Meanwhile, the cloud platform can set the threshold k.
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4.2.3. Cloud Platform Private Key Share and Public Key

ESPi(i = 1, 2, . . . , t) randomly chooses different integers ski ∈ Z∗N2 , and the system
private key SK is defined as ∑t

i=1 ski (mod N2). Using the previous selection of g, one can
calculate PK = gSK as the system public key.

ESPs use Shamir secret sharing to calculate their own selected shares of ski and share them
to all ESPs. After receiving shares from the other ESPs, ESPi holds (〈sk1〉i, 〈sk2〉i, . . . , 〈skt〉i),
where 〈sk1〉i denotes the secret sharing share of sk1. As the secret sharing algorithm has the
additive homomorphic property, ESPi can calculate 〈SK〉i = ∑t

i=1〈sk1〉i to get the sharing
share of the master private key. At this moment, the cloud platform announces (N, g, PK, t)
to the public.

4.3. Privacy-Preserving Random Forest Evaluation(PPRE)

By using the above constructed block and DTRS, we give the privacy-preserving
random forest evaluation scheme. In our scheme, the idea of expressing the decision tree
as a polynomial P is used [14]. Using this idea, we need to compare the nodes of the
decision tree with the corresponding data to be evaluated, but only the coefficients of the
classification in the polynomial P are computed. Afterwards they are handed over to a
server for aggregation and sorting to give the evaluation results of the random forest.

In our proposed PPRE algorithm, SR can go offline after sending the data to be
evaluated and the public key to CP. After CP receives the evaluation request, the servers
in the cloud cooperate to process the encrypted data and re-encrypt the processing result
with the public key after aggregation. Finally, the re-encrypted ciphertext is given to RR.
After RR receives the ciphertext and decrypts it, the evaluation result of SR’s data can be
obtained. The details are shown in the Table 2.

Table 2. Privacy-Preserving Random Forest Evaluation Scheme Design.

Setup phase:
ESPs(CP):
1. Perform the operations in Section 4.2 Initialization
2. Obtain a polynomial expression Pi for each decision tree model Ti(Vi,Zi).
SR:
1. Obtain public information from the CP.
2. Generate data to be evaluated.
3. Select RR and forward information from the CP to RR
RR: Generate a public-private key pair (skrr = u, pkrr = gu) and give the public key pkrr to SR.

Phase1 Outsourcing:
SR encrypts the data {m1, m2, . . . , mn} with the public key PK of the CP. Send the ciphertext
{[m1], [m2], . . . , [mn]} and RR’s public key pkrr to the CP.

Phase2 Evaluating:
1. ESPs call DCP to compare the received ciphertext mj(j ∈ n) with the value of the corresponding
node vk ∈ Vi(k ∈ {1, 2, . . . , σi}) in its own decision tree to get the result bk.
2. ESPs use DMP to compute the category coefficients of its own decision tree polynomials Pi and
merges the coefficients of the same categories to obtain Pi = {[coz1] · z1, [coz2] · z2, . . . , [cozδ] · zδ}.
3. ESPs select an ESPγ as the aggregation server and send the computed decision tree polynomial
to it.

Phase3 Aggregating:
1. After receiving the decision tree polynomials results from all ESPs, ESPγ aggregates them using
the additive homomorphism of DRTS to obtain {[soc1] · z1, [soc2] · z2, . . . , [socδ] · zδ}.
2. ESPγ encrypts z1, z2, . . . , zδ and calls DMAX_n for sorting to get [zmax](max ∈ (1, 2, . . . T, δ))
which corresponds to the maximum socmax.
3. ESPγ calls DRE re-encrypts [zmax] using RR’s public key, and the resulting ciphertext is sent to
RR.

Phase4 Decrypting:
RR performs RDec decryption of the received ciphertext to obtain the CP’s evaluation of the SR’s
data.
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The evaluation results with the most votes from all ESPs will be provided at the end.
If in practice more suggestions need to be provided, Tournament Sort can be constructed
using block DMAX instead of DMAX_n protocol. After one sort, the top aggregated results
can be sent to SR in order. Using this method, not only more information can be provided,
but also efficiency can be improved by computing in parallel. Although Tournament Sort
requires more storage space, the loss is insignificant compared to the benefits gained.

5. Security Analyses
5.1. Semantic Security of DTRS

We add a threshold mechanism to the encryption scheme to prove that the ciphertext
can be decrypted correctly before the security is verified by the following equation:

B2∆·SK = ∏
i∈S

(B(i))Li(0) = ∏
i∈S

(gr·2∆〈SK〉i )Li(0)

m = L((A2∆/B2∆·SK) (mod N2))/2∆ (mod N)

Theorem 1. If the DDH assumption over Z∗N2 holds, the DTRS scheme satisfies the semantic
security property.

Proof. DTRS is changed based on the addition of a threshold mechanism to the BCP
cryptosystem, which does not affect the semantic security of BCP. Obviously, if an adversary
can break the semantic security of DTRS, then it is possible to use this adversary to break
the semantic security of the BCP scheme. However, as the security of BCP is based on DDH
assumption over Z∗N2 , then our encryption scheme is also secure.

The security of the private key being partitioned relies on the secret sharing scheme,
and again, all sharing schemes used in this paper are proven to be information-theoretically
secure. In addition, in the process of using the share, it only appears in the exponential part
of the ciphertext and is not leaked out directly, any polynomial time adversary is unable to
calculate the discrete logarithm directly to obtain the share. The original plaintext message
can only be correctly restored after receiving not less than a threshold number of partial
decryptions, which is guaranteed by the nature of threshold secret sharing.

Theorem 2. If the DDH assumption over Z∗N2 holds, then the proposed Re-Encryption scheme in
the DTRS is semantically secure.

Proof. There is an original BCP ciphertext A = (1 + m · N)PKr,B = gr, PK = gsk. We
assume that the public key of the specified recipient is gu. Then, the ciphertext after
re-encryption is A = (1 + m · N)PKr, B = (gr · gu)sk.

Obviously, a DH key exchange protocol is performed during the re-encryption process.
Suppose an adversaryA can know gu·sk if gsk, gu is specified, then he can break the security
of re-encryption. Further, we can use this adversary A to solve the DDH assumption.

5.2. Security of Multiplication Protocol

We adopt the security model to construct the ideal function against honest-but-curious
adversaries. To simplify the description, we assume three participants ESPi, ESPα and
ESPβ are involved. First, we construct three simulators Sim = (SimEi , SimEα , SimEβ

) to
emulate the adversaries (AEi , AEα , AEβ

) that corrupt ESPi, ESPα and ESPβ, respectively.
The security proof of the multiplication protocol is as follows:

SimEα simulates AEα as follows: Randomly choose two numbers x̆ and y̆ in ZN and
encrypt them with Enc to get [x̆] and [y̆]. After that, SimEα sends the ciphertext [x̆] and [y̆]
to AEα . After receiving the ciphertext, if AEα terminates, then SimEα terminates as well. In
both real and ideal environments, the perspective of SimEα is indistinguishable due to the
semantic security of DTRS.
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SimEi simulates AEi as follows: SimEi randomly generates two numbers xr and yr in
Z∗N , and calculates Bx = gxr , By = gyr . Then, use PDec to obtain Bx

(i) and By
(i). Next, send

these partially decrypted ciphertext to AEi . If AEα terminates, then SimEα terminates as
well. The perspective of AEi is ciphertext obtained using DTRS encryption. In both the real
and the ideal environments, he receives the output Bx

(i) and By
(i). Securing in a real-world

environment with the PDL Problem. The perspective of AEi is indistinguishable in either
the ideal or real environment.

SimEβ
simulates AEβ

as follows: It gets [x′] by encrypting a random number x′ ∈ ZN

using Enc, and then sends [x′] to AEβ
. If AEα terminates, then SimEα terminates as well.

The perspective of AEβ
is ciphertext obtained using DTRS encryption. In both the real and

the ideal environments, he receives the output encryption [x′]. Securing in a real-world
environment with the DTRS. The perspective of AEβ

is indistinguishable in either the ideal
or real environment.

Note that the security proofs of the Comparison, Re-Encryption protocols and so
on are similar as in the Multiplication protocol against honest-but-curious adversaries
A = (AEi ,AEα ,AEβ

).

5.3. Security of Random Forest Evaluation

First, SR encrypts the data and sends them to the CP. As the sent data are encrypted
with DRTS, they are semantically secure. The transmitted data cannot be accessed by A
even if it is eavesdropped. Second, the ciphertext result (obtained by executing DCP, DMP,
DMAX, DMAX_n) can be eavesdropped by A when transmitted between ESPs. These
data are transmitted in ciphertext, which is not accessible to adversary A because of the
semantic security of the encryption algorithm. Even if A corrupts multiple ESPs, the key
SK cannot be recovered due to the properties of Shamir secret sharing. Even if the private
key is recovered by corrupting more than k ESPs (not both ESPα and ESPβ in the block), the
original message is blinded due to the addition of random numbers to the plaintext, and A
still cannot obtain useful information. The final result is sent to SR after re-encryption, and
A is unable to decrypt the ciphertext of challenging SR in case A has the private keys of
other users (i.e., not challenging SR’s). The private keys of SR are chosen independently
at random.

6. Efficiency Analyses

We analyze the computational complexity and communication overheads of the pro-
posed five constructing blocks as well as the random forest evaluation scheme. In the
scheme designed in this paper, the SR operation is encrypted before the data is sent and the
RR performs only one decryption operation. Therefore, only the performance analysis of
ESP is covered below.

6.1. Analyses of Constructing Blocks

Among these underlying protocols, ESPs can be divided into three categories: ESPα

that provides input in the protocol and processes the input; ESPβ as a collaborator randomly
selected by ESPα each time the protocol is executed, and a residual server participant with
a share of the master private key ESPi.

6.1.1. Analysis of Computation Complexity

ESPα adds a random value to the data to hide the original data to get a new ciphertext,
and it needs to perform an exponential operation to process the new ciphertext obtained
(A,B), send A and B(α) obtained by executing PDec to a randomly selected ESPβ, and send
B to all ESPs.

The operations performed by ESPβ in the first four protocols are receiving the data
from each ESPs and execute CDec, processing the plaintext obtained from decryption
according to the protocol, encrypting the processing result and sending it to ESPα. The
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costs of plaintext processing is much less than the operations on ciphertext. Therefore, we
can ignore the operation of plaintext in our analysis. In the re-encryption protocol, ESPβ

only performs Recon operation after accepting the data. ESPi accepts the data from ESPα

and executes PDec, and finally sends the result to ESPβ.

6.1.2. Communication Overheads

Ciphertext consists of two parts [mi] = (A, B). The bit length of the ciphertext is
linearly related to the bit length of N2. Thus, the length of each part of the ciphertext is
2‖N‖ and the length of [mi] has 4‖N‖.

We divide the operations of ESP into the most basic exponential and multiplicative
operations, and summarize their computation complexity and communication overheads
of each scheme in Table 3.

Table 3. Complexity analysis.

Roles Protocol Computations Communication
Overhead

ESPα

DMUP 2Enc+ 6Exp+ 10Mul t · ‖N2‖
DCP Enc + 6Exp + 4Mul t · ‖N2‖

DMAX 4DMUP + DCP +
2Exp + 2Mul t · ‖N2‖

DRE Mul + Exp t · ‖N2‖

ESPβ

DMUP 2CDec + Enc ‖N2‖
DCP CDec + Enc ‖N2‖

DMAX 9CDec + 5Enc ‖N2‖
DRE Recon ‖N2‖

ESPi

DMUP 2PDec ‖N2‖
DCP PDec ‖N2‖

DMAX 9PDec ‖N2‖
DRE PDec ‖N2‖

The computational complexity and communication overheads of DMAX_n relate to
the amount of data n is comparable as performing n times DMAX.

6.2. Analysis of Proposed Privacy Preserving Random Forest

We have tested the performance of the scheme using a laptop with an Intel Core i5-
7300HQ CPU 2.5 GHz and 24 GB RAM. Note that the encryption scheme used in this paper
does not affect the results of any computation, i.e., it is consistent with the computation base
on plaintext. Therefore, the classification accuracy is not considered in the performance
analysis. Each server has a different number of models and structure, and all servers have
only one decision tree that is a full binary tree. For ESPα, ESPβ and ESPi are its roles,
either sequentially or simultaneously, depending on the performance of the server. In the
proposed scheme, ESPγ is the one selected from the servers responsible for aggregation,
sorting and re-encryption of results. It waits for all ESPs to start running after performing
the evaluation of the decision tree. We focus on the following three tests to demonstrate the
consumption of a single ESP. Although only one server is tested, it is also assumed that
the CP consists of ten ESPs with a threshold value of 5. These will be small impact on the
CDec and aggregation.

Test 1: The depth d of decision tree. Our experiments are complete trees, so there are
2(d−1) − 1 non-leaf nodes. We assume that module sizes ‖N‖ = 1024 and the resulting
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categories are |Z| = (3, 6, 9, 12, 15). We perform the test by adjusting d. The results of the
test are shown in Figure 3.

Figure 3. Effect of decision tree depth d on the computation time of ESPs.

Test 2: The number of result categories. In this test, we set the depth of the tree is
equal to d = (5, 6) and the module sizes ‖N‖ = 1024. We perform the test by adjusting
|Z| = (8, 12, 16), and the results of the test are shown in Figure 4.

Figure 4. Effect of the total number of categories on the computation time of ESPs.

It can be observed from Figures 3 and 4 that the time consumption of ESPi, ESPα and
ESPβ is positively correlated with the number of nodes, while ESPγ is influenced by the
number of types of evaluation results.

Test 3: The length of N. We set the tree depth in the scheme to d = 6 and the number of
categories to |Z| = 15. We choose different module sizes ‖N‖=(768,1024,1280,1536,1792,2048)
for the test. Figure 5 shows the test results.
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Figure 5. Effect of bit length of modulo N on the computation time of ESPs.

As described before, the individual roles are not executed sequentially, so in practice
they can be executed synchronously or asynchronously depending on the situation. More-
over, as many random values are needed in the block, in practice the evaluation time of the
random forest can be reduced by selecting random values in advance.

6.3. Comparison with Existing Works

To the best of our knowledge, most recent works focus on privacy-preserving decision
trees [20,34,35]. However, none of these works can protect the training model and do not
support users to be offline. The work in [36] is capable of solving the above problems by
using a twin-cloud architecture. This scheme requires a KGC and requires both clouds to
always stay online and these clouds are assumed not to collude. The work in [21] proposes
a privacy preserving random forest evaluation based on FHE. Using the properties of
MK-BGV, the model and data are encrypted and outsourced to the server for evaluation,
which can resist collusion of cloud servers. However, it requires everyone to participate in
the decryption process at the end (the server providing the model and the user providing
the data). Compared with these solutions, our solution not only supports users to be offline
and protects the training model, but also tolerates a small number of servers to be absent.
Moreover, the evaluation results can be re-encrypted to the designated recipients. Because
additive homomorphic encryption is used, it also has efficiency advantages over schemes
based on FHE.

7. Conclusions

We propose a practical distributed and privacy preserving random forest evaluation
scheme with fine grained access control. It not only protects the user’s inputs and the
server’s model, but also realizes access control on the final evaluation results. Our scheme
allows some users to be offline, and it can still be executed properly. Recently, many
countries have issued laws and regulations to protect users’ private information, such
as GDPR in the EU and HIPPA in the US. Therefore, privacy preserving random forest
evaluation can fulfil this requirement and it has more potential applications in real-world
use, e.g., in healthcare and credit assessment.

In this paper, we have only considered the privacy-preserving evaluation using plural-
ity voting, which may not suit for all random forest scenarios, and we hope to investigate
some other methods in the future, such as majority voting, weighted voting and soft voting,
so that it can be applied in a wider range of scenarios.

In addition, in our future work we plan to improve the secure comparison proto-
col to further reduce its computation overheads. In order to achieve high security level,
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one needs to use a large modulo in the encryption algorithm, but this causes high com-
putation overheads. In the future, we will explore homomorphic encryption schemes
under other mathematical structures, and this could also contribute to a more efficient
privacy-preserving random forest evaluation scheme.

Author Contributions: Conceptualization, Y.Z., H.S. and M.Z.; methodology, Y.Z.; software, Y.Z.;
validation, H.S.; formal analysis, M.Z.; investigation, H.S.; resources, Y.Z.; data curation, Y.Z.;
writing—original draft preparation, Y.Z.; writing—review and editing, H.S. and M.Z.; visualization,
Y.Z.; supervision, M.Z.; project administration, M.Z.; funding acquisition, H.S. and M.Z. All authors
have read and agreed to the published version of the manuscript.

Funding: This research was funded by National Natural Science Foundation of China under grants
61702168, 62072134, U2001205, and the Key Research and Development Program of Hubei Province
under Grant 2021BEA163.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Alurkar, A.A.; Ranade, S.B.; Joshi, S.V.; Ranade, S.S.; Shinde, G.R.; Sonewar, P.A.; Mahalle, P.N. A comparative analysis and

discussion of email spam classification methods using machine learning techniques. In Applied Machine Learning for Smart Data
Analysis; Taylor & Francis Group: Abingdon, UK, 2019.

2. Malekipirbazari, M.; Aksakalli, V. Risk assessment in social lending via random forests. Expert Syst. Appl. 2015, 42, 4621–4631.
[CrossRef]

3. Zhang, M.; Chen, Y.; Lin, J. A Privacy-Preserving Optimization of Neighborhood-Based Recommendation for Medical-Aided
Diagnosis and Treatment. IEEE Internet Things J. 2021, 8, 10830–10842. [CrossRef]

4. Zhang, M.; Song, W.; Zhang, J. A secure clinical diagnosis with privacy-preserving multiclass support vector machine in clouds.
IEEE Syst. J. 2020. [CrossRef]

5. More Digital Assistants Than People by 2021, Says Ovum. Available online: https://internetofbusiness.com/digital-assistants-
2021-ovum/ (accessed on 25 January 2022).

6. Human-Centered Artificial Intelligence. Artificial Intelligence Index Report 2021. Available online: https://aiindex.stanford.
edu/report/ (accessed on 25 January 2022).

7. Zhou, Z.H. Ensemble Methods: Foundations and Algorithms; CRC Press: Boca Raton, FL, USA, 2012.
8. Breiman, L. Random Forests. Mach. Learn. 2001, 45, 5–32. [CrossRef]
9. Mercuri, R.T. The HIPAA-potamus in health care data security. Commun. ACM 2004, 47, 25–28. [CrossRef]
10. Voigt, P.; Von dem Bussche, A. The eu general data protection regulation (gdpr). In A Practical Guide, 1st ed.; Springer:

Berlin/Heidelberg, Germany, 2017; Volume 10, p. 3152676.
11. Gulia, A.; Vohra, R.; Rani, P. Liver patient classification using intelligent techniques. Int. J. Comput. Sci. Inf. Technol. 2014,

5, 5110–5115.
12. Zhang, M.; Chen, Y.; Xia, Z.; Du, J.; Susilo, W. PPO-DFK: A privacy-preserving optimization of distributed fractional knapsack

with application in secure footballer configurations. IEEE Syst. J. 2020, 15, 759–770. [CrossRef]
13. Zhang, M.; Zhang, Y.; Shen, G. PPDDS: A Privacy-Preserving Disease Diagnosis Scheme Based on the Secure Mahalanobis

Distance Evaluation Model. IEEE Syst. J. 2021. [CrossRef]
14. Bost, R.; Popa, R.A.; Tu, S.; Goldwasser, S. Machine Learning Classification over Encrypted Data. In Proceedings of the 22nd

Annual Network and Distributed System Security Symposium, NDSS 2015, San Diego, CA, USA, 8–11 February 2015.
15. Gentry, C. Fully homomorphic encryption using ideal lattices. In Proceedings of the 41st Annual ACM Symposium on Theory of

Computing, Bethesda, MD, USA, 31 May–2 June 2009; pp. 169–178. [CrossRef]
16. van Dijk, M.; Gentry, C.; Halevi, S.; Vaikuntanathan, V. Fully Homomorphic Encryption over the Integers. In Proceedings of the

29th Annual International Conference on the Theory and Applications of Cryptographic Techniques, French Riviera, France,
30 May–3 June 2010; pp. 24–43. [CrossRef]

17. Wu, D.J.; Feng, T.; Naehrig, M.; Lauter, K.E. Privately Evaluating Decision Trees and Random Forests. Proc. Priv. Enhancing
Technol. 2016, 2016, 335–355. [CrossRef]

18. Paillier, P. Public-Key Cryptosystems Based on Composite Degree Residuosity Classes. In Proceedings of the International
Conference on the Theory and Application of Cryptographic Techniques, Prague, Czech Republic, 2–6 May 1999; pp. 223–238.
[CrossRef]

http://doi.org/10.1016/j.eswa.2015.02.001
http://dx.doi.org/10.1109/JIOT.2021.3051060
http://dx.doi.org/10.1109/JSYST.2020.3027758
https://internetofbusiness.com/digital-assistants-2021-ovum/
https://internetofbusiness.com/digital-assistants-2021-ovum/
https://aiindex.stanford.edu/report/
https://aiindex.stanford.edu/report/
http://dx.doi.org/10.1023/A:1010933404324
http://dx.doi.org/10.1145/1005817.1005840
http://dx.doi.org/10.1109/JSYST.2020.2991928
http://dx.doi.org/10.1109/JSYST.2021.3093415
http://dx.doi.org/10.1145/1536414.1536440
http://dx.doi.org/10.1007/978-3-642-13190-5_2
http://dx.doi.org/10.1515/popets-2016-0043
http://dx.doi.org/10.1007/3-540-48910-X_16


Symmetry 2022, 14, 415 18 of 18

19. Tai, R.K.H.; Ma, J.P.K.; Zhao, Y.; Chow, S.S.M. Privacy-Preserving Decision Trees Evaluation via Linear Functions. In Proceedings
of the 22nd European Symposium on Research in Computer Security, Oslo, Norway, 11–15 September 2017; pp. 494–512.
[CrossRef]

20. Cock, M.D.; Dowsley, R.; Horst, C.; Katti, R.S.; Nascimento, A.C.A.; Poon, W.; Truex, S. Efficient and Private Scoring of Decision
Trees, Support Vector Machines and Logistic Regression Models Based on Pre-Computation. IEEE Trans. Dependable Secur.
Comput. 2019, 16, 217–230. [CrossRef]

21. Aloufi, A.; Hu, P.; Wong, H.W.H.; Chow, S.S.M. Blindfolded Evaluation of Random Forests with Multi-Key Homomorphic
Encryption. IEEE Trans. Dependable Secur. Comput. 2019, 18, 1821–1835. [CrossRef]

22. Brakerski, Z.; Gentry, C.; Vaikuntanathan, V. (Leveled) fully homomorphic encryption without bootstrapping. In Proceedings of
the Innovations in Theoretical Computer Science 2012, Cambridge, MA, USA, 8–10 January 2012; pp. 309–325. [CrossRef]

23. Chen, L.; Zhang, Z.; Wang, X. Batched Multi-hop Multi-key FHE from Ring-LWE with Compact Ciphertext Extension. In
Proceedings of the Theory of Cryptography—15th International Conference, TCC 2017, Baltimore, MD, USA, 12–15 November
2017; pp. 597–627. [CrossRef]

24. Smart, N.P.; Vercauteren, F. Fully Homomorphic Encryption with Relatively Small Key and Ciphertext Sizes. In Proceedings of
the 13th International Conference on Practice and Theory in Public Key Cryptography, Paris, France, 26–28 May 2010; pp. 420–443.
[CrossRef]

25. Dai, B.; Chen, R.C.; Zhu, S.Z.; Zhang, W.W. Using random forest algorithm for breast cancer diagnosis. In Proceedings of the 2018
International Symposium on Computer, Consumer and Control, Taichung, Taiwan, 6–8 December 2018; pp. 449–452.

26. Shamir, A. How to Share a Secret. Commun. ACM 1979, 22, 612–613. [CrossRef]
27. Bresson, E.; Catalano, D.; Pointcheval, D. A Simple Public-Key Cryptosystem with a Double Trapdoor Decryption Mechanism

and Its Applications. In Proceedings of the 9th International Conference on the Theory and Application of Cryptology and
Information Security, Taipei, Taiwan, 30 November–4 December 2003; pp. 37–54. [CrossRef]

28. Shoup, V. Practical Threshold Signatures. In Proceedings of the International Conference on the Theory and Application of
Cryptographic Techniques, Bruges, Belgium, 14–18 May 2000; pp. 207–220. [CrossRef]

29. Liu, X.; Deng, R.H.; Choo, K.R.; Weng, J. An Efficient Privacy-Preserving Outsourced Calculation Toolkit With Multiple Keys.
IEEE Trans. Inf. Forensics Secur. 2016, 11, 2401–2414. [CrossRef]

30. Cheng, K.; Wang, L.; Shen, Y.; Wang, H.; Wang, Y.; Jiang, X.; Zhong, H. Secure k-NN Query on Encrypted Cloud Data with
Multiple Keys. IEEE Trans. Big Data 2017, 7, 689–702. [CrossRef]

31. Ding, W.; Yan, Z.; Deng, R.H. Encrypted data processing with Homomorphic Re-Encryption. Inf. Sci. 2017, 409, 35–55. [CrossRef]
32. de Souza, L.A.C.; Rebello, G.A.F.; Camilo, G.F.; Guimarães, L.C.; Duarte, O.C.M. DFedForest: Decentralized federated forest. In

Proceedings of the 2020 IEEE International Conference on Blockchain, Rhodes, Greece, 2–6 November 2020; pp. 90–97.
33. Algesheimer, J.; Camenisch, J.; Shoup, V. Efficient Computation Modulo a Shared Secret with Application to the Generation of

Shared Safe-Prime Products. In Proceedings of the 22nd Annual International Cryptology Conference, Santa Barbara, CA, USA,
18–22 August 2002; pp. 417–432. [CrossRef]

34. Kiss, Á.; Naderpour, M.; Liu, J.; Asokan, N.; Schneider, T. SoK: Modular and Efficient Private Decision Tree Evaluation. Proc. Priv.
Enhanc. Technol. 2019, 2019, 187–208. [CrossRef]

35. Tueno, A.; Kerschbaum, F.; Katzenbeisser, S. Private Evaluation of Decision Trees using Sublinear Cost. Proc. Priv. Enhancing
Technol. 2019, 2019, 266–286. [CrossRef]

36. Liu, L.; Chen, R.; Liu, X.; Su, J.; Qiao, L. Towards Practical Privacy-Preserving Decision Tree Training and Evaluation in the Cloud.
IEEE Trans. Inf. Forensics Secur. 2020, 15, 2914–2929. [CrossRef]

http://dx.doi.org/10.1007/978-3-319-66399-9_27
http://dx.doi.org/10.1109/TDSC.2017.2679189
http://dx.doi.org/10.1109/TDSC.2019.2940020
http://dx.doi.org/10.1145/2090236.2090262
http://dx.doi.org/10.1007/978-3-319-70503-3_20
http://dx.doi.org/10.1007/978-3-642-13013-7_25
http://dx.doi.org/10.1145/359168.359176
http://dx.doi.org/10.1007/978-3-540-40061-5_3
http://dx.doi.org/10.1007/3-540-45539-6_15
http://dx.doi.org/10.1109/TIFS.2016.2573770
http://dx.doi.org/10.1109/TBDATA.2017.2707552
http://dx.doi.org/10.1016/j.ins.2017.05.004
http://dx.doi.org/10.1007/3-540-45708-9_27
http://dx.doi.org/10.2478/popets-2019-0026
http://dx.doi.org/10.2478/popets-2019-0015
http://dx.doi.org/10.1109/TIFS.2020.2980192

	Introduction
	Our Contributions
	Related Works
	Organization

	Preliminaries
	Decision Tree
	Ensemble Learning and Random Forest
	Secret Sharing Scheme
	Distributed BCP Cryptosystem with Threshold Decryption

	Models and Definitions
	System Model
	Evaluation Service Providers (ESPs)
	Service Requestor (SR)
	Results Recipient (RR)

	Threat Model
	Security Requirements
	Correctness
	Confidentiality
	Flexibility
	Robustness


	The Proposed Scheme
	Constructing Blocks
	Distributed Multiplication Protocol
	Distributed Comparison Protocol
	Distributed Maximum Protocol
	Distributed Maximum_n Protocol
	Distributed Re-Encryption Protocol

	Initialization
	Model Training
	Public Parameters
	Cloud Platform Private Key Share and Public Key

	Privacy-Preserving Random Forest Evaluation(PPRE)

	Security Analyses
	Semantic Security of DTRS
	Security of Multiplication Protocol
	Security of Random Forest Evaluation

	Efficiency Analyses
	Analyses of Constructing Blocks
	Analysis of Computation Complexity
	Communication Overheads

	Analysis of Proposed Privacy Preserving Random Forest
	Comparison with Existing Works

	Conclusions
	References

