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Abstract: The literature has an astonishingly large number of integral formulae involving a range
of special functions. In this paper, by using three Beta function formulae, we aim to establish three
integral formulas whose integrands are products of the generalized hypergeometric series p+1Fp and
the integrands of the three Beta function formulae. Among the many particular instances for our
formulae, several are stated clearly. Moreover, an intriguing inequality that emerges throughout the
proving procedure is shown. It is worth noting that the three integral formulae shown here may be
expanded further by using a variety of more generalized special functions than p+1Fp. Symmetry
occurs naturally in the Beta and p+1Fp functions, which are two of the most important functions
discussed in this study.
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1. Introduction and Preliminaries

The generalized hypergeometric series pFq is defined by (see [1], p. 73; see also [2,3]):

pFq

[
µ1, . . . , µp ;

ν1, . . . , νq ;
z

]
=

∞

∑
n=0

(µ1)n · · · (µp)n

(ν1)n · · · (νq)n

zn

n!

= pFq(µ1, . . . , µp; ν1, . . . , νq; z),

(1)

where (ξ)τ denotes the Pochhammer symbol or the shifted factorial, since

(1)n = n! (n ∈ N0 := N∪ {0}; N := {1, 2, 3, · · · }),

which is defined (for ξ, τ ∈ C), in terms of the familiar Gamma function Γ, by

(ξ)τ :=
Γ(ξ + τ)

Γ(ξ)
=

{
1 (τ = 0; ξ ∈ C \ {0})
ξ(ξ + 1) · · · (ξ + n− 1) (τ = n ∈ N; ξ ∈ C),

(2)

it being traditionally considered that (0)0 := 1 and C the set of complex numbers. Here p
and q are positive integers or zero (interpreting an empty product as 1), and we assume
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(for simplicity) that the variable z, the numerator parameters µ1, . . . , µp, and the denomi-
nator parameters ν1, . . . , νq take on complex values, provided that no zeros appear in the
denominator of (1), that is, that

(νj ∈ C \Z−0 ; j = 1, . . . , q),

where Z−0 denotes the set of nonpositive integers. Thus, if a numerator parameter is a
negative integer or zero, the pFq series terminates in view of the known identity (see, for
example [4], p. 5):

(−η)j =


(−1)j η!
(η − j)!

(0 5 j 5 η; j, η ∈ N0),

0 (j > η).
(3)

For details on the convergence criteria for pFq in (1), see (for example) [4], pp. 64 and
72 (see also [1–3]). The celebrated Gauss’s summation theorem (see, e.g., [4], p. 64)

2F1(κ, λ; µ; 1) =
Γ(µ) Γ(µ− κ − λ)

Γ(µ− κ) Γ(µ− κ)

(
<(µ− κ − λ) > 0; µ ∈ C \Z−0

)
(4)

and the numerous subsequent summation formulas for pFq (see, for example [1–16]) play
critical roles in theories of special functions and have a wide range of applications in diverse
fields such as number theory, combinatorics, and geometric analytic function theory.

The classical beta function (see, e.g., [4], p. 8)

B(µ, ν) =


∫ 1

0
tµ−1(1− t)ν−1 dt (min{<(µ), <(ν)} > 0)

Γ(µ) Γ(ν)
Γµ + ν)

(
µ, ν ∈ C \Z−0

) (5)

has numerous other integral forms (see, e.g., [8], Section 1.5). It is easy to find∫ 1

0
tµ−1(1− tη)ν−1 dt =

1
η

B
(

µ

η
, ν

)
(min{<(µ), <(ν)} > 0, η > 0), (6)

which is recorded in [8] (p. 10, Equation (17)).
Numerous integral formulae incorporating a variety of special functions have been

published in the literature (see, for example [8,11,17,18]). By using three Beta function
formulae (7)–(9), we want to offer three integral formulas whose integrands are products of
the generalized hypergeometric series p+1Fp and their associated integrands. Several of our
formulae’ various special instances are fully shown. Furthermore, an intriguing inequality
is formed throughout the proving procedure. Clearly, the three integral formulae described
here may be extended further by using a variety of more generalized special functions
(listed in Section 5) than p+1Fp.

It is noted in passing that symmetry issues may arise overtly or indirectly in any
discipline or aspect of human existence. It is self-evident that symmetry occurs in the Beta
and pFq functions, two of the most significant functions considered in this paper. Explicitly,

B(µ, ν) = B(ν, µ),

and, for example,

pFq(µ1, . . . , µp; ν1, . . . , νq; z) = pFq(µp, . . . , µ1; νq, . . . , ν1; z),

where every reordering of the numerator parameters produces the same function, and
every reordering of the denominator parameters provide the same function.
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2. Beta Function Formulae

The Beta function, which encompasses a large variety of special functions, is often
reported in the literature. There are 24 integral formulas expressed in terms of the Beta func-
tion in [8] (Sections 1.5 and 1.6), including (5) and (6). Similarly, [18] has over 100 integral
formulae for the Beta function. The following two formulae (7) and (8) may be dropped
from the two monographs cited above.

∫ 1

0
xµ−1(1− x)2ν−1

(
1− x

3

)2µ−1(
1− x

4

)ν−1
dx =

(
2
3

)2µ

B(µ, ν)

(min{<(µ), <(ν)} > 0)
(7)

(see [19]); ∫ 1

0

∫ 1

0
yµ(1− x)µ−1(1− y)ν−1(1− xy)1−µ−νdxdy = B(µ, ν)

(min{<(µ), <(ν)} > 0)
(8)

(see, e.g., [20], p. 145, Problem 6);

∫ b

a
(x− a)µ−1(b− x)ν−1(x− c)−µ−νdx = (b− a)µ+ν−1 (b− c)−µ(a− c)−ν B(µ, ν)

(min{<(µ), <(ν)} > 0, c < a < b)
(9)

(see [18], p. 315, Entry 3.199);∫ 1

0
xµ−1(1− x)ν−1[ax + b(1− x) + c]−µ−νdx = (a + c)−µ (b + c)−ν B(µ, ν)

(a ≥ 0, b ≥ 0, c > 0, min{<(µ), <(ν)} > 0),
(10)

(see [18], p. 315, Entry 3.198);

π
2∫

0

ei(µ+ν)θ(sin θ)µ−1(cos θ)ν−1dθ = e
iπµ

2 B(µ, ν)

(
i =
√
−1, min{<(µ), <(ν)} > 0

) (11)

(see [21]);
Equating the real and imaginary parts of both sides of (11) yields

π
2∫

0

cos[(µ + ν)θ](sin θ)µ−1(cos θ)ν−1dθ = cos
(

1
2

πµ

)
B(µ, ν)

(min{<(µ), <(ν)} > 0),

(12)

and
π
2∫

0

sin[(µ + ν)θ](sin θ)µ−1(cos θ)ν−1dθ = sin
(

1
2

πµ

)
B(µ, ν)

(<(µ) > −1, <(ν) > 0)

(13)

(see [21]); ∫ ∞

u
(x + v)−µ(x− u)ν−1dx = (u + v)ν−µ B(µ− ν, ν)(∣∣∣arg

(u
v

)∣∣∣ < π, <(µ) > <(ν) > 0
) (14)

(see [18], p. 314, Entry 3.196-2).
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3. Three Integral Formulas Associated with p+1Fp

Here and elsewhere, conventionally, let ∆(m; α) denote the array of m parameters

α

m
,

α + 1
m

, . . . ,
α + m− 1

m
, (15)

where m ∈ N and α ∈ C. In addition, let +∆(m; α) denote the sum of the m parameters in
the array in (15).

In the following lemma, we begin by introducing an intriguing inequality.

Lemma 1. Let k, s ∈ N. Then, (
2
3

)2k kkss

(k+ s)k+s
≤ 1

9
; (16)

kkss

(k+ s)k+s
≤ 1

4
. (17)

More generally,

d2x xx yy

(x + y)x+y ≤
(

d
2

)2
(0 < d < 1; x ≥ 1, y ≥ 1). (18)

Proof. Let us denote f (k, s) by the left-member of the inequality (16). We show that

g(x) :=
(

x
1 + x

)x
(19)

is strictly decreasing on [1, ∞). Indeed, logarithmic differentiation affords

g′(x) =
(

x
1 + x

)x{
log
(

1− 1
1 + x

)
+

1
1 + x

}
.

Recall the Maclaurin series expansion

log(1− t) = −
∞

∑
k=1

tk

k
(|t| < 1).

We find

g′(x) = −
(

x
1 + x

)x ∞

∑
k=1

1
k(1 + x)k < 0

for all x ≥ 1. Hence g(x) is strictly decreasing on [1, ∞).
Direct computation gives f (1, 1) = 1

9 and f (1, 2) < 1
9 . Since g(x) in (19) is strictly

decreasing on [1, ∞), we have that, for s ≥ 3,

f (1, s) =
4
9

ss

(1 + s)1+s =
4
9
· 1

1 + s
· ss

(1 + s)s
<

4
9
· 1

4
· 33

43 <
1
9

.

Since (k+ s)k+s = (k+ s)k(k+ s)s ≥ kkss, we find kkss
(k+s)k+s ≤ 1, and, therefore,

f (k, s) ≤
(

2
3

)2k
(k, s ∈ N).

Now, for k ≥ 3, we find

f (k, s) ≤
(

2
3

)2k
≤
(

2
3

)6
=

4
9
· 4

9
· 4

9
<

1
2
· 1

2
· 4

9
=

1
9

.
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Similarly, the inequality (17) can be proved. Indeed, to prove (18), it may be enough to
show that

f (x, y) :=
xx yy

(x + y)x+y (x ≥ 1, y ≥ 1)

is a decreasing function on the variable x ∈ [0, ∞) when y is fixed in [0, ∞). This is true
since

∂ f (x, y)
∂x

= log x− log(x + y) < 0 (x ≥ 1, y ≥ 1).

Since f (x, y) is symmetric with respect to the variables x and y, f (x, y) is also decreasing
on the variable y ∈ [0, ∞) when x is fixed in [0, ∞). Note that d2x is decreasing on [0, ∞)
when 0 < d < 1. Hence we find that f (x, y) ≤ f (1, 1) (x ≥ 1, y ≥ 1).

Theorem 1. Let p ∈ N0, min{<(α), <(β)} > 0, aj ∈ C (j = 1, . . . , p + 1), and bj ∈ C \ Z−0
(j = 1, . . . , p). Moreover, let k, s ∈ N, and µ ∈ C be such that |µ| <

( 3
2
)2k (k+s)k+s

kkss . Then

I
(p)

1
(
α, β; k, s; [a1, . . . , ap+1; b1, . . . , bp]; µ

)
:=
∫ 1

0
xα−1(1− x)2β−1

(
1− x

3

)2α−1(
1− x

4

)β−1

× p+1Fp

[
a1, . . . , ap+1 ;

b1, . . . , bp ;
µ xk(1− x)2s

(
1− x

3

)2k(
1− x

4

)s]
dx

=

(
2
3

)2α Γ(α) Γ(β)

Γ(α + β)

× p+1+k+sFp+k+s

[
a1, . . . , ap+1, ∆(k; α), ∆(s; β) ;

b1, . . . , bp, ∆(k+ s; α + β) ;
µ

(
2
3

)2k kkss

(k+ s)k+s

]
.

(20)

Furthermore, the integral I
(p)

1
(
α, β; k, s; [a1, . . . , ap+1; b1, . . . , bp]; µ

)
converges absolutely for

|µ| =
( 3

2
)2k (k+s)k+s

kkss if

<
(
+∆(k+ s; α + β) +

p

∑
j=1

bj − +∆(k; α)− +∆(s; β)−
p+1

∑
j=1

aj

)
> 0, (21)

converges conditionally for |µ| =
( 3

2
)2k (k+s)k+s

kkss

(
µ 6=

( 3
2
)2k (k+s)k+s

kkss

)
if

− 1 < <
(
+∆(k+ s; α + β) +

p

∑
j=1

bj − +∆(k; α)− +∆(s; β)−
p+1

∑
j=1

aj

)
≤ 0. (22)

Proof. Now we prove Theorem 1. In view of Lemma 1, for the convergence of the expres-
sion p+1+k+sFp+k+s in (20),

|µ|
(

2
3

)2k kkss

(k+ s)k+s
≤ 1

implies that |µ| ≤ 9. Therefore, for the convergence of the p+1Fp in the integrand in (20), it
suffices to show that, when 0 ≤ x ≤ 1,

0 ≤ f (x) := 9x(1− x)2
(

1− x
3

)2(
1− x

4

)
≤ 1.

In fact, we find

f ′(x) =
3
2
(1− x)(2− x)(3− x)

(
x− 2 +

√
3
)(

x− 2−
√

3
)

,
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which may depict that f (x) has a local maximum value only at x = 2−
√

3 on the interval
[0, 1]. Furthermore, f

(
2−
√

3
)

= 1 is the maximum value on the interval [0, 1]. We,
therefore, have 0 < f (x) ≤ 1 when 0 < x < 1.

Starting with this observation for f (x) and the identity (7), and use the series definition
in (1) to expand p+1Fp in the integrand in (20). It is easily found that the resultant series
in the integrand converges uniformly under the given restrictions and, therefore, the
termwise-integration gives

I
(p)

1
(
α, β; k, s; [a1, . . . , ap+1; b1, . . . , bp]; µ

)
=

∞

∑
n=0

(a1)n · · · (ap+1)n

n! (b1)n · · · (bp)n
µn

×
∫ 1

0
xα+n−1(1− x)2β+2n−1

(
1− x

3

)2α+2n−1(
1− x

4

)β+n−1
dx

=
∞

∑
n=0

(a1)n · · · (ap+1)n

n! (b1)n · · · (bp)n
µn
(

2
3

)2α+2kn
B(α + kn, β + sn).

Now employing (2) and (5) gives

I
(p)

1
(
α, β; k, s; [a1, . . . , ap+1; b1, . . . , bp]; µ

)
=

(
2
3

)2α Γ(α) Γ(β)

Γ(α + β)

∞

∑
n=0

(a1)n · · · (ap+1)n

n! (b1)n · · · (bp)n
µn
(

2
3

)2kn (α)kn (β)sn

(α + β)(k+s)n
,

(23)

which, upon using the multiplication formula for the Pochhammer symbol (see, e.g., [4],
p. 6, Equation (30))

(η)mn = mmn
m

∏
r=1

(
η + r− 1

m

)
n

(η ∈ C; m ∈ N; n ∈ N0), (24)

leads to the last expression in (20).
It is also noted that the integral formula in Theorem 1 is seen to hold true for µ = ±9

by appealing to the Abel-type argument (see, e.g., [22], p. 243, 7.32 Theorem).
The convergence conditions (21) and (22) follow easily from the well known theory of

pFq (see, e.g., [4], p. 72).

Theorem 2. Let p ∈ N0, min{<(α), <(β)} > 0, aj ∈ C (j = 1, . . . , p + 1), and bj ∈ C \ Z−0
(j = 1, . . . , p). Also let k, s ∈ N, and ξ ∈ C be such that |ξ| < (k+s)k+s

kkss . Then

I
(p)

2
(
α, β; k, s; [a1, . . . , ap+1; b1, . . . , bp]; ξ

)
:=
∫ 1

0

∫ 1

0
yα(1− x)α−1(1− y)β−1 (1− xy)1−α−β

× p+1Fp

[
a1, . . . , ap+1 ;

b1, . . . , bp ;
ξ yk(1− x)k(1− y)s(1− xy)−k−s

]
dxdy

=
Γ(α) Γ(β)

Γ(α + β) p+k+s+1Fp+k+s

[
a1, . . . , ap+1, ∆(k; α), ∆(s; β);

b1, . . . , bp, ∆(k+ s; α + β);
ξ

kkss

(k+ s)k+s

]
.

(25)

Furthermore, the integral I
p

2
(
α, β; k, s; [a1, . . . , ap+1; b1, . . . , bp]; ξ

)
converges absolutely for

|ξ| = (k+s)k+s

kkss under the condition (21), and converges conditionally for |ξ| = (k+s)k+s

kkss(
ξ 6= (k+s)k+s

kkss

)
under the condition (22).

Proof. Consider the inequality (17). It suffices to show the case k = s = 1. Let

g(x, y) := 4y(1− x)(1− y)(1− xy)−2.
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When 0 < x, y < 1, obviously g(x, y) > 0. Under 0 < x, y < 1, we want to show that
g(x, y) ≤ 1 if and only if 4y(1− x)(1− y) ≤ (1− xy)2 if and only if

x2y2 − 4xy2 + 4y2 + 2xy− 4y + 1 = y2(x− 2)2 + 2y(x− 2) + 1 =
(
(x− 2)y + 1

)2 ≥ 0.

Using this observation and the identity (8), similarly as in the proof of Theorem 1, the proof
can be complete. The details are omitted.

Theorem 3. Let p ∈ N0, min{<(α), <(β)} > 0, aj ∈ C (j = 1, . . . , p + 1), and bj ∈ C \ Z−0
(j = 1, . . . , p). In addition let k, s ∈ N, and c < a < b and µ ∈ C be such that |µ| <
(b−c)k(a−c)s

(b−a)k+s
(k+s)k+s

kkss . Then

I
(p)

3
(
α, β; c, a, b; k, s; [a1, . . . , ap+1; b1, . . . , bp]; µ

)
:=
∫ b

a
(x− a)α−1(b− x)β−1(x− c)−α−β

× p+1Fp

[
a1, . . . , ap+1 ;

b1, . . . , bp ;
µ (x− a)k(b− x)s(x− c)−k−s

]
dx

=
Γ(α) Γ(β)

Γ(α + β)

(b− a)α+β−1

(b− c)α(a− c)β

× p+k+s+1Fp+k+s

[
a1, . . . , ap+1, ∆(k; α), ∆(s; β) ;

b1, . . . , bp, ∆(k+ s; α + β) ;
µ(b− a)k+s

(b− c)k(a− c)s
kkss

(k+ s)k+s

]
.

(26)

Under further restrictions:

either c ≥ 0 or (c < 0 and a + b < 0),

the integral I
(p)

3
(
α, β; c, a, b; k, s; [a1, . . . , ap+1; b1, . . . , bp]; µ

)
converges absolutely for |µ| =

(b−c)k(a−c)s

(b−a)k+s
(k+s)k+s

kkss under the condition (21), and converges conditionally for |µ| = (b−c)k(a−c)s

(b−a)k+s

(k+s)k+s

kkss

(
µ 6= (b−c)k(a−c)s

(b−a)k+s
(k+s)k+s

kkss

)
under the condition (22).

Proof. Consider the inequality (17). It suffices to show the case k = s = 1.
We observe the followings: Assume c < a < b and a < x < b. We want to show that

4(b− c)(a− c)
(b− a)2 (x− a)(b− x)(x− c)−2 ≤ 1

if and only if
4(b− c)(a− c) (x− a)(b− x) ≤ (b− a)2 (x− c)2

if and only if

h(x) : = (b− a)2 (x− c)2 − 4(b− c)(a− c) (x− a)(b− x)

=
{
(b− a)2 + 4(b− c)(a− c)

}
x2 − 2

{
c(b− a)2 + 2(a + b)(b− c)(a− c)

}
x

+ c2(b− a)2 + 4ab(b− c)(a− c) ≥ 0.

Note that

(i) Since (b− a)2 + 4(b− c)(a− c) > 0, the graph of the quadratic equation y = h(x) has
the form of a parabola which opens up.

(ii)
0 < h(a) = (b− a)2(a− c)2 < (b− a)2(b− c)2 = h(b).
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(iii)

h′(x) = 2
{
(b− a)2 + 4(b− c)(a− c)

}
x− 2

{
c(b− a)2 + 2(a + b)(b− c)(a− c)

}
.

(iv) We find that, on the whole real x-axis, h(x) has the minimum value at x with h′(x) = 0,
i.e.,

x =
c(b− a)2 + 2(a + b)(b− c)(a− c)

(b− a)2 + 4(b− c)(a− c)
,

which is the symmetric axis for the graph of y = h(x).
(v) Since c < a < b, it is easy to see that, say,

x0 =
c(b− a)2 + 2(a + b)(b− c)(a− c)

(b− a)2 + 4(b− c)(a− c)
< b.

Moreover, a < x0 if and only if c < a+b
2 . We observe that there is no case a > x0 since

c < a < a+b
2 .

(vi) The minimum value of h(x) on the whole real x-axis is

h(x0) =
8c(a + b)(b− a)2(b− c)(a− c)

(b− a)2 + 4(b− c)(a− c)
.

(vii) From (vi), we see that h(x0) ≥ 0 if and only if either c ≥ 0 or (c < 0 and a + b ≤ 0). In
this case, h(x) ≥ 0 for all x on the whole real x-axis.

(viii) From (vi), we observe that h(x0) < 0 if and only if c < 0 and a + b > 0. We also see
that a < x0 if and only if c < a+b

2 . Therefore, we conclude that if h(x0) < 0, then
a < x0, and hence a < x0 < b.

(vix) From (viii), if h(x0) < 0, then a < x0 < b. In view of (ii), we can find two distinct
zeros τ1, τ2 of h(x) such that

h(x) =
{
(b− a)2 + 4(b− c)(a− c)

}
(x− τ1)(x− τ2) (a < τ1 < τ2 < b).

In view of (ii), we therefore observe that h(x) ≥ 0 on either the interval [a, τ1] or the
interval [τ2, b], and h(x) < 0 on the interval (τ1, τ2).
Since the integration in (26) is acting on the interval [a, b] and h(x) ≥ 0 on [a, b], this
case should be dropped when

µ =
4(b− c)(a− c)

(b− a)2 . (27)

(x) Hence, we find from (vii) and (vix) that the restrictions (33) should be satisfied when
µ is the case (27).

Using this observation and the identity (9), similarly to in the proof of Theorem 1, the
proof can be complete. The details are omitted.

4. Special Cases

By setting k = s = 1 in Theorems 1–3, we may obtain the following three relatively
simple integral formulae.
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Corollary 1. Let p ∈ N0, min{<(α), <(β)} > 0, aj ∈ C (j = 1, . . . , p + 1), and bj ∈ C \Z−0
(j = 1, . . . , p). Furthermore, let ν ∈ C be such that |ν| < 9. Then,

I
(p)

1
(
α, β; [a1, . . . , ap+1; b1, . . . , bp]; ν

)
:=
∫ 1

0
xα−1(1− x)2β−1

(
1− x

3

)2α−1(
1− x

4

)β−1

× p+1Fp

[
a1, . . . , ap+1 ;

b1, . . . , bp ;
ν x(1− x)2

(
1− x

3

)2(
1− x

4

)]
dx

=

(
2
3

)2α Γ(α) Γ(β)

Γ(α + β) p+3Fp+2

 α, β, a1, . . . , ap+1 ;
α + β

2
,

α + β + 1
2

, b1, . . . , bp ;

ν

9

.

(28)

Furthermore, the integral I
p

1
(
α, β; [a1, . . . , ap+1; b1, . . . , bp]; ν

)
converges absolutely for |ν| = 9

if

<
( p

∑
j=1

bj −
p+1

∑
j=1

aj +
1
2

)
> 0, (29)

converges conditionally for |ν| = 9 (ν 6= 9) if

− 1 < <
( p

∑
j=1

bj −
p+1

∑
j=1

aj +
1
2

)
≤ 0. (30)

Corollary 2. Let p ∈ N0, min{<(α), <(β)} > 0, aj ∈ C (j = 1, . . . , p + 1), and bj ∈ C \Z−0
(j = 1, . . . , p). In addition, let ξ ∈ C be such that |ξ| < 4. Then

I
(p)

2
(
α, β; [a1, . . . , ap+1; b1, . . . , bp]; ξ

)
:=
∫ 1

0

∫ 1

0
yα(1− x)α−1(1− y)β−1 (1− xy)1−α−β

× p+1Fp

[
a1, . . . , ap+1 ;

b1, . . . , bp ;
ξ y(1− x)(1− y)(1− xy)−2

]
dxdy

=
Γ(α) Γ(β)

Γ(α + β) p+3Fp+2

 α, β, a1, . . . , ap+1 ;
α + β

2
,

α + β + 1
2

, b1, . . . , bp ;

ξ

4

.

(31)

Furthermore, the integral I
p

2
(
α, β; [a1, . . . , ap+1; b1, . . . , bp]; ξ

)
converges absolutely for |ξ| = 4

under the same condition in (29), and converges conditionally for |ξ| = 4 (ξ 6= 4) under the same
condition in (30).
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Corollary 3. Let p ∈ N0, min{<(α), <(β)} > 0, aj ∈ C (j = 1, . . . , p + 1), and bj ∈ C \Z−0
(j = 1, . . . , p). Moreover, let c < a < b and µ ∈ C be such that |µ| < 4(b−c)(a−c)

(b−a)2 . Then

I
(p)

3
(
α, β; c, a, b; [a1, . . . , ap+1; b1, . . . , bp]; µ

)
:=
∫ b

a
(x− a)α−1(b− x)β−1(x− c)−α−β

× p+1Fp

[
a1, . . . , ap+1 ;

b1, . . . , bp ;
µ (x− a)(b− x)(x− c)−2

]
dx

=
Γ(α) Γ(β)

Γ(α + β)

(b− a)α+β−1

(b− c)α(a− c)β

× p+3Fp+2

 α, β, a1, . . . , ap+1 ;
α + β

2
,

α + β + 1
2

, b1, . . . , bp ;

µ(b− a)2

4(b− c)(a− c)

.

(32)

Under further restrictions:

either c ≥ 0 or (c < 0 and a + b < 0), (33)

the integral I p
3
(
α, β; c, a, b; [a1, . . . , ap+1; b1, . . . , bp]; µ

)
converges absolutely for |µ| = 4(b−c)(a−c)

(b−a)2

under the same condition in (29), and converges conditionally for |µ| = 4(b−c)(a−c)
(b−a)2

(
µ 6= 4(b−c)(a−c)

(b−a)2

)
under the same condition in (30).

For the sake of this section and the next, the following standard notation may be used
to denote a product of many Gamma functions:

Γ(a1)Γ(a2) · · · Γ
(
ap
)

Γ(b1)Γ(b2) · · · Γ
(
bq
) = Γ

[
a1, a2, . . . , ap
b1, b2, . . . , bq

]
(p, q ∈ N0). (34)

Among the many special instances of integral formulae discussed in the preceding
section, we have chosen to illustrate just a few of the special cases in Corollary 1.

Example 1. ∫ 1

0
xa−1(1− x)5−6a

(
1− x

3

)2a−1(
1− x

4

)1−3a

×
(

1− 9(2−
√

3)
4

x(1− x)2
(

1− x
3

)2(
1− x

4

))a−1

dx

=
2

√
π 3

a
2

Γ
[ 4

3 , a, 2− 3a, 3
2 − a

2− 2a, 4
3 − a

] (
0 < <(a) <

2
3

)
,

(35)

where [11] (p. 495, Entry 7.3.9-25) is used;
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Example 2. ∫ 1

0
xa−1(1− x)2b−1

(
1− x

3

)2a−1(
1− x

4

)b−1

× 2F1

 a + b
2

,
a + b + 1

2
;

c ;
9 x(1− x)2

(
1− x

3

)2(
1− x

4

)dx

=

(
2
3

)2a
Γ
[

a, b, c, c− a− b
a + b, c− a, c− b

]
(
min{<(a), <(b)} > 0, <(c− a− b) > 0; c ∈ C \Z−0

)
,

(36)

where (4) is employed;

Example 3. ∫ 1

0
xa−1(1− x)2b−1

(
1− x

3

)2a−1(
1− x

4

)b−1

× 2F1

 a + b
2

,
a + b + 1

2
;

1 + a− b ;
− 9 x(1− x)2

(
1− x

3

)2(
1− x

4

)dx

=

(
2
3

)2a
Γ
[

a, 1 + 1
2 a, b, 1 + a− b

1 + a, a + b, 1 + 1
2 a− b

]
(
<(a) > 0, 0 < <(b) < 1; 1 + a− b ∈ C \Z−0

)
,

(37)

where Kummer’s theorem for 2F1(−1) is used (see, e.g., [1], p. 42, Theorem 26);

Example 4. ∫ 1

0
xa−1(1− x)2b−1

(
1− x

3

)2a−1(
1− x

4

)b−1

× 2F1


a + b

2
,

a + b + 1
2

;

a + b + 1−m
2

;

9
2

x(1− x)2
(

1− x
3

)2(
1− x

4

)dx

=
22a+b−1

32a Γ
[

a, a+b+1−m
2

a + b

] m

∑
k=0

(
m
k

)
Γ
[ b+k

2
1+a+k−m

2

]
(min{<(a), <(b)} > 0, m ∈ N),

(38)

where [11] (p. 491, Entry 7.3.7-2) is used;

Example 5. ∫ 1

0
x3a−3(1− x)2a−1

(
1− x

3

)6a−5(
1− x

4

)a−1

× 2F1

 b, 2a− 1
2

;

3a− b− 1 ;
9 x(1− x)2

(
1− x

3

)2(
1− x

4

)dx

=

(
2
3

)6a−4
Γ
[

a, 3
2 a, 2a− 1, 3a− 2, 3a− b− 1, 1

2 a− b
1
2 a, 3a− 1, 4a− 2, 2a− b− 1, 3

2 a− b

]
(
<(a) >

2
3

, <(a− 2b) > 0
)

,

(39)

where Dixon’s theorem for 3F2(1) is employed (see, e.g., [3], p. 13);
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Example 6.

∫ 1

0
xa−1(1− x)a+1

(
1− x

3

)2a−1(
1− x

4

) 1
2 a+ 1

2

× 3F2


1
2
+

1
4

a, 1 +
3
4

a, b;

1
2

a, 1 + a− b ;
9 x(1− x)2

(
1− x

3

)2(
1− x

4

)dx

=

(
2
3

)2a
Γ
[

a, 1 + 1
2 a, 1

2 + 1
2 a, 1

2 + 3
4 a, 1 + a− b, 1

4 a− b
1
4 a, 1 + 3

2 a, 1 + a, 1
2 + 1

2 a− b, 1
2 + 3

4 a− b

]
(<(a) > 0, <(a− 4b) > 0),

(40)

where a summation formula for 4F3(1) is used (see, e.g., [12], p. 245, Entry (III.22)).

5. Concluding Remarks

As in previous section, by choosing to employ such a remarkably large number of
summation formulas for p+1Fp with various arguments (see, e.g., [11]), more particular
integral formulas for those in Corollaries 1–3 can be provided. For example,∫ 1

0

∫ 1

0
ya(1− x)a−1(1− y)b−1 (1− xy)1−a−b

×
(

1− 2 y(1− x)(1− y)(1− xy)−2
)− a+b+1

2 dxdy

=
√

π

{
Γ
[

a, b, a+b
2

a + b, b
2 , a+1

2

]
+ Γ

[
a, b, a+b

2
a + b, a

2 , b+1
2

]}
(min{<(a), <(b)}),

(41)

where [11] (p. 491, Entry 7.3.7-4) is employed.
A variety of elementary functions and classical functions such as Legendre functions

of the first and second kinds, Jacobi polynomials, and the incomplete Beta function (see,
e.g., [1,23]) are expressed in terms of 2F1. In this connection, for example, from (28), we
obtain ∫ 1

0
xa−1(1− x)2b−1

(
1− x

3

)2a−1(
1− x

4

)b−1

× P(α,β)
n

(
18 x(1− x)2

(
1− x

3

)2(
1− x

4

)
− 1
)

dx

=
(−1)n(1 + β)n

n!

(
2
3

)2a Γ(a) Γ(b)
Γ(a + b) 4F3

 a, b, −n, 1 + α + β + n;
a + b

2
,

a + b + 1
2

, 1 + β ;
1

,

(42)

where P(α,β)
n (x) are the Jacobi polynomials (see, e.g., [1], p. 254), n ∈ N0 and min{<(a),

<(b)} > 0.
By using the numerous other Beta function formulas including the ones in Section 2, many

different integral formulas of the similar type presented in Section 3 may also be established.
Further diverse generalizations of the integral formulas in Section 3 may be established

by replacing the integrand factor p+1Fp with more generalized functions such as the pFq
(see, e.g., [1], p. 104), the Fox–Wright function pΨq (see, e.g., [24], p. 21), MacRobert’s
E-function (see, e.g., [8], pp. 203–206; for the similar kind integral formulas presented here,
see [21]), the Meijer’s G-function (see, e.g., [8], pp. 206–222), the H-function (see, e.g., [25];
see also [23], pp. 49–51), the I-function [26], the H-function (see, e.g., [27,28]), the Aleph
(ℵ)-function (see [29,30]).

Question: Is it feasible to extend the work in [31] in the analogous way that the
integral formulae established in this article have been generalized?
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