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Abstract: The mixture of generalised linear models (MGLM) requires knowledge about each mixture
component’s specific exponential family (EF) distribution. This assumption is relaxed and a mixture
of semi-parametric generalised linear models (MSPGLM) approach is proposed, which allows for
unknown distributions of the EF for each mixture component while much of the parametric structure
of the traditional MGLM is retained. Such an approach inherently allows for both symmetric and
non-symmetric component distributions, frequently leading to non-symmetrical response variable
distributions. It is assumed that the random component of each mixture component follows an
unknown distribution of the EF. The specific member can either be from the standard class of
distributions or from the broader set of admissible distributions of the EF which is accessible through
the semi-parametric procedure. Since the inverse link functions of the mixture components are
unknown, the MSPGLM estimates each mixture component’s inverse link function using a kernel
smoother. The MSPGLM algorithm alternates the estimation of the regression parameters with the
estimation of the inverse link functions. The properties of the proposed MSPGLM are illustrated
through a simulation study on the separable individual components. The MSPGLM procedure is also
applied on two data sets.

Keywords: mixture regression; generalised linear models; semi-parametric modelling; unknown link
function; flexible models

1. Introduction

In many situations, mixture of regression modelling focuses on Gaussian distributions,
and hence symmetrical component distributions [1,2]. Frequently, data follow a distri-
bution that is non-standard, e.g., non-symmetric or skewed multi-modal. The flexibility
embedded in mixture modelling based on known component distributions enables the
modelling of both symmetric and non-symmetric data patterns. In many applications, the
individual component distributions are of importance, and the selection of appropriate
component distributions are essential. In the case of MGLM, both the selection of the
correct component distribution members and the selection of the component link functions
are required. Azzalini et al. [3] and Wainer [4] presented examples for a single component
model, highlighting the inadequacy of using the typical logistic link to model binary re-
sponses. Weisberg [5] argued that if the chosen distributions are inadequate, a better fit
might be obtained if the inverse link function is estimated from the data. Estimating the
inverse link function directly from the data enables more flexible models. The proposed
semi-parametric procedure for estimating the component inverse link functions facilitates
the selection of component members from the broader class of EF distributions. Finite mix-
ture modelling provides a statistical modelling approach with applications in a wide variety
of random phenomena, including marketing and market segmentation [6], insurance [7],
biology [8], medicine [9], and economics [10]. Recently, there has been an enhanced focus
on non-parametric and semi-parametric mixture models. In 2019, Xiang, Yao, and Yang [11]
published an overview of semi-parametric extensions of finite mixture models, and in 2020,
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Ma, Wang, and Lee [12] considered semi-parametric mixture regression with unspecified
error distributions.

In this paper we start by considering MGLM [13,14], proposing a semi-parametric
estimation of the component inverse link functions for modelling the component condi-
tional expected value of the response variable given explanatory variables. The proposed
MSPGLM has several important advantages:

• A semi-parametric, estimated, component inverse link function assists in determin-
ing if a selected parametric component link function is appropriate to be used as a
component link function;

• If the selected parametric component link function is inadequate, a better compo-
nent fit can be obtained by estimating a semi-parametric component link function.
Improved component fits will improve the overall fitted mixture model;

• Relaxing the assumption of a common component link function by estimating individ-
ual semi-parametric component link functions;

• In [5], it is shown that under fairly general conditions,
√

n consistent estimates of the
component parameter directions are obtained.

The MSPGLM has limitations similar to that of the SPGLM. Since a scale and loca-
tion factor can be absorbed into the component link functions, the estimated component
regression coefficients estimate a direction in p dimensional space. The magnitudes of
the estimated component regression coefficients can therefore not be directly related to
component rates of change in the explanatory variables. However, ratios of the estimated
component regression coefficients are useful indications of the relative impact of variables
at the component level, which is analogous to the findings in [15].

The performance of the proposed MSPGLM is evaluated through a simulation study,
evaluating the performance of the individual components that are separable within the
overall procedure. The procedure is also implemented on a data set from an insurance
company and on a South African COVID-19 data set.

The paper is structured as follows. Section 2 describes the SPGLM, followed by the
MSPGLM. Section 3 gives simulation results of the SPGLM performance for continuous
and categorical response variables. In Sections 4 and 5, applications of the proposed
MSPGLM procedure on insurance and COVID-19 data are given. Lastly, Section 6 contains
a discussion of the results, conclusions, and possibilities for future research.

2. Materials and Methods
2.1. Semi-Parametric Mixture of Generalised Linear Models

The GLM is a generalisation of the mean regression model, selecting a distribution of
the EF for the random component, Y, with the following density or mass function:

fY(y|η) = h(y, φ) exp
(

ηy− A(η)

φ

)
, (1)

where A(η) is the cumulant function and φ a dispersion parameter. E(Y|x) = µ(x), with
g(µ(x)) = xT β = η, and g(·) is a smooth and invertible link function; x is the vector of
explanatory or feature variables, and β is the vector of regression parameters. It follows for
the EF that:

µ(x) = A′(η), and (2)

VAR(Y|x) = φA′′(η). (3)

The canonical inverse link function is g−1(·) = A′(·) [16].
The SPGLM considers cases where the random component is assumed to follow an

unknown distribution from the EF. The inverse link function is therefore also unknown
and needs to be estimated in addition to the regression parameters β.
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2.2. SPGLM Estimation

Consider a random sample of pairs
(
Yi, xT

i
)
∈ R × Rp for i = 1, . . . , n. Set Y =

(Y1 . . . Yn)
T : n × 1, and X =(x1 . . . xn)

T : n × p. Following from (2), we estimate the
expected value using the Nadaraya–Watson weighted average in the focal point z, varying
over the range of possible xT

i β values:

g−1(z) = Â′(z) =
1

nh

n

∑
i=1

yiKh(z− xT
i β)

τ(z, X, β)
, (4)

with τ(z, X, β) as the normalising constant. This approach uses a one-dimensional smoother
obtained from the linear predictor in contrast to a full non-parametric approach requiring a
p dimensional smoother.

We use an alternating estimation scheme [5] by first estimating β using the Newton
Raphson algorithm, followed by the estimation of the inverse link function.

Next, we derive the Newton Raphson update rule for β. The likelihood function for β
is as follows:

L(β| y, X) =
n

∏
i=1

h(yi, φ) exp
(

ηiyi − A(ηi)

φ

)
,

with the following log-likelihood:

l(β|y, X) =
n

∑
i=1

yi(A′)−1g−1(xT
i β
)
− A

(
(A′)−1g−1(xT

i β
))

φ

+
n

∑
i=1

log h(yi, φ),

which simplifies for the canonical link function to:

l(β|y, X) =
n

∑
i=1

yixT
i β

φ
−

n

∑
i=1

A
(

xT
i β
)

φ
+

n

∑
i=1

log h(yi, φ).

Maximising l(β|y, X) using the Newton Rapshon algorithm yields the update rule for β:

βnew = βold + H−1
φ (βold)∇φ(βold)

= βold +
1
φ

(
XTW Â′′X

)−1
XT
(

y− Â′(Xβold)
)

, (5)

with W Â′′ =
1
φ diag

(
Â′′(xT

1 β) . . . Â′′(xT
n β)

)
, ∇φ(β) = 1

φ XT(y− A′(Xβ)) and Hφ(β) =

−XTW A′′X. For A′(·), we substitute the Nadaraya–Watson weighted average of (4) into (5).
The second derivative of A(·) is estimated using the following:

Â′′(z) =
1

nh2

n

∑
i=1

1
τ(z, X, β)

{(
yi − Â′(z)

)
K′h(z− xT

i β)
}

, (6)

which is the derivative of Â′(.), or

Â′′(z) =
1
φ

[
1

nh

n

∑
i=1

y2
i Kh(z− xT

i β)

τ(z, X, β)
−
(

A′(z)
)2
]

, (7)

derived using (3) for a fixed value of the dispersion parameter φ.
Weisberg and Welsh [5] proposed to initialise the semi-parametric estimation proce-

dure by selecting a suitable parametric GLM to obtain initial values for β and the inverse
link function. This parametric inverse link function is updated using the non-parametric
estimate Â′(·). In the following step, updated values for β are determined using (5). The
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procedure is iterated until convergence, selecting h through the use of cross-validation. The
proposed procedure for estimating the SPGLM is given in Algorithm 1.

Algorithm 1 Semi-parametric generalised linear models (SPGLM).

1. Fit an initial suitable parametric GLM.
2. Set βold equal to the regression parameter estimates from (1).
3. For the current values of βold:

(a) Determine the non-parametric estimate of the inverse link Â′(.) using (4).
(b) Use the Newton Raphson update rule (5) to determine βnew.

4. Set βold = βnew.
5. Repeat (3) and (4) until convergence.

2.3. Mixture of Semi-Parametric Generalised Linear Models

Consider K components, each with an SPGLM structure with an unknown link func-
tion gk(µk(x)) = xT βk = ηk for k = 1, . . . , K. The expected value of the kth component
is µk(x) = Ek(Y|x). The random variable Y is observed from mixture component k with
probability πk. For an MSPGLM, the density or mass function is as follows:

fY(y|x, θ) =
K

∑
k=1

πkhk(y, φk) exp

(
xT βky− Ak

(
xT βk

)
φk

)
, (8)

with θ = {β1, . . . βK; π1, . . . , πK}, (β1, . . . , βK) as the regression parameters and (π1, . . . , πk)
as the mixing probabilities.

For a random sample of n pairs
(
Yi, xT

i
)

for i = 1, . . . , n, the complete data log-
likelihood function is the following:

l(θ|y, X, Z) =
n

∑
i=1

K

∑
k=1

zik

{
log hk(yi, φk) +

(
xT

i βkyi − Ak
(
xT

i βk
)

φk

)
+ log πk

}

where the unobserved component membership matrix Z = (zik), with

zik =

{
0 if the observations is not from component k
1 if the observations is from component k

.

The complete data log-likelihood is maximised using the Expectation Maximisation
(EM) algorithm [17]. We start with a suitable parametric MGLM to obtain initial parameter
estimates βk, initial inverse link functions g−1

k (·), and the estimated responsibilities for
the ith observation in component k, γik, as in Millard [18]. The component inverse link
functions are updated using the Nadaraya–Watson weighted average (4), with the following
responsibilities incorporated:

Â′k(z) =
1

nkh

n

∑
i=1

γikyiKh(z− xT
i β)

τk(z, X, β)
(9)

where

τk(z, X, β) =
1

nkh

n

∑
i=1

γikKh(z− xT
i β)

and nk = ∑n
i=1 γik. The second derivative A′′(.) is estimated using the following:

Â′′k (z) =
1
φk

[
1

nkh

n

∑
i=1

γiky2
i Kh(z− xT

i β)

τk(z, X, β)
−
(

Â′(z)
)2
]

. (10)
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The update rule for βk is as follows:

βnew
k = βold

k + H−1
φ (βold

k )∇φ(βold
k )

= βold
k +

1
φ

(
XTW Â′′k

X
)−1

XT
(

y− Â′k(Xβold
k )
)

, (11)

with W Â′′k
= 1

φ diag
(

Â′′k (xT
1 βk) . . . Â′′k (xT

n βk)
)
. The MSPGLM estimation procedure is

summarised in Algorithm 2.

Algorithm 2 Mixture of semi-parametric generalised linear models (MSPGLM).

1. Fit an initial suitable parametric MGLM.
2. Set βold

k equal to the regression parameter estimates of each component from step (1).
3. For component k

(a) Determine the non-parametric estimate of the component inverse link Â′k(·)
using (9).

(b) Use the Newton Raphson update rule (11) to update the unknown component
parameters βnew

k .

4. Set βold
k = βnew

k .
5. Repeat (3) and (4) for component k until convergence.
6. Perform (3)–(5) for all K components.

3. Simulation Study

We assess the performance of the SPGLM estimation algorithm, Algorithm 1, in
discrete and continuous scenarios considering different link functions and sample sizes.
Data are generated using the specified link functions as indicated in Table 1. A GLM with a
single feature variable is used in the generation. Scenarios 1–3 consider binary response
models, with scenario 1 using a logit link. Scenarios 2 and 3 use the probit and piecewise
linear link functions, respectively. Scenarios 4–6 are continuous response variable models
using inverse, identity, and piecewise linear link functions.

A suitable GLM is fitted to the generated data to identify initial values for β and an
initial link function. The initial link functions are given in Table 1. The fitted model is
obtained using Algorithm 1. Aligned to recent trends in simulation designs [19–21], this
process is repeated 1000 times for each scenario. These simulation results also guide the
MSPGLM since the mixture components are separable.

Table 1. Simulation scenarios considered for the SPGLM.

Scenario Response Type Generating Link Initial Link Sample Sizes

1 Discrete Logit Logit 100, 200, 500, 1000
2 Discrete Probit Logit 100, 200, 500, 1000
3 Discrete Piecewise linear Logit 100, 200, 500, 1000
4 Continuous Inverse link Identity 100, 200, 500, 1000
5 Continuous Identity Identity 100, 200, 500, 1000
6 Continuous Piecewise linear Identity 100, 200, 500, 1000

Figure 1 shows the inverse link functions used to generate the data and the response
variable values for a single simulation iteration of the discrete response scenarios.

Similarly, Figure 2 shows the inverse link functions used to generate the data and the re-
sponse variable values for a single simulation iteration of the continuous response scenarios.

Table 2 gives the simulation results of the proportion of instances where the SPGLM
procedure outperforms the initial link function based on the prediction error, which is also
presented in the left pane of Figure 3. These scenarios clearly indicate the diverse results
that can be obtained by the SPGLM. In scenario 1, the SPGLM outperforms the logit link
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function in 22.2–33.0% of the cases, with the lower percentages occurring as the sample size
increases. This indicates that with larger sample sizes, the signal from the initial logit link
function is of such a nature that the SPGLM procedure can only perform better in ±22%
of the simulations. This low value is to be expected as the generation link function and
the initial link function are the same. The SPGLM outperforms the logit link function for
scenario 2 in 32.5–34.9% of the cases. This trend does not seem to change as the sample size
increases. Scenario 3 shows that the prediction error decreases as the sample size increases.
The SPGLM yields better results than the logit link function, varying between 69.2% and
99.8% as the sample size increases.

Scenario 1 Scenario 2

Scenario 3

Figure 1. SPGLM discrete simulation cases, generated data, and inverse link functions for a single
simulation iteration.

The SPGLM outperforms the inverse link function in scenario 4 in more than 97% of
the cases for all sample sizes evaluated. In scenario 5, the SPGLM only performs better in
4.5–9.7% of the cases. This is to be expected as the chosen initial link function is the link
function that generated the data and therefore serves as confirmation of the parametric
model. The piecewise linear link function, scenario 6, shows that the SPGLM outperforms
the initial link function in all cases.

For scenarios 1 and 5, the SPGLM does not perform better than the initial link function.
It can therefore be argued that the semi-parametric process is not able to identify a better
inverse link structure compared to the parametric model under consideration, confirming
the chosen initial link function as suitable. For scenarios 3, 4, and 6, the SPGLM generally
outperforms the chosen initial link function, indicating the advantage of a data-driven link
function. The estimated link function selects an unknown distribution from the broader
class of distributions in the EF.



Symmetry 2022, 14, 409 7 of 15

Scenario 4 Scenario 5

Scenario 6

Figure 2. SPGLM continuous simulation cases, generated data, and inverse link functions for a single
simulation iteration.

Table 2. Proportion of simulations where the SPGLM model outperforms the initial link, based on
the prediction error, with standard deviations in brackets.

Response Type Discrete

Scenario 1 2 3

Generating link Logit Probit Piecewise linear

Initial link Logit Logit Logit

Sample size

100 0.330 (0.470) 0.329 (0.470) 0.692 (0.462)

200 0.315 (0.465) 0.349 (0.477) 0.806 (0.396)

500 0.222 (0.416) 0.325 (0.469) 0.961 (0.194)

1000 0.223 (0.416) 0.331 (0.471) 0.998 (0.045)

Response Type Continuous

Scenario 4 5 6

Generating link Inverse Identity Piecewise linear

Initial link Identity Identity Identity

Sample size

100 0.976 (0.153) 0.060 (0.239) 1.000 (0.000)

200 0.999 (0.032) 0.097 (0.296) 1.000 (0.000)

500 1.000 (0.000) 0.072 (0.259) 1.000 (0.000)

1000 1.000 (0.000) 0.047 (0.212) 1.000 (0.000)
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Table 3 gives the simulation results, based on the prediction error, of the number of
iterations required for convergence in the cases where the SPGLM performs better than
the initial link function, which is also shown in the right pane of Figure 3. The results are
consistent in that the average number of iterations to convergence increases as the sample
size increases.

Table 3. Average number of iterations until convergence, based on the prediction error, with standard
deviations in brackets.

Response Type Discrete

Scenario 1 2 3

Generating link Logit Probit Piecewise linear

Initial link Logit Logit Logit

Sample size

100 1.461 (1.747) 1.465 (1.085) 16.990 (22.473)

200 1.895 (2.897) 2.003 (2.186) 17.809 (17.181)

500 3.347 (4.236) 3.526 (2.537) 32.309 (22.354)

1000 4.571 (4.602) 5.927 (4.133) 49.321 (27.858)

Response Type Continuous

Scenario 4 5 6

Generating link Inverse Identity Piecewise linear

Initial link Identity Identity Identity

Sample size

100 21.516 (26.620) 1.000 (0.000) 31.493 (68.02)

200 38.183 (38.472) 15.567 (51.743) 43.138 (88.531)

500 67.441 (50.656) 64.569 (93.437) 98.561 (86.089)

1000 108.117 (58.969) 122.681 (97.194) 156.310 (70.296)
Only the cases where the SPGLM outperforms the initial link.

(a) (b)

Figure 3. Proportion of cases (a) where the SPGLM outperforms the initial link, and the average
number of iterations (b) until convergence versus sample size.

This simulation study clearly illustrates the flexibility that can be achieved using the
SPGLM procedure.

4. Application: Premium Collection Rates
4.1. Problem Statement and Data

This application is based on data received from a start-up insurance company. The
company has 2227 active policies. Their target market is the lower income group. They
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market two unique products specifically designed to support the households of the policy
holders in the event of a claim.

A major challenge in the insurance industry, specifically in the lower income bracket,
is the premium collection rate. Collection rates in this market varies between 30% and 35%.
The company is in need of a better understanding of the behaviour of its customer base
and must use this understanding to focus their marketing efforts on customers in order to
improve collection rates.

A model predicting the likelihood of a policyholder paying at least one premium in
the next three months is required. The variables available are indicated in Table 4.

Table 4. Customer retention data available for modelling payment behaviour.

Variable Description Role Type

Pay (y) A binary response variable indicating at least one pay-
ment in the following three months. Response Categorical

Current A binary indicator of a payment in the current month. Explanatory Categorical

Last3 The number of payments in the three months prior to
the current month. Explanatory Numerical

Gender Gender of the policy holder. Explanatory Categorical

Product Product indicator (two products). Explanatory Categorical

Bank Bank used for payments (4 banks). Explanatory Categorical

Age Age of the policy holder during the month of evaluation. Explanatory Numerical

Relevant data were used to ensure that all policies are measured up to three months after
the last month under consideration. A brief summary of the data is given in Tables 5 and 6.

Table 5. Data summary: Age, Bank, and Gender versus Payment.

Age

Level Frequency
Non-Pay

Percentage
Non-Pay Frequency Pay Percentage Pay

a:–24 88 65.185 47 34.815
b:25–35 640 64.581 351 35.419
c:35–45 526 65.504 277 34.496
d:45–55 154 66.667 77 33.333

e:55+ 41 61.194 26 38.806

Total 1449 65.065 778 34.935

Bank

Level Frequency
Non-Pay

Percentage
Non-Pay Frequency Pay Percentage Pay

A 511 79.844 129 20.156
B 173 52.744 155 47.256
C 565 60.884 363 39.116
D 200 60.423 131 39.577

Total 1449 65.065 778 34.935

Gender

Level Frequency
Non-Pay

Percentage
Non-Pay Frequency Pay Percentage Pay

Female 625 62.189 380 37.811
Male 824 67.430 398 32.570

Total 1449 65.065 778 34.935
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Table 6. Data summary: Product and payment history versus Payment.

Product

Level Frequency
Non-Pay

Percentage
Non-Pay Frequency Pay Percentage Pay

0 686 70.143 292 29.857
1 763 61.089 486 38.911

Total 1449 65.065 778 34.935

Current month payment indicator

Level Frequency
Non-Pay

Percentage
Non-Pay Frequency Pay Percentage Pay

0 815 70.077 348 29.923
1 634 59.586 430 40.414

Total 1449 65.065 778 34.935

Number of payments in the previous three months

Level Frequency
Non-Pay

Percentage
Non-Pay Frequency Pay Percentage Pay

0 535 89.916 60 10.084
1 624 76.377 193 23.623
2 262 45.095 319 54.905
3 28 11.966 206 88.034

Total 1449 65.065 778 34.935

The exploratory results consider the marginal relationships between variables, not
taking into account the differences between possible latent segments in the data. The
section below considers an MSPGLM to model the collection rate. The identification of the
latent segments will highlight differences in the regression structures, likely due to latent
behavioural groups.

4.2. Modelling and Results

A two-component MSPGLM is fitted using the premium collection data. The estimated
MSPGLM regression parameters are given in Table 7.

Table 7. Estimated parameters of the MSPGLM model.

Parameter Estimates

Variable Component 1 Component 2

Current 0.327 0.687

Last3 0.063 0.357

Gender 0.040 0.025

Product 0.167 0.055

Bank-A −0.437 −0.131

Bank-B −0.003 0.386

Bank-C −0.086 0.178

Age 0.011 −0.030

The parameters of the MSPGLM are not directly comparable to parametric MGLM pa-
rameters. We therefore use ratios of the regression parameters in Tables 8 and 9 to determine
the relative importance of the explanatory variables in components 1 and 2, respectively.
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Table 8. Relative importance of the estimated regression parameters for component 1 of the MSPGLM.

Variable Current Last3 Gender Product

Current 1 5.160 8.161 1.961
Last3 0.194 1 1.581 0.380

Gender 0.123 0.632 1 0.240
Product 0.510 2.632 4.162 1
Bank-A 1.334 6.887 10.890 2.617
Bank-B 0.008 0.042 0.066 0.016
Bank-C 0.264 1.363 2.155 0.518

Age 0.034 0.176 0.279 0.067

Variable Bank-A Bank-B Bank-C Age

Current 0.749 123.245 3.787 29.244
Last3 0.145 23.883 0.734 5.667

Gender 0.092 15.103 0.464 3.584
Product 0.382 62.854 1.931 14.914
Bank-A 1 164.470 5.054 39.026
Bank-B 0.006 1 0.031 0.237
Bank-C 0.198 32.545 1 7.722

Age 0.026 4.214 0.129 1

Table 9. Relative importance of the estimated regression parameters for component 2 of the MSPGLM.

Variable Current Last3 Gender Product

Current 1 1.923 27.097 12.565
Last3 0.520 1 14.091 6.534

Gender 0.037 0.071 1 0.464
Product 0.080 0.153 2.157 1
Bank-A 0.191 0.368 5.18 2.402
Bank-B 0.562 1.080 15.225 7.060
Bank-C 0.260 0.500 7.040 3.264

Age 0.044 0.085 1.202 0.557

Variable Bank-A Bank-B Bank-C Age

Current 5.231 1.780 3.849 22.552
Last3 2.720 0.926 2.001 11.728

Gender 0.193 0.066 0.142 0.832
Product 0.416 0.142 0.306 1.795
Bank-A 1 0.340 0.736 4.311
Bank-B 2.939 1 2.163 12.672
Bank-C 1.359 0.462 1 5.859

Age 0.232 0.079 0.171 1

In both Tables 8 and 9, the values above the diagonal of 1s contain ratios indicating
the relative importance of the parameters associated with the rows to parameters associ-
ated with the columns. Table 8 shows that for component 1, the variable Current had a
contribution more than five times that of the variable Last3, and more than eight times that
of Gender. Similarly, it can be seen that the relative importance of Bank-A is more than
160 times that of Bank-B. The corresponding importance for component 2 are 1.923 and
27.097 when comparing the variable Current to the variable Last3 and Gender, respectively,
in Table 9. Comparing Bank-A to Bank-B yields a relative importance of 0.34, showing
a different relationship when measuring the impact of the banks between components
1 and 2.

Figure 4 shows the estimated MGSPLM link function compared to the initial link
function for component 1 in the left pane and for component 2 in the right pane. It is clear
that the initial link, MGLM, and the MSPGLM link functions are similar, especially for
component 2. This is supported by the prediction errors, as indicated in Table 10. In both
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components as well as overall, the MSPGLM performs marginally better than the MGLM
model based on the initial link.

(a) (b)

Figure 4. Observed data (red), the initial inverse link functions MGLM (black), and estimated
MSPGLM inverse link functions (blue). Component 1 is presented in the left pane (a), with Compo-
nent 2 in the right pane (b).

Table 10. Prediction errors for the MGLM and MSPGLM models.

Component MGLM MSPGLM

Overall 295.904 295.336
Component 1 241.914 241.394
Component 2 53.990 53.942

Table 11 gives the classification accuracy of the estimated MGLM and MSPGLM,
respectively. The classification accuracy of both models are similar, with the MSPGLM
again performing slightly better.

Table 11. Classification accuracy for the MGLM and MSPGLM models.

Model Classification Acuracy

MGLM 83.34%
MSPGLM 83.75%

Given the marginal differences in the estimated inverse link functions of the MGLM
and MSPGLM, the results support the use of the initial logit link function as the correct link
function. The MGLM, a mixture of logistic regression models, could therefore be used as
an appropriate model for the client retention application.

5. Application: COVID-19 Data
5.1. Problem Description and Data

This section considers an application of MSPGLM to COVID-19 infection rates, with
time as the explanatory variable. Data are observed for the Kwazulu-Natal and Eastern
Cape provinces in South Africa. The response variable is the 14-day infection rate, cal-
culated as rp,t =

Xp,t
Xp,t−14

, with Xp,t as the daily cumulative COVID-19 positive cases in
province p in time period t. This measure is useful in modelling the spread of the disease
over time. We considered data spanning the period from December 2020 to 15 February
2021, which include the second wave of infections in South Africa. During this period,
the 14-day infection rates varied between 1.006 and 1.380, covering periods where the
14-day growth was almost stationary up to periods where the growth was more than 38%.
The data were sourced from the Data Science for Social Impact COVID-19 data repository,
hosted by the University of Pretoria.
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5.2. Modelling and Results

A two-component MSPGLM is fitted to the COVID-19 14-day infection rate data,
specifically to illustrate the ability of the estimation algorithm to update and improve the
inverse link functions and to identify the latent provinces. Estimation Algorithm 2 is used to
fit the MSPGLM model, selecting identity link functions as initial link functions and using
only time as the explanatory variable in the linear predictor. The regression coefficients for
the time variable, t, are −0.02439 and 0.00015 for the two components, respectively.

Figure 5 shows the observed data, initial inverse link functions as well as the esti-
mated MSPGLM inverse link functions for both components, plotted against time. The
components are identified using hard clustering.

It is clear that the mixture model could identify the two latent provinces. Based
on the observed data, it is also clear that Eastern Cape has a downward sloping 14-day
infection rate, while Kwazulu-Natal has a shape that increases and later decreases over the
time period.

(a) (b)

Figure 5. Observed data (red), the initial inverse link functions MGLM (black), and the estimated
MSPGLM inverse link functions (blue). Component 1 is presented in the left pane (a), with Compo-
nent 2 in the right pane (b). The first day of December 2020 corresponds to t = 1.

Figure 5 also clearly shows the ability of the estimation algorithm to update the
initial inverse link functions to much more appropriate estimated inverse link functions.
Component 1 is identified as the Eastern Cape and Component 2 as Kwazulu-Natal.

This improved fit of the MSPGLM is supported by the prediction errors in Table 12. In
both components, the MSPGLM performs much better than the model based on the initial
link functions.

Table 12. Prediction errors for the MGLM and MSPGLM models.

Component MGLM MSPGLM

Overall 7.706 1.736
Component 1 1.144 0.819
Component 2 6.562 0.917

The MSPGLM model therefore shows that the chosen initial link functions are not
appropriate and that the estimated MSPGLM inverse link functions should rather be used.

6. Discussion and Conclusions

In this paper, we introduced an MSPGLM that estimates appropriate, semi-parametric
component inverse link functions, which facilitates the selection of component members
from the broader class of EF distributions. The approach allows for a more flexible mod-
elling capability, resulting in an improved capturing of the observed structure.
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The first derivative of the component cumulant function A′k(·) is the component
inverse canonical link function, estimated using the Nadaraya–Watson weighted average.
The MSPGLM procedure uses an alternating estimation scheme by first updating the
component regression parameters, followed by updating the component inverse link
function. The MSPGLM procedure either confirms the choice of the initial, parametric
component inverse link function or estimates a component inverse link function from the
broader class of distributions in the EF, resulting in a better model fit. These properties
were explored in the simulation study.

The prediction accuracy in the simulation scenarios where the initial parametric link
function was different from the generating link function was drastically improved by the
MSPGLM, highlighting the value of the proposed data-driven semi-parametric procedure.
This procedure outperformed the MGLM in 69.2–99.8% of the cases where the generating
link function was substantially different from the initial parametric link function. The
procedure also confirmed the suitability of the initial parametric link function in cases
where the initial parametric link function corresponded to the generating link function.

Two practical applications were considered. The first application modelled premium
collection rates in an insurance company. The estimation results confirm the logit compo-
nent link functions as appropriate component link functions. In the second application,
14-day infection rates for COVID-19 were modelled. The estimated model improved the
initial parametric link functions by updating the initial component identity link functions
with estimated non-linear component link functions, showing a substantial improvement
in the prediction accuracy. The latent provinces were also successfully identified.

Recent trends confirm a continued interest in a semi-parametric mixture regression,
as indicated by [11]. Further research could include the development of an alternative
approach to using the estimated regression parameters in order to simplify the interpre-
tation thereof. Additionally, one could investigate different updating strategies for the
responsibilities in the MSPGLM.
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