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Mihai, A.; Mihai, I. On a Surface

Associated with Pascal’s Triangle.

Symmetry 2022, 14, 411. https://

doi.org/10.3390/sym14020411

Academic Editor: Serge Lawrencenko

Received: 31 December 2021

Accepted: 7 February 2022

Published: 19 February 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

symmetryS S

Article

On a Surface Associated with Pascal’s Triangle
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Abstract: An open problem in reliability theory is that of finding all the coefficients of the reliability
polynomial associated with particular networks. Because reliability polynomials can be expressed
in Bernstein form (hence linked to binomial coefficients), it is clear that an extension of the classical
discrete Pascal’s triangle (comprising all the binomial coefficients) to a continuous version (exhibiting
infinitely many values in between the binomial coefficients) might be geometrically helpful and
revealing. That is why we have decided to investigate the geometric properties of a continuous
extension of Pascal’s triangle including: Gauss curvatures, mean curvatures, geodesics, and level
curves, as well as their symmetries.

Keywords: Pascal’s triangle; binomial coefficient; geodesic; Bernstein polynomial; reliability polynomial

1. Introduction

We have been working on circuit reliability for quite some time, see [1–3]. As such,
digital system reliability is a field established in the 1950s by John von Neumann, who
approached it from the gate level [4]. Around the same time, Edward F. Moore and Claude
E. Shannon considered an alternate viewpoint and started from the lower device level [5,6].
Lately, the relentless scaling of CMOS transistors [7] has been the driving force calling for
reliability enhancements of complex digital systems affected by noises and variations [8,9].
These have inspired us to investigate consecutive systems [10,11] and, more recently,
hammocks [12], as well as other particular two-terminal networks [13].

Obviously, over time we had to become familiar with reliability polynomials and
have realized that representing these polynomials in Bernstein form [14] is convenient as
the associated coefficients have special meanings [15,16], but also as they might allow for
easier comparisons and ranking of networks [13,17]. For an in-depth view, we refer the
interested reader to the following two fresh surveys [18,19]. About four years ago, we
realized that Bernstein polynomials, having coefficients that are a fraction of the binomial
coefficients, could be mapped onto, or should we say in between, the binomial coefficients
of the classical (discrete) Pascal’s triangle. That is why we started looking at extensions of
Pascal’s triangle to real numbers, our expectations being that the coefficients of Bernstein
reliability polynomials for “optimal” networks might correspond to particular geodesics on
a continuous Pascal’s triangle or at least be correlated to some other geometrical properties.

This paper will start by presenting the state-of-the-art of Pascal’s triangle and follow
with its extensions to real and complex numbers in Section 2. Afterwards, we shall focus
on studying the surface represented by the continuous extension of the classical Pascal’s
triangle (Pascal’s Surface) for positive real numbers, in Section 3. These will be followed by
Discussion and Conclusions, including future directions for research.
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2. State-of-the-Art
2.1. Pascal’s Triangle

Probably the most famous triangular arrangement of integers is the one containing
the coefficients of the binomial expansion of (x + y)n. It is known as Pascal’s triangle,
although the triangle itself has been known and studied many centuries earlier by other
mathematicians in India (Acharya Pingala 3rd/2nd century B.C.), Halayudha (c. 10th cen-
tury), the Arab world and Persia (Al-Karaji (953–1029) and Omar Khayyam (1048–1131)),
China (Jia Xian (1010–1070), Yang Hui (1238–1298), and Zhu Shijie (1249–1314)), as well as
Europe (Ramon Llull (1232–1316), Michael Stifel (1487–1567), Petrus Apianus (1495–1552),
Niccolo Tartaglia (1499–1557), and Marin Mersenne (1588–1648)). Still, Pascal proved sev-
eral important properties of the binomial coefficients, and wrote the first modern treatise
regarding this arithmetical triangle ([20]).

It seems that Blaise Pascal became aware of this arithmetical triangle for the first time
when still in his teens, during a visit to Mersenne. In 1636, Father Mersenne published a
large arithmetical triangle in Harmonicorum Libri XII (he wanted to apply the knowledge
of combinatorics to musical theory). Almost two decades later, in 1654, Pascal wrote
Traité du Triangle Arithmétique [20], which was not printed until 1665 (after Pascal’s death).
Among other aspects, it details 19 properties (Pascal called them Consequences) of the
binomial coefficients that could be derived from this arithmetic triangle. Some of the most
important identities are represented by Consequences V and VIII, which currently can be
found in any high school math curriculum.

The first mathematician who named the triangle after Pascal was Pierre Raymond
de Montmort in 1708, who called it “Table de M. Pascal pour les combinaisons.” Around
1730, Abraham de Moivre called it “Triangulum Arithmeticum Pascalianum,” and this name
has stuck with Western scientists, while being called Khayyam’s triangle in Iran, and
Yang Hui’s triangle in China. It should be mentioned that, using Pascal’s triangle, one
can derive and investigate many notable sequences of integers, e.g., Fibonacci, Catalan,
Lucas, Bernoulli, and Stirling numbers. Moreover, if all the positions containing odd
numbers are colored black and all the positions containing even numbers are colored white,
the Sierpinski triangle is obtained. For additional properties and identities, the interested
reader is referred to [21–23].

Over time, Pascal’s triangle has been represented in more than one form. In the
following, two of these forms are shown to be related through a simple matrix identity [24].
Consider P(∞) the infinite symmetric matrix of components P(∞)i,j = (i+j

i ), for i, j ≥ 1
(the rows and columns of the matrix are indexed by positive integers):

P(∞) =



1 1 1 1 1 1 ...
1 2 3 4 5 6 ...
1 3 6 10 15 21 ...
1 4 10 20 35 56 ...
1 5 15 35 70 126 ...
1 6 21 56 126 252 ...
...

...
...

...
...

...
. . .


. (1)

From Figure 1a (a scan provided by Cambridge University Library on Wikipedia,
https://commons.wikimedia.org/wiki/File:TrianguloPascal.jpg, accessed on 10 February
2022), it can be seen that P(∞) is a perfect match of the form described by Pascal. Direct
computation shows that

P(∞) = L(∞) · L(∞)t, (2)

https://commons.wikimedia.org/wiki/File:TrianguloPascal.jpg
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where L(∞) is the infinite lower triangular matrix

L(∞) =



1
1 1
1 2 1
1 3 3 1
1 4 6 4 1
1 5 10 10 5 1
...

...
...

...
...

...
. . .


(3)

with components L(∞)i,j = (i
j), where (i

j) = 0 if i < j.

(a) (b) (c)

Figure 1. Classical (discrete) Pascal’s triangle: (a) Original Blaise Pascal’s writing, (b) 3D bar graph of
P(∞), and (c) 3D bar graph of ln P(∞).

2.2. Extensions of Pascal’s Triangle

A straightforward extension of Pascal’s triangle to real numbers was introduced in [25]
by simply multiplying each and every binomial coefficient (n

k), where n and k are positive
integers 1 ≤ k ≤ n, by akb(n−k), with a and b any real numbers. It took about thirty years
until [26,27] were published (almost simultaneously), with [28] following shortly thereafter.
These papers took the classical integer binomial coefficients (n

k) and extended them to real
numbers (y

x) by making use of the Γ function (for 0 ≤ x ≤ y). Fowler mentions that this
surface defined by the binomial function C = y!/x!(y− x)! is Pascal’s triangle "interpolated
to a steeply rising ridge” and that he knows “no evidence that the graph of C has ever been plotted
before” [26]. This corresponds to the L(∞)i,j form of the triangle.

About ten years later, [29] studied approximations of real binomial coefficients (y
k),

where y is a real number, and k is a natural one, stating that these real binomial coefficients
occur in analysis, combinatorics, discrete mathematics, computer science, and probability.
Lampret (the author of [29]) also suggested using the Γ function to extend the classical
binomial coefficients (n

k) to (β
α), with α and β arbitrary complex numbers (except for the

negative integers). A few years later, Pellicer and Alvo argued extending the classical
discrete Pascal’s triangle to a continuous graphical model corresponding to P(∞), as well
as generalizations of P(∞), discussing some of their properties [30] while calling them
Pascal’s Surfaces. For constructing continuous extensions they used the Γ and B functions,
while they seem not to be aware of any of the earlier papers advocating for the same
approach style [26–29] (they do not cite any of these papers).

More recently, [31] follows on from [26,29] dealing with generalized binomial coef-
ficients (y

k) for any real number y and integer k. Salwinski also reiterated the continuous
binomial coefficients (y

x) for which he derived several representations (including an infinite
product and Taylor series), while also advancing the idea of using complex numbers to
discover additional relations, linking generalized binomial coefficients to continuous ones.
Although dealing with a different type of extension of the binomial coefficients (to the
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q-binomial version, also known as Gaussian polynomials), we do mention [32], as these
polynomials occur in combinatorics, number theory, representation theory, and mathemati-
cal physics. Finally, [33] follows on from [26] by working with (β

α), α and β being arbitrary
complex numbers, in particular, dealing with (n

α) and (n
x).

3. A Continuous Pascal’s Surface

Let xOy be a Cartesian coordinate system. Starting from the original Pascal’s triangle
depicted in Figure 1a, one should consider the infinite triangle corresponding to P(∞).
Obviously, we can write the numerical entries of this triangle in the lattice points (i.e., points
with integer coordinates) from the first quadrant of the Cartesian coordinate system xOy.
In particular, this maps the components P(∞)ij onto the lattice points (i, j), where i, j are
positive integers. Here i, j represent both indices in the matrix P(∞)ij (hence, starting from
1), as well as the integer coordinates (i, j) = (x + 1, y + 1) in the xOy Cartesian coordinate
system. Since P(∞)ij = (i+j

i ), we may form the triple
(

i, j, (i+j
i )
)

, which corresponds to a
particular point in space. In Figure 1b, we have the graphical representation of the points(

i, j, (i+j
i )
)

, where i, j ∈ {1, 2, ..., 10}. To interpolate in between the points
(

i, j, (i+j
i )
)

, a

continuous smooth surface is needed, which can be obtained by simply replacing (i+j
i ) with

its continuous version Γ(x+y+1)
Γ(x+1)Γ(y+1) .

Our aim here is to study in the 3-dimensional Euclidean space the surface given by

f : R2 → E3, f (x, y) = (x, y, z(x, y)),

where

z(x, y) =
Γ(x + y + 1)

Γ(x + 1)Γ(y + 1)
,

which is a continuous version of P(∞). This surface is presented in Figure 2 and we shall
call it Pascal’s Surface (as in [30]).

We shall use the digamma function ψ which is defined as the logarithmic derivative of
the gamma function

ψ(x) =
d

dx
ln Γ(x) =

Γ′(x)
Γ(x)

.

For formulas on the geometry of surfaces, we refer the reader to [34].
We have

∂z
∂x

=
1

Γ(y + 1)
Γ′(x + y + 1)Γ(x + 1)− Γ(x + y + 1)Γ′(x + 1)

Γ2(x + 1)
=

=
1

Γ(y + 1)
ψ(x + y + 1)Γ(x + y + 1)− Γ(x + y + 1)ψ(x + 1)

Γ(x + 1)
=

= z(x, y)[ψ(x + y + 1)− ψ(x + 1)],

∂z
∂y

= z(x, y)[ψ(x + y + 1)− ψ(y + 1)].

The coefficients of the first fundamental form can be computed as

g11 =

〈
∂ f
∂x

,
∂ f
∂x

〉
= 1 + z2(x, y)[ψ(x + y + 1)− ψ(x + 1)]2,

g12 =

〈
∂ f
∂x

,
∂ f
∂y

〉
= z2(x, y)[ψ(x + y + 1)− ψ(x + 1)][ψ(x + y + 1)− ψ(y + 1)],

g22 =

〈
∂ f
∂y

,
∂ f
∂y

〉
= 1 + z2(x, y)[ψ(x + y + 1)− ψ(y + 1)]2.
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Using these, we determine

det g = g11g22 − g2
12 =

= {1 + z2(x, y)[ψ(x + y + 1)− ψ(x + 1)]2}{(1 + z2(x, y)[ψ(x + y + 1)− ψ(y + 1)]2}−

−z4(x, y)[ψ(x + y + 1)− ψ(x + 1)]2[ψ(x + y + 1)− ψ(y + 1)]2 =

= 1 + z2(x, y)[ψ(x + y + 1)− ψ(x + 1)]2 + z2(x, y)[ψ(x + y + 1)− ψ(y + 1)]2.

The unit normal vector N = 1√
det g

∂ f
∂x ×

∂ f
∂y to the Pascal’s Surface is given by

N =
1√

det g
(−z(x, y)[ψ(x + y + 1)− ψ(x + 1)],−z(x, y)[ψ(x + y + 1)− ψ(y + 1)], 1).

By straightforward derivations we obtain

∂2z
∂x2 = z(x, y)[ψ(x + y + 1)− ψ(x + 1)]2 + z(x, y)[ψ′(x + y + 1)− ψ′(x + 1)],

∂2z
∂y2 = z(x, y)[ψ(x + y + 1)− ψ(y + 1)]2 + z(x, y)[ψ′(x + y + 1)− ψ′(y + 1)],

∂2z
∂x∂y

= z(x, y)[(ψ(x + y + 1)− ψ(x + 1))(ψ(x + y + 1)− ψ(y + 1)) + ψ′(x + y + 1)].

It follows that the coefficients of the second fundamental form are

h11 =

〈
∂2 f
∂x2 , N

〉
=

z(x, y)√
det g

{[ψ(x + y + 1)− ψ(x + 1)]2 + [ψ′(x + y + 1)− ψ′(x + 1)]},

h22 =

〈
∂2 f
∂y2 , N

〉
=

z(x, y)√
det g

{[ψ(x + y + 1)− ψ(y + 1)]2 + [ψ′(x + y + 1)− ψ′(y + 1)]},

h12 =

〈
∂2 f

∂x∂y
, N
〉

=
z(x, y)√

det g
[(ψ(x + y + 1)− ψ(x + 1))(ψ(x + y + 1)− ψ(y + 1)) + ψ′(x + y + 1)].

We are now able to compute the mean curvature H and the Gauss curvature
G, respectively.

H =
g22h11 − 2g12h12 + g11h22

2 det g
=

=
z(x, y)

2(det g)3/2 {[1 + z2(x, y)[ψ(x + y + 1)− ψ(y + 1)]2]·

·{[ψ(x + y + 1)− ψ(x + 1)]2 + [ψ′(x + y + 1)− ψ′(x + 1)]}−

−2z2(x, y)[ψ(x + y + 1)− ψ(x + 1)][ψ(x + y + 1)− ψ(y + 1)]·

·{[ψ(x + y + 1)− ψ(y + 1)]2 + [ψ′(x + y + 1)− ψ′(y + 1)]}+

+[1 + z2(x, y)[ψ(x + y + 1)− ψ(x + 1)]2]·

·{[ψ(x + y + 1)− ψ(y + 1)]2 + [ψ′(x + y + 1)− ψ′(y + 1)]}.

For the Pascal’s Surface from Figure 2, Figure 3a details the mean curvature H. This
mean curvature H is also presented in logarithmic scale and as a contour plot in Figures 3b
and 3c, respectively.

G =
h11h22 − h2

12
det g

=
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=
z2(x, y)
det2 g

{{[ψ(x + y + 1)− ψ(x + 1)]2 + [ψ′(x + y + 1)− ψ′(x + 1)]}·

·{[ψ(x + y + 1)− ψ(y + 1)]2 + [ψ′(x + y + 1)− ψ′(y + 1)]}−

−[(ψ(x + y + 1)− ψ(x + 1))(ψ(x + y + 1)− ψ(y + 1)) + ψ′(x + y + 1)]2
}

.

(a) (b) (c)

Figure 2. Surface matching the classical (discrete) Pascal’s triangle (presented in Figure 1): (a) Surface
(linear scale), (b) Surface (logarithmic scale), and (c) Contours (Figure 2b).

(a) (b) (c)

Figure 3. The mean curvature H (of the surface presented in Figure 2): (a) Mean curvature H (linear
scale), (b) Mean curvature H (logarithmic scale), and (c) Contours of H (Figure 3b).

Similarly, for the Pascal’s Surface presented in Figure 2, Figure 4a details the Gauss
curvature G. This Gauss curvature G is also presented in logarithmic scale and as a contour
plot in Figures 4b and 4c, respectively.

(a) (b) (c)

Figure 4. The Gauss curvature G (of the surface presented in Figure 2): (a) Gauss curvature G (linear
scale), (b) Gauss curvature G (logarithmic scale), and (c) Contours of G (Figure 4b).
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In order to establish the differential equations of the geodesics, we first calculate the
Christoffel symbols Γk

ij, given by

Γk
ij =

1
2

2

∑
s=1

gks
(

∂gjs

∂xi +
∂gis

∂xj −
∂gij

∂xs

)
,

where x1 = x, x2 = y, and (
g11 g12

g12 g22

)
=

(
g11 g12
g12 g22

)−1

.

We have:

∂g11

∂x
= 2z2(x, y)[ψ(x + y + 1)− ψ(x + 1)]3+

+ 2z2(x, y)[ψ(x + y + 1)− ψ(x + 1)][ψ′(x + y + 1)− ψ′(x + 1)] =

= 2z2(x, y)[ψ(x + y + 1)− ψ(x + 1)]·
· [(ψ(x + y + 1)− ψ(x + 1))2 + ψ′(x + y + 1)− ψ′(x + 1)],

∂g11

∂y
= 2z2(x, y)[ψ(x + y + 1)− ψ(x + 1)]2[ψ(x + y + 1)− ψ(y + 1)]+

+ 2z2(x, y)[ψ(x + y + 1)− ψ(x + 1)]ψ′(x + y + 1) =

= 2z2(x, y)[ψ(x + y + 1)− ψ(x + 1)]·
· [(ψ(x + y + 1)− ψ(x + 1))(ψ(x + y + 1)− ψ(y + 1)) + ψ′(x + y + 1)],

∂g12

∂x
= 2z2(x, y)[ψ(x + y + 1)− ψ(x + 1)]2[ψ(x + y + 1)− ψ(y + 1)]+

+ z2(x, y)[ψ′(x + y + 1)− ψ′(x + 1)][ψ(x + y + 1)− ψ(y + 1)]+

+ z2(x, y)[ψ(x + y + 1)− ψ(x + 1)]ψ′(x + y + 1),

∂g12

∂y
= 2z2(x, y)[ψ(x + y + 1)− ψ(x + 1)][ψ(x + y + 1)− ψ(y + 1)]2+

+ z2(x, y)[ψ(x + y + 1)− ψ(x + 1)][ψ′(x + y + 1)− ψ′(y + 1)]+

+ z2(x, y)[ψ(x + y + 1)− ψ(y + 1)]ψ′(x + y + 1),

∂g22

∂x
= 2z2(x, y)[ψ(x + y + 1)− ψ(x + 1)][ψ(x + y + 1)− ψ(y + 1)]2+

+ 2z2(x, y)[ψ(x + y + 1)− ψ(y + 1)]ψ′(x + y + 1) =

= 2z2(x, y)[ψ(x + y + 1)− ψ(y + 1)]·
· [(ψ(x + y + 1)− ψ(x + 1))(ψ(x + y + 1)− ψ(y + 1)) + ψ′(x + y + 1)],

∂g22

∂y
= 2z2(x, y)[ψ(x + y + 1)− ψ(y + 1)]3+

+ 2z2(x, y)[ψ(x + y + 1)− ψ(y + 1)][ψ′(x + y + 1)− ψ′(y + 1)] =

= 2z2(x, y)[ψ(x + y + 1)− ψ(y + 1)]·
· [(ψ(x + y + 1)− ψ(y + 1))2 + ψ′(x + y + 1)− ψ′(y + 1)].
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The Christoffel symbols can be written as:

Γ1
11 =

1
2

[
g11 ∂g11

∂x
+ g12

(
2

∂g12

∂x
− ∂g11

∂y

)]
=

=
z2(x, y)

det g
{
[1 + z2(x, y)[ψ(x + y + 1)− ψ(y + 1)]2][ψ(x + y + 1)− ψ(x + 1)]·

· [(ψ(x + y + 1)− ψ(x + 1))2 + ψ′(x + y + 1)− ψ′(x + 1)]−
− z2(x, y)[ψ(x + y + 1)− ψ(x + 1)][ψ(x + y + 1)− ψ(y + 1)]·

·
{

2[ψ(x + y + 1)− ψ(x + 1)]2[ψ(x + y + 1)− ψ(y + 1)]+

+ [ψ′(x + y + 1)− ψ′(x + 1)][ψ(x + y + 1)− ψ(y + 1)]+

+ [ψ(x + y + 1)− ψ(x + 1)]ψ′(x + y + 1)− [ψ(x + y + 1)− ψ(x + 1)]·
·[(ψ(x + y + 1)− ψ(x + 1))(ψ(x + y + 1)− ψ(y + 1)) + ψ′(x + y + 1)]

}}
,

Γ1
12 =

1
2

(
g11 ∂g11

∂y
+ g12 ∂g22

∂x

)
=

=
z2(x, y)

det g
{
[1 + z2(x, y)[ψ(x + y + 1)− ψ(y + 1)]2][ψ(x + y + 1)− ψ(x + 1)]·

· [(ψ(x + y + 1)− ψ(x + 1))(ψ(x + y + 1)− ψ(y + 1)) + ψ′(x + y + 1)]−
− [ψ(x + y + 1)− ψ(x + 1)][ψ(x + y + 1)− ψ(y + 1)][ψ(x + y + 1)− ψ(y + 1)]·
· [(ψ(x + y + 1)− ψ(y + 1))(ψ(x + y + 1)− ψ(x + 1)) + ψ′(x + y + 1)

]
},

Γ1
22 =

1
2

[
g11
(

2
∂g12

∂y
− ∂g22

∂x

)
+ g12 ∂g22

∂y

]
=

=
z2(x, y)

det g
{
[1 + z2(x, y)[ψ(x + y + 1)− ψ(y + 1)]2]·

·
{

2[ψ(x + y + 1)− ψ(y + 1)]2[ψ(x + y + 1)− ψ(x + 1)]+

+ [ψ′(x + y + 1)− ψ′(y + 1)][ψ(x + y + 1)− ψ(x + 1)]+

+ [ψ(x + y + 1)− ψ(y + 1)]ψ′(x + y + 1)− [ψ(x + y + 1)− ψ(y + 1)]·
· [(ψ(x + y + 1)− ψ(y + 1))(ψ(x + y + 1)− ψ(x + 1)) + ψ′(x + y + 1)]−
− [ψ(x + y + 1)− ψ(x + 1)][ψ(x + y + 1)− ψ(y + 1)]·
· [(ψ(x + y + 1)− ψ(y + 1))2 + ψ′(x + y + 1)− ψ′(y + 1)]}}.

Appendix A presents the graphical representations of these Christoffel symbols com-
puted for the Pascal’s Surface.

The equations of the geodesics are
d2x
dt2 + Γ1

11

(
dx
dt

)2
+ 2Γ1

12
dx
dt

dy
dt + Γ1

22

(
dy
dt

)2
= 0,

d2y
dt2 + Γ2

11

(
dx
dt

)2
+ 2Γ2

12
dx
dt

dy
dt + Γ2

22

(
dy
dt

)2
= 0.

By substituting Γ1
11, Γ1

12 and Γ1
22 computed above, we can write the first equation.

Interchanging x and y, we obtain the second equation.

4. Discussions and Conclusions

The results we have presented here are normal continuations of those reported
in [26,30]. On the one side, our results are limited to positive real numbers, but they
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are thoroughly detailed with respect to geometric proprieties associated to Pascal’s Surface,
properties which have never been analyzed before. Obviously, this line of research can and
should be continued.

On the other side, let us see how such theoretical results are to be linked to more
practical applications, such as the reliability polynomials. We shall take as a particular
example the following reliability polynomial expressed in Bernstein form Rel(H3,3, p) =
8p3q6 + 42p4q5 + 84p5q4 + 76p6q3 + 36p7q2 + 9p8q + p9, where q = 1 − p. This is the
reliability polynomial associated with H3,3, which is a classical hammock network having
w = l = 3 (w is the width and l is the length of the network); for details see [5,12].
A reliability polynomial will always have the first l coefficients 0, while the last w coefficients
are all identical to the corresponding binomial coefficients. Thus, the coefficients of interest
are the remaining lw− l − w ones (the four red coefficients of Rel(H3,3, p), namely: 8, 42,
84, and 76). The level curves corresponding to these four coefficients of interest can be seen
in Figure 5c (also in red).

(a) (b) (c)

Figure 5. Example for the continuous Pascal’s Surface: (a) Surface matching Figure 1b (P), (b) Surface
matching Figure 1c (ln P), and (c) Surface, H3,3 (bars), and level curves.

One additional remark is that computations such as the ones performed for generating
these images are highly demanding and an option we intend to pursue is to rely on
approximations which, while not absolutely accurate, would allow us to significantly
reduce the computing time (time-complexity). These could also move us forward on
time-efficient approximations of the coefficients of reliability polynomials, a topic of high
interest in the context of advanced nanoscale CMOS transistors fabricated using EUV
lithography [35].

Obviously, the surface we have investigated here was limited to the positive quadrant
because all the coefficients of a Bernstein polynomial are positive. In particular, for re-
liability polynomials all the coefficients are integers (resulting from counting processes,
i.e., particular numbers of paths), and one more variable is an integer as well (representing
an index/exponent). This means that a normal continuation would be to investigate partic-
ular cuts on this surface, i.e., not only horizontal cuts which generate level curves. That
is why we plan to investigate the intersection of Pascal’s Surface with at least three type of
vertical cuts: (i) parallel with either Ox or Oy; (ii) parallel with the line bisecting the first
and third quadrants; and finally, (iii) radial ones from the origin (see Figure 6).
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(a) (b) (c)

Figure 6. Three different cuts on Pascal’s Surface: (a) Parallel with Oy, (b) Parallel with one of the
bisecting lines, and (c) Radial from the origin.

On the other hand, the approach we have presented here is generic, and the associated
Pascal’s Surface for a small range of real values can be seen in Figure 7. This reveals (very)
complex surfaces on the other three quadrants, which might be of interest in the longer run.

(a) (b) (c)

Figure 7. Pascal’s Surface for−10 < x, y < 10: (a) Linear view (large oscillations), (b) Logarithmic view,
and (c) Contours of Figure 7b.

Last but not least, we expect that relying on a fractional view might allow us to study
other curves on Pascal’s Surface. One of us has already been working on a related subject
by defining the notions of equiaffine arclength and curvature with fractional order [36],
a paper which has introduced a classification of the plane curves of constant equiaffine
curvature with fractional order, while also providing several explanatory examples. That is
why we plan to continue exploring symmetries appearing on such surfaces.
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Appendix A

(a) (b) (c)

Figure A1. The Christoffel symbol Γ1
11 (of the surface presented in Figure 2): (a) Γ1

11 (linear scale),
(b) Γ1

11 (logarithmic scale), and (c) Contours of Γ1
11 (Figure A1b).

(a) (b) (c)

Figure A2. The Christoffel symbol Γ1
12 (of the surface presented in Figure 2): (a) Γ1

12 (linear scale),
(b) Γ1

12 (logarithmic scale), and (c) Contours of Γ1
12 (Figure A2b).

(a) (b) (c)

Figure A3. The Christoffel symbol Γ1
22 (of the surface presented in Figure 2): (a) Γ1

22 (linear scale),
(b) Γ1

22 (logarithmic scale), and (c) Contours of Γ1
22 (Figure A3b).
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13. Beiu, V; Drăgoi, V.-F.; Beiu, R.-M. Why reliability for computing needs rethinking. In Proceedings of the Conference Re-
booting Computing (ICRC 2020), Atlanta, GA, USA, 1–3 December 2020; IEEE: Piscataway, NJ, USA, 2020; pp. 16–25.
doi:10.1109/ICRC2020.2020.00006

14. Bernstein, S.N. Démonstration du théorème de Weierstrass fondée sur le calcul des probabilities [Proof of the theorem of
Weierstrass based on the calculus of probabilities]. Comm. Kharkov Math. Soc. 1912, 13, 1–2.

15. Colbourn, C.J. The Combinatorics of Network Reliability; Oxford University Press: New York, NY, USA, 1987.
16. Chari, M.; Colbourn, C.J. Reliability polynomials: A survey. J. Comb. Info. Syst. Sci. 1997, 22, 177–193.
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