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Abstract: In the present work, a neotype chaotic product trigonometric map (PTM) system is pro-
posed. We demonstrate the chaotic characteristics of a PTM system by using a series of complexity 
criteria, such as bifurcation diagrams, Lyapunov exponents, approximate entropy, permutation 
entropy, time-series diagrams, cobweb graphs, and NIST tests. It is proved that the PTM system 
has a wider chaotic parameter interval and more complex chaotic performance than the existing 
sine map system. In addition, a novel PTM based symmetric image encryption scheme is proposed, 
in which the key is related to the hash value of the image. The algorithm realizes the encryption 
strategy of one-graph-one-key, which can resist plaintext attack. A two-dimensional coordinate 
traversal matrix for image scrambling and a one-dimensional integer traversal sequence for image 
pixel value transformation encryption are generated by the pseudo-random integer generator 
(PRING). Security analysis and various simulation test results show that the proposed image en-
cryption scheme has good cryptographic performance and high time efficiency. 

Keywords: product trigonometric map; applications of chaos; image encryption; pseudo-random 
integer generator 
 

1. Introduction 
Chaos is a common objective phenomenon in nature. It is also an important re-

search branch of nonlinear science. The inherent characteristics of chaos are its high sen-
sitivity to initial conditions and system parameters, unpredictability, pseu-
do-randomness, etc., which makes it penetrate into various scientific fields. In recent 
years, the application of chaos theory has attracted extensive attention. Applications of 
chaos can be seen everywhere, especially in multimedia data encryption in the case of 
confidential communication. 

With the increasing frequency of network communication, information security has 
become an urgent problems that needs to be solved urgently, especially when dealing 
with information shared through the Internet or other publicly accessed communication 
channels. An important type of secret information that needs to be transmitted confi-
dentially is picture data, because in many cases, pictures contain sensitive information 
that needs to be prevented from leakage, such as pictures related to national defence and 
personal privacy information [1,2]. Encryption plays an important role in the process of 
information security. Traditional encryption algorithms mainly include advanced en-
cryption standard (AES) and data encryption standard (DES) [3]. Digital images are 
characterized by the high correlation between adjacent pixels and are also less sensitive 
to changes because small changes in pixel values do not translate in drastic changes in 
picture quality compared with text data [4]. As a result, conventional encryption meth-
ods (such as AES and DES) are not suitable for image encryption because of their signif-
icant time cost and computational resource consumption. In order to solve the above 
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problems, many image safety measures have been proposed in recent years [5–9]. The 
safety measures based on chaos has the characteristics of fast encryption speed, high 
complexity, high security and reasonable computing power overhead. It is considered to 
be the best in practical applications. 

Following C. E. Shannon [10], image encryption mainly has two key steps: confu-
sion and diffusion. Diffusion means the relationship between plaintext and encrypted 
image. If a slight change in the original image can cause a complete change in the en-
crypted image, the encryption method is considered to be more effective. Confusion 
means the relationship between the secret key and the ciphertext image. Especially in 
this case, if changing one bit of the key produces different encrypted images, it is con-
sidered that the encryption method is more effective. 

The traits of chaos also determine its role in the confidential communication occa-
sion. From the expression of the mathematical model, chaotic systems can be divided 
into continuous time chaotic systems and discrete-time chaotic maps. Among them, the 
typical models of continuous time chaotic systems are Lorenz system, Chen system, 
among others. Typical discrete chaotic system models include the Arnold map, logistic 
map, sine map, Henon map and other models. According to another classification 
method of chaotic system model, a chaotic system can be divided into an integer form 
system and a fractional form system. In fact, a fractional system is a more general system 
model. Recently, some typical fractional chaotic maps have been proposed, such as Hé-
non–Lozi type map [11], which exhibits a rich complex dynamic behavior. In [12], a 
hyperchaotic fractional Grassi–Miller map is proposed and the hardware 
implementation of the hyperchaotic fractional map is carried out. In [13], a new 
fractional order chaotic map is proposed and explored. Regarding the application of 
chaos in image encryption, many works can be found in the literature. Some typical re-
search works are listed below. Liu et al. [14] proposed a high-speed and safe image en-
cryption scheme based on a new simple one-dimensional (1D) chaotic map. Although 
the key space of one-dimensional chaotic system is small, the structure of the 1D chaotic 
system is simple. When applied to image encryption, 1D chaotic maps have the ad-
vantages of faster speed and easier hardware implementation. The combination of good 
chaotic system and complex encryption algorithm can be better used for image encryp-
tion, which is undoubtedly the research hotspot of chaotic encryption. A discrete com-
pound chaotic system based on sine trigonometric function and tent map is proposed in 
[9]. For large parameter space, it has good statistical characteristics. Li et al. [15] used 
piecewise linear chaotic mapping and trigonometric function to define generalized cha-
otic mapping. Yu et al. [16] studies the nonlinear dynamic system composed of cosine 
function with a large chaotic interval and strong chaotic characteristics. Trigonometric 
function itself has some unique characteristics, such as periodicity and boundedness, 
and their reciprocal is still a trigonometric function. The problem of chaotic system is 
solved, and encryption is also an important part of it. In [17], the authors proposed an 
image encryption algorithm by using bisection method and a 1D piecewise chaotic map. 
Gopalakrishnan et al. [18] used hyperchaotic system to generate a pseudo-random se-
quence, and used scrambling and diffusion encryption to encrypt the image. Zahmoul et 
al. [19] proposed a new 1D chaotic map, called Beta chaotic map, based on Beta function   
and used it in image encryption. Alawida et al. [20] proposed a new hybrid chaotic sys-
tem combines two 1D chaotic maps and used it in a new image cryptosystem. Nepo-
muceno et al. [21] proposed a new image encryption algorithm based on the pseu-
do-orbits of a 1D chaotic map. Mansouri et al. [22] proposed an 1D sine powered chaotic 
map and sued it in image encryption. To expand the key space, Huang et al. [23] pro-
posed an efficient symmetric image encryption by using a new 2D chaotic map. Askar et 
al. [24] utilized a 2D economic chaotic map and logistic map to design an image encryp-
tion algorithm. Khan et al. [25] proposed a new type of encryption method based on 
keys derived from DNA and plaintext image. Lu et al. [26] proposed an picture encryp-
tion scheme combining an S-Box and logistic–sine system. 
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Inspired by the works mentioned above, we construct a new one-dimensional cha-
otic system composed of product trigonometric function, which is more chaotic than the 
famous sine map system. The chaotic sequence generated by the system is used to en-
crypt the image, and the encryption effect is better. As far as we know, few articles used 
a triangular chaotic system for image encryption. Therefore, an image encryption re-
search method based on product triangular chaotic mapping system is proposed in this 
paper. In order to improve the security and time efficiency of the encryption system, the 
proposed scheme uses equivalent encryption key associated with images, which can ef-
fectively resist chosen-plaintext attacks [27,28]. The encryption scheme combines 
scrambling and diffusion. The main contributions of the present work are as follows: 
(1) A new product trigonometric chaotic system is constructed. By means of various 

measures, the chaotic dynamic behavior of the system is analyzed in detail, and the 
good chaotic characteristics of the system are verified. 

(2) A novel symmetric image encryption scheme based on the novel product trigono-
metric chaotic system is proposed. The system consists of an efficient scrambling 
process and a secure diffusion operation. The secret keys are generated from the 
plaintext image by using SHA-256 to resist the chosen-plaintext attacks. Such that 
any slight change in the plaintext image will affect the whole ciphertext image. 

(3) The proposed scheme has been compared with some other recently proposed image 
encryption schemes. It is verified that the present work outperforms other previ-
ously published image encryption schemes and shows better cryptographic per-
formance, while using less computational resources. 
The rest of this paper is organized as follows: Section 2 introduces the mathematical 

model of PTM system and analyzes its chaotic dynamic characteristics. Section 3 de-
scribes the proposed image encryption and decryption algorithm. In Section 4, the secu-
rity analysis and experimental evaluation of the proposed image encryption scheme are 
carried out. Section 5 summarizes the work and gives the conclusion of this paper. 

2. The New Chaotic Product Trigonometric Map 
2.1. The Sine Map System 

In the field of chaos research, there is a well-known triangular chaotic system, that 
is, the sine map (SM) system, and its mathematical model is expressed by formula (1). 

1 f ( ) / 4 sin( )n n nx x u xπ+ = = × , (0,4]u ∈ . (1)

In Equation (1), xn denotes the state variable of the map at the n-th point of discrete 
time (n = 1, 2, ...) and x1 denotes the initial state value. u denotes the system parameter. 
The chaotic dynamic behavior of the sine map is similar to that of the logistic map, and 
its chaotic interval is relatively narrow. Figure 1a,b are the bifurcation diagram and 
Lyapunov exponent graph of sine map to the system parameter u, respectively, and the 
range of chaotic parameter is u ∈ [3.4610, 4]. The width of the parameter interval of 
chaotic behavior is ∆u = 0.5390, but there are still some narrow periodic windows in this 
interval. 



Symmetry 2022, 14, 373 4 of 18 
 

 

  
(a) (b) 

Figure 1. Bifurcation diagram and Lyapunov exponent of sine map system. (a) Bifurcation of sys-
tem state versus parameter u; (b) the graph of Lyapunov exponent versus parameter u. 

2.2. The Proposed Chaotic Product Trigonometric Map 
In this paper, a product trigonometric map (PTM) chaotic system was proposed. The 

PTM system can be expressed by mathematical model as Equation (2). 

1 f( )= /4 sin(2 / ) cos( / )n n n nx x u x k x kπ π+ = × × . (2)

where (0,1)nx ∈  are state variables of the system and u and k are two control parame-
ters of the system. In this paper, we fixed k = 1.3. 

2.2.1. Bifurcation and Lyapunov Exponent Diagram of PTM System 
Considering the fixed k = 1.3, Figure 2a,b are the bifurcation diagram and Lyapunov 

exponent graph of the PTM system to the system parameter u, respectively. It can be 
observed that its chaotic parameter interval is u ∈ [2.5410, 5.180]. The width of the 
parameter interval of the chaotic behavior is ∆u = 2.6390, which is far larger than the 
value 0.5390 of the sine map system, though there are also still some narrow periodic 
windows in this interval. Figure 2c,d are the bifurcation and Lyapunov exponent 
diagrams of the PTM system to the system parameter k, respectively. One can see that 
the chaotic range for k with fixed u = 5 is k ∈ (0, 2.558). 
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(c) (d) 

Figure 2. Bifurcation diagram and Lyapunov exponent of the PTM chaotic system. (a) Bifurcation 
of system state versus parameter u; (b) Lyapunov exponent curve with parameter u. (c) Bifurcation 
scene with parameter k; (d) the graph of Lyapunov exponent versus parameter k. 

2.2.2. Approximate Entropy and Permutation Entropy of PTM System 
Approximate entropy (ApEn) and permutation entropy (PeEn) describe the com-

plexity of time series from different angles, so it should be more convincing to detect the 
complexity of time series by two description methods. 

Approximate entropy tests the probability of the new style generated in the se-
quences with the embedding dimension growth, which is a common technical indicator 
to describe the complexity and randomness of time series. If the approximate entropy of 
a time series is zero, it denotes that the time series is periodic. If the approximate 
entropy of a time series is greater than zero, it denotes that the time series is aperiodic. 
The larger the approximate entropy, the more complex the corresponding time series 
and the stronger the randomness. Figure 3a displays the approximate entropy of the se-
quences generated by PTM and SM systems with the system parameter u changes from 
3.46 to 4. The results of Figure 3a show that the PTM system has an approximate entropy 
larger than zero in the whole parameter range u ∈ [3.46, 4], and its approximate entro-
py is greater than those of SM system in the whole parameter range. It is proved that the 
sequences generated by the PTM system are more complex than those of SM system. 

Permutation entropy is another indicator to describe the complexity of time series, 
which uses Shannon’s entropy to measure the probabilities of different order types of 
consecutive values in the sequences. If the permutation entropy of a time series is zero, it 
means that the time series is periodic; if the permutation entropy of a time series is 
greater than zero, it means that the time series is aperiodic. The larger the permutation 
entropy, the more complex the corresponding time series. Figure 3b displays the per-
mutation entropy of sequences generated by PTM and SM systems with the system pa-
rameter u changes from 3.46 to 4. From Figure 3b, one can see that the PTM system has a 
permutation entropy greater than zero in the whole parameter range u ∈ [3.46, 4], and 
the permutation entropy is greater than those of SM systems in the whole parameter 
range. The above results once again prove that PTM system is more complex than SM 
system. 
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(a) (b) 

Figure 3. Comparison of ApEn and PeEn of sequences generated by two systems. (a) The ap-
proximate entropy (ApEn) and (b) permutation entropy (PeEn). 

2.2.3. The Time-Series and Cobweb Graph of PTM System 
The time-series graph shows the behavior of the system state variable changing 

with time. Moreover, it shows the sensitivity of time series to the initial conditions. Fig-
ure 4a shows the trajectories of two time series with an initial state value difference of 
10−12. The results of Figure 4a show that the evolution of system state values is very sen-
sitive to the initial values, and the slight difference of the initial values causes a great 
separation between two adjacent orbits. 

The cobweb diagram provides a powerful technical way to observe the motion be-
havior of the dynamic system. From its cobweb diagram, people can intuitively find out 
whether the motion behavior of the dynamic system is periodic orbit or chaotic orbit. 
Figure 4b displays the cobweb diagram generated by iterating the PTM system repeat-
edly. The system parameter is u = 5.18 and the initial state value is x0 = 0.11. From Figure 
4b, one can see that the system traverses unlimited non-repetitive chaotic orbits, which 
proves the existence of a chaotic behavior of system (2) more intuitively. 

  
(a) (b) 

Figure 4. Time-sequences and cobweb chart of PTM system. (a) Two time-series with two initial 
values have slight differences (x0 = 0.23 and y0 = 0.23 + 10−12); (b) the cobweb graph. 

2.2.4. The NIST Test of PTM System 
NIST is a standard test software package to evaluate the stochastic performance of 

time series. NIST contains 15 test indicators, and multiple sequences are required. Each 
packet length of the sequence needs to reach 1,000,000 bits. It mainly uses two perfor-
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mance indicators: p-value and pass rate to measure the random performance of time se-
ries. Usually, 1000 binary sequences should be tested, and the default value of significant 
level is α = 0.01. If there are M sequences that have p-values greater than 0.01, then the 
pass rate is M/1000. The confidence interval used to test the pass rate is defined as: 
1 3 (1 ) / mα α α− ± − . When α = 0.01 and m = 1000, the confidence interval is 1 − 0.01 ± 3

0.01 0.99 /1000×  = 0.99 ± 0.0094393 = [0.980561, 0.9994393], which means that the min-
imum pass rate must be above 980/1000. 

In [29], the authors proposed a pseudo-random bit generator (PRBG) and measured 
its randomness NIST. This paper proposes a new PRBG based on the PTM system. In the 
experimental test for our pseudo-random bit generator, we iterated the PTM system with 
the initial value x0 = 0.2345 and the system parameter u = 3.9999 to generate a chaotic real 
number sequence with a length of 109, then convert it into a binary pseudo-random se-
quence with a length of 109 bits, and divide the sequence into 1000 groups, with each 
group having a length of 106 bits for NIST test. Here, the algorithm for converting a cha-
otic real number x into an 8-bit binary number uIntx is shown in Algorithm 1. Specifically, 
given a chaotic real number x, we transformed the real value of x to a 64-bit binary string, 
following the IEEE 754 double precision floating point number standard. Then, the bi-
nary digital numbers from 33-th to 40-th in each binary string were sampled as the out-
put of Algorithm 1. Thus, each of the chaotic outputs generates an 8-bit binary numbers. 

Algorithm 1: Convert a chaotic real number x into an 8-bit binary number uIntx. 
Input: A real number x 
Output: A byte digital uIntx 
1: Convert the x to a 64-bit binary string b1b2...b64 following the IEEE 754 standard; 
2: Intercept 8 digits of the binary x to form unsigned integer: uIntx ← b33b34...b40; 
3: Output the unsigned integer uIntx in binary format. 

The results of NIST test with all 15 statistical tests are listed in Table 1. Among 
them, the cumulative sums and serial test contain 2 sub-tests, so there are actually 17 
tests in total. The results show that all p-value > 0.01, and the least pass rate of every sta-
tistical test is 985/1000, which is larger than 0.980561. 

Table 1. NIST statistical test results for 1000 sequences of size 1 million bits. 

NIST Statistical Test Item p-Value Pass Rate Results 
Frequency (monobit) 0.763677 986/1000 passed 
Block Frequency (m = 128) 0.745908 990/1000 passed 
Cumulative Sums (Forward) 0.984881 988/1000 passed 
Cumulative Sums (Reverse) 0.599693 987/1000 passed 
Runs 0.195864 993/1000 passed 
Longest Run of Ones 0.820143 985/1000 passed 
Rank 0.016149 994/1000 passed 
FFT 0.014754 987/1000 passed 
Non-Overlapping Templates (m = 9, B = 000000001) 0.711601 990/1000 passed 
Overlapping Templates (m = 9) 0.953089 986/1000 passed 
Universal 0.410055 991/1000 passed 
Approximate Entropy (m = 10) 0.725829 987/1000 passed 
Random-Excursions (X = −4) 0.663542 628/631 passed 
Random-Excursions Variant (X = −9) 0.422753 622/631 passed 
Serial Test 1 (m = 16) 0.877083 996/1000 passed 
Serial Test 2 (m = 16) 0.848027 989/1000 passed 
Linear complexity (M = 500) 0.329850 992/1000 passed 
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3. Image Encryption and Decryption Algorithm 
In order to comprehensively optimize the security and efficiency of the algorithm, 

this method realizes image replacement and diffusion encryption based on chaos. Addi-
tionally, the equivalent key is associated with the image content. 

3.1. The Encryption Algorithm 
Our proposed encryption scheme can be divided into three main stages. In the first 

stage, SHA-2 256 hash algorithm was used to obtain the hash of plaintext image, and the 
encryption key was generated from it. In this paper, SHA-2 256 was chosen instead of 
SHA-1 or SHA-3, which is a compromise between security and computational complex-
ity. The hash string was quartered, and the value of each part was mapped to a decimal 
greater than 0 and less than 1, and this decimal was taken as the initial state value of the 
chaotic PTM system. Then, the initial state values and the control parameter u of the 
PTM were used to generate pseudorandom numbers. In the second phase, row and 
column permutation was performed on the pixels of the picture by using pseudorandom 
numbers generated by the chaotic PTM system. In the third stage, a diffusion operation 
was applied to the permutated image and the final encrypted image was obtained. Fig-
ure 5 shows the flow block diagram of the proposed encryption procedure. 

 
Figure 5. The block diagram of the proposed encryption algorithm. 

The detailed steps of this algorithm for image encryption are described in detail as 
follows. Each 2D matrix data can also be expressed as a 1D array by scanning it in 
row-by-row or column-by-column scan order. So, the 2D and 1D forms can be mutually 
converted. Hence, the 2D and 1D expression forms were not distinguished strictly in this 
paper. 

Step 1: Read the plaintext image to be encrypted, and the data matrix of plaintext 
image is represented by P. Obtain the image size, that is, the number of pixel rows M and 
the number of columns N of the image. So, P = {p(i, j)}, i = 1, 2, ..., M; j = 1, 2, ..., N. p(i, j) 
represents the pixel value of the i-th row and the j-th column. Additionally, input the 
parameter u for the chaotic map (2). 
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Step 2: Apply SHA-256 on the plaintext image P to produce a hash value in hexa-
decimal digit string for the plaintext image. The string is composed of 64 hexadecimal 
digital symbols, and its shape is as follows: 1 2 64h h h h=  . 

Step 3: Mapping the hash digit string into three decimal values as: 
16

0
1

( ASCII( )) / 2000i
i

x h
=

=    (3a)

32

0
17

( ASCII( )) / 2000i
i

y h
=

=    (3b)

64

0
33

( ASCII( )) / 4000i
i

z h
=

=    (3c)

where ASCII(hi) represents the ASCII value of the character hi. 
Step 4: Use the keys of {x0, y0, z0} produced in Step 3 as the initial value together with 

the parameter u for the chaotic map to output three pseudo-random integer number se-
quences X = {x(i)}, Y = {y(j)}, and Z = {z(l)}, respectively, by the pseudo-random integer 
number generator (PRING). Where, i = 1, 2, ..., M; j = 1, 2, ..., N; l = 1, 2, ..., L = M × N. x(i) 
∈ {1, 2, ..., M} and x(i) ≠ x(i’) if i ≠ i’. y(j) ∈ {1, 2, ..., N} and y(j) ≠ y(j’) if j ≠ j’. z(l) ∈ {1, 
2, ..., L} and z(l) ≠ z(l’) if l ≠ l’. Algorithm 2 explains the detailed steps of the pseu-
do-random integer number generator (PRING). 

Algorithm 2: Generating a pseudo random integer number sequence. 
Input: x0, u, k, integer M 
Output: A pseudorandom integer number sequence X with length of M 

1: Initialize: flag ← zeros(1, M); X ← zeros(1, M); x ← x0; 

2: Circularly generate M mutually different integers: 1, 2, ..., M. 
for i ← 1: M do 

3: Output X = {X(i)} 

Step 5: Carry out row and column permutation on the picture by using pseudoran-
dom number sequences X and Y to obtain the permutated image C’ = {c’(i, j)}, i = 1, 2, ..., 
M; j = 1, 2, ..., N. The permutation operations are as follows: 

c’(i, j) = p(x(i), y(j)), i = 1, 2, ..., M; j = 1, 2, ..., N. (4)

Step 6: Perform diffusion operation by using pseudorandom number sequence Z to 
obtain the final cipher-text image C = {c(i, j)}, i = 1, 2, ..., M; j = 1, 2, ..., N. The diffusion 
operations are as follows: 

c(1) = bitxor(mod(z(1) + c’(1), 256), 255), (5a)

c(l) = bitxor(mod(z(l) + c’(l), 256), c(l − 1)), l = 2, 3, ..., L. (5b)

Step 7: Output the final encrypted image matrix C. 
Some comments about the PRINT: since the X sequence consists of M numbers in 

the set {1, 2, ..., M}, each element x(i) in X is different from each other, the Y sequence 
consists of N numbers in the set {1, 2, ..., N}, and each element y(j) in Y is also different 
from each other. The set composed of element pairs {(x(i), y(j))} is equivalent to a 
two-dimensional coordinate ergodic matrix, so the ergodic matrix can effectively realize 
the image scrambling operation. Similarly, the Z sequence is composed of L numbers in 
the set {1, 2, ..., L} (L = M × N), and each element z(l) in Z is also different from each other. 
Therefore, the Z sequence is used for image pixel value replacement encryption, which 
can provide a different key for pixels in different positions. 
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3.2. The Decryption Algorithm 
The decryption steps of the proposed scheme are elaborated as follows: 
Step 1: Read the encrypted image C along with the hash value 1 2 64h h h h=  and the 

parameter u. Obtain the image size to get the values of M, N and L. 
Step 2: Calculate {x0, y0, z0} by using Equation (3a–c). 
Step 3: Use {x0, y0, z0} as initial values and parameter u for the PTM system (2) to 

produce pseudo-random number sequences X, Y, and Z. 
Step 4: Perform inverse diffusion operation by using the pseudorandom number 

sequence Z to obtain the permutated image C’ = {c’(i, j)}, i = 1, 2, ..., M; j = 1, 2, ..., N. The 
inverse diffusion operations are as follows: 

c’(i) = mod(bitxor(c(i), c(i − 1)) − z(i), 256), l = L, L − 1, L − 2, ..., 2, (6a)

c’(1) = mod(bitxor(c(1), 255) − z(1), 256), (6b)

Step 5: Perform chaotic row and column permutation in reverse order using pseu-
do-random number sequences X and Y to obtain the deciphered image P = {p(i, j)}; the 
operation is expressed as follows: 

p(x(i), y(j)) = c’(i, j), i = 1, 2, ..., M; j = 1, 2, ..., N.  (7)

Step 6: Output the decrypted image matrix P. 

4. Security Analysis and Simulation Results 
To check the validity of the proposed image encryption algorithm, we carried out 

simulation experiments with several standard test images, such as lena, cameraman, 
mandrill, peppers and boat that were obtained from the CVG-UGR image database 
(https://ccia.ugr.es/cvg/dbimagenes/(accessed on 3 February 2022)), and other test images 
that were obtained from the miscellaneous volume of USC-SIPI image database. The 
USC-SIPI image database is available and maintained by the University of Southern Cal-
ifornia Signal and Image Processing Institute (http://sipi.usc.edu/database/(accessed on 3 
February 2022)). The secret key parameters of the cryptosystem were (x0, y0, z0, u). The 
simulation was carried out on the Matlab R2021b platform running on a computer with 
Intel Core i7-9700 @ 3.00GHz processor, 16 GB memory and Windows 10 operating sys-
tem. In our simulation tests, the secret key parameters { x0, y0, z0} were generated with the 
plaintext image to be encrypted, and u was set as 5.167. 

4.1. Encryption Effect 
Figure 6 shows the four standard test images and their encrypted ones by the pro-

posed algorithm. One can see that the encrypted images are not related to the original 
ones, and can no longer be understood. 

    
(a) (b) (c) (d) 
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(e) (f) (g) (h) 

Figure 6. The standard test images and their encrypted ones. (a) The plaintext image cameraman. 
(b) The plaintext image peppers. (c) The plaintext all-white image. (d) The plaintext all-black im-
age. (e) The encrypted image cameraman. (f) The encrypted image peppers. (g) The encrypted 
all-white image. (h) The encrypted all-black image. 

4.2. Key Space Analysis 
Since the original keys of {x0, y0, z0} were generated with the 256 bit plaintext image 

hash value, the parameter u was a double precision real number, which had 15 signifi-
cant digits after the decimal point, and the total key space was 2256 × 1015 > 2305. At present, 
a cryptosystem is secure when the secret key space is larger than or equal to 2100. Hence, 
the secret key space of the proposed scheme was large enough to meet the safety re-
quirements. 

4.3. Histogram Analysis 
The histogram of an image can vividly show the number distribution of pixels of 

various gray levels in an image. In order to resist various statistical analysis attacks, the 
histogram of an encrypted image should be uniformly distributed. Figure 7 shows the 
histogram of some histograms of several standard test images and their cipher-text im-
ages. We can see that every encrypted image has a uniformly distributed histogram and 
is significantly different from that of the plain image. 

    
(a) (b) (c) (d) 

    
(e) (f) (g) (h) 

    
(i) (j) (k) (l) 
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Figure 7. Plaintext/encrypted images and their histograms. (a) Plaintext image lena. (b) Histogram 
of (a). (c) Encrypted image lena. (d) Histogram of (c). (e) Plaintext image mandrill. (f) Histogram of 
(e). (g) Encrypted image mandrill. (h) Histogram of (g). (i) Plaintext image boat. (j) Histogram of 
(i). (k) Encrypted image boat. (l) Histogram of (k). 

Moreover, we adopted the chi-square test to further prove the uniformity of the 
histogram of the cipher-text image. The chi-square can be computed as follows: 

2 2

1
( ) /

I

i i
i

O E Eχ
=

= − . (8)

where I represents the total gray level of the image; Oi represents the observed occur-
rence frequency of the i-th level gray; and Ei represents the expected ideal occurrence 
frequency of the i-th level gray. For a significance level 𝛼 = 0.05, the critical value for 8-bit 
gray scale image (I = 256) is equal to 𝜒2(255, 0.05) = 293.2478. The encrypted images 
should have a value lower than the critical value 293.2478. We applied the test on some 
images and their encrypted images, and the experimental results are listed in Table 2. 

Table 2. χ2 values of plaintext images and encrypted images by different algorithms. 

Images χ2 of Plaintext Im-
ages 

χ2 of Encrypted Imag-
es (This Work) 

χ2 of Encrypted Im-
age (Ref. [17]) 

Lena (256 × 256) 3.0666 × 104 217.8984 230.1484 
Cameraman (256 × 256) 1.1097 × 105 219.4609 234.3047 

Lena (512 × 512) 1.5802 × 105 249.7266 239.7539 
Cameraman (512 × 512) 4.1853 × 105 261.8965 278.0410 

Barbara (512 × 512) 9.5552 × 104 227.0996 253.9297 
Boat (512 × 512) 3.8397 × 105 207.9766 246.9434 

Mandrill (512 × 512) 2.1137 × 105 241.0781 245.0137 

From Table 2, one can see that all the experimental results are lower than the critical 
value, which indicates that the encrypted images have a uniform distribution. Compared 
with the results in [17], our proposed algorithm has lower values than those of the [17]. In 
conclusion, the encrypted image obtained by our scheme is more evenly distributed in 
terms of pixels, proving that the encrypted images can resist attacks based on the fre-
quency distribution. 

4.4. Information Entropy 
Information entropy is a classical statistical test measure of uncertainty in infor-

mation theory [10], which can be used to estimate the randomness of a dynamic system. 
Its calculation formula is shown in formula (9): 

1

2
0

( ) ( ) log [ ( )]
L

i i
i

H S P s P s
−

=

= − .  (9)

where S is a random variable and P(Si) is the probability of assurance of instance Si. For 
an 8-bit gray image, each pixel value is a random variable, and there are 256 possible 
values. If the probability of occurrence of each value is equal, then H(S) = 8. Generally 
speaking, the entropy of the actual image is always less than the ideal value of 8. There-
fore, the closer the entropy is to 8, the better the image encryption effect. Table 3 lists the 
information results of this paper, and lists some comparative results. Therefore, the im-
age encrypted by this method has a very ideal entropy value, and the multi-value is 
higher than other methods, which indicates that it has better cryptographic performance 
than the others. 

Table 3. Information entropy of encrypted images for several different algorithms. 
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Image Name Image Size Ours Ref. [20] Ref. [29] Ref. [30] 
5.1.10 256 × 256 7.99665 7.99720 7.99717 7.99680 
5.1.11 256 × 256 7.99717 7.99730 7.96999 7.99710 
5.1.12 256 × 256 7.99727 7.99540 7.99757 7.99730 
5.1.13 256 × 256 7.99707 7.99630 7.99735 7.99680 
5.1.14 256 × 256 7.99711 7.99730 7.99674 7.99690 
5.2.08 512 × 512 7.99931 7.99920 7.99934 7.99920 
5.2.09 512 × 512 7.99930 7.99900 7.99930 7.99940 
5.2.10 512 × 512 7.99928 7.99870 7.99926 7.99930 
7.1.01 512 × 512 7.99932 7.99800 7.99929 7.99930 
7.1.02 512 × 512 7.99944 7.99490 7.99931 7.99930 
7.1.03 512 × 512 7.99935 7.99830 7.99925 7.99940 
7.1.04 512 × 512 7.99926 7.99850 7.99923 7.99940 
7.1.05 512 × 512 7.99924 7.99880 7.99929 7.99930 
7.1.06 512 × 512 7.99932 7.99900 7.99933 7.99930 
7.1.07 512 × 512 7.99924 7.99870 7.99931 7.99910 
7.1.08 512 × 512 7.99930 7.99880 7.99923 7.99920 
7.1.09 512 × 512 7.99926 7.99850 7.99219 7.99920 
Elaine 512 × 512 7.99926 7.99930 7.99922 7.99930 
5.3.01 1024 × 1024 7.99985 7.99930 7.99983 7.99980 
5.3.02 1024 × 1024 7.99977 7.99920 7.99981 7.99990 

Testpat 1024 × 1024 7.99983 7.98470 7.99982 7.99980 

4.5. Correlation Coefficients between Consecutive Pixels 
This indicator measures the correlation degree of adjacent pixels in the image. A 

good encryption algorithm should make this correlation very small, that is, the absolute 
value of correlation coefficient should be close to 0. To assess local associations, this pa-
per analyzed the correlation by calculating the correlation coefficients of the encrypted 
images in three adjacent directions. The method that the absolute value of correlation 
coefficient is closer to 0 was considered to be better. The calculation method of the cor-
relation coefficient is shown in formulas (10)–(13): 

1

1( )
xyN

i
ixy

E x
N =

= x
  

(10)

( ) ( )2

1

1 ( )
xyN

i
ixy

D x E
N =

= −x x   (11)

( ) ( )( )
1

1cov , ( ) ( )
xyN

i i
ixy

x E y E
N =

= − −x y x y   (12)

( ) ( ) ( )cov , /r D D=xy x y x y   (13)

Among them, (xi, yi) represent a pair of gray values of two adjacent pixels in the 
image and xyN  represents the number of total pairs of randomly selected pixels from the 
image. Some test images were tested, and the experimental results are listed in Table 4, 
which also lists some comparison results. Compared with the data reported in the liter-
ature, this algorithm achieved satisfactory results. 
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Table 4. Correlation coefficients of the cipher images encrypted by different algorithms. 

Algorithm Image Name Horizontal Vertical Diagonal 
This work 5.1.10 0.001403 0.000645 −0.002410 
Ref. [29] 5.1.10 –0.002971 –0.000897 0.003682 
Ref. [30] 5.1.10 −0.007100 0.008500 0.000200 

This work 5.1.11 −0.010029 0.002503 −0.000842 
Ref. [29] 5.1.11 0.001757 –0.010444 0.001124 
Ref. [30] 5.1.11 −0.004800 −0.001700 0.006800 

This work 5.1.12 −0.000273 −0.000764 −0.001682 
Ref. [29] 5.1.12 0.009575 –0.002502 –0.000582 
Ref. [30] 5.1.12 0.005500 −0.004900 0.000100 

This work 5.1.13 0.002899 −0.000105 −0.001305 
Ref. [29] 5.1.13 0.000347 0.004691 –0.009999 
Ref. [30] 5.1.13 0.003800 0.002500 0.003200 

This work 5.1.14 0.004723 0.000035 −0.000283 
Ref. [29] 5.1.14 0.008773 –0.011971 0.000220 
Ref. [30] 5.1.14 0.000400 0.000400 0.001200 

This work 5.2.08 −0.001405 −0.002724 0.0009704 
Ref. [29] 5.2.08 –0.002389 –0.003528 –0.003059 
Ref. [30] 5.2.08 0.004100 0.001400 0.000054 

This work 5.2.09 −0.003732 0.002767 0.000471 
Ref. [29] 5.2.09 0.000783 –0.003316 –0.000207 
Ref. [30] 5.2.09 −0.001700 −0.001800 −0.001900 

This work 5.2.10 0.003098 −0.001703 −0.001175 
Ref. [29] 5.2.10 –0.006168 –0.007614 0.000369 
Ref. [30] 5.2.10 0.000007 0.002100 0.001200 

This work 7.1.01 0.001635 −0.001531 0.000747 
Ref. [29] 7.1.01 –0.002843 0.000667 0.004116 
Ref. [30] 7.1.01 −0.000100 0.001300 −0.001300 

This work 7.1.02 0.002013 0.000773 −0.000288 
Ref. [29] 7.1.02 –0.003666 –0.001386 –0.001295 
Ref. [30] 7.1.02 0.000900 0.001600 0.005700 

This work 7.1.03 0.000500 0.000885 −0.003690 
Ref. [29] 7.1.03 –0.002931 –0.004124 0.003147 
Ref. [30] 7.1.03 0.000100 0.000200 0.003100 

This work 7.1.04 0.000826 −0.000919 −0.001786 
Ref. [29] 7.1.04 –0.004028 –0.001065 –0.000901 
Ref. [30] 7.1.04 −0.001400 0.000811 −0.003100 

This work 7.1.05 −0.002312 0.001432 0.001277 
Ref. [29] 7.1.05 0.001735 –0.003046 –0.002081 
Ref. [30] 7.1.05 −0.002400 −0.000700 0.003400 

This work 7.1.06 0.001373 0.001590 −0.005810 
Ref. [29] 7.1.06 –0.001395 –0.003363 –0.001516 
Ref. [30] 7.1.06 0.000832 0.001700 0.001800 

This work 7.1.07 −0.002871 −0.000073 0.000955 
Ref. [29] 7.1.07 –0.000608 0.000682 –0.000090 
Ref. [30] 7.1.07 0.003900 0.002100 0.002500 

This work 5.3.01 −0.000665 0.000425 0.000494 
Ref. [29] 5.3.01 0.000606 0.000090 0.002417 
Ref. [30] 5.3.01 0.000400 0.002600 0.001200 

This work 5.3.02 −0.000417 −0.000375 −0.000678 
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Ref. [29] 5.3.02 0.000502 0.001669 –0.000435 
Ref. [30] 5.3.02 −0.000377 −0.000474 −0.000301 

The correlation between adjacent pixels can also be intuitively displayed by the pixel 
value distribution graph. Figure 8 shows the distributions of adjacent pixels in the 
plaintext image Peppers and encrypted Peppers. From Figure 8, one can see that the ad-
jacent points of the original image Peppers are distributed in a straight line or close to the 
straight line. After being encrypted, the adjacent points of the cipher-text image are 
evenly distributed, which effectively resists statistical attacks. 

   
(a) (b) (c) 

   
(d) (e) (f) 

Figure 8. Horizontal, vertical, and diagonal correlation point diagrams of plaintext image Peppers 
and encrypted image Peppers. (a) Original Peppers horizontal; (b) Original Peppers vertical; (c) 
Original Peppers diagonal; (d) Encrypted Peppers horizontal; (e) Encrypted Peppers vertical; adn 
(f) Encrypted Peppers diagonal. 

4.6. Resistance to Differential Attacks 
Differential cryptanalysis is based on finding the differences between different 

plaintext images and corresponding encrypted images. If the corresponding ciphertext 
images of two plaintext images with very small differences are very different, the 
stronger the ability of the algorithm to resist this attack. This ability is often described by 
two indicators, namely, the rate of change of the number of pixels (NPCR) and the uni-
fied average change intensity (UACI). Their calculation formulas are as follows: 

1, ( , ) ( , ),
( , )

0, ( , ) ( , ).
if C i j C' i j

D i j
if C i j C' i j

≠
=  =
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where M and N are the row number and column number of the image. C is the one cipher 
image and C’ is another cipher image after changing a pixel value in plaintext image. C(i, 
j) is the pixel of cipher image C at the position (i, j) and C’(i, j) is the pixel of cipher image 
C’ at the position (i, j). The ideal values are NPCR = 99.6094% and UACI = 33.4635%. The 
larger the value of NPCR and UACI, the greater the difference between cipher-texts, and 
the better the algorithm is. In our experimental tests, NPCR and UACI are calculated by 
using Equations (14) to (16) for the Lena image five times. The average values of NPCR 
and UACI for the proposed method and other methods are shown in Table 5. The results 
show that the proposed method has satisfactory ability to resist differential cryptanaly-
sis. 

Table 5. Values of NPCR and UACI in several different encryption schemes. 

Indicators This Work Ref. [17] Ref. [20] Ref. [23] Ref. [30] 
NPCR% 99.619 99.613 99.620 99.630 99.614 
UACI% 33.502 33.466 33.505 33.400 33.546 

4.7. Time Performance Analysis 
In the tests, the 256 × 256 size gray scale images were adopted as experimental im-

ages. The decryption speed of the methods introduced in this paper is listed in Table 6, 
and the results of the methods in the centralized literature are listed. The comparison 
shows that this proposed method has faster encryption speed than other methods. 

Table 6. Comparison of encryption and decryption time for a 256 × 256 size image (second). 

Time cost This Work Ref. [17] Ref. [20] Ref. [30] 
Encryption 0.163283 0.310429 0.6212 1.7351 
Decryption 0.177925 0.305958 0.6121 1.7223 

5. Conclusions 
This paper proposes a new chaotic product trigonometric map (PTM) system and a 

symmetric image encryption algorithm based on the PTM system. Firstly, we proposed a 
new PTM system, and demonstrated the chaotic characteristics of a PTM system by using 
a series of chaotic performance criteria, and proves that the new PTM system shows 
larger chaotic parameter interval and more complex chaotic behavior than the existing 
sine map system, which makes PTM system have better application value in image en-
cryption. Furthermore, this PTM system is applied to image encryption. A scram-
bling-diffusion structure image encryption algorithm is proposed, in which the key is 
related to the hash value of the image. The algorithm realizes the encryption strategy of 
one-graph-one-key, which can resist plaintext attack. The pseudo-random integer gen-
eration algorithm designed can generate a two-dimensional coordinate traversal matrix 
for image scrambling. Additionally, a one-dimensional integer traversal sequence is 
generated for image pixel value transformation encryption. Image scrambling algorithm 
based on two-dimensional coordinate traversal matrix can quickly achieve good scram-
bling effect. Cipher-text feedback mechanism is introduced in the process of pixel value 
transformation encryption, which can improve cipher-text diffusion performance. Secu-
rity analysis and various simulation test results show that the proposed image encryption 
scheme has good cryptographic performance and little time cost, showing its good ap-
plication potential in real-time secure communication applications. 
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