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Abstract: By introducing a 3× 3 matrix Lie algebra and employing the generalized Tu scheme, a
AKNS isospectral–nonisospectral integrable hierarchy is generated by using a third-order matrix Lie
algebra. Through a matrix transformation, we turn the 3× 3 matrix Lie algebra into a 2× 2 matrix
case for which we conveniently enlarge it into two various expanding Lie algebras in order to obtain
two different expanding integrable models of the isospectral–nonisospectral AKNS hierarchy by
employing the integrable coupling theory. Specially, we propose a method for generating nonlinear
integrable couplings for the first time, and produce a generalized KdV-Schrödinger integrable system
and a nonlocal nonlinear Schrödinger equation, which indicates that we unite the KdV equation and
the nonlinear Schrödinger equation as an integrable model by our method. This method presented in
the paper could apply to investigate other integrable systems.

Keywords: 3× 3 AKNS spectral problem; nonlinear integrable coupling; nonisospectral integrable
hierarchy

1. Introduction

It has been an important issue to generate new integrable hierarchies and further in-
vestigate their related properties, such as symmetries, Bäcklund transformations, algebraic–
geometric solutions, covering, etc. [1–7]. Blaszak and Ma [8] started from AKNS 3× 3
matrix Lax pairs to discuss the Liouville integrable noncanonical systems with variable
coefficient symplectic form by using binary symmetry constraints of the AKNS hierarchy,
and they further provided a class of integrable factorization for every AKNS system in the
hierarchy. Ma, Fuchssteiner and Oevel [9] adopted 3× 3 matrix spectral problems

Φx = UΦ, U =

 −2λ
√

2q 0√
2r 0

√
2q

0
√

2r 2λ

, (1)

Φt = VΦ, V =
∞

∑
i=0

 2ai
√

2bi 0√
2ci 0

√
2bi

0
√

2ci −2ai

λ−i, (2)

and employed zero curvature equations for deriving the standard AKNS hierarchy. Fur-
thermore, they exploited the binary nonlinearization theory to extend a case of 3× 3 matrix
spectral problems for AKNS hierarchy. Fuchssteiner [10] proposed the notation on in-
tegrable couplings of some known integrable systems while investigating properties of
Virasora algebras. Later, Ma and Fuchssteiner [11] employed the perturbation technique
for generating the integrable couplings of the KdV equation. However, this method is too
tedious and only obtains the integrable couplings of single integrable equations. In 2002,
Zhang et al. [12–14] adopted finite dimensional Lie algebras to introduce spectral problems,
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then employed the Tu Scheme [15] to have generated integrable couplings of some known
integrable hierarchy. In order to produce Hamiltonian structures of integrable couplings,
Guo and Zhang [16] introduced a s-dimensional vector space V and defined a Lie bracket
to make V a Lie algebra V̄. On V̄, a linear functional was again introduced, by employing
the variational method, a formula called the quadratic-form identity was obtained. Later,
Ma and Chen [17,18] further improved the formula to get a variational identity, which
is a powerful method to generate Hamiltonian structures of some integrable couplings
of the known integrable hierarchies. The quadratic-form identity is generalized form of
the trace identity proposed by Tu Guizhang [15]. It is remarkable that not all integrable
couplings of the known integrable hierarchies possess Hamiltonian structures deduced by
the quadratic-form identity or the variational identity. For example, the Lie algebra

A2,1 = span{e1, e2, e3, e4, e5},

e1 =

 1 0 0
0 −1 0
0 0 0

, e2 =

 0 1 0
0 0 0
0 0 0

, e3 =

 0 0 0
1 0 0
0 0 0

,

e4 =

 0 0 1
0 0 0
0 0 0

, e5 =

 0 0 0
0 0 1
0 0 0

,

has a resulting loop algebra:

Ã2,1 = span{ei(n), i = 1, . . . , 5}, ei(n) = eiλ
n.

By applying the loop algebra Ã2,1, some integrable couplings of the AKNS hierarchy, the TD
hierarchy, etc., could be obtained by the use of the Tu Scheme. However, the Hamiltonian
structures of such the integrable couplings cannot be generated by the quadratic-form
identity or the variational identity. Therefore, it is necessary to choose appropriate Lie
algebras for deducing their Hamiltonian structures. In addition, the Lie algebras for
generating integrable couplings are usually enlarged by the basis of the Lie algebra A1. In
the paper, we want to start from the 3× 3 AKNS spectral problems which are represented by
3× 3 matrix Lie algebras to derive integrable couplings of the known integrable hierarchies
through turning the 3× 3 matrix Lie algebras to the 2× 2 Lie algebra by choosing proper
matrix commutative transformations. Based on those, we choose two appropriate enlarged
Lie algebras for which the integrable couplings of the AKNS hierarchy from the 3× 3
spectral problems are generated, respectively. Besides, their Hamiltonian structures are also
obtained by employing the quadratic-form identity and the trace identity. Specifically, we
obtain new nonlinear isospectral and nonisospectral integrable couplings and their initial
symmetries of the nonlinear Schröger equation, the KdV equations. In particular, we obtain
a nonisospectral nonlinear Schröger equation.

2. Isospectral and Nonisospectral 3 × 3 ANKS Hierarchies

Based on the 3× 3 spectral problem (1) and (2), we take the spatial spectral equation

Ψx = UΨ, U =

 −λ q 0
r 0 q
0 r λ

, (3)

Set

e1 =

 1 0 0
0 0 0
0 0 −1

, e2 =

 0 1 0
0 0 1
0 0 0

, e3 =

 0 0 0
1 0 0
0 1 0

,

and define a commutative operation as follows:

[A, B] = AB− BA,
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then we have
[e1, e2] = e2, [e1, e3] = −e3, [e2, e3] = e1. (4)

Making a matrix commutative transformation

e1 ∼
1
2

h, e2 ∼ e, e3 ∼
1
2

f , (5)

where

h =

(
1 0
0 −1

)
, e =

(
0 1
0 0

)
, f =

(
0 0
1 0

)
, (6)

is a basis of the Lie algebra A1.
By using (6), an enlarge Lie algebra is given by

H =: span{h1, h2, h3, h4, h5, h6},

where

h1 =
1
2

(
h 0
0 h

)
, h2 =

(
e 0
0 e

)
, h3 =

1
2

(
f 0
0 f

)
,

h4 =
1
2

(
0 h
0 h

)
, h5 =

(
0 e
0 e

)
, h6 =

1
2

(
0 f
0 f

)
.

It is easy to see that

[h1, h2] = h2, [h1, h3] = −h3, [h1, h4] = 0, [h1, h5] = h5,

[h1, h6] = −h6, [h2, h3] = h1, [h2, h4] = −h5, [h2, h5] = 0,

[h2, h6] = h4, [h3, h4] = h6, [h3, h5] = −h4, [h3, h6] = 0,

[h4, h5] = h5, [h4, h6] = −h6, [h5, h6] = h6.

Denoting
H1 = span{h1, h2, h3}, H2 = span{h4, h5, h6},

then
H = H1 ⊕ H2, [H1, H1] ⊂ H1, [H1, H2] ⊂ H2, [H2, H2] ⊂ H2, (7)

hence, H is a semi-simple Lie algebra. Specially, we find the Lie algebra A1 = span{e1, e2, e3}
has the same commutative relations with the Lie algebra H1. Therefore, span{e1, e2, e3} is
isomorphic to H1. Thus, if employing the loop algebras Ã1 and H̃1 with the same degrations
and the Tu Scheme, we could generate the common integrable hierarchies. In what follows,
we first apply the loop algebra Ã1 and the Tu Scheme to deduce the 3× 3 isospectral and
nonisospectral hierarchy.

Set
Ã1 = span{e1(n), e2(n), e3(n)}, ei(n) = eiλ

n, i = 1, 2, 3, n ∈ Z.

Taking

V = ∑
i≥0

(aie1(−i) + bie2(−i) + cie3(−i)) + ∑
j≥0

(āje1(−j) + b̄je2e2(−j) + c̄je3(−j))

=: V1 + V2,

then the compatibility condition of the spectral problems

ϕx = U(u, λ)ϕ, ϕt = V(u, λ)ϕ, λt 6= 0 (8)

reads that
∂U
∂u

ut +
∂U
∂λ

λt −Vx + [U, V] = 0.
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According to the scheme called the generalized Tu Scheme presented in [19–21], we first
solve the equation for V

∂U
∂λ

λt −Vx + [U, V] = 0, λt = ∑
j≥0

k j(t)λ−j, (9)

which admits that
ai = ∂−1(qci − rbi)− αi(t),

āj = ∂−1(qc̄j − rb̄j)− k j(t)x,

bi+1 = (−∂ + q∂−1r)bi − q∂−1qci + αi(t)q,

b̄j+1 = (−∂ + q∂−1r)b̄j − q∂−1qc̄j + k j(t)xq,

ci+1 = (∂− r∂−1q)ci + r∂−1rbi + αi(t)r,

c̄j+1 = (∂− r∂−1q)c̄j + r∂−1rb̄j + k j(t)xr.

Noting

V(n,m)
+ =

n

∑
i=0

(aie1(n− i) + bie2(n− i) + cie3(n− i))

+
m

∑
j=0

(āje1(m− j) + b̄je2(m− j) + c̄je3(m− j))

= λnV1 + λmV2 −V(n,m)
− ,

λ
(m)
t,+ = λmλt − λ

(m)
t,− ,

then (9) can be decomposed into

−V(n,m)
+,x + [U, V(n,m)

+ ]− ∂U
∂λ

λ
(m)
t,+ = V(n,m)

−,x − [U, V(n,m)
− ]− ∂U

∂λ
λ
(m)
t,− . (10)

The gradations of the left-hand side in (10) are more than 0, while the right-hand side less
than 1. Thus, the gradations of (10) read 0, 1, which lead us to the following

−V(n,m)
+,x + [U, V(n,m)

+ ] +
∂U
∂λ

λ
(m)
t,+ = (bn+1 + b̄m+1)e2(0)− (cn+1 + c̄m+1)e3(0).

The zero curvature equation

∂U
∂λ

λ
(m)
t,+ +

∂U
∂u

ut −V(n,m)
+,x + [U, V(n,m)

+ ] = 0

gives rise to the following isospectra and nonisospectral AKNS hierarchy

ut =:
(

q
r

)
t
=

(
−bn+1 − b̄m+1
cn+1 + c̄m+1

)
=

(
0 − 1

2
1
2 0

)(
2cn+1 + 2c̄m+1
2bn+1 + 2b̄m+1

)
=: J1

(
2cn+1 + 2c̄m+1
2bn+1 + 2b̄m+1

), (11)

where J1 =

(
0 − 1

2
1
2 0

)
is a Hamiltonian operator. Equation (11) can be written again

ut =
1
2

(
−q∂−1q ∂− q∂−1q

∂− r∂−1q r∂−1r

)(
2cn + 2c̄m
2bn + 2b̄m

)
+ αn(t)

(
−q
r

)
+ km(t)

(
−xq
xr

) . (12)
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It is easy to compute that(
cn+1
bn+1

)
=

(
∂− r∂−1r r∂−1r
−q∂−1q −∂ + q∂−1r

)(
cn
bn

)
+ αn

(
r
q

)
=: L

(
cn
bn

)
+ αn

(
r
q

)
= . . .

= Ln
(

c1
b1

)
+ [α1Ln−1 + α2Ln−2 + · · ·+ αn−1L + αn]

(
r
q

)
.

Hence, (11) can be written as

ut =

(
q
t

)
t
= Φn J

(
2α0r
2α0q

)
+ (2α1Φn−1 + 2α2φn−2 + · · ·+ 2αn)J

(
r
q

)
+ Φm J

(
2k0xr
2k0xq

)
+ (2k1Φm−1 + 2k2Φm−2 + · · ·+ 2km)J

(
xr
xq

)
=

n

∑
i=0

2αn−iΦi J
(

r
q

)
+

m

∑
j=0

2km−jΦi J
(

xr
xq

)
.

Due to

J
(

r
q

)
=

1
2

(
−q
r

)
,

we have the 3× 3 AKNS isospectral–nonisospectral hierarchy:

ut =
n

∑
i=0

αn−i

(
1
4

)i
Φ̄i
(
−q
r

)
+

m

∑
j=0

km−j

(
1
4

)j
Φ̄j
(
−xq
xr

)
, (13)

where

Φ̄ =

(
−∂ + q∂−1r q∂−1q
−r∂−1r ∂− r∂−1q

)
.

Let j = 0, i = n, α0(t) = 4n, (13) reduces to the isospectral hierarchy:

ut = Φ̄n
(
−q
r

)
=: Kn. (14)

It is easy to verify that

Tn
0 = ntKn−1 + x

(
−q
r

)
are nonlocal symmetries of (14). Since Φ̄ is a strong symmetric operator, τm

n = Φ̄mτn
0 =

ntKm+n−1 + Φ̄nx
(
−q
r

)
are still symmetries of (14).

Remark 1. Through the discussion as above, we declare that the integrable hierarchies derived from
3× 3 matrix Lie algebras can be worked out by employing 2× 2 matrix Lie algebras via such the
transformation (5). Actually, some other 3× 3 spectral problems can also transform to 2× 2 cases
by the transformation (5). For example, the following 3× 3 spectral problem [22]:

Ψx =

 2λ− 2s
√

2q 0
−
√

2λr 0
√

2q
0 −

√
2λr −2λ− 2s

Ψ.

The advantage for turning 3 × 3 spectral problems to 2 × 2 cases by using (5) lies in further
investigating integrable couplings of the associating integrable hierarchies derived from 3 × 3



Symmetry 2022, 14, 402 6 of 20

spectral problems. In what follows, we still take the 3× 3 AKNS integrable hierarchy for example to
illustrate the question.

3. Two Kinds of Integrable Models of (13)

The so-called integrable models in the paper imply integrable couplings of some
known integrable hierarchies.

Case 3.1: The first kind of integrable model
Now, we shall employ the enlarged Lie algebra H (7) obtained by using the transfor-

mation (5) for deducing a kind of integrable coupling of (13) and discuss its Hamiltonian
structure.

Set

ϕx = Uϕ, U = −h1(1) + qh2(0) + rh3(0) + u1h5(0) + u2h6(0), (15)

ϕt = Vϕ, V = V1 + V2, (16)

V1 = ∑
i≥0

(aih1(−i) + bih2(−i) + cih3(−i) + dih4(−i) + eih5(−i) + gih6(−i),

V2 = ∑
j≥0

(āih1(−j) + b̄jh2(−j) + c̄jh3(−j) + djh4(−j) + ejh5(−j) + gjh6(−j),

λt = ∑
j≥0

k j(t)λ−j.

By using (9) along with (15) and (16), we have

ai = ∂−1(qci − rbi)− αi(t),

āj = ∂−1(qc̄j − rb̄j)− k j(t)x,

bi+1 = −bix− qai,

b̄j+1 = −b̄jx− qāj,

ci+1 = cix− rai,

c̄j+1 = c̄jx− rāj,

(17)



di = ∂−1[(q + u1)gi − (r + u2)ei + u1ci − u2bi]− βi(t),

d̄j = ∂−1[(q + u1)ḡj − (r + u2)ēj + u1 c̄j − u2b̄j]− γj(t)x,

ei+1 = −eix− (q + u1)di − u1ai,

ēj+1 = −ējx− (q + u1)d̄j − u1 āj,

gi+1 = gix− (r + u2)di − u2ai,

ḡj+1 = ḡjx− (r + u2)d̄j − u2 āj.

(18)

Denoting

V(n,m)
+ =

n

∑
i=0

(aih1(n− i) + bih2(n− i) + cih3(n− i) + dih4(n− i) + eih5(n− i)

+ gih6(n− i)) +
m

∑
j=0

(ājh1(m− j) + b̄jh2(m− j) + c̄jh3(m− j)

+ d̄jh4(m− j) + ējh5(m− j) + ḡjh6(m− j)) =: V(n)
1,+ + V(m)

2,+ ,

λ
(n,m)
t,+ =

m

∑
j=0

k j(t)λm−j = λmλt − λ
(m)
t,− .
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A direct calculation gives rise to

−V(n,m)
+,x + [U, V(n,m)

+ ] +
∂U
∂λ

λ
(m)
t,+ =(bn+1 + b̄m+1)h2(0)− (cn+1 c̄m+1)h3(0)

+ (en+1 + ēm+1)h5(0)− (gn+1 + ḡm+1)h6(0).

Noting V(n,m) = V(n,m)
+ , then the nonisospectral zero curvature equation

∂U
∂u

ut +
∂U
∂λ

λ
(n,m)
t,+ −Vn,m

x + [U, V(n,m)] = 0

admits an integrable model

ut =:


q
r

u1
u2


t

=


−bn+1 − b̄m+1
cn+1 + c̄m+1
−en+1 − ēm+1
gn+1 + ḡm+1

. (19)

Obviously, when u1 = u2 = 0, (19) reduces to (13). Therefore, (19) is an integrable
coupling of the isospectral–nonisospectral hierarchy (13). In the following, we consider
some reductions of (19).

Set
b0 = c0 = g0 = e0 = 0, a0 = α0(t), d0 = −β0(t),

then from (17) and (18) we get that

b1 = α0q, c1 = α0r, a1 = −α1(t),

b2 = −α0qx + α1q, c2 = α0rx + α1r, a2 = α0qr− α2(t),

b3 = α0qxx − α1qx − α0q2r + α2q,

c3 = α0rxx + α1rx − α0qr2 + α2r,

a3 = α0(qrx − qxr) + α1qr− α3,

b4 = −α0qxxx + 3α0qqxr + α1qxx − α1q2r− α2qx + α3q,

c4 = α0rxxx − 3α0qrrx + α1rxx − α1qr2 + α2rx + α3r,

. . .

g1 = β0(r + u2) + α0u2,

e1 = β0(q + u1) + α0u1,

d1 = −β1(t),

e2 = −β0(q + u1)x − α0u1,x + β1(q + u1) + α1u1,

g2 = β0(r + u2)x + α0u2,x + β1(r + u2) + α1u2,

d2 = β0(q + u1)(r + u2) + α0u1r + α0u1u2 + α0u2q− β2,

. . .

.

When n = 1, m = 0, (19) reduces to
qt = α0qx − α1q,

rt = α0rx + α1r,

u1t = β0(q + u1)x + α0u1,x − β(q + u1)− α1u1,

u2t = β0(r + u2)x + α0u2,x + β1(r + u2) + α1u2.
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When n = 2, m = 0, (19) becomes

qt =− α0qxx + α1qx + α0q2r− α2q,

rt =α0rxx + α1rx − α0qr2 + α2r,

u1t =− β0(q + u1)xx − α0u1,xx + β1(q + u1)x + α1u1,x,

+ β0(q + u1)
2(r + u2) + α0(q + u1)(u1r + u2q + u1u2)

− β2(q + u1) + α0qru1 − α2u1,

u2t =β0(r + u2)xx + α0u2,xx + β1(r + u2)x + α1u2,x

− β0(q + u1)(r + u2)
2 − α0(r + u2)(u1r + u1u2 + u2q)

+ β0(r + u2)− α0qru2 + α2u2.

(20)

Specially, set α1 = α2 = 0, α0 = 1, β0 = β1 = β2 = 0, u1 = u2 = 0, (20) reduces to the
well-known nonlinear Schrödinger system{qt = −qxx + q2r,

rt = rxx − qr2.
(21)

Remark 2. We first time obtained such the nonlinear integrable coupling of the nonlinear Schrödinger
equation. The so-called nonlinear integrable coupling means that if ut = K(u) is a known integrable
hierarchy, vt = S(u, v) is also integrable and is nonlinear with respect to the new potential variable
v, then the integrable system {

ut = K(u),

vt = S(u, v)

is called a nonlinear integrable coupling.
When n = 3, m = 0, (19) again reduces to{

qt = −b4 = α0qxxx − 3α0qqxr− α1qxx − α1q2r + α2qx − α3q,

rt = c4 = α0rxxx + α1rxx − 3α0qrrx − α1qr2 + α2rx + α3r,
(22)

u1t = −e4 =β0(q + u1)xxx + α0u1,xxx − β1(q + u1)xx − α1u1,xx

− α0[(q + u1)(u1r + u2q + u1u2)]x + β2(q + u1)x − α0(qru1)x

+ α2u1,x − 3β0(q + u1)(q + u1)x(r + u2) + α0(q + u1)
2u2,x

− α0(q + u1)(q + u1)xu2 + α0qu2,x(q + u1)− α0qxu2(q + u1)

+ α0(q + u1)(u1u2,x − u1,xu2 + u1rx − u1,xr) + β1(q + u1)
2(q + u2)

+ α1(q + u1)(q + u2 + u1u2 + u1r)− β3(q + u1) + α0u1(qrx − qxr)

+ α1qru1 − α3u1,

(23)

u2t = g4 =β0(r + u2)xxx + α0u2,xxx + β1(r + u2)xx + α1u2,xx

− 3β0(q + u1)(r + u2)(r + u2)x − α0[(r + u2)(u1r + u1u2 + u2q)]x
+ β0(r + u2)x − α0(qru2)x + α2u2,x − α0(r + u2)(q + u1)u2,x

+ α0(r + u2)(q + u1)xu2 − α0(r + u2)qu2,x + α0qxu2(r + u2)

− α0(r + u2)(u1u2,x − u1,xu2 + u1rx − u1,xr)− β1(r + u2)(q + u1)

× (q + u2)− α1(r + u2)(qu2 + u1u2 + u1r) + β3(r + u2)

− α0u2(qrx − qxr)− α1qru2 + α3u2.

(24)

When α1 = α2 = α3 = 0, α0 = 1, (22) reduces to{
qt = qxxx + 3qqxr,

rt = rxxx − 3qrrx.
(25)
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When r = 1, (25) turns to the KdV equation

qt = qxxx + 3qqx.

When r = −iq, (25) becomes

qt = qxxx − 3iq2qx, (26)

which is a complex modified KdV equation.
When α0 = α2 = α3 = 0, α1 = 1, (22) reduces to{

qt = −qxx + q2r,

rt = rxx − qr2,
(27)

which represents the Schrödinger equation.
Therefore, we call (22) a generalized KdV-Schrödinger integrable system. Obviously, when

βi = 0(i = 1, 2, 3), u1 = u2 = 0, Equations (23) and (24) identically hold. Hence, (22)–(24) con-
sist of an nonlinear integrable coupling of the generalized KdV-Schrödinger integrable system (22).

Remark 3. From the above discussion, we conclude that a simple and efficient approach for gener-
ating nonlinear integrable couplings just right take multiple parameter functions.

In what follows, we look for the Hamiltonian structure and the symmetries of the isospectral
integrable hierarchy:

ut =


q
r

u1
u2


t

=


−bn+1
cn+1
−en+1
gn+1

, (28)

which is the integrable coupling of the hierarchy (14). For arbitrary elements a, b in the Lie algebra
H, we represent them as

a =
6

∑
i=1

aihi, b =
6

∑
i=1

bihi

which can be used to define a commutative operation in the vector space R6 as follows:

[a, b] =
(

[a, b]1
[a, b]2

)
, (29)

where
[a, b]T1 =(a2b3 − a3b2, a1b2 − a2b1, a3b1 − a1b3),

[a, b]T2 =(a2b6 − a6b2 + a5b3 − a3b5 + a5b6 − a6b5,

a1b5 − a5b1 + a4b2 − a2b4 + a4b5 − a5b4,

a3b4 − a4b3 + a6b1 − a1b6 + a6b4 − a4b6).

It can be verified that R6 becomes a vector Lie algebra if equipped with (29). Besides, (29) can be
written as

[a, b] = aT R(b) = aT
(

R1 R2
0 R3

)
,

where

R1 =

 0 b2 −b3
b3 −b1 0
−b2 0 b1

, R2 =

 0 b5 −b6
b6 −b4 0
b5 0 b4

,

R3 =

 0 b2 + b5 −b3 − b6
b3 + b6 −b1 − b4 0
−b2 − b5 0 b1 + b4

,
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R(b) requires satisfy
R(b)M = −(R(b)M)T , MT = M, Mxt = 0. (30)

Solving (30) obtains

M =



η1 0 0 η2 0 0
0 0 η1 0 0 η2
0 η1 0 0 η2 0
η2 0 0 η2 0 0
0 0 η2 0 0 η2
0 η2 0 0 η2 0

,

here η2 and η2 are constants.
According to Refs. [16,17], a linear functional is defined by

{a, b} = aT Mb. (31)

Taking
U = (−λ, q, r, 0, u1, u2) ∈ R6,

V = (A, B, C, D, E, G) ∈ R6,

A = ∑
i≥0

aiλ
−i, B = ∑

i≥0
biλ
−i, . . .

In terms of (31), it is easy to calculate that

{V,
∂U
∂q
} = Cη1 + Gη2, {V,

∂U
∂r
} = Bη1 + Eη2,

{V,
∂U
∂u1
} = Cη2 + Gη2, {V,

∂U
∂u2
} = (B + E)η2,

{V,
∂U
λ
} = Aη1 + Dη2.

Substituting the above results into the quadratic-form identity reads that

δ

δu
(Aη1 + Dη2) = λ−γ ∂

∂λ
λγ


Cη1 + Gη2
Bη1 + Eη2
Cη2 + Gη2
Bη2 + Eη2

. (32)

Comparing the coefficients of λ−n−1 of both sides in (32) gives

δ

δu
(an+1η1 + dn+1η2) = (−n)


cnη1 + gnη2
bnη1 + enη2
cnη2 + gnη2
bnη2 + enη2

.

Thus, 
cnη1 + gnη2
bnη1 + enη2
cnη2 + gnη2
bnη2 + enη2

. =:
δHn

δu
,
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where Hn = − an+1η1+dn+1η2
n are the Hamiltonian function. We can take η1 = 1, then the integrable

coupling (28) can be written as

ut =


q
r

u1
u2


t

=


0 1

η2−1 0 1
1−η2

1
1−η2

0 1
η2−1 0

0 1
1−η2

0 − 1
η2−η2

2
1

η2−1 0 1
η2−η2

2
0




cn+1η1 + gn+1η2
bn+1η1 + en+1η2
cn+1η2 + gn+1η2
bn+1η2 + en+1η2



=: J̄


cn+1 + gn+1η2
bn+1 + en+1η2

cn+1η2 + gn+1η2
bn+1η2 + en+1η2

 = J̄
δHn+1

δu
+


(r + u2)βnη2 + u2αnη2 + αnr
−(q + u1)βnη2 + u1αnη2 + αnq
(r + u2)βnη2 + u2αnη2 + αnrη2
−(q + u1)βnη2 + u1αnη2 + qαnη2

,

(33)

which is the Hamiltonian form of (28). It can be found that
cn+1 + gn+1η2
bn+1 + en+1η2
(cn+1 + gn+1)η2
(bn+1 + en+1)η2

 = L


cn + gnη2
bn + enη2
(cn + gn)η2
(bn + en)η2

,

where

L = ∂− r∂−1q r∂−1r −r(r + u2)∂
−1u1 − u2∂−1q (r + u2)∂

−1u2 + u2∂−1r
−q∂−1q −∂ + q∂−1r −(q + u1)∂

−1u1 − u1∂−1q (q + u1)∂
−1u2 + u1∂−1r

(r + u2)∂
−1(u1 − u2) 0 ∂− (r + u2)∂

−1(q + u1) (r + u2)∂
−1(r + u2)

0 0 −(q + u1)∂
−1(q + u1) −∂ + (q + u1)∂

−1(r + u2)


is a recurrence operator. Hence, (33) can be written again as

ut =


q
r

u1
u2


t

= J̄L


cn + gnη2
bn + enη2
(cn + gn)η2
(bn + en)η2

+


(r + u2)βnη2 + u2αnη2 + αnr
−(q + u1)βnη2 + u1αnη2 + αnq
(r + u2)βnη2 + u2αnη2 + αnrη2
−(q + u1)βnη2 + u1αnη2 + qαnη2



=: P1 + P2 = Φn J̄


c1 + g1η2
b1 + e1η2
(c1 + g1)η2
(b1 + e1)η2

+ P2,

where

Φ = J̄L J̄−1

=


0 1 0 −1
−1 0 1 0
0 −1 0 1

η2

1 0 − 1
η2

0


 ∂− r∂−1q r∂−1r −(r + u2)∂

−1u1 − u2∂−1q (r + u2)∂
−1u2 + u2∂−1r

−q∂−1q −∂ + q∂−1r −(q + u1)∂
−1u1 − u1∂−1q (q + u1)∂

−1u2 + u1∂−1r
(r + u2)∂

−1(u1 − u2) 0 ∂− (r + u2)∂
−1(q + u1) (r + u2)∂

−1(r + u2)
0 0 −(q + u1)∂

−1(q + u1) ∂ + (q + u1)∂
−1(r + u2)




0 − 1
η2

(
1
η2
− 1
)

0 1− 1
η2

1
η2

(
1
η2
− 1
)

0 1− 1
η2

0

0 1− 1
η2

0 1
η2
− 1

1
η2
− 1 0 1

η2
− 1 0

.
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Obviously,

K0 = J̄


c1 + g1η2
b1 + e1η2
(c1 + g1)η2
(b1 + e1)η2



=
1

η2 − 1


0 1 0 −1
−1 0 1 0
0 −1 0 1

η2

1 0 − 1
η2

0




α0r + (β0r + β0u2 + α0u1)η2
α0q + (β0q + β0u1 + α0u1)η2
(α0r + β0r + β0u2 + α0u1)η2
(α0q + β0q + β0u1 + α0u1)η2



=


−α0q
α0r

−(β0q + β0u1 + α0u1)
(β0r + β0u2 + α0u1)


is an initial symmetry of the integrable coupling (33). The isospectral–nonisospectral integrable
hierarchy (19) also contains the nonisospectral integrable hierarchy

ut =


q
r

u1
u2


t

=


−b̄m+1
c̄m+1
−ēm+1
ḡm+1

. (34)

In what follows, we consider some reductions of (34). Set b̄0 = c̄0 = ḡ0 = ē0 = 0, ā0 =
−k0(t)x, d̄0 = −γ0(t)x, then we have from (17) and (18) that

b̄1 = k0xq, c̄1 = k0xr, ḡ1 = γ0x(r + u2) + k0xu2,

ē1 = γ0x(q + u1) + k0xu1, ā1 − k1(t)x, d̄1 = −γ1(t)x,

b̄2 = −k0(xq)x + k1xq, c̄2 = k0(xr)x + k1xr,

ḡ2 = γ0(x(r + u2))x + k0(xu2)x + γ1x(r + u2) + k1xu2,

ē2 = −γ0(x(q + u1))x − k0(xu1)x + γ1x(q + u1) + k1xu1,

ā2 = k0xqr + k0∂−1(qr)− k2x,

b̄3 = k0(xq)xx + k1(xq)x − k0xq2r− k0q∂−1(qr) + k2xq,

c̄3 = k0(xr)xx + k1(xr)x − k0xqr2 − k0r∂−1(qr) + k2xr,

d̄2 = γ0x(q + u1)(r + u2) + γ0∂−1(q + u1)(r + u2)

+ k0∂−1[(q + u1)(xu2)x + (r + u2)(xu1)x]

+ k0∂−1(u1r + u1xrx + u2q + u2xqx)− γ2x,

ḡ3 = γ0(x(r + u2))xx + k0(xu2)xx + γ1(x(r + u2))x

+ k1(xu2)x − u2[k0xqr + k0∂−1(qr)− k2x]− (r + u2)d̄2,
(35)

ē3 = γ0(x(q + u1))xx + k0(xu1)xx − γ1(x(q + u1))x

− k1(xu1)x − u1[k0xqr + k0∂−1(qr)− k2x]− (q + u1)d̄2,
(36)

. . . . . .

When m = 1, (34) reduces to
qt = k0(xq)x − k1xq,

rt = k0(xr)x + k1xr,

u1t = γ0(x(q + u1))x + k0(xu1)x − γ1x(q + u1)− k1xu1,

u2t = γ0(x(r + u2))x + k0(xu2)x + γ1x(r + u2) + k1xu2.

(37)
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Obviously, When γ0 = γ1 = u1 = u2 = 0, (37) just reduces to{
qt = k0(xq)x − k1xq,

rt = k0(xr)x + k1xr.
(38)

Hence, (37) is a nonisospectral integrable coupling of (38).
When m = 2, (34) becomes

qt = −k0(xq)xx − k1(xq)x + k0xq2r + k0q∂−1(qr)− k2xq,

rt = k0(xr)xx + k1(xr)x − k0xqr2 − k0r∂−1(qr) + k2xr,

u1t = −ē3,

u2t = ḡ3,

(39)

where ē3, ḡ3 are presented by (36) and (35), respectively.
When γ0 = γ1 = γ2 = 0, u1 = u2 = 0, (39) reduces to{

qt = −k0(xq)xx − k1(xq)x + k0xq2r + k0q∂−1(qr)− k2xq,

rt = k0(xr)xx + k1(xr)x − k0xqr2 − k0r∂−1(qr) + k2xr.
(40)

Therefore, (39) is a nonlinear nonisospectral integrable coupling of (40).
Taking r = 0, (40) again reduces to

qt = −k0(xq)xx − k1(xq)x − k2xq.

A simple symmetry of the nonisospectral integrable coupling (34) is given by

τ0 = J̄


c̄1 + ḡ1η2
b̄1 + ē1η2
(c̄1 + ḡ1)η2
(b̄1 + ḡ1)η2



=
1

η2 − 1


0 1 0 −1
−1 0 1 0
0 −1 0 1

η2

1 0 − 1
η2

0




k0xr + [γ0x(r + u2) + k0xu2]η2
k0xq + [γ0x(q + u1) + k0xu1]η2
[k0xr + γ0x(r + u2) + k0xu2]η2
[k0xq + γ0x(q + u1) + k0xu1]η2



=


−k0xq
k0xr

−γ0x(q + u1)− k0xu1
γ0x(r + u2) + k0xu2

.

Case 2: The second kind of integrable model
In the section, we take the basis of the Lie algebra A1:

h =

(
1 0
0 −1

)
, e =

(
0 1
0 0

)
, f =

(
0 0
1 0

)
,

which is enlarged to the following

G =: span{ f1, f2, f3, f4, f5, f6},

where

f1 =
1
2

(
h 0
0 h

)
, f2 =

(
e 0
0 e

)
, f3 =

1
2

(
f 0
0 f

)
,

f4 =
1
2

(
0 h
h 0

)
, f5 =

(
0 e
e 0

)
, f6 =

1
2

(
0 f
f 0

)
,
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along with the following commutative relations

[ f1, f2] = f2, [ f1, f3] = − f3, [ f1, f4] = 0, [ f1, f5] = f5,

[ f1, f6] = − f6, [ f2, f3] = f1, [ f2, f4] = − f5, [ f2, f5] = 0,

[ f2, f6] = f4, [ f3, f4] = f6, [ f3, f5] = − f4, [ f3, f6] = 0,

[ f4, f5] = f2, [ f4, f6] = − f3, [ f5, f6] = f1.

Denoting
G = G1 ⊕ G2, G1 = span{ f1, f2, f3}, G2 = span = { f4, f5, f6},

we find that
[G1, G1] ⊂ G1, [G1, G2] ⊂ G2, [G2, G2] ⊂ G1. (41)

Remark 4. Obviously, G1 and H1 has the same commutators. Hence, if defining the same loop
algebras G̃1 and H̃1 for G1 and H1, and introducing the same spectral equations, then it follows
that the same integrable hierarchy can be generated by the G̃1 and H̃1. However, (41) is different
from (7), we conclude that we could obtain various integrable coupling by using the Lie algebra
G. In what follows, we shall employ the Lie algebra G for generating another kind of expanding
integrable model of (14).

Set

ϕx = Uϕ, U = − f1(1) + q f2(0) + r f3(0) + s1h5(0) + s2h6(0), (42)

ϕt = Vϕ, V = V1 + V2, (43)

V1 = ∑
i≥0

(a1i f1(−i) + a2i f2(−i) + a3i f3(−i) + a4i f4(−i) + a5i f5(−i) + a6i f6(−i)),

V2 = ∑
j≥0

6

∑
l=1

blj
fl(−j), λt = ∑

j≥0
k j(t)λ−j.

Denoting

V(n,m)
+ = V(n)

1,+ + V(m)
2,+ =

6

∑
l=1

(
n

∑
i=0

ali fl(−i) +
m

∑
j=0

bl j fl(−j)

)
,

λ
(m)
t,+ =

m

∑
j=0

k j(t)λm−j = λmλt − λ
(m)
t,− ,

then equation

Vx =
∂U
∂λ

λt + [U, V]

admits that

a1i = ∂−1(qa3i − ra2i + s1a6i − s2a5i)− αi(t),

a2,i+1 = −(a2i)x − qa1i − s1a4i,

a3,i+1 = (a3i)x − ra1i − s2a4i,

a4i = ∂−1(qa6i − ra5i + s1a3i − s2a2i)− βi(t),

a5,i+1 = −(a5i)x − qa4i − s1a1i,

a6,i+1 = (a6i)x − ra4i − s2a1i,
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ā1j = ∂−1(qā3j − rā2j + s1 ā6j − s2 ā5j)− k j(t)x,

ā2,j+1 = −(ā2j)x − qā1j − s1 ā4j,

a3,j+1 = (ā3j)x − rā1j − s2 ā4j,

ā4j = ∂−1(qā6j − rā5j + s1 ā3j − s2 ā1j)− γj(t),

ā5,j+1 = −(ā5j)x − qāx − qā4j − s1 ā1j,

ā6,j+1 = (ā6j)x − rā4j − s2 ā1j, i, j ≥ 0.

Taking

a20 = a30 = a50 = a60 = ā20 = ā30 = ā50 = ā60 = 0,

a10 = −α0(t), a40 = −β0(t), ā10 = −k0(t)x, ā40 = −γ0(t),

then we get from the above equations that

a21 = α0q + β0s1, a31 = α0γ + β0s2, a51 = α0s1 + β0q,

a61 = α0s2 + β0γ, a11 = −α1(t), a41 = −β1(t),

a22 = −α0qx − β0s1x + α1q + β1s1,

a32 = −α0γx + β0s2x + α1r + β1s2,

a52 = −α0s1x − β0qx + β1q + α1s1,

a62 = α0s2x + β0γx + β1r + α1s1,

a12 = α0(qr + s1s2) + β0(qs2 + rs1)− α2(t),

a42 = α0(qs2 + rs1) + β0(qr + s1s2)− β2(t),

a23 = α0(qxx − q2r− 2qs1s2 − rs1s2) + β0(s1xx − q2s2 − 2qrs1 − s2
1s2)

− α1qx − β1s1x + α2q + β2γ,

a33 = α0(rxx − qr2 − 2rs1s2 − qs2
2) + β0(s2xx − 2qrs2 − r2s1 + s1s2

2)

+ α1rx + β1s2x + α2r + β2s2,

a53 = α0(s1xx − 2qrs1 − s2
1s2 − q2s2) + β0(qxx − q2r− 2qs1s2 − rs2

1)

− α1s1x − β1qx + α2s1 + β2q,

a63 = α0(s2xx − 2qrs2 − r2s1 − s1s2
2) + β0(rxx − qr2 − 2rs1s2 − qs2

2)

+ α1s2x + β1rx + β2r + α2s2,

ā21 = k0xq + γ0s1, ā31 = k0xr + γ0s2,

ā51 = γ0q + k0xs1, ā61 = γ0r + k0xs2, ā11 = −k1(t)x,

ā41 = −γ1(t), ā52 = −γ0qx − k0(xs1)x + qγ1 + k1xs1,

ā62 = γ0γx + k0(xs2)x + γ1r + k1xs2,

ā32 = k0(xr)x + γ0s2x + k1xr + γ1s2,

ā22 = −k0(xq)x − γ0s1x + k1xq + γ1s1,

ā12 = k0∂−1(qr + s1s2) + k0x(qr + s1s2) + γ0(qs2 + rs1)− k2(t)x,

ā42 = k0∂−1(qs2 + rs1) + γ0(qr + s1s2) + k0x(qs2 + rs1)− γ2(t),
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ā23 = k0(xq)xx + γ0s1xx − k1(xq)x − γ1s1x − k0q∂−1(qr + s1s2)

− k0xq(qr + s1s2)− γ0(qs2 + rs1) + k2xq− k0s1∂−1(qs2 + rs1)

− γ0s1(qr + s1s2)− k0xs1(qs2 + rs1) + γ2s1,

ā33 = k0(xr)xx + γ0s2xx + k1(xr)x + γ1s2x − k0r∂−1(qr + s1s2)

− k0xr(qr + s1s2)− γ0r(qs2 + rs1) + k2xr− k0s2∂−1(qs2 + rs1)

− γ0s2(qr + s1s2)− k0xs2(qs2 + rs1) + γ2s2,

ā53 = k0(xs1)xx + γ0qxx − γ1qx − k1(xs1)x − k0q∂−1(qs2 + rs1)

− γ0q(qr + s1s2)− k0xq(qs2 + rs1) + γ2q− k0s1∂−1(qr + s1s2)

− k0xs1(qr + s1s2)− γ0s1(qs2 + rs1) + k2xs1,

ā63 = k0(xs2)xx + γ0rxx + γ1rx + k1(xs2)x − k0r∂−1(qs2 + rs1)

− γ0r(qr + s1s2)− k0xr(qs2 + rs2) + γ2r− k0s2∂−1(qr + s1s2)

− k0xs2(qr + s1s2)− γ0s2(qs2 + rs1) + k2xs2,

. . .

A direct calculation reads

− (V(n,m)
+ )x + [U, V(n,m)

+ ] +
∂U
∂λ

λ
(m)
t,+

= (V(n,m)
− )x − [U, V(n,m)

− ]− ∂U
∂λ

λ
(m)
t,−

= (a2,n+1 + ā2,m+1) f2(0)− (a3,n+1 + ā3,m+1) f3(0)

+ (a5,n+1 + ā5,m+1) f5(0)− (a6,n+1 + ā6,m+1) f6(0).

Therefore, the nonisospectral zero curvature equation

∂U
∂u

ut +
∂U
∂λ

λ
(m)
t,+ −V(n,m)

+,x + [U, V(n,m)
+ ] = 0

admits an isospectral-nonisospectral Lax integrable hierarchy

ut =


q
r
s1
s2


t

=


−a2,n+1 − ā2,m+1
a3,n+1 + ā3,m+1
−a5,n+1 − ā5,m+1
a6,n+1 + ā6,m+1

. (44)

When ā2,p, ā3,p, ā5,p, ā6,p(p = m + 1) = 0, (44) reduces to the resulting isospectral integrable
hierarchy

ut =


q
r
s1
s2


t

=


−a2,n+1
a3,n+1
−a5,n+1
a6,n+1

. (45)

Specially, when s1 = s2, (45) reduces to the AKNS hierarchy.
In what follows, we deduce the Hamiltonian structure of (45). The U and V1 in (42) and (43)

can be written as

U =

(
−h(1) + qe(0) + r f (0) s1e(0) + s2 f (0)

s1e(0) + s2 f (0) −h(1) + qe(0) + r f (0)

)
,

V1 =

(
a1h(0) + a2e(0) + a3 f (0) a4h(0) + a5e(0) + a6 f (0)
a4h(0) + a5e(0) + a6 f (0) a1h(0) + a2e(0) + a3 f (0)

)
,
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where
ai = ∑

j≥0
aij fi(j), i = 1, 2, . . . , 6.

It is easy to calculate that

〈V1,
∂U
∂λ
〉 = −4a1, 〈V1,

∂U
∂q
〉 = 4a2, 〈V1,

∂U
∂r
〉 = −4a3,

〈V1,
∂U
∂s1
〉 = −4a5, 〈V1,

∂U
∂s2
〉 = −4a6.

Substituting the above consequences to the trace identity gives

δ

δu
(−4a1) = λ−γ ∂

∂λ
λγ


4a2
−4a3
4a5
−4a6

. (46)

Comparing the coefficients of λ−n−1 both sides of (46) leads to

δ

δu
(−a1,n+1) = (−n + γ)


a2,n
−a3,n
a5,n
−a6,n

.

It is easy to check that γ = 0. Thus, we have
a2,n
−a3,n
a5,n
−a6,n

 =
δHn

δu
, Hn =

a1,n+1

n
.

The integrable hierarchy (46) can be written as Hamiltonian form

ut =


q
r
s1
s2


t


−a2,n+1
a3,n+1
−a5,n+1
a6,n+1

 =


−1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1




a2,n+1
−a3,n+1
a5,n+1
−a6,n+1



= J̃


−a2,n+1
a3,n+1
−a5,n+1
a6,n+1

 = J̃
δHn+1

δu
.

Next, we consider reductions of (44).
When n = 2, m = 2, we have that

qt =α0(−qxx + q2r + 2qs1s2 + rs1s2) + β0(−s1xx + q2s2 + 2qrs1 + s2
1s2)

+ α1qx + β1s1x − α2q− β2r− k0xq(qr)xx − γ0s1xx + k1(xq)x + γ1s1x

+ k0q∂−1(qr + s1s2) + k0xq(qr + s1s2) + γ0(qs2 + rs1)− k2xq

+ k0s1∂−1(qs2 + rs1) + γ0s1(qr + s1s2) + k0xs1(qs2 + rs1)− γ2s1,

(47)

rt =α0(rxx − qr2 − 2rs1s2 − qs2
2) + β0(s2xx − 2qrs2 − r2s1 + s1s2

2)

+ α1rx + β1s2x + α2r + β2s2 + k0(xr)xx + γ0s2xx + k1(xr)x + γ1s2x

− k0r∂−1(qr + s1s2)− k0xr(qr + s1s2)− γ0(qs2 + rs1) + k2xr

− k0s2∂−1(qs2 + rs1)− γ0s2(qr + s1s2)− k0xs2(qs2 + rs1) + γ2s2,

(48)
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s1t =α0(−s1xx + 2qrs1 + s2
1s2 + q2s2) + β0(−qxx + q2r + 2qs1s2 + rs2

1)

+ α1s1x + β1qx − α2s1 − β2q− k0(xs2)xx − γ0rxx − γ1rx − k1(xs2)x

+ k0r∂−1(qs2 + rs1) + γ0r(qr + s1s2) + k0xr∂−1(qs2 + rs1)− γ2r

+ k0s2∂−1(qr + s1s2) + k0xs2(qr + s1s2) + γ0s2(qs2 + rs1)− k2xs2,

(49)

s2t =α0(s2xx − 2qrs2 − r2s1 − s1s2
2) + β0(rxx − qr2 − 2rs1s2 − qs2

2)

+ α1s2x + β1rx + β2r + α2s2 + k0(xs2)xx + γ0rxx + γ1rx + k1(xs2)x

− k0r∂−1(qs2 + rs1)− γ0r(qr + s1s2)− k0xr(qs2 + rs1)

+ γ2r− k0xs2∂−1(qr + s1s2)− k0xs2(qr + s1s2) + k2xs2.

(50)

Taking β0 = s1 = s2 = 0, (47) and (48) reduce to
qt =α0(−qxx + q2r) + α1qx − α2q− β2r− k0(xq)xx

+ k1(xq)x + k0q∂−1(qr) + k0xq2r− k2xq,

rt =α0(rxx − qr2) + α1rx + α2r + k0(sr)xx + k1(xr)x

− k0r∂−1(qr)− k0xqr2 + k2xr.

(51)

If taking α1 = α2 = β2 = ki(i = 0, 1, 2) = 0, α0 = 1, (51) becomes{qt = −qxx + q2r,

rt = rxx − qr2,

which can be transformed to
iqt = qxx− q|q|2 (52)

by using the transformation r → q∗, t→ −it. (52) is obviously nonlinear Schrödinger equation.
When α0 = α1 = α2 = β2 = 0, (51) turns to{

qt = −k0(xq)xx + k1(xq)x + k0q∂−1(qr) + k0xq2r− k2xq,

rt = k0(xr)xx + k1(xr)x − k0r∂−1(qr)− k0xqr2 + k2xr,
(53)

which is a non-local integrable system with variable coefficients.
In particular, when k1 = k2 = 0, k0 = 1, (53) presents{

qt = −(xq)xx + q∂−1(qr) + xq2r,

rt = (xr)xx − r∂−1(qr)− xqr2.
(54)

If taking r = q∗, t→ −it, (54) reads that

iqt = (xq)xx + q∂−1|q|2 + xq|q|2,

which is a non-local nonlinear Schrödinger equation with variable coefficients.

Remark 5. The first two equations in (39) are the same with (53) . When m = 2, the nonisospectral
integrable hierarchy of (44) presents 

qt = −ā2,3,

rt = ā3,3,

s1t = −ā5,3,

s2t = ā6,3.

(55)
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Specially, when β0 = β1 = β2 = γ0 = γ1 = γ2 = 0, (55) reduces to

qt =− k0(xq)xx + k1(xq)x + k0q∂−1(qr + s1s2) + k0xq(qr + s1s2)

− k2xq + k0s1∂−1(qs2 + rs1) + k0xs1(qs2 + rs1),

rt =k0(xr)xx + k1(xr)x − k0r∂−1(qr + s1s2)− k0xr(qr + s1s2)

+ k2xr− k0s2∂−1(qs2 + rs1)− k0xs2(qs2 + rs1),

s1t =− k0(xs2)xx − k1(xs2)x + k0r∂−1(qs2 + rs1) + k0xr(qs2 + rs1)

+ k0s2∂−1(qr + s1s2) + k0xs2(qr + s1s2)− k2xs2,

s2t =k0(xs2)xx + k1(xs2)x − k0r∂−1(qs2 + rs1)− k0xr(qs2 + rs1)

− k0s2∂−1(qr + s1s2)− k0xs2(qr + s1s2) + k2xs2,

which are different from (39). Hence, the isospectral–nonisospectral integrable hierarchy (44) is
different from the hierarchy (19), they are all integrable couplings of the AKNS hierarchy (14).

4. Conclusions

In the paper, we obtained an isospectral–nonisospectral AKNS hierarchy by using a
third-order matrix Lie algebras. In order to discover its expanding integrable models, i.e.,
integrable couplings, we turned the matrix Lie algebra into a 2× 2 matrix Lie algebra so
that it was enlarged into two higher order semi-simple Lie algebras for which two kinds
of nonisospectral expanding integrable models were generated. Specially, we obtained
nonlinear integrable couplings which has been required to overcome. An interesting result
reads that we united the well-known KdV equation and the NLS as an integrable model.
The aim for publishing the paper lies in a few aspects. One purpose reads how to transfer
higher-order matrix Lie algebras into lower-order matrix Lie algebras. The second one
presents how to generate nonlinear integrable couplings. The third one manifests how
to generate multiply nonisospectral integrable couplings. The approach presented in the
paper can be used to discuss other integrable systems.
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