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Abstract: In this paper, a mathematical model of a cancer sub-network is analysed from the view
point of Lie symmetry methods. This model discusses a human cancer cell which is developed due
to the dysfunction of some genes at the R-checkpoint during the cell cycle. The primary purpose of
this paper is to apply the techniques of Lie symmetry to the model and present some approximated
solutions for the three-dimensional system of first-order ordinary differential equations describing
a cancer sub-network. The result shows that the phosphatase gene (Cdc25A) regulates the cyclin-
dependent kinases inhibitor (P27Kip1). Furthermore, this research discovered that the activity that
reverses the inhibitory effects on cell cycle progression at the R-checkpoint initiates a pathway.

Keywords: group theoretic approach; lie symmetry; cell cycle; cancer sub-network

1. Introduction

Over the last two decades, researchers have developed mathematical models to under-
stand the dynamic mechanisms of the cell cycle [1–4]. In [5–7], scholars used non-linear
differential equations to model cell cycle mutations as limit cycles. The R-checkpoint,
according to Pardee, represents a unique switch between the quiescent and prolifera-
tive phases of normal cells [7]. Researchers further highlighted the importance of the
R-checkpoint in preventing malignant transformation [8]. As a result, if a cell has damaged
DNA or has not grown properly, the cell cycle is said to be stalled [2,9,10]. In particu-
lar, genes such as phosphatase Cdc25A, cyclins (D, E), cyclin-dependent kinases (Cdks),
retinoblastoma protein (Rb), cyclin-dependent kinases inhibitor P27Kip1, and transcrip-
tional factors (E2F, C-Myc) are the most significant control regulators [2,9–11].

A mathematical model can be defined as the representation and development of
a previously investigated process. This insight has led to the creation of mathematical
forms that represent real-world scenarios. This will make it easier to comprehend the
phenomenon that has been observed. The Lie symmetry technique and numerical analy-
ses provide understanding, responses, and useful guidance in analysing the formulated
mathematical model.

In this study, a mathematical model of a cancer sub-network is analysed from the
view point of Lie symmetry. This technique is indeed a powerful tool for solving non-
linear differential equations. The Cancer Sub-Network model is governed by the following
three-dimensional system of first-order non-linear differential equations [10]:

dx1

dt
= λ1 + ax2 − µ1x1,

dx2

dt
= λ2 + bx1 − µ2x2 +

cρ

c + x3
, (1)

dx3

dt
= λ3 − µ3x3 +

dσ

d + x2
,
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where the dependent variables and parameters are described in the table below (Table 1).
The terms −µ1x1, −µ2x2, and −µ3x3 refer to protein degradation caused by ubiquitin-
proteasomes with the fixed rate coefficients µ1, µ2, and µ2 [10]. The inhibition nature of cell
x3 to x2 and of x2 to x3 are represented by cρ

c+x3
and dσ

d+x2
, respectively.

Table 1. Description of variables and parameters.

Variable and
Parameter Description References

1 x1 concentration of gene Cdc25A [1,11]

2 x2 concentration of gene Cdks [1,2]

3 x3 concentration of gene P27Kip1 [1,12]

4 λ1 constitutive protein expressions of Cdc25A [7,9]

5 λ2 constitutive protein expressions of Cdks [2,9]

6 λ3 mitogenic signal stimulation [2,3]

7 a activation efficiency of x2 by x1 [2,6]

8 b activation efficiency of x1 by x2 [2,10]

9 c inhibition coefficients of x3 to x2 [1,2,13]

10 d inhibition coefficients of x2 to x3 [2,13]

11 ρ production rates of x2 to x3 [2,9]

12 σ production rates of x3 to x2 [2,9]

The rest of the paper is organised as follows. In Section 2, a realistic background of
the fundamental theories of Lie symmetry are presented. A simplified and parametrised
form of the Cancer Sub-Network model is developed in Section 3. Lie symmetry analysis
of the model is performed in Section 4. The numerical solutions are performed and
presented graphically in Section 5. Finally, a discussion and concluding remarks are
provided in Section 6.

2. Preliminaries on Lie Symmetry Method

In this Section, a summary of the Lie symmetry analysis to solve a system of differential
equations is provided. The method comprises the tools that are needed in this study. Firstly,
the mathematical concept of symmetry is enlightened. Secondly, the overall properties of
groups are given and extended to the Lie groups. Several textbooks are available in the
literature. Furthermore, numerous research articles are published on the theory of the Lie
symmetry technique for solving ordinary differential equations (ODEs) as well as partial
differential equations (PDEs).

In accordance with the theory of Lie symmetry, the given three-dimensional system of
the first-order differential equation is as follows:

ẋ1 = f1(t, x1, x2, x3),

ẋ2 = f2(t, x1, x2, x3),

ẋ3 = f3(t, x1, x2, x3),

which admits the following Lie group of one-parameter transformations (a):

t̃ ≈ t + aT(t, x1, x2, x3),

x̃1 ≈ x1 + aX1(t, x1, x2, x3),

x̃2 ≈ x2 + aX2(t, x1, x2, x3),

x̃3 ≈ x3 + aX3(t, x1, x2, x3),
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with the infinitesimal Lie operators below:

G = T
∂

∂t
+ X1

∂

∂x1
+ X2

∂

∂x2
+ X3

∂

∂x3
. (2)

The group transformations t̃, x̃1, x̃2, and x̃3 are obtained by solving the following Lie
equations [8]:

dt̃
da

= T(t, x1, x2, x3),

dx̃1

da
= X1(t, x1, x2, x3),

dx̃2

da
= X2(t, x1, x2, x3),

dx̃3

da
= X3(t, x1, x2, x3),

with the initial conditions:

t̃ |a=0= t, x̃1 |a=0= x1, x̃2 |a=0= x2, x̃3 |a=0= x3.

The first extension of the Lie operators above is defined as follows:

G[1] = G + X[t]
1

∂

∂ẋ1
+ X[t]

2
∂

∂ẋ2
+ X[t]

3
∂

∂ẋ3
, (3)

where

X[t]
1 = Dt(X1)− ẋ1Dt(T),

X[t]
2 = Dt(X2)− ẋ2Dt(T),

X[t]
3 = Dt(X3)− ẋ3Dt(T),

with Dt representing the total differential operator, described as follows:

Dt =
∂

∂t
+ ẋ1

∂

∂x1
+ ẋ2

∂

∂x2
+ ẋ3

∂

∂x3
+ ẍ1

∂

∂ẋ1
+ ẍ2

∂

∂ẋ2
+ ẍ3

∂

∂ẋ3
+ ...

The infinitesimal transformation obtained will be used to solve the following equation:

Trt + X1rx1 + X2rx2 ++X3rx3 = 0,

Tut + X1ux1 + X2ux2 ++X3ux3 = 0, (4)

Tvt + X1vx1 + X2vx2 ++X3vx3 = 0,

Twt + X1wx1 + X2wx2 ++X3wx3 = 1.

Equation (4) will provide a set of new independent variable r, and dependent variables
u, v, and w, which can be used to transform the non-linear system (1) into a linear system.

Theorem 1. A function h(t, x1, · · · , xk) is invariant under the prolonged group G if and only
if [14]:

G[k]h = 0,

where

G[k] = G +
n

∑
i=1

{
X(i) −

i

∑
j=1

(
i
j

)
x(i+1−j)T(j)

}
∂x(i)

is the kth extension of the Lie operator of G.
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Theorem 2. Every one-parameter group of transformations (x̂ = f (x, y, ε), ŷ = g(x, y, ε)) is
reduced to a group of translations t̂ = t + ε, û = u with the following generator [15,16]:

X =
∂

∂t
,

by a suitable change of variables

t = t(x, y), u = u(x, y).

Considering that the Lie groups of point transformations related to a given differential
equation E involve n independent variables x = (x1, x2, ..., xn) ∈ Rn and m dependent
variables u = (u1, u2, ..., um) ∈ Rm [16,17], let:

x∗ = X(x, u; a), u∗ = U(x, u; a) (5)

be a group of transformations in the space ∈ Rn+m of the variables (x, u) [17,18]. Moreover,
let the following equation:

u = Θ(x) ≡ (Θ1(x), Θ2(x), ..., Θm(x)),

be a solution for the equation E . A Lie group of transformations of the form (5) admitted
by E has the two corresponding properties below [15,17]:

1. A transformation of the group maps any solution of E into another solution of E ;
2. A transformation of the group leaves E invariant, supposing that E reads the same in

terms of the variables (x, u) and in terms of the transformed variables (x∗, u∗).

3. Simplification and Parametrisation Form of Model (1)

In this Section, a reduction of the number of parameters from the original model is
performed. As a result, a cosmetic simplification of the non-linear system (1) is achieved
below.

By letting:

τ = µ3t,

u1(τ) =
bx1

λ2
,

u2(τ) =
ax2

λ1
, (6)

u3(τ) =
x3

c
.

The left-hand side of the model Equation (1) becomes:

dx1

dt
=

(λ2µ3

b

)(du1

dτ

)
,

dx2

dt
=

(λ1µ3

a

)(du2

dτ

)
, (7)

dx3

dt
=

(
cµ3

)(du3

dτ

)
.

The substitution of Equations (6) and (7) into (1) gives the following:
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du1

dτ
=

bλ1

λ2µ3

(
1 + u2

)
− µ1

µ3
u1,

du2

dτ
=

aλ2

λ1µ3

(
1 + u1

)
− µ2

µ3
u2 +

aρ

(λ1µ3)(1 + u3)
, (8)

du3

dτ
=

λ3

cµ3
+

adσ

cµ3(ad + λ1)u2
− u3.

Hence, Equation (8) is reduced to:

du1

dτ
= λ∗1(1 + u2)− µ∗1u1,

du2

dτ
= λ∗2(1 + u1)− µ∗2u2 +

a∗

1 + u3
, (9)

du3

dτ
= λ∗3 +

b∗

d∗ + u2
− u3,

with

λ∗1 =
bλ1

λ2µ3
,

µ∗1 =
µ1

µ3
,

λ∗2 =
aλ2

λ1µ3
,

µ∗2 =
µ2

µ3
,

a∗ =
aρ

λ1µ3
,

λ∗3 =
λ3

cµ3
,

b∗ =
σd∗

cµ3
,

d∗ =
ad
λ1

.

4. Lie Symmetry Analysis of the Model (9)

By applying Equations (2) and (3) into the Non-dimensional model Equation (9), we
obtain the following:

G

(
λ∗1(1 + u2)− µ∗1u1

)
= −µ∗1U1 + λ∗1U2,

G

(
λ∗2(1 + u1)− µ∗2u2 +

a∗

1 + u3

)
= λ∗2U1 − µ∗2U2 −

a∗

(1 + u3)2 U3, (10)

G

(
λ∗3 +

b∗

d∗ + u2
− u3

)
= −

(
1 +

b∗

(d∗ + u2)2

)
U3.

The substitution of extended infinitesimal transformations into Equation (3) gives the
following equations:
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−µ∗1U1 + λ∗1U2 = U[τ]
1 + u

′
1U[u1]

1 + u
′
2U[u2]

1 + u
′
3U[u3]

1

− u
′
1(T [τ] + u

′
1T [u1] + u

′
2T [u2] + u

′
3T [u3]),

λ∗2U1 − µ∗2U2 −
a∗

(1 + u3)2 U3 = U[τ]
2 + u

′
1U[u1]

2 + u
′
2U[u2]

2 + u
′
3U[u3]

2

− u
′
2(T [τ] + u

′
1T [u1] + u

′
2T [u2] + u

′
3T [u3]),

−
(

1 +
b∗

(d∗ + u2)2

)
U3 = U[τ]

3 + u
′
1U[u1]

3 + u
′
2U[u2]

3 + u
′
3U[u3]

3

− u
′
3(T [τ] + u

′
1T [u1] + u

′
2T [u2] + u

′
3T [u3]).

(11)

where
u
′
1 =

du1

dτ
; u
′
2 =

du2

dτ
; u
′
3 =

du3

dτ
.

The substitution of Equation (9) into (11) gives the following:

λ∗1(1 + u2)− µ∗1u1 = U[τ]
1 +

(
λ∗1(1 + u2)− µ∗1u1

)(
U[u1]

1 − T [τ]
)

+
(

λ∗2(1 + u1)− µ∗2u2 +
a∗

1 + u3

)
U[u2]

1

+
(

λ∗3 +
b∗

d∗ + u2
− u3

)
U[u3]

1

−
(

λ∗1(1 + u2)− µ∗1u1

)2
T [u1]

−
(

λ∗1(1 + u2)− µ∗1u1

)(
λ∗2(1 + u1)− µ∗2u2 +

a∗

1 + u3

)
T [u2]

−
(

λ∗1(1 + u2)− µ∗1u1

)(
λ∗3 +

b∗

d∗ + u2
− u3

)
T [u3],

λ∗2U1 − µ∗2U2 −
a∗

(1 + u3)2 U3 = U[τ]
2 +

(
λ∗1(1 + u2)− µ∗1u1

)
U[u1]

2

+
(

λ∗2(1 + u1)− µ∗2u2 +
a∗

1 + u3

)(
U[u2]

2 − T [τ]
)

+
(

λ∗3 +
b∗

d∗ + u2
− u3

)
U[u3]

2 (12)

−
(

λ∗1(1 + u2)− µ∗1u1

)(
λ∗2(1 + u1)− µ∗2u2 +

a∗

1 + u3

)
T [u1]

−
(

λ∗2(1 + u1)− µ∗2u2 +
a∗

1 + u3

)2
T [u2]

−
(

λ∗2(1 + u1)− µ∗2u2 +
a∗

1 + u3

)(
λ∗3 +

b∗

d∗ + u2
− u3

)
T [u3],

−
(

1 +
b∗

(d∗ + u2)2

)
U3 = U[τ]

3 +
(

λ∗1(1 + u2)− µ∗1u1

)
U[u1]

3

+
(

λ∗2(1 + u1)− µ∗2u2 +
a∗

1 + u3

)
U[u2]

3

+
(

λ∗3 +
b∗

d∗ + u2
− u3

)(
U[u3]

3 − T [τ]
)

−
(

λ∗1(1 + u2)− µ∗1u1

)(
λ∗3 +

b∗

d∗ + u2
− u3

)
T [u1]

−
(

λ∗2(1 + u1)− µ∗2u2 +
a∗

1 + u3

)(
λ∗3 +

b∗

d∗ + u2
− u3

)
T [u2]

+
(

λ∗3 +
b∗

d∗ + u2
− u3

)2
T [u3].



Symmetry 2022, 14, 400 7 of 11

Special solutions are needed since it is generally challenging to solve the non-linear
system (12). In the case of T = T (τ), U1 = U1(u1), U2 = U2(u2), U3 = U3(u3), the
non-linear Equation (12) is reduced as follows:(

λ∗1(1 + u2)− µ∗1u1

)(
U[u1]

1 − T [τ]
)
= −µ∗1U1 + λ∗1U2, (13)(

λ∗2(1 + u1)− µ∗2u2 +
a∗

1 + u3

)(
U[u2]

2 − T [τ]
)
= λ∗2U1 − µ∗2U2 −

a∗

(1 + u3)2 U3, (14)

(
λ∗3 +

b∗

d∗ + u2
− u3

)(
U[u3]

3 − T [τ]
)
= −

(
1 +

b∗

(d∗ + u2)2

)
U3. (15)

Taking the partial derivative of Equation (15) with respect to τ yields to the following
second-order partial differential equation:

T [ττ] = 0,

which implies that:
T (τ) = a1τ + a2, (16)

with the a1 and a2 constants of integration. The substitution of Equation (16) into (13)–(15)
gives the following:(

λ∗1(1 + u2)− µ∗1u1

)(
U[u1]

1 − a1

)
= −µ∗1U1 + λ∗1U2, (17)(

λ∗2(1 + u1)− µ∗2u2 +
a∗

1 + u3

)(
U[u2]

2 − a1

)
= λ∗2U1 − µ∗2U2 −

a∗

(1 + u3)2 U3, (18)

(
λ∗3 +

b∗

d∗ + u2
− u3

)(
U[u3]

3 − a1

)
= −

(
1 +

b∗

(d∗ + u2)2

)
U3. (19)

Twice partially differentiating Equation (18) with respect to u2 gives:

U[u2u2]
2 = 0.

Hence,

U2(u2) = b1u2 + b2.

The substitution of Equation (18) into (17) gives the equation below:(
λ∗1(1 + u2)− µ∗1u1

)(
U[u1]

1 − a1

)
= −µ∗1U1 + λ∗1

(
b1u2 + b2

)
. (20)

Since Equation (20) depends on all values of u1 and u2, we get the following:

u1 : −µ∗1

(∂U1

∂u1
− a1

)
= −µ∗1U1,

u2 : λ∗1 = λ∗1b1,

− : λ∗1 = λ∗1b2.

Hence,

U1 = k exp [u1] + a1,

b1 = 1,

b2 = 1.
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From (19), we obtain:

u3 :
∂U3

∂u3
= a1.

Hence,
U3 = a1u3 + c1.

Therefore, the infinitesimals transformations are provided as follows:

U1(u1) = k exp [u1] + a1,

U2(u2) = b1u2 + b2, (21)

U3(u3) = a1u3 + c1.

It is important to note that these infinitesimal transformations are not unique. However,
there exists an infinite set of infinitesimal transformations. Therefore, Equation (2) becomes:

G =
(
a1τ + a2

) ∂

∂τ
+
(
k exp [u1] + a1

) ∂

∂u1
+
(
b1u2 + b2

) ∂

∂u2
+
(
a1u3 + c1

) ∂

∂u3
.

Hence, the following Lie generators are found:

G1 = τ
∂

∂τ
+

∂

∂u1
+

∂

∂u3
,

G2 =
∂

∂τ
,

G3 = exp [u1]
∂

∂u1
,

G4 = u2
∂

∂u2
,

G5 =
∂

∂u2
,

G6 =
∂

∂u3
.

By computing the Lie bracket, we obtain the given commutator table (Table 2):

Table 2. The commutator table of the infinitesimal generator.

G1 G2 G3 G4 G5 G6

G1 0 −G2 G3 0 0 0

G2 G2 0 0 0 0 0

G3 −G3 0 0 0 0 0

G4 0 0 0 0 −G5 0

G5 0 0 0 G5 0 0

G6 0 0 0 0 0 0

By setting the constant of integration to b1 = 1, b2 = 1, c1 = 1, a1 = 1, k = 1.
Equation (21) becomes:

U1 = 1 + exp [u1],

U2 = 1 + u2,

U3 = 1 + u3,

T = 1 + τ.
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Hence, we have the following equations:

(1 + τ)rt + (1 + exp [u1])rx1 + (1 + u2)rx2 + (1 + u3)rx3 = 0,

(1 + τ)u[τ]
1 + (1 + exp [u1])U

[u1]
1 + (1 + u2)U

[u2]
1 + (1 + u3)U

[u3]
1 = 0, (22)

(1 + τ)u[τ]
2 + (1 + exp [u1])U

[u1]
2 + (1 + u2)U

[u2]
2 + (1 + u3)U

[u3]
2 = 0,

(1 + τ)u[τ]
3 + (1 + exp [u1])U

[u1]
3 + (1 + u2)U

[u2]
3 + (1 + u3)U

[u3]
3 = 1.

The solution of Equation (22) is given by:

r =
τ

f (u1u2u3)
,

u1 =
τ

f (u1u2u3)
,

u2 =
τ

f (u1u2u3)
,

u3 = ln τ +
τ

f (u1u2u3)
.

The special case is given by:

r =
τ

(u1u2u3)
,

u1 =
τ

(u1u2u3)
,

u2 =
τ

(u1u2u3)
,

u3 = ln τ +
τ

(u1u2u3)
.

Substituting back to Equation (6), we obtain the following:

x1 =
λ2

b

√
cλ1µ3t
ax2x3

,

x2 =
λ1

a

√
cλ2µ3t
bx1x3

, (23)

x3 = ln [µ3t] + c

√
λ1λ2µ3t
abx1x2

.

5. Numerical Solutions

As illustrated in the graphs below, the numerical solutions for non-linear differential
equations were obtained using the Matlab software. Figures 1 and 2 show the numerical
solutions for Equations (1) and (23), respectively. Numerical results obtained before and
after using the Lie symmetry techniques on the Cancer Sub-Network model were found to
be consistent. The parameters chosen were λ1 = 0.1, a = 0.01, µ1 = 1, and the effect of the
synthesis rate of Cdc25A has initial values of x1(0) = 2× 10−5, 0.25, 0.75, 2.55; x2(0) = 0.06.
The simulation results are in line with Aguda and Tang’s findings [2], which show that
phosphatase gene (Cdc25A) activity increases in lockstep with cyclin-dependent kinase
inhibitor (P27Kip1) levels.
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Figure 1. The numerical results of Equation (1).

Figure 2. The numerical results of Equation (23).

6. Conclusions

The cancer sub-network revealed in this research is significantly simplified in com-
parison to what is known as the molecular and gene interactions of the oncogene and the
tumour-suppressor gene. On the other hand, applying Lie symmetry analysis and com-
putationally modelling the full cancer network during the cell cycle phase is challenging.
To represent the cancer network, we started with a simple model that encapsulated the
network’s key features. This model can be updated in the future to make it more realistic.

In this paper, the Lie symmetry technique was applied to obtain a modified, local,
one-parameter infinitesimal transformation. Furthermore, Lie operators and Lie algebra
were discovered to be useful in obtaining approximated solutions for the non-linear cancer
network model. The results of the numerical simulations were found to be consistent with
the findings of Aguda and Tang [2]. The model simulation revealed that when the complex’s
degradation rate is less than 0.001 min−1 (all other parameters remaining constant), the
subnetwork generates a peak value for the phosphatase gene (Cdc25A) activity.
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