

 symmetry-14-00415

symmetry-14-00415

Symmetry 2022, 14(2), 415; doi:10.3390/sym14020415

Article

A Distributed and Privacy-Preserving Random Forest Evaluation Scheme with Fine Grained Access Control

Yang Zhou 1,*[image: Orcid], Hua Shen 2 and Mingwu Zhang 2[image: Orcid]

1

School of Computer Science and Artificial Intelligence, Wuhan University of Technology, Wuhan 430070, China

2

School of Computers, Hubei University of Technology, Wuhan 430068, China

*

Correspondence: zhouyang_cs@whut.edu.cn

Academic Editors: Yining Liu and Tomohiro Inagaki

Received: 27 January 2022 / Accepted: 16 February 2022 / Published: 19 February 2022

Abstract

:

Random forest is a simple and effective model for ensemble learning with wide potential applications. Implementation of random forest evaluations while preserving privacy for the source data is demanding but also challenging. In this paper, we propose a practical and fault-tolerant privacy-preserving random forest evaluation scheme based on asymmetric encryption. The user can use asymmetric encryption to encrypt the data outsourced to the cloud platform and specify who can access the final evaluation results. After receiving the encrypted inputs from the user, the cloud platform evaluates via a random forest model and outputs the aggregated results where only the designated recipient can decrypt them. Threat analyses prove that the proposed scheme achieves the desirable security properties, such as correctness, confidentiality and robustness. Moreover, efficiency analyses demonstrate that the scheme is practical for real-world applications.

Keywords:

privacy-preserving; robustness; fine grained access control; random forest; ensemble learning

1. Introduction

Nowadays, data evaluation using Machine Learning (ML) has been used in many real-world applications, such as spam classification [1], credit risk evaluation [2], medical-aided [3,4], etc. People are using smart services more [5], and more AI-related papers are being published [6]. This is because the evaluation results obtained by the users or data analysts can be used to provide assistance for management and decision-making.

Generally speaking, it is desirable to derive a stable and well-performing model directly after training a large amount of data. However, it is non-trivial in practice, because these data are considered as a digital asset. In many circumstances, it is difficult to collect enough data to train a well-performing machine learning model, and these collected data may show homogeneity, which may also make the trained model not generalize well. Therefore, the model generated by ML may not be satisfactory for the evaluation purpose.

Ensemble Learning [7] can be used to alleviate the above problem by integrating multiple weak models into one with better quality. Although a weak model may generate an unsatisfactory prediction, the other models can be used to balance the distortion (Note that one needs to optimize the training phase in order to ensure that weak models can indeed be combined into stronger ones, e.g., using the idea of Bagging). Suppose a patient is suffering some serious diseases, it is normal practice for several doctors with different experiences to diagnose together so that they can get a better overall view of the patient’s health condition. The above method that uses group intelligence is very similar to the idea of Ensemble Learning. Random forest [8] is a typical algorithm in Ensemble Learning that contains many decision trees. Each of these decision trees evaluates the data individually during prediction, and random forest decides which category the data belongs to by running voting among these trees. Random forest also has similar limitations that require further optimization when combining the decision trees. In this work, we assume that such optimizations have been carried out in the training phase. The random forest enjoys a number of attractive properties, such as high performance, good adaptation and allowance for parallel processing.

Recently, people are paying great attentions on user privacy, and many privacy regulations (e.g., Health Insurance Portability and Accountability Act (HIPAA) [9] in the US and General Data Protection Regulation (GDPR) [10] in the European Union) have been issued worldwide, requiring the service providers in ML to protect user privacy when offering services. If evaluation services cannot be provided on a privacy-protective basis, then they may not only be illegal, but also lose their appeal to privacy-conscious people, especially in the medical field [11]. Moreover, the trained models in ML are also valuable intellectual assets for the service providers, and they are unwilling to disclose these models as this may decrease their competitive advantages. Asymmetric encryption is the main building block to achieve privacy-preserving computations [12,13]. Compared with symmetric encryption, it can achieve homomorphic operations on ciphertext, which can solve the problem of privacy-preserving data sharing, eliminate data silos and promote the effective use of data.

1.1. Our Contributions

To solve the above issue, we propose a distributed privacy-preserving random forest evaluation scheme that achieves fine-grained access control by using asymmetric encryption. The protocol employs some novel cryptographic primitives and it provides accurate evaluation results without leaking either users’ input data or service providers’ trained models. Moreover, the evaluation results are only available to the designated recipients but no one else.

In the proposed scheme, the user can be offline after submitting the encrypted data. Once the evaluation is complete, the cloud platform can re-encrypt the results so that only the designated recipients can decrypt it. Moreover, the scheme is robust, i.e., even if a few servers drop out of the protocol due to temporary network problems, the rest of the servers can continue to execute the protocol.

Our work has potential applications in many scenarios and we use the following example to highlight our motivation. Suppose a user applies for loans from a bank, and the bank wants to conduct a comprehensive credit risk evaluation for this user. The bank can incorporate with multiple financial institutions, such as some other banks and insurance companies, to evaluate the user’s data so that it can obtain comprehensive information to decide whether to provide loans for this user.

1.2. Related Works

In privacy-preserving random forest evaluation, existing works mainly focus on the privacy of base classifier within the decision tree algorithm. By constructing basis blocks, the work in [14] implements a privacy-preserving scheme for three algorithms, including decision trees. This work has demonstrated that polynomials can be used to represent decision trees. One needs to compare the node values of the decision tree with the evaluation data, and then uses the outputs to calculate the polynomial, obtaining the evaluation results. For example, the decision tree in Figure 1 predicts that the result polynomial can be represented as P = (1 − b 1) ((1 − b 2) z 1 + b 2 z 1) + b 1 (b 3 z 4 + (1 − b 3) ((1 − b 4) z 3 + b 4 z 2)) . The main constructing blocks used in designing the protocol is fully homomorphic encryption (FHE) [15,16]. However, this scheme is impractical as it requires a lot of interactions between the participants.

The work in [17] proposes a method to compare the results of decision node values with the help of the client. The privacy of the decision tree is achieved using Paillier encryption [18] and oblivious transfer (OT). When the scheme is extended to random forest evaluation, the server uses random values to mask the results in order to hide each model of decision tree as well as the evaluation results. The final aggregation eliminates all these random values to obtain the random forest evaluation results.

The work in [19] proposes a method to convert a decision tree into a series of linear equations represented by paths; the complexity of the evaluation is linearly related to the amount of nodes in the decision tree. Therefore, it is suitable for deep and sparse decision tree models. For example, the linear equation of decision tree paths in Figure 1 can be expressed as z 1 = b 1 + b 2 , z 2 = b 1 + (1 − b 2) or z 2 = (1 − b 1) + b 3 + (1 − b 4) , z 3 = (1 − b 1) + b 3 + b 4 , z 4 = (1 − b 1) (1 − b 3) . This protocol is designed using additive homomorphic encryption, that reduces the number of interactions compared with the other relevant schemes. Using the path equation and the OT protocol, the user can obtain the final classification results. It has been suggested that the scheme can be extended to support privacy-preserving evaluation of random forest, while the number of interactions can remain unchanged. That is, the decision trees can be executed in parallel and the processed information can be sent together for each interaction.

The work in [20] uses a commodity-based model to construct a two-party protocol in which the authority sends relevant data to the participants in the initial stage. The authority does not need to be involved in the subsequent execution of the protocol. The functionality of the authority can be pre-computed, and this improves efficiency. This protocol uses secret sharing as the main construct block to implement privacy-preserving classification of decision trees, etc. However, it lacks the ability to protect full information of the decision tree model and it does not support users to be offline.

For most interactive privacy-preserving decision tree protocols, only the client and the server are required to participate. Therefore, the structure is simple and it is easy to implement. However, it requires the client to remain online. However, without adding virtual decision tree nodes, it may leak information about the number of nodes or depth of the decision tree through the number of interactions between these two parties.

Nowadays, it is desirable to extend decision trees to random forest, and some researchers have investigated privacy-preserving random forest evaluation. In [21], each model owner sends her model in the encrypted form to an evaluator, and the user sends the encrypted data to this evaluator. Using the Multi-Key BGV scheme [22,23], the evaluator computes on the ciphertexts and performs random forest evaluation. The final result needs to be processed by all model owners before it is decrypted. Note that if the evaluator or any model owner fails during this period, the user may not be able to decrypt the result. We have to note that the majority of the existing FHE-based schemes are not suitable in practice, because FHE occurs heavy computational overheads and high storage costs [24]. Most existing non-interactive privacy protection schemes are based on asymmetric encryption (public key encryption with homomorphic properties), and we will also use this technology.

1.3. Organization

The notations and technical concepts are presented in Section 2. Section 3 describes the system model, security model and design goals. In Section 4, we first outline the constructing blocks for the proposed scheme and then introduce the proposed privacy-preserving random forest evaluation scheme. Security and efficiency analyses are given in Section 5 and Section 6, respectively. Finally, in Section 7, we summarized the work of this paper and discussed the future work.

2. Preliminaries

In this section, we will introduce some preliminaries that will be used in the proposed scheme. The notations and abbreviations used in the paper are listed in Table 1.

2.1. Decision Tree

Decision trees are a non-parametric supervised learning algorithm with a wide range of applications that deals with nonlinear features, and its decision rules can be easily explained. In this paper, we use the binary decision trees, for example, classification and regression trees (CART), denoted as T (V , Z) . The non-leaf nodes are called decision nodes and we assume that there are σ of these nodes, each containing a value v i ∈ V (i ∈ { 1 , 2 , ⋯ , σ }) . Each branch represents the testing result of the decision node with respect to the value of the data m j to be evaluated. Let e i = 1 represents m j < v i and the left branch is chosen, while e i = 0 denotes m j ≥ v i and the right branch is chosen. The (σ + 1) terminal nodes represent the | Z | = δ categories. When a decision tree model is used for evaluation, the comparison starts from the root node, and the branch is selected based on the comparison result, and then the comparison continues for the nodes on the branch until the leaf node is obtained, and the category z k ∈ Z (k ∈ { 1 , 2 , … , δ }) means that the node is taken as the decision evaluation.

2.2. Ensemble Learning and Random Forest

Although decision trees have many advantages, the models obtained from training are susceptible to overfitting by the data set. Therefore, ensemble learning, which ensembles multiple models in an appropriate way to improve the evaluation performance has emerged. Ensemble learning algorithms mainly include the parallel Bagging algorithm and the serial Boosting algorithm.

The Random forest algorithm proposed by Breiman [8] is one of the most representative and top performing algorithms among the bagging methods. It has been applied to different tasks [2,25] due to its simple parameters and high adaptability. Random forest builds multiple decision trees in the training phase and ensembles them to obtain more accurate and stable prediction results. In the evaluation phase, the data are inputted into each decision tree for evaluation individually, and the final evaluation results are obtained by voting among the decision trees. We have to note that the privacy-preserving evaluation scheme studied in this paper is based on plurality voting, which means that the output of each model is treated as one vote, and the prediction is taking the one with most votes, and ties are broken arbitrarily. Random forest address the performance bottleneck of decision tree, and they have better tolerance to noise. Moreover, they can be executed in parallel.

2.3. Secret Sharing Scheme

Secret sharing divides a secret s into t secret shares by the secret sharing algorithm, and sends the shares to t participants. When we want to recover s, we need a quorum of the participants to use their shares to reconstruct the secret s. If (k , t) threshold is used, it needs k participants to complete the secret reconstruction algorithm, while less than k participants know nothing about the the secret s. It is not necessary for everyone to participate in each reconstruct, which makes the scheme participants who use the threshold more flexible. In this paper, we use the Shamir secret sharing scheme [26].

The Shamir secret sharing scheme is a (k , t) threshold scheme, which has a secret s to be shared and t participants. There are mainly two algorithms:

 Sharing (s , k , x 1 , x 2 , … , x t) : The secret sharing algorithm first selects k − 1 random numbers (a 1 , a 2 , … , a k − 1) from Z p , and uses these random numbers to construct a polynomial of degree k − 1 : f (x) = s + ∑ i = 1 k − 1 a i x i (mod p) , where x j (j ∈ { 1 , 2 , … , t }) and the polynomial is evaluated as f (x j) . x j are public values associated with the participants. To simplify the description, we set x i = i .

 Recon ({ 〈 s 〉 i , x i } (i ∈ I) , k) : The secret reconstruction algorithm first verifies | I | ≥ k , if not, it terminates. Otherwise, it uses the Lagrange interpolation formula to calculate s = ∑ i ∈ I (〈 s 〉 i ∏ j ∈ I , j ≠ i x j x j − x i)

In addition, the scheme satisfies the homomorphic property that if c = a + b and x 1 , x 2 , … , x t is consistent, then 〈 c 〉 i = 〈 a 〉 i + 〈 b 〉 i .

2.4. Distributed BCP Cryptosystem with Threshold Decryption

The BCP cryptosystem [27] is an asymmetric cryptosystem, which we use as the primary encryption scheme to construct our proposed privacy-preserving random forest evaluation system in a distributed fashion. In order to match the system structure, we modified the original scheme in order to support (k , t) threshold decryption. This modified algorithm is called Distributed Threshold Re-Encryption Scheme (DTRS) and mainly includes the following algorithms.

 Setup (κ) : The Setup algorithm generates the public parameters p p according to the security parameter κ . Two large strong primes p , q are randomly selected, satisfying | p | = | q | = κ . Strong prime numbers require that p , q have the form of p = 2 p ′ + 1 and q = 2 q ′ + 1 , where p ′ and q ′ are also primes. Then, N = p q . G is the cyclic group of quadratic residues modulo N 2 and randomly selecting g to satisfy the maximum order is o r d (G) = p p ′ q q ′ . The public parameters p p are N , g .

 KeyGen (p p) : Key generation algorithm generates the public and private key pairs for the users according to p p . The users randomly select a number u i ∈ Z N 2 ∗ as the private key s k i and calculates g u i as the corresponding public key p k i .

 Enc (m , P K) : Given a plaintext m ∈ Z N , the ciphertext is generated using the encryption algorithm and the public key P K . One first chooses a random number r ∈ Z N ∗ , and then the ciphertext (A , B) is computed as A = (1 + m · N) P K r , B = g r .

 Dec ((A , B) , S K) : With the knowledge of S K , m can be obtained as follows: m = L (A / (B) S K (mod N 2)) (mod N) , where L (x) = x − 1 N .

 PDec (B , 〈 S K 〉 i) : When the private key is secretly shared, the partial decryption algorithm is executed according to the share of the private key. B (i) can be calculated as: B (i) = B 2 Δ 〈 S K 〉 i (mod N 2) .

 CDec (A , { B (i) } i ∈ I) When | I | is greater than k, i.e., no less than k copies of B (i) are received, the plaintext m can be obtained by performing the combining algorithm. m = L (A 2 Δ / ∏ i ∈ S (B (i)) L i (0)) (mod N 2)) / 2 Δ (mod N) , Δ = t ! .

Remark: Here, Δ = t ! is introduced because it is infeasible to perform the inverse operation when computing Lagrange interpolation on the exponent while executing CDec . The solution is given in [28], which avoids computing the inverse element by multiplying by Δ .

 REnc A , B , p k r r , S K : If we have the private key S K of ciphertext (A , B) , one can re-encrypt the ciphertext (A , B) into another ciphertext (A ˜ , B ˜) without decryption. Only the person who has the private key corresponding to the public key p k r r can decrypt the ciphertext after re-encryption. The ciphertext after re-encryption is calculated as A ˜ = A , B ˜ = B · p k r r S K . Obviously, re-encryption needs to be performed by multiple parties, otherwise it has the same effect as decryption first and encryption later, which makes no sense.

 RDec A ˜ , B ˜ , s k r r : The private key s k r r can decrypt the re-encrypted ciphertext A ˜ , B ˜ , m can be obtained as follows: m = L ((A ˜ · P K 2 Δ · s k r r) / B ˜ (mod N 2)) / 2 Δ (mod N) , where L (x) = x − 1 N .

 CM ([m]) : Ciphertext can be modified without changing the corresponding plaintext. Choose a number r ′ ∈ Z N ∗ at random, and the new ciphertext can calculate by [m] n e w = (1 + m · N) p k r · p k r ′ , g r · g r ′

Furthermore, the scheme has the following properties:

	

 [m] k = (((1 + m · N) p k r) k , (g r) k) mod N 2 = ((1 + k · m · N) p k r k , g r k) mod N 2 = [k · m]

	

 [m] N − 1 = (((1 + m · N) p k r) (N − 1) , (g r) (N − 1)) mod N 2 = ((1 + (N − 1) m N) p k r N − r , g r N − r) mod N 2 = [− m]

	
Additive homomorphism: If m = ∑ i = 1 n m i , then [m] can be calculated by [m i]

 [m] = (A , B) = ∏ i = 1 n [m i] = ∏ i = 1 n (A i , B i)

3. Models and Definitions

3.1. System Model

Our proposed privacy-preserving random forest evaluation scheme is constructed using the system model as shown in Figure 2. There are three different types of entities in the system we designed: Evaluation Service Providers (ESPs), Service Requestor (SR) and Results Recipient (RR).

3.1.1. Evaluation Service Providers (ESPs)

For external entities, all ESPs collaborate to form a cloud platform (CP), providing random forest evaluation services. These ESPs are structured in a distributed fashion, and they evaluate the encrypted data on their own models. The final results are re-encrypted and sent to the RR.

Suppose there are t ESPs in CP, each ESP possesses some decision tree models that are base learners of the random forest. T i j (V , Z) denotes the j-th (j ∈ { 1 , 2 , … , o i }) decision tree model for the i-th (i ∈ { 1 , 2 , … , t }) ESP. To simplify the description, it is assumed that ESP i has only one counterpart model T i . In reality, ESP may have more models, such complicated cases can be composed of the simple cases with one model.

3.1.2. Service Requestor (SR)

SR encrypts the information needed for the evaluation and transmits the ciphertext to the CP. Their purpose is to get the cloud platform’s random forest evaluation service for their data. In this process, SR does not want their data or the evaluation results to be leaked. For user data, they are discretized and hashed into binary values, we suppose that this operation is public and the result is the same for the same data.

3.1.3. Results Recipient (RR)

RR is the designated entity to receive the evaluation results. It is determined according to the specific use scenario, this entity can be the SR himself, or someone who can provide guidance to SR based on the evaluation results, such as a doctor. Or it could be an institution that is ready to accept SR’s business, such as bank, private doctor, etc.

3.2. Threat Model

In the proposed scheme, all entities need to be honest-but-curious. They will strictly follow the protocols, but may record various data during the execution and intend to derive information about the other entities. An external adversary A is considered, that can listen to all exchanged messages. The data of the SR, the model of ESPs and the final evaluation results are all elements that the adversary A wants to obtain.

ESPs are assumed in a competitive relationship with each other. Rationally, they would incorporate to carry out the task but refuse to collude, because it may leak their machine learning models, affecting their competitive advantages.

3.3. Security Requirements

3.3.1. Correctness

If all participants follow the protocol, the cloud platform can accurately perform the evaluation of the SRs’ data.

3.3.2. Confidentiality

SR and RR cannot obtain any information about the machine learning model of ESPs. ESPs learn nothing about data of SR and evaluation results. Each ESP’s machine learning model should not be exposed to the other ESPs.

3.3.3. Flexibility

The evaluation results of the cloud platform can be sent to any designated RR; In practice, SRs and RR normally have only restricted computational power. They can remain offline after the SR uploads the encrypted data and before the RR receives the re-encrypted result.

3.3.4. Robustness

If a few servers are unable to participate in the designed security protocol due to a temporary network failure, in order to maintain the efficiency of the implementation, the remaining servers can continue to execute the protocol.

4. The Proposed Scheme

4.1. Constructing Blocks

DTRS enjoys the additive homomorphic property, but it cannot implement functions such as multiplication and comparison between two plaintexts. To construct our proposed scheme under honest-but-curious conditions, we modify the protocols to support comparison, multiplication, and re-encryption as in [29,30,31].

4.1.1. Distributed Multiplication Protocol

The protocol Algorithm 1 is designed to calculate the product of two original data, but in order to ensure that the protocol can be executed correctly in the final scheme, i.e., it is necessary to consider that the result remains in the plaintext space of the encryption scheme after multiple multiplications (m = ∏ i = 1 a m i) . Therefore, it is necessary to limit the length of each raw data to satisfy the ∥ N ∥ / 2 a > ∥ m i ∥ .

	Algorithm 1 Distributed multiplication protocol (DMUP).

	
Input: ESP α gives two ciphertexts [a] , [b] encrypted with P K ; ESP i own the key sharing share 〈 S K 〉 i ; Public sharing parameters x 1 , x 2 , … , x t .

Output: ESP α obtains [a · b] .

	  1:

	
ESP α randomly chooses two numbers r a ∈ Z N and r b ∈ Z N , computes (A a , B a) = [a] · [r a] = [a + r a] ; (A b , B b) = [b] · [r b] = [b + r b] .

	  2:

	
ESP α sends A a and A b to ESP β (β ∈ { 1 , 2 , … , t } \ α) , B a and B b to all ESP i (i ∈ { 1 , 2 , … , t } \ { α , β }) .

	  3:

	
When ESP i receives the B a and B b , they use S K i to calculate the B a (i) = PDec (B a , 〈 S K 〉 i) , B b (i) = PDec (B b , 〈 S K 〉 i) . Then send the results to ESP β .

	  4:

	
When ESPβ receives no less than k copies of the B a (i) and B b (i) , calculate (a + r a) = CDec (A a , { B a (i) } i ∈ S 1) , (b + r b) = CDec (A b , { B b (i) } i ∈ S 2) . Then, ESPβ calculates Z = (a + r a) (b + r b) , encrypts Z using P K , and sends [Z] to ESP α .

	  5:

	
Once [Z] is received, ESPα computes [Z 1] = [a] (N − r b) , [Z 2] = [b] (N − r a) and [Z 3] = [r a · r b] (N − 1) . It can be easily verified that [a · b] = [Z] · [Z 1] · [Z 2] · [Z 3] = [(a + r a) (b + r b) − a · r b − b · r a − r a · r b]

As in the proposed PPRE scheme the product of multiple zeros or ones is calculated, the result is always within the required range.

4.1.2. Distributed Comparison Protocol

The purpose of this operation Algorithm 2 is to compare the size of two raw data a and b. To ensure proper execution of the protocol, it is necessary to limit the length of the original data to be less than ∥ N ∥ 4 − 1 .

	Algorithm 2 Distributed comparison protocol (DCP).

	
Input: ESP α gives two ciphertexts [m 1] , [m 2] encrypted with P K ; ESP i own the key sharing share 〈 S K 〉 i ; Public sharing parameters x 1 , x 2 , … , x t .

Output: ESP α obtains [e] , We remark that e = 0 indicates m 1 ≥ m 2 , and e = 1 indicates m 1 < m 2 .

	  1:

	
ESPα randomly chooses σ ← R { 0 , 1 } and an integer r ∈ Z N , s.t. ∥ r ∥ < ∥ N ∥ 4 and r ≠ 0 , If σ = 1 , then ESP α computes

 [m] 1 − 2 = [m 1 − m 2] = (A 1 · A 2 N − 1 , B 1 · B 2 N − 1)

 [l] = [r (2 m 1 − 2 + 1)] = ([m 1 − 2] 2 · [1]) r = (A l , B l)

Otherwise, ESP α computes

 [m] 2 − 1 = [m 2 − m 1] = (A 2 · A 1 N − 1 , B 2 · B 1 N − 1)

 [l] = [r (2 m 2 − 1 + 1)] = ([m 2 − 1] 2 · [1]) r = (A l , B l)

	  2:

	
ESP α sends A l and B l to ESP β (β ∈ { 1 , 2 , … , t } \ { α }) and all ESP i (i ∈ { 1 , 2 , … , t } \ { α , β }) respectively.

	  3:

	
When ESP i receives the B l , they use B l and 〈 S K 〉 i to calculate the B l (i) = PDec (B l , 〈 S K 〉 i) . Then send the results to ESP β .

	  4:

	
When ESP β receives no less than k copies of the B l (i) , calculate l = CDec (A l , { B l (i) } i ∈ I) . If ∥ l ∥ > ∥ N ∥ 2 , then ESP β orders e ∗ = 1 , otherwise e ∗ = 0 . ESP β encrypts e ∗ using the Enc and transmits the ciphertext to the ESP α .

	  5:

	
Once [e ∗] is received, if σ = 1 , ESP α invokes CM to compute [e] = CM ([e ∗]) , otherwise compute [e] = [1] · [e ∗] N − 1 = [1 − e ∗] .

4.1.3. Distributed Maximum Protocol

This protocol Algorithm 3 is similar as the above one where the larger number is returned after comparing two numbers.

	Algorithm 3 Distributed maximum protocol (DMAX).

	
Input: ESP α gives two ciphertexts ([n u m 1] , [z 1]) , ([n u m 2] , [z 2]) encrypted with P K ; ESP i own the key sharing share 〈 S K 〉 i ; Public sharing parameters x 1 , x 2 , … , x t .

Output: ESP α obtains the ([n u m m a x] , [z m a x]) corresponding to the maximum n u m value.

	  1:

	
ESP α run DCP ([n u m 1] , [n u m 2]) → [e] .

	  2:

	
ESP α calculates DMUP ([e] , [n u m 2]) · DMUP ([1] · [e] N − 1 , [n u m 1]) → [n u m m a x] and DMUP ([e] , [z 2]) · DMUP ([1] · [e] N − 1 , [z 1]) → [z m a x]

4.1.4. Distributed Maximum_n Protocol

Invoking the previous protocol, one can compare multiple raw data and obtain the largest one Algorithm 4.

	Algorithm 4 Distributed maximum_n protocol (DMAX _ n).

	
Input: ESP α gives some ciphertexts ([n u m 1] , [z 1]) , ([n u m 2] , [z 2]) , … , ([n u m n] , [z n]) encrypted with P K ; ESP i own the key sharing share 〈 S K 〉 i ; Public sharing parameters x 1 , x 2 , … , x t .

Output: ESP α obtains the [z m a x] corresponding to the maximum n u m value.

	  1:

	
ESP α run DMAX (([n u m 1] , [z 1]) , ([n u m 2] , [z 2])) → ([N U M] , [C L A S S]) .

	  2:

	
for i = 3 to n do

	  3:

	
 DMAX (([N U M] , [C L A S S]) , ([n u m i] , [z i])) → ([N U M] , [C L A S S]) .

	  4:

	
end for

	  5:

	
return [z m a x] = [C L A S S] .

4.1.5. Distributed Re-Encryption Protocol

Here, we implement proxy re-encryption in the distributed fashion Algorithm 5. The ciphertext encrypted with the P K can be converted to the ciphertext encrypted with the given public key with the cooperation of multiple servers that have a share of the master private key S K .

	Algorithm 5 Distributed re-encryption protocol (DRE).

	
Input: ESP α gives a ciphertext (A , B) encrypted with P K ; Public key g u of the assigned user; ESP i own the key sharing share 〈 S K 〉 i ; Public sharing parameters x 1 , x 2 , … , x t .

Output: ESP β obtains the re-encrypted ciphertext (A ˜ , B ˜) that can only be decrypted using the user’s private key u.

	  1:

	
ESP α computes B ¯ = B · g u and A ˜ = A 2 Δ .

	  2:

	
ESP α sends A ˜ to ESP β (β ∈ { 1 , 2 , … , t } \ { α }) and B ¯ to all ESP i (i ∈ { 1 , 2 , … , t } \ { α , β }) .

	  3:

	
When ESP i receives the B ¯ , they use 〈 S K 〉 i to calculate the B ¯ (i) = PDec (B , 〈 S K 〉 i) . Then send the results to ESP β .

	  4:

	
When ESP β receives A ˜ and no less than k copies of the B ¯ (i) , reconstructing B ˜ using { B ¯ (i) , i } i ∈ I . ESP β obtains the re-encrypted ciphertext (A ˜ , B ˜) .

4.2. Initialization

Our proposed solution is structured in a distributed fashion without a trusted third party (TTP), so all ESPs need to work together to generate the system parameters in a distributed manner before providing the evaluation services.

4.2.1. Model Training

Our scheme addresses privacy-preserving in the evaluation phase, so it does not impose any constraints on the training phase of the random forest, and the ESP can train the model using the method in [32], etc. Regardless of the method used by the ESP to obtain the model, we only require that it is compliant with the random forest. Having a trained decision tree model for each ESP will serve as a precondition for us to design a privacy-preserving random forest evaluation scheme.

4.2.2. Public Parameters

The setup phase can be executed using the method as in [33]. Parties agree on the following information: Modulo N = p q , p , q are strong prime, but no one knows the exact value of p , q . G is the cyclic group of quadratic residues modulo N 2 and randomly selecting g to satisfy the maximum order is o r d G = p p ′ q q ′ . The system parameters are N , g , G . Meanwhile, the cloud platform can set the threshold k.

4.2.3. Cloud Platform Private Key Share and Public Key

ESP i (i = 1 , 2 , … , t) randomly chooses different integers s k i ∈ Z N 2 ∗ , and the system private key S K is defined as ∑ i = 1 t s k i (mod N 2) . Using the previous selection of g, one can calculate P K = g S K as the system public key.

ESPs use Shamir secret sharing to calculate their own selected shares of s k i and share them to all ESPs. After receiving shares from the other ESPs, ESP i holds (〈 s k 1 〉 i , 〈 s k 2 〉 i , … , 〈 s k t 〉 i) , where 〈 s k 1 〉 i denotes the secret sharing share of s k 1 . As the secret sharing algorithm has the additive homomorphic property, ESP i can calculate 〈 S K 〉 i = ∑ i = 1 t 〈 s k 1 〉 i to get the sharing share of the master private key. At this moment, the cloud platform announces (N , g , P K , t) to the public.

4.3. Privacy-Preserving Random Forest Evaluation(PPRE)

By using the above constructed block and DTRS, we give the privacy-preserving random forest evaluation scheme. In our scheme, the idea of expressing the decision tree as a polynomial P is used [14]. Using this idea, we need to compare the nodes of the decision tree with the corresponding data to be evaluated, but only the coefficients of the classification in the polynomial P are computed. Afterwards they are handed over to a server for aggregation and sorting to give the evaluation results of the random forest.

In our proposed PPRE algorithm, SR can go offline after sending the data to be evaluated and the public key to CP. After CP receives the evaluation request, the servers in the cloud cooperate to process the encrypted data and re-encrypt the processing result with the public key after aggregation. Finally, the re-encrypted ciphertext is given to RR. After RR receives the ciphertext and decrypts it, the evaluation result of SR’s data can be obtained. The details are shown in the Table 2.

The evaluation results with the most votes from all ESPs will be provided at the end. If in practice more suggestions need to be provided, Tournament Sort can be constructed using block DMAX instead of DMAX _ n protocol. After one sort, the top aggregated results can be sent to SR in order. Using this method, not only more information can be provided, but also efficiency can be improved by computing in parallel. Although Tournament Sort requires more storage space, the loss is insignificant compared to the benefits gained.

5. Security Analyses

5.1. Semantic Security of DTRS

We add a threshold mechanism to the encryption scheme to prove that the ciphertext can be decrypted correctly before the security is verified by the following equation:

 B 2 Δ · S K = ∏ i ∈ S (B (i)) L i (0) = ∏ i ∈ S (g r · 2 Δ 〈 S K 〉 i) L i (0)

 m = L ((A 2 Δ / B 2 Δ · S K) (mod N 2)) / 2 Δ (mod N)

Theorem 1.

If the DDH assumption over Z N 2 ∗ holds, the DTRS scheme satisfies the semantic security property.

Proof.

DTRS is changed based on the addition of a threshold mechanism to the BCP cryptosystem, which does not affect the semantic security of BCP. Obviously, if an adversary can break the semantic security of DTRS, then it is possible to use this adversary to break the semantic security of the BCP scheme. However, as the security of BCP is based on DDH assumption over Z N 2 ∗ , then our encryption scheme is also secure.

The security of the private key being partitioned relies on the secret sharing scheme, and again, all sharing schemes used in this paper are proven to be information-theoretically secure. In addition, in the process of using the share, it only appears in the exponential part of the ciphertext and is not leaked out directly, any polynomial time adversary is unable to calculate the discrete logarithm directly to obtain the share. The original plaintext message can only be correctly restored after receiving not less than a threshold number of partial decryptions, which is guaranteed by the nature of threshold secret sharing. □

Theorem 2.

If the DDH assumption over Z N 2 ∗ holds, then the proposed Re-Encryption scheme in the DTRS is semantically secure.

Proof.

There is an original BCP ciphertext A = (1 + m · N) P K r , B = g r , P K = g s k . We assume that the public key of the specified recipient is g u . Then, the ciphertext after re-encryption is A = (1 + m · N) P K r , B = (g r · g u) s k .

Obviously, a DH key exchange protocol is performed during the re-encryption process. Suppose an adversary A can know g u · s k if g s k , g u is specified, then he can break the security of re-encryption. Further, we can use this adversary A to solve the DDH assumption. □

5.2. Security of Multiplication Protocol

We adopt the security model to construct the ideal function against honest-but-curious adversaries. To simplify the description, we assume three participants ESP i , ESP α and ESP β are involved. First, we construct three simulators S i m = (S i m E i , S i m E α , S i m E β) to emulate the adversaries (A E i , A E α , A E β) that corrupt ESP i , ESP α and ESP β , respectively. The security proof of the multiplication protocol is as follows:

 S i m E α simulates A E α as follows: Randomly choose two numbers x ˘ and y ˘ in Z N and encrypt them with Enc to get [x ˘] and [y ˘] . After that, S i m E α sends the ciphertext [x ˘] and [y ˘] to A E α . After receiving the ciphertext, if A E α terminates, then S i m E α terminates as well. In both real and ideal environments, the perspective of S i m E α is indistinguishable due to the semantic security of DTRS.

 S i m E i simulates A E i as follows: S i m E i randomly generates two numbers x r and y r in Z N ∗ , and calculates B x = g x r , B y = g y r . Then, use PDec to obtain B x (i) and B y (i) . Next, send these partially decrypted ciphertext to A E i . If A E α terminates, then S i m E α terminates as well. The perspective of A E i is ciphertext obtained using DTRS encryption. In both the real and the ideal environments, he receives the output B x (i) and B y (i) . Securing in a real-world environment with the PDL Problem. The perspective of A E i is indistinguishable in either the ideal or real environment.

 S i m E β simulates A E β as follows: It gets [x ′] by encrypting a random number x ′ ∈ Z N using Enc , and then sends [x ′] to A E β . If A E α terminates, then S i m E α terminates as well. The perspective of A E β is ciphertext obtained using DTRS encryption. In both the real and the ideal environments, he receives the output encryption [x ′] . Securing in a real-world environment with the DTRS. The perspective of A E β is indistinguishable in either the ideal or real environment.

Note that the security proofs of the Comparison, Re-Encryption protocols and so on are similar as in the Multiplication protocol against honest-but-curious adversaries A = (A E i , A E α , A E β) .

5.3. Security of Random Forest Evaluation

First, SR encrypts the data and sends them to the CP. As the sent data are encrypted with DRTS, they are semantically secure. The transmitted data cannot be accessed by A even if it is eavesdropped. Second, the ciphertext result (obtained by executing DCP , DMP , DMAX , DMAX _ n) can be eavesdropped by A when transmitted between ESPs. These data are transmitted in ciphertext, which is not accessible to adversary A because of the semantic security of the encryption algorithm. Even if A corrupts multiple ESPs, the key S K cannot be recovered due to the properties of Shamir secret sharing. Even if the private key is recovered by corrupting more than k ESPs (not both ESP α and ESP β in the block), the original message is blinded due to the addition of random numbers to the plaintext, and A still cannot obtain useful information. The final result is sent to SR after re-encryption, and A is unable to decrypt the ciphertext of challenging SR in case A has the private keys of other users (i.e., not challenging SR’s). The private keys of SR are chosen independently at random.

6. Efficiency Analyses

We analyze the computational complexity and communication overheads of the proposed five constructing blocks as well as the random forest evaluation scheme. In the scheme designed in this paper, the SR operation is encrypted before the data is sent and the RR performs only one decryption operation. Therefore, only the performance analysis of ESP is covered below.

6.1. Analyses of Constructing Blocks

Among these underlying protocols, ESPs can be divided into three categories: ESP α that provides input in the protocol and processes the input; ESP β as a collaborator randomly selected by ESP α each time the protocol is executed, and a residual server participant with a share of the master private key ESP i .

6.1.1. Analysis of Computation Complexity

ESP α adds a random value to the data to hide the original data to get a new ciphertext, and it needs to perform an exponential operation to process the new ciphertext obtained (A,B), send A and B (α) obtained by executing PDec to a randomly selected ESP β , and send B to all ESPs.

The operations performed by ESP β in the first four protocols are receiving the data from each ESPs and execute CDec, processing the plaintext obtained from decryption according to the protocol, encrypting the processing result and sending it to ESP α . The costs of plaintext processing is much less than the operations on ciphertext. Therefore, we can ignore the operation of plaintext in our analysis. In the re-encryption protocol, ESP β only performs Recon operation after accepting the data. ESP i accepts the data from ESP α and executes PDec, and finally sends the result to ESP β .

6.1.2. Communication Overheads

Ciphertext consists of two parts [m i] = (A , B) . The bit length of the ciphertext is linearly related to the bit length of N 2 . Thus, the length of each part of the ciphertext is 2 ∥ N ∥ and the length of [m i] has 4 ∥ N ∥ .

We divide the operations of ESP into the most basic exponential and multiplicative operations, and summarize their computation complexity and communication overheads of each scheme in Table 3.

The computational complexity and communication overheads of DMAX _ n relate to the amount of data n is comparable as performing n times DMAX .

6.2. Analysis of Proposed Privacy Preserving Random Forest

We have tested the performance of the scheme using a laptop with an Intel Core i5-7300HQ CPU 2.5 GHz and 24 GB RAM. Note that the encryption scheme used in this paper does not affect the results of any computation, i.e., it is consistent with the computation base on plaintext. Therefore, the classification accuracy is not considered in the performance analysis. Each server has a different number of models and structure, and all servers have only one decision tree that is a full binary tree. For ESP α , ESP β and ESP i are its roles, either sequentially or simultaneously, depending on the performance of the server. In the proposed scheme, ESP γ is the one selected from the servers responsible for aggregation, sorting and re-encryption of results. It waits for all ESPs to start running after performing the evaluation of the decision tree. We focus on the following three tests to demonstrate the consumption of a single ESP. Although only one server is tested, it is also assumed that the CP consists of ten ESPs with a threshold value of 5. These will be small impact on the CDec and aggregation.

Test 1: The depth d of decision tree. Our experiments are complete trees, so there are 2 (d − 1) − 1 non-leaf nodes. We assume that module sizes ∥ N ∥ = 1024 and the resulting categories are | Z | = (3 , 6 , 9 , 12 , 15) . We perform the test by adjusting d. The results of the test are shown in Figure 3.

Test 2: The number of result categories. In this test, we set the depth of the tree is equal to d = (5 , 6) and the module sizes ∥ N ∥ = 1024 . We perform the test by adjusting | Z | = (8 , 12 , 16) , and the results of the test are shown in Figure 4.

It can be observed from Figure 3 and Figure 4 that the time consumption of ESP i , ESP α and ESP β is positively correlated with the number of nodes, while ESP γ is influenced by the number of types of evaluation results.

Test 3: The length of N. We set the tree depth in the scheme to d = 6 and the number of categories to | Z | = 15 . We choose different module sizes ∥ N ∥ =(768,1024,1280,1536,1792,2048) for the test. Figure 5 shows the test results.

As described before, the individual roles are not executed sequentially, so in practice they can be executed synchronously or asynchronously depending on the situation. Moreover, as many random values are needed in the block, in practice the evaluation time of the random forest can be reduced by selecting random values in advance.

6.3. Comparison with Existing Works

To the best of our knowledge, most recent works focus on privacy-preserving decision trees [20,34,35]. However, none of these works can protect the training model and do not support users to be offline. The work in [36] is capable of solving the above problems by using a twin-cloud architecture. This scheme requires a KGC and requires both clouds to always stay online and these clouds are assumed not to collude. The work in [21] proposes a privacy preserving random forest evaluation based on FHE. Using the properties of MK-BGV, the model and data are encrypted and outsourced to the server for evaluation, which can resist collusion of cloud servers. However, it requires everyone to participate in the decryption process at the end (the server providing the model and the user providing the data). Compared with these solutions, our solution not only supports users to be offline and protects the training model, but also tolerates a small number of servers to be absent. Moreover, the evaluation results can be re-encrypted to the designated recipients. Because additive homomorphic encryption is used, it also has efficiency advantages over schemes based on FHE.

7. Conclusions

We propose a practical distributed and privacy preserving random forest evaluation scheme with fine grained access control. It not only protects the user’s inputs and the server’s model, but also realizes access control on the final evaluation results. Our scheme allows some users to be offline, and it can still be executed properly. Recently, many countries have issued laws and regulations to protect users’ private information, such as GDPR in the EU and HIPPA in the US. Therefore, privacy preserving random forest evaluation can fulfil this requirement and it has more potential applications in real-world use, e.g., in healthcare and credit assessment.

In this paper, we have only considered the privacy-preserving evaluation using plurality voting, which may not suit for all random forest scenarios, and we hope to investigate some other methods in the future, such as majority voting, weighted voting and soft voting, so that it can be applied in a wider range of scenarios.

In addition, in our future work we plan to improve the secure comparison protocol to further reduce its computation overheads. In order to achieve high security level, one needs to use a large modulo in the encryption algorithm, but this causes high computation overheads. In the future, we will explore homomorphic encryption schemes under other mathematical structures, and this could also contribute to a more efficient privacy-preserving random forest evaluation scheme.

Author Contributions

Conceptualization, Y.Z., H.S. and M.Z.; methodology, Y.Z.; software, Y.Z.; validation, H.S.; formal analysis, M.Z.; investigation, H.S.; resources, Y.Z.; data curation, Y.Z.; writing—original draft preparation, Y.Z.; writing—review and editing, H.S. and M.Z.; visualization, Y.Z.; supervision, M.Z.; project administration, M.Z.; funding acquisition, H.S. and M.Z. All authors have read and agreed to the published version of the manuscript.

Funding

This research was funded by National Natural Science Foundation of China under grants 61702168, 62072134, U2001205, and the Key Research and Development Program of Hubei Province under Grant 2021BEA163.

Institutional Review Board Statement

Not applicable.

Informed Consent Statement

Not applicable.

Data Availability Statement

Not applicable.

Conflicts of Interest

The authors declare no conflict of interest.

References

	

Alurkar, A.A.; Ranade, S.B.; Joshi, S.V.; Ranade, S.S.; Shinde, G.R.; Sonewar, P.A.; Mahalle, P.N. A comparative analysis and discussion of email spam classification methods using machine learning techniques. In Applied Machine Learning for Smart Data Analysis; Taylor & Francis Group: Abingdon, UK, 2019. [Google Scholar]

	

Malekipirbazari, M.; Aksakalli, V. Risk assessment in social lending via random forests. Expert Syst. Appl. 2015, 42, 4621–4631. [Google Scholar] [CrossRef]

	

Zhang, M.; Chen, Y.; Lin, J. A Privacy-Preserving Optimization of Neighborhood-Based Recommendation for Medical-Aided Diagnosis and Treatment. IEEE Internet Things J. 2021, 8, 10830–10842. [Google Scholar] [CrossRef]

	

Zhang, M.; Song, W.; Zhang, J. A secure clinical diagnosis with privacy-preserving multiclass support vector machine in clouds. IEEE Syst. J. 2020. [Google Scholar] [CrossRef]

	

More Digital Assistants Than People by 2021, Says Ovum. Available online: https://internetofbusiness.com/digital-assistants-2021-ovum/ (accessed on 25 January 2022).

	

Human-Centered Artificial Intelligence. Artificial Intelligence Index Report 2021. Available online: https://aiindex.stanford.edu/report/ (accessed on 25 January 2022).

	

Zhou, Z.H. Ensemble Methods: Foundations and Algorithms; CRC Press: Boca Raton, FL, USA, 2012. [Google Scholar]

	

Breiman, L. Random Forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef]

	

Mercuri, R.T. The HIPAA-potamus in health care data security. Commun. ACM 2004, 47, 25–28. [Google Scholar] [CrossRef]

	

Voigt, P.; Von dem Bussche, A. The eu general data protection regulation (gdpr). In A Practical Guide, 1st ed.; Springer: Berlin/Heidelberg, Germany, 2017; Volume 10, p. 3152676. [Google Scholar]

	

Gulia, A.; Vohra, R.; Rani, P. Liver patient classification using intelligent techniques. Int. J. Comput. Sci. Inf. Technol. 2014, 5, 5110–5115. [Google Scholar]

	

Zhang, M.; Chen, Y.; Xia, Z.; Du, J.; Susilo, W. PPO-DFK: A privacy-preserving optimization of distributed fractional knapsack with application in secure footballer configurations. IEEE Syst. J. 2020, 15, 759–770. [Google Scholar] [CrossRef]

	

Zhang, M.; Zhang, Y.; Shen, G. PPDDS: A Privacy-Preserving Disease Diagnosis Scheme Based on the Secure Mahalanobis Distance Evaluation Model. IEEE Syst. J. 2021. [Google Scholar] [CrossRef]

	

Bost, R.; Popa, R.A.; Tu, S.; Goldwasser, S. Machine Learning Classification over Encrypted Data. In Proceedings of the 22nd Annual Network and Distributed System Security Symposium, NDSS 2015, San Diego, CA, USA, 8–11 February 2015. [Google Scholar]

	

Gentry, C. Fully homomorphic encryption using ideal lattices. In Proceedings of the 41st Annual ACM Symposium on Theory of Computing, Bethesda, MD, USA, 31 May–2 June 2009; pp. 169–178. [Google Scholar] [CrossRef]

	

van Dijk, M.; Gentry, C.; Halevi, S.; Vaikuntanathan, V. Fully Homomorphic Encryption over the Integers. In Proceedings of the 29th Annual International Conference on the Theory and Applications of Cryptographic Techniques, French Riviera, France, 30 May–3 June 2010; pp. 24–43. [Google Scholar] [CrossRef]

	

Wu, D.J.; Feng, T.; Naehrig, M.; Lauter, K.E. Privately Evaluating Decision Trees and Random Forests. Proc. Priv. Enhancing Technol. 2016, 2016, 335–355. [Google Scholar] [CrossRef]

	

Paillier, P. Public-Key Cryptosystems Based on Composite Degree Residuosity Classes. In Proceedings of the International Conference on the Theory and Application of Cryptographic Techniques, Prague, Czech Republic, 2–6 May 1999; pp. 223–238. [Google Scholar] [CrossRef]

	

Tai, R.K.H.; Ma, J.P.K.; Zhao, Y.; Chow, S.S.M. Privacy-Preserving Decision Trees Evaluation via Linear Functions. In Proceedings of the 22nd European Symposium on Research in Computer Security, Oslo, Norway, 11–15 September 2017; pp. 494–512. [Google Scholar] [CrossRef]

	

Cock, M.D.; Dowsley, R.; Horst, C.; Katti, R.S.; Nascimento, A.C.A.; Poon, W.; Truex, S. Efficient and Private Scoring of Decision Trees, Support Vector Machines and Logistic Regression Models Based on Pre-Computation. IEEE Trans. Dependable Secur. Comput. 2019, 16, 217–230. [Google Scholar] [CrossRef]

	

Aloufi, A.; Hu, P.; Wong, H.W.H.; Chow, S.S.M. Blindfolded Evaluation of Random Forests with Multi-Key Homomorphic Encryption. IEEE Trans. Dependable Secur. Comput. 2019, 18, 1821–1835. [Google Scholar] [CrossRef]

	

Brakerski, Z.; Gentry, C.; Vaikuntanathan, V. (Leveled) fully homomorphic encryption without bootstrapping. In Proceedings of the Innovations in Theoretical Computer Science 2012, Cambridge, MA, USA, 8–10 January 2012; pp. 309–325. [Google Scholar] [CrossRef]

	

Chen, L.; Zhang, Z.; Wang, X. Batched Multi-hop Multi-key FHE from Ring-LWE with Compact Ciphertext Extension. In Proceedings of the Theory of Cryptography—15th International Conference, TCC 2017, Baltimore, MD, USA, 12–15 November 2017; pp. 597–627. [Google Scholar] [CrossRef]

	

Smart, N.P.; Vercauteren, F. Fully Homomorphic Encryption with Relatively Small Key and Ciphertext Sizes. In Proceedings of the 13th International Conference on Practice and Theory in Public Key Cryptography, Paris, France, 26–28 May 2010; pp. 420–443. [Google Scholar] [CrossRef]

	

Dai, B.; Chen, R.C.; Zhu, S.Z.; Zhang, W.W. Using random forest algorithm for breast cancer diagnosis. In Proceedings of the 2018 International Symposium on Computer, Consumer and Control, Taichung, Taiwan, 6–8 December 2018; pp. 449–452. [Google Scholar]

	

Shamir, A. How to Share a Secret. Commun. ACM 1979, 22, 612–613. [Google Scholar] [CrossRef]

	

Bresson, E.; Catalano, D.; Pointcheval, D. A Simple Public-Key Cryptosystem with a Double Trapdoor Decryption Mechanism and Its Applications. In Proceedings of the 9th International Conference on the Theory and Application of Cryptology and Information Security, Taipei, Taiwan, 30 November–4 December 2003; pp. 37–54. [Google Scholar] [CrossRef]

	

Shoup, V. Practical Threshold Signatures. In Proceedings of the International Conference on the Theory and Application of Cryptographic Techniques, Bruges, Belgium, 14–18 May 2000; pp. 207–220. [Google Scholar] [CrossRef]

	

Liu, X.; Deng, R.H.; Choo, K.R.; Weng, J. An Efficient Privacy-Preserving Outsourced Calculation Toolkit With Multiple Keys. IEEE Trans. Inf. Forensics Secur. 2016, 11, 2401–2414. [Google Scholar] [CrossRef]

	

Cheng, K.; Wang, L.; Shen, Y.; Wang, H.; Wang, Y.; Jiang, X.; Zhong, H. Secure k-NN Query on Encrypted Cloud Data with Multiple Keys. IEEE Trans. Big Data 2017, 7, 689–702. [Google Scholar] [CrossRef]

	

Ding, W.; Yan, Z.; Deng, R.H. Encrypted data processing with Homomorphic Re-Encryption. Inf. Sci. 2017, 409, 35–55. [Google Scholar] [CrossRef]

	

de Souza, L.A.C.; Rebello, G.A.F.; Camilo, G.F.; Guimarães, L.C.; Duarte, O.C.M. DFedForest: Decentralized federated forest. In Proceedings of the 2020 IEEE International Conference on Blockchain, Rhodes, Greece, 2–6 November 2020; pp. 90–97. [Google Scholar]

	

Algesheimer, J.; Camenisch, J.; Shoup, V. Efficient Computation Modulo a Shared Secret with Application to the Generation of Shared Safe-Prime Products. In Proceedings of the 22nd Annual International Cryptology Conference, Santa Barbara, CA, USA, 18–22 August 2002; pp. 417–432. [Google Scholar] [CrossRef]

	

Kiss, Á.; Naderpour, M.; Liu, J.; Asokan, N.; Schneider, T. SoK: Modular and Efficient Private Decision Tree Evaluation. Proc. Priv. Enhanc. Technol. 2019, 2019, 187–208. [Google Scholar] [CrossRef]

	

Tueno, A.; Kerschbaum, F.; Katzenbeisser, S. Private Evaluation of Decision Trees using Sublinear Cost. Proc. Priv. Enhancing Technol. 2019, 2019, 266–286. [Google Scholar] [CrossRef]

	

Liu, L.; Chen, R.; Liu, X.; Su, J.; Qiao, L. Towards Practical Privacy-Preserving Decision Tree Training and Evaluation in the Cloud. IEEE Trans. Inf. Forensics Secur. 2020, 15, 2914–2929. [Google Scholar] [CrossRef]

[image: Symmetry 14 00415 g001 550]

Figure 1. Decision tree model.

Figure 1. Decision tree model.

[image: Symmetry 14 00415 g001]

[image: Symmetry 14 00415 g002 550]

Figure 2. System model.

Figure 2. System model.

[image: Symmetry 14 00415 g002]

[image: Symmetry 14 00415 g003 550]

Figure 3. Effect of decision tree depth d on the computation time of ESPs.

Figure 3. Effect of decision tree depth d on the computation time of ESPs.

[image: Symmetry 14 00415 g003]

[image: Symmetry 14 00415 g004 550]

Figure 4. Effect of the total number of categories on the computation time of ESPs.

Figure 4. Effect of the total number of categories on the computation time of ESPs.

[image: Symmetry 14 00415 g004]

[image: Symmetry 14 00415 g005 550]

Figure 5. Effect of bit length of modulo N on the computation time of ESPs.

Figure 5. Effect of bit length of modulo N on the computation time of ESPs.

[image: Symmetry 14 00415 g005]

[image: Table]

Table 1. Abbreviations and notations.

Table 1. Abbreviations and notations.

	Symbols
	Description

	SR
	Service requester

	RR
	Result recipient

	CP
	Cloud platform

	ESPs
	Evaluation service providers

	t
	Number of servers in the cloud platform

	 p k r r / s k r r
	The key pair of RR

	 P K / S K
	The key pair of cloud platform

	 [m] or (A , B)
	Encryption of m under P K

	 〈 S K 〉 i
	ESP i ’s secret share of S K

	 ∥ m ∥
	Bit length of m

	 | I |
	Number of elements within I

	 m i
	The raw data provided by SR

	 P
	Polynomial expression of decision tree

	 v i
	The value of the non-terminal node in the tree

	 DCP
	Distributed comparison protocol

	 DMUP
	Distributed multiplication protocol

	 DMAX
	Distributed maximum protocol

	 DMAX _ n
	Distributed maximum_n protocol

	 DRE
	Distributed re-encryption protocol

[image: Table]

Table 2. Privacy-Preserving Random Forest Evaluation Scheme Design.

Table 2. Privacy-Preserving Random Forest Evaluation Scheme Design.

	
Setup phase:

	
ESPs(CP):

	
1. Perform the operations in Section 4.2 Initialization

	
2. Obtain a polynomial expression P i for each decision tree model T i (V i , Z i) .

	
SR:

	
1. Obtain public information from the CP.

	
2. Generate data to be evaluated.

	
3. Select RR and forward information from the CP to RR

	
RR: Generate a public-private key pair (s k r r = u , p k r r = g u) and give the public key p k r r to SR.

	
Phase1 Outsourcing:

	
SR encrypts the data { m 1 , m 2 , … , m n } with the public key P K of the CP. Send the ciphertext { [m 1] , [m 2] , … , [m n] } and RR’s public key p k r r to the CP.

	
Phase2 Evaluating:

	
1. ESPs call DCP to compare the received ciphertext m j (j ∈ n) with the value of the corresponding node v k ∈ V i (k ∈ { 1 , 2 , … , σ i }) in its own decision tree to get the result b k .

	
2. ESPs use DMP to compute the category coefficients of its own decision tree polynomials P i and merges the coefficients of the same categories to obtain P i = { [c o z 1] · z 1 , [c o z 2] · z 2 , … , [c o z δ] · z δ } .

	
3. ESPs select an ESP γ as the aggregation server and send the computed decision tree polynomial to it.

	
Phase3 Aggregating:

	
1. After receiving the decision tree polynomials results from all ESPs, ESP γ aggregates them using the additive homomorphism of DRTS to obtain { [s o c 1] · z 1 , [s o c 2] · z 2 , … , [s o c δ] · z δ } .

	
2. ESP γ encrypts z 1 , z 2 , … , z δ and calls DMAX _ n for sorting to get [z m a x] (m a x ∈ (1 , 2 , … T , δ)) which corresponds to the maximum s o c m a x .

	
3. ESP γ calls DRE re-encrypts [z m a x] using RR’s public key, and the resulting ciphertext is sent to RR.

	
Phase4 Decrypting:

	
RR performs RDec decryption of the received ciphertext to obtain the CP’s evaluation of the SR’s data.

[image: Table]

Table 3. Complexity analysis.

Table 3. Complexity analysis.

	
Roles

	
Protocol

	
Computations

	
Communication Overhead

	
ESP α

	
 DMUP

	
 2 Enc + 6 E x p + 10 M u l

	
 t · ∥ N 2 ∥

	
 DCP

	
 Enc + 6 E x p + 4 M u l

	
 t · ∥ N 2 ∥

	
 DMAX

	
 4 DMUP + DCP + 2 E x p + 2 M u l

	
 t · ∥ N 2 ∥

	
 DRE

	
 M u l + E x p

	
 t · ∥ N 2 ∥

	
ESP β

	
 DMUP

	
 2 CDec + Enc

	
 ∥ N 2 ∥

	
 DCP

	
 CDec + Enc

	
 ∥ N 2 ∥

	
 DMAX

	
 9 CDec + 5 Enc

	
 ∥ N 2 ∥

	
 DRE

	
 Recon

	
 ∥ N 2 ∥

	
ESP i

	
 DMUP

	
 2 PDec

	
 ∥ N 2 ∥

	
 DCP

	
 PDec

	
 ∥ N 2 ∥

	
 DMAX

	
 9 PDec

	
 ∥ N 2 ∥

	
 DRE

	
 PDec

	
 ∥ N 2 ∥

	
	
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations.

© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).

media/file4.png
Encrypted user data

Results Recipient

O

Service Requestor

Cloud Platform

Encrypted evaluation results

nav.xhtml

 symmetry-14-00415

 		
 symmetry-14-00415

media/file2.png

media/file5.jpg
Time consumed(s)

100
£
80
70
60
50
40
30
20
10

- ESP,

- Esp
- ESP,

ol |||
3 4 5

Depth of decision tree

Il.I ‘|I‘
6 7

media/file3.jpg
=
Encrypied wer data

&

Service Requestor

Results Recipient

@
Encrypted evaluation mall//

Cloud Plaform.

media/file1.jpg

media/file7.jpg
Time consumed(s)
v &5 R 8 & & 8

°

Ese,
- se,
s,
- st

86) 1205) 16(5) 86) 126) 16(6)
‘The total number of categories(depth of the decision tree)

media/file10.png
Time consumed(s)

200

175

150

125

100

~l
9

un
o

N
U

o

W ESP,
. W ESPg
- ESP,
- ESP,

1024 1280 1536 1792
The bit length of the encryption algorithm modulo N(bits)

2048

media/file9.jpg
200

175

150

125

Time consumed(s)
% 8 3 8

- s,
- Py
s
- ESR,

1536 1792
The bit| Ienqlh of the encryption algorithm modulo Mbits)

media/file0.png

media/file8.png
Time consumed(s)

(e
B

Ul
0)]

N
(00)

N
o

w
N

N
S

[EY
(9))]

(0]

o

W ESP,
B ESPg
W ESP,
W ESP,

8(5)

12(5) 16(5) 12(6)
The total number of categorles(depth of the decision tree)

media/file6.png
Time consumed(s)

100
90
80
70
60
50
40
30
20
10

mam ESP,
W ESPg
W ESP,
W ESP,

3

| ll_l II-I
4 5

Depth of decision tree

II-I ||I‘
6 7

