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Abstract: Polyphonic sound event detection (SED) is the task of detecting the time stamps and the class
of sound event that occurred during a recording. Real life sound events overlap in recordings, and
their durations vary dramatically, making them even harder to recognize. In this paper, we propose
Convolutional Recurrent Neural Networks (CRNNs) to extract hidden state feature representations;
then, a self-attention mechanism using a symmetric score function is introduced to memorize long-
range dependencies of features that the CRNNs extract. Furthermore, we propose to use memory-
controlled self-attention to explicitly compute the relations between time steps in audio representation
embedding. Then, we propose a strategy for adaptive memory-controlled self-attention mechanisms.
Moreover, we applied semi-supervised learning, namely, mean teacher–student methods, to exploit
unlabeled audio data. The proposed methods all performed well in the Detection and Classification
of Acoustic Scenes and Events (DCASE) 2017 Sound Event Detection in Real Life Audio (task3) test
and the DCASE 2021 Sound Event Detection and Separation in Domestic Environments (task4) test.
In DCASE 2017 task3, our model surpassed the challenge’s winning system’s F1-score by 6.8%. We
show that the proposed adaptive memory-controlled model reached the same performance level as a
fixed attention width model. Experimental results indicate that the proposed attention mechanism
is able to improve sound event detection. In DCASE 2021 task4, we investigated various pooling
strategies in two scenarios. In addition, we found that in weakly labeled semi-supervised sound event
detection, building an attention layer on top of the CRNN is needless repetition. This conclusion
could be applied to other multi-instance learning problems.

Keywords: sound event detection; self-attention mechanism; convolutional recurrent neural networks;
adaptive memory control; semi-supervised learning

1. Introduction

Driven by the annual Detection and Classification of Acoustic Scenes and Events
(DCASE) challenges [1–3], sound event detection (SED) is gaining interest from the
industry [4,5]. Differently from the typical classification problem that assigns an audio
example to one or more classes, e.g., sound scene classification [6], SED not only requires
detection of the time stamps, but also the class(es) of sound event in a recording. Sound
events do not often occur in isolation, but tend to overlap with each other. Recognizing
such overlapping sound events is referred to as polyphonic sound event detection [7].
Polyphonic SED is always considered as a multi-label multi-class problem. Consequently,
approaches based on machine learning have shown to be especially effective [8,9]. Some
deep learning models, such as Convolutional Neural Network (CNN), Recurrent Neural
Network (RNN), and their combination model, CRNN [10], have recently prevailed and
have shown improved performances in SED. However, based on the fixed sizes of their
convolution filters, CNNs make decisions using only limited context. RNNs solve context
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limitations, but take no notice of the fact that some frames in context are more important
than others when making decisions. With the great success of the transformer [11], the
attention mechanism has received considerable attention, as it can address the above worry
about RNNs.

The self-attention mechanism, also called intra-attention, is one of the extensions of
the attention mechanism. It models relations within a single sequence. Each embedding
in one time step is a weight sum representation of all of the rest of the time steps within
the sequence. Self-attention has been used successfully in a variety of tasks, including
reading comprehension, abstractive summarization, textual entailment [12], and automatic
speech recognition [13]. Many methods in the natural language processing (NLP) field,
such as RNNs, connectionist temporal classification (CTC) [14], and dynamic time warping
(DTW), have been widely and successfully used for references in sound event detection [15].
Thus, the attention mechanism has been introduced into SED; for example, a self-attention
model was deployed to help an SED model to distinguish between relevant and irrele-
vant parts of a weakly labeled audio clip [16]. Kong et al. adopted an attention model
in audio classification and explained it from a probability perspective [17]. Wang et al.
applied self-attention mechanisms based on transformer attention [18]. However, none
of these studies have analyzed how many neighbors around each frames in embedding
should be considered representative. In addition, when considering NLP and SED, it
should be noted that the recurrence relations in recordings are not always certain, and
environmental sounds lack inherent structure. Consequently, SED tasks cannot always
improve performance by including more neighbors around each frame as machine transla-
tion language modeling task did in [19]. In [20], Dai et al. developed a self-attention based
Transformer-XL which can learn much longer dependency than vanilla transformer [11].
This method improved the state-of-the-art results in language modeling. In text data, there
are certain relations between phonemes in a word and consecutive word relations in a
sentence. In view of the uncertainty of long term dependency in sound events, a natural
idea is to do exactly the opposite of getting longer dependency—that is, to constrain the
attention dependency length. Pankajakshan et al. first implemented this idea in sequential
attention mechanisms [21]. The attention function in sequential attention can be described
as mapping a query and a set of key–value pairs to an output [11]. By selecting different
lengths of key–value set, they changed the attention width and controlled the memory used
for attention. However, Pandajakshan et al. worked with a fixed attention width, and there
is no general agreement about how long the attention width should be. These results were
limited to the development datasets, and are therefore not representative of attention width
in general. This indicates a need for automatic memory-controlled attention in SED.

To obtain a model with better recognition performance, a large amount of training data
is greatly needed. Training data should contain audio and corresponding annotations, e.g.,
onsets, ends, and categories. The annotator should listen carefully to assign timestamps to
a sound event; he may repeat the audio a couple of times to be sure when sounds overlap.
Collecting training data is therefore a difficult task. To relieve the data annotation difficulty,
Wang et al. simplified the annotation process [22,23]. Their work can be considered a
trade-off between accuracy and annotation cost. Another example is weakly-supervised
SED [24]. In weakly-supervised SED, the training audio data only contain sound event tags
without time boundaries. This method releases the audio annotation burden to some extent.
However, there is nearly infinite potential audio training data on social media servers.
Leveraging this unlabeled audio data to improve SED is a trend.

In this study, we extended our previous work on DCASE 2021 task4 [25]. We adopted
a mean teacher method [26] to develop a semi-supervised learning SED system which
leverages both the labeled data (strongly labeled, weak labeled) and the unlabeled data. A
self-attention mechanism was introduced to memorize dependencies of features extracted
from the CRNN. Next, by constraining the self-attention function to a certain length of
compact neighborhood relative to each frame, we evaluated the potential of memory-
controlled sequential self-attention in DCASE 2017 and DCASE 2021. We propose an
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adaptive memory-controlled self-attention mechanism that can learn optimal attention
width. The experimental results show that the proposed method improves the detection
performance, especially in DCASE 2021 task4, scenario 2; and DCASE 2017 task3. Finally,
we found that pooling is vital for sound event detection. We evaluated all the pooling
strategies with polyphonic sound detection score (PSDS) metrics [27]. In a nutshell, our
contributions are the following:

• A supervised memory-controlled attention model that improves sound event de-
tection by a large margin, without manually optimizing towards dataset-specific
attention width;

• Using the SOTA evaluation criterion, we verified our approach with two publicly
available datasets;

• We studied the weakly-supervised SED pooling strategy on DCASE 2021 task4. This
result can be a reference for pooling selection.

The paper is structured as follows: Section 2 describes the detection system from
the top level. In Section 3, we propose the memory-controlled sequential self-attention
model (under supervised and semi-supervised learning). We show our experiments and
comparative data in Section 4. We discuss our findings in Section 5.

2. Related Work
2.1. Basic Systems Structures

The basic SED systems are in Figure 1. There are two stages in an SED system’s
development—namely, the learning stage and usage stage. Supervised SED model means
all the data involved in the learning stage are annotated, e.g., at 5.1–8 s, alarm bell ringing.
In the supervised learning stage, annotations are used as reference information to auto-
matically learn a mapping between audio and class labels. The mel frequency cepstral
coefficients (MFCCs) and log-mel spectrogram are the most commonly used time–frequency
feature representations of a raw audio waveform. Take feature representation On ∈ RF

extracted from t = 1, 2, 3, . . . , N, where F is the number of features, and take encoded an-
notation Yn ∈ RC, where C is the predefined number of sound event classes. If, according
to the reference annotations, the class with the Cth label is present in analysis frame n,
then Yc,n are set to 1 and 0. In Figure 1, the colored parts of the label represent the value 1,
and blank represents 0. In the usage stage, the learned model takes audio features that
experience the same processing block and feature extraction as input, and then outputs the
two-dimensional prediction matrix. Human-readable annotations could be obtained by
decoding this matrix.

Log-Mel 

spectrogram

Synthetic audio with Strong label 

Real-life audio with weak label

Real-life audio without label

Label encoding

Feature extraction

Label
𝑐1
𝑐2
𝑐3
𝑐1
𝑐2
𝑐3

Feature extraction

Semi-supervise learning model

Supervise learning model

Real-life audio with strong label

Learned Model

Figure 1. Supervised and semi-supervised SED systems. Black rectangles and red dashed rectangles
represent supervised and semi-supervised training material, respectively.
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2.2. Weakly-Supervised Sound Event Detection

Weakly-supervised SED leverages weakly labeled data. The key to this is to aggregate
the outputs of neural networks for a tag predictor. This aggregation operation is also
referred to as pooling. which summarizes frame-level probabilities into clip-wise proba-
bilities. McFee [28] analyzed the commonly seen temporal mean and max-pooling. Their
results on DCASE 2017 suggest that temporal max-pooling performs well when events
are short. Wang [29] compared five pooling functions on DCASE 2017 and showed linear
softmax pooling to be the best among the five. Lin et al. [30] mainly focused on attention
pooling. After combining it with the proposed specialized decision surface method, they
achieved impressive results on DCASE 2018 task4 and DCASE 2019 task4. Lin’s study also
demonstrated that the embedding-level pooling approach tends to outperform the instance-
level one. This conclusion agrees with Kong’s research on audio tagging tasks [31], which
achieved a mean average precision (mAP) of 0.369 on audioSet tagging with feature-level
attention pooling. In spite of the different names the latter papers used, their models are
similar under the hood. If the bottleneck layer’s output (where the aggregation occurs) has a
fixed number of sound classes, it will be instance-level pooling in Lin’s model and decision-
level pooling in Kong’s; otherwise, embedding-level in Lin’s and feature-level in Kong’s.
The unfixed version will likely pull more information from feature space to aggregate,
leading to a better result. Heinrich Dinkel [32] proposed a new post-processing method
utilizing both frame-level and clip-level output, which can be considered SOTA in terms
of tagging in DCASE 2018. All this work only studied the pooling on weakly-supervised
models, evaluated by either a collar-based or a segment-based criterion. In our work, we
investigate pooling strategies in semi-supervised learning. Moreover, we provide insights
into pooling in a specific scenario, which can supplement the aforementioned research.

3. Methods

In both supervised and semi-supervised learning models, we implemented the pro-
posed adaptive memory-controlled sequential self-attention on top of a CRNN model, as
illustrated in Figure 2.

CNN Blocks

3×3Conv2D GLU

Batch Normalization

Average pooling

0.5dropout

Filters={16,32,64

,128,128,128,128}

Pooling={[ 2,2], 

[2,2], [1,2], [1,2], 

[1, 2], [1,2], [1,2]}

RNN Blocks

BGRU

0.5dropout

Filters={128,128}

Attention 

Module

Filters={128,128,128}

Pooling={[5,5], [2,2], [2,2]}
Filters={32,32}

0.5dropout

Dense Layer(10 Class)

Softmax Sigmoid

Pooling

Weak 

prediction

Strong 

prediction

Dense Layer(6 Class)

Sigmoid

Red dash line represent semi-supervise (learning) detection 

model and configs

Strong 

prediction

Figure 2. The proposed supervised and semi-supervised models are in the upper and lower parts,
respectively. The different configurations of the two are indicated by the red dashed line.

3.1. Model Overview

The CRNN models used in the two systems are basically the same, except for the
output layer and the number of layers. The strongly labeled audio in DCASE 2017 were
difficult to collect, and thus there are fewer data compared to DCASE 2021. Consequently,
we reduced the CNN layers to three to avoid overfitting. The output layers have six
sigmoid units, which correspond to the six classes of sound events. The supervised leaning
model for DCASE 2017 was trained by minimizing binary cross entropy. Figure 3 illustrates
the mean teacher method and the semi-supervised learning model for DCASE 2021. The
mean teacher method averages model weights instead of performing label prediction. It
achieved state-of-the-art results without changing the network architecture. Moreover,
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any established model can be built under this method. There are two models, namely, the
student model and the teacher model, in the mean teacher–student method. The student
model and the teacher model share the same CRNN with adaptive memory-controlled
architecture, but the teacher model’s weights are updated as exponential moving averages
of the student model’s weights. The whole semi-supervised learning model was trained
by using three kinds of datasets: strongly labeled, weakly labeled, and unlabeled audio
data. The student model was trained by strongly labeled data and weakly labeled data; the
loss function of the student model includes strong label loss and weak label loss; we used
binary cross entropy (BCE) to compute this supervised loss. Note that the unlabeled data
were passed forward to the student model so that there were weak and strong predictions
of unlabeled data. We did not use the data for student loss computing, but for distribution
consistency loss, which is also called self supervised loss. Mean square error (MSE) loss
was used to compute self supervised loss between predictions from student and teacher
models. Finally, the total semi-supervised model was trained by minimizing the sum
of supervised loss and self supervised loss. Inherently, self supervised loss obliged the
predictions from both teacher and student models to be as likely as possible, and thus
exploited large amounts of unlabeled audio data. Both trained models can be used for
prediction, but the teacher’s predictions are more likely to be right [26].

strongly labeled audio

Weakly labeled audio

Unlabeled audio

𝜃 𝜃′

Student model

Supervised 

Strong Loss

Supervised 

Weak Loss

Self-supervised 

Strong Loss

Self-supervised 

Weak Loss

Exponential 

moving average

Prediction

Teacher model

Prediction

Figure 3. Mean teacher method. The colored rectangles represent the occurrences of a sound event in
the label. The length of rectangles with different colors are the timestamps of an occurred sound event.

3.2. Pooling Function

Pooling in SED means to aggregate a neural network’s (student model and teacher
model in Figure 3) frame-level probability outputs to recording-level predictions. Note that
this enables a number of dimension reductions, which is a differentiating characteristic
from pooling after convolution. Let the probability of an event class at the n-th frame be
yn ∈ [0, 1], and the aggregated along the time axis clip-level probability be y ∈ [0, 1]. We
introduce max-pooling [33], average pooling [34], linear softmax pooling [35], exponential
softmax pooling [29], attention pooling [30,31], and auto-pooling [28].
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The max-pooling function takes the largest class presence probability yn at the n-th
frame as y. This can be formulated as:

y = max
n

(yn) (1)

This max-pooling strategy is not able to consider that some sound classes are less likely
than the maximum probability, yet occurred multiple times. All the other pooling functions
are designed to improve on it by assigning different weights. Average pooling assigns
equal weights for every prediction in one frame:

y =
1
N ∑

n
yn (2)

where N is the total number of frames in a recording. The linear and exponential soft-
max pooling assign weights by the output probabilities themselves, as in the following
two equations:

y =
∑n y2

n

∑n yn
(3)

y =
∑n yn exp(yn)

∑n exp(yn)
(4)

These two pooling strategies tend to be focused on positive prediction. Attention
pooling assigns weights from a learnable layer in the network. Attention pooling was used
as the DCASE 2021 task4 baseline [3]. Let ω be the learnable parameters. We have the
clip-level probability:

y =
∑n yn ωn

∑ ωn
(5)

Auto pooling is an improved version of exponential softmax pooling. A trainable
parameter α is used as a scalar:

y =
∑n yn exp(α yn)

∑n exp(α yn)
(6)

When α = 0, Equation (4) reduces to unweighted average pooling; when α = 1,
Equation (4) simplifies to exponential softmax pooling; and when α → ∞, Equation (1)
approaches max-pooling. This can be assumed to automatically adapt to and interpolate
between different pooling behaviors [28].

3.3. Semi-Supervised Model

In the student model, we use a CRNN as the hidden state feature representation
extractor, which takes a log-mel spectrogram as input. The CRNN architecture is as follows.
The CNN part consists of seven convolution layers. The filter size at each layer increases at a
power of 2. The first layer has 16 filters, the second 32, and the third 64. The remaining four
layers have 128 filters in total. Batch normalization and max-pooling are performed after
every layer of CNN along the frequency axis. In order to introduce non-linear characteristics
to a CRNN network, a learnable gated activation function called gated linear units (GLU)
is used instead of using sigmoid or ReLU activation. Dropout is used as a regularizer after
every layer of CNN. Then the resulting feature maps are fed as input to two bi-directional
GRUs [36] with 128 RNN cells. After that, the extracted hidden state representations are
processed by proposed adaptive memory-controlled sequential self-attention to derive
improved hidden state representations. A layer of a time-distributed fully-connected
network is followed by the final output layer with 10 sigmoid units as the number of sound
event class labels in the dataset. Finally, we obtain the sequence of class classification
probabilities in the student model with network parameter θ : Ystudent = (ŷtag, ŷn|θ). It
contains both clip-level predictions ŷtag and frame-level predictions ŷn), where n is the
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index of frames. n ∈ 1, . . . N(ŷtag is obtained by pooling, which reduces ŷn) along the time
axis. The supervised loss is computed as follows:

Losssupervised = Lossstudent = Lossweak + Lossstrong, (7)

where:

Lossweak =
C

∑
i=1

BCELoss(ytag, ŷtag), (8)

Lossstrong =
1
n

N

∑
n=1

C

∑
i=1

BCELoss(yn, ŷn), (9)

ytag and yn are the ground truth of the clip-level label and frame-level label, respectively.
The teacher model shares the same CRNN with the adaptive memory-controlled network
architecture; however, after the weights of the student model have been updated with
gradient descent, the teacher model weights are updated as exponential moving averages
of the student model weights [26]. In this paper, we use θ′ to indicate the weights of teacher
model and θ to indicate the weights of the student model. We define θ′t at training step t as
the exponential moving average of the θ weight:

θ′t = αθ′t−1 + (1− α)θt, (10)

where α is a smoothing coefficient hyperparameter. The sequence of class classification
probabilities of teacher model Yteacher = (ŷtag, ŷn|θ) also contains both clip-level label
predictions ŷtag and frame-level label predictions ŷn. The self supervised loss is the MSE
loss between the inference from teacher model with θ′ and the student model with θ:

Losssel f _supervised = Losssel f _weak + Losssel f _strong, (11)

Losssel f _weak =
C

∑
i=1

MSELoss((ŷtag|θ′), (ŷtag|θ)), (12)

Losssel f _strong =
C

∑
i=1

MSELoss((ŷ|θ′), (ŷ|θ)), (13)

Finally, the total semi-supervised model is trained by minimizing the sum of super-
vised loss and self supervised loss as follows:

Losstotal = Losssupervised + Losssel f _supervised, (14)

3.4. Self-Attention Mechanism

Key, value, and query are commonly used terms to describe attention mechanism.
Given a query vector, the weight coefficient of the value corresponding to each key is
obtained by calculating a similarity score in key–value pairs. Then the final attention value
is weighted and summed. This can be formulated as:

Attention(Q,K,V)=softmax(Q,K)V, (15)

where Q, K, V are the query, key, and value matrices, respectively. When Q = K = V, it is
defined as “self-attention.”

3.5. Adaptive Memory-Controlled Self-Attention

In this paper, we use H = (h1, h2, . . . , hN) to represent the hidden state representations
that the CRNN extracts. where N denotes the total number of frames in a recording. In
terms of query, key, and value representations, Q = K = V = hn. To explicitly compute
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the relations between time steps, we apply memory-controlled self-attention on H. The
resulting improved representations H̃ = (h̃1, h̃2, . . . , h̃N), where

h̃n =
n+ L

2

∑
i=n− L

2

αn
i hi; n ∈ {1, . . . , N}. (16)

αn
i is the attention weight value computed using a similarity function:

αn
i = so f tmax(sn

i ), (17)

sn
i = score(hn, hi); i, n ∈ {1, . . . , N}. (18)

Additive score functions instead of scale-dot score function in [11] are used as follows:

score(hn, hi) = V>α tanh(Wα[hy; hi]), (19)

where Vα and Wα are the weight terms of the score functions and > denotes transposition.
On tensor level, score(hn, hi) is symmetric matrices. We constrain the self-attention function
as in Equation (16) so that the improved representation at each time step is computed only
on its nearest L neighbors, namely, attention width. That is:

Q = hn, and KL = VL = hn− L
2 ,...,hn ,...h

n+ L
2

, (20)

On a tensor level, this turns the symmetric score matrices into band matrices.
The vanilla self-attention in [11] computes representation in each time step h̃N with

respect to all the other time steps. Inherently, sound events occurring in 10 s recordings
typically lack the syntactic and semantic relations that human language has [37]; that
is to say, frame-level representation hn among sound events could lead to incorrect h̃N ,
which would do no good to the detection model. An insight about Equation (16) is that
it just takes the structured part within a sound event into consideration. Since there are
no general rules for choosing attention width, and in order to overcome the limitation
of a fixed attention width, we propose adaptively controlling the attention width. When
we compute the similarity score in Equation (18) we add a masking function to control
the width of the attention. A masking function is a non-increasing function that maps
a distance among frames to a value in [0, 1]. This idea is inspired by the attention span
in machine translation in [19]. A difference between language model tasks and SED is
that the attention mechanism is applied to word level embedding in the language model
and frame-level embedding in SED. With the mask function, the attention scores among
frames are weighted with their distances. We take the following soft masking function mz
parameterized by a real value z in [1, N]:

mz(x) = min
[

max
[

1
R
(R + z− x), 0

]
, 1
]

, (21)

where R is a hyper-parameter that controls its softness. min[·], max[·] are the operators
used to get the minimum and maximum of the two values. The attention weights from
Equation (17) are then computed as:

αn
i = mz(n− i)so f tmax(sn

i ) =
mz(n− i)exp(sn

i )

∑N
i=1 mz(n− i)exp(sn

i )
, (22)

where exp(·) is the exponentiation operator.
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4. Experiment

In this section, we introduce the DCASE challenge and datasets, with which we
performed a series of experiments to evaluate the memory-controlled model and pooling
methods. All the training configuration information is also in this section.

4.1. DCASE 2017 Task3

DCASE 2017 task3 requires evaluating the performances of sound event detection
systems in multi-source conditions similar to our everyday life.

4.2. DCASE 2021 Task4

The goal of DCASE 2021 task4 [8] is to evaluate systems for the detection of sound
events. This task is the follow-up to DCASE 2020 task4 [3]. The challenge consists of
detecting sound events within audio clips using training data from real recordings, both
weakly labeled and unlabeled, and synthetic audio clips that are strongly labeled. This
task requires evaluating systems with two scenarios by specifying corresponding PSDS
parameters. Scenario 1 focuses on the localization of the sound event: the system in scenario
1 needs to react fast upon an event detection (to trigger an alarm, adapt home automation
system, etc.). Scenario 2 puts more emphasis on the system’s ability to distinguish among
events, and the reaction speed requirement is less rigid.

4.3. Evaluation Criterion

In this study, we used polyphonic SED metrics proposed in [38] and state-of-art
polyphonic sound detection score (PSDS) metrics described in [27] for evaluation.

(1) Polyphonic SED metrics. There are two ways of comparing system outputs and
ground truth with polyphonic SED metrics: segment-based and event-based. Segment-
based metrics compare system outputs and ground truth in short time segments,
e.g., 1 s. Event-based metrics compare system outputs and ground truth event by
event. Tolerance is allowed, e.g., a ±100 ms collar. In this paper, we use segment-
based F-score, event-based F-score, and segment-wise error rate. F-score F is calculated
as follows:

p =
TP

TP + FP
, R =

TP
TP + FN

, F =
2TP

2TP + FP + FN
, (23)

Note that the segment-based and event-based Precision P, Recall R, and F-score F are
calculated based on corresponding intermediate statistics. TP is the number of True
Positive, FP is the number of false positives, and FN is the number of false negatives.
The error rate ER measures the amount of errors in terms of insertions (I), deletions
(D), substitutions (S) and the number of active sound event N in segment k.:

ER =
∑K

k=1 S(k) + ∑K
k=1 D(k) + ∑K

k=1 I(k)

∑K
k=1 N(k)

, (24)

(2) PSDS metrics. PSDS metrics allow for system comparisons independently from
operating points (OPs) and provide more global insights into system performance.
Furthermore, by specifying a system’s parameters, it can be tuned to varying appli-
cations in order to match a variety of user experience requirements. As in [27], we
used predefined detection tolerance criterion (DTC) ρDTC, ground truth tolerance
criterion (GTC) ρGTC, and the cross-trigger tolerance criterion (CTTC) ρCTTC. We
then computed the TP ratio r∗TP,c, FP ratio R∗FP,c, the CR rate R∗CT,c,ĉ, then we have the
effective FP rate (eFPR):

eFPR : e∗c , R∗FP,c + αCT
1

|C| − 1 ∑
ĉ∈C,ĉ 6=c

R∗CT,c,ĉ, (25)
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In Equation (25), αCT is a weighting parameter, c ∈ C is the sound event class, and
|C| is the total number of classes.

µTP =
1
C ∑

c∈C
rTP,c, (26)

σTP =

√
1
C ∑

c∈C
(rTP,c − µTP)2, (27)

Using both the exception (Equation (26)) and standard deviation (Equation (27))
of TP ratios across classes, the effective TP ratio (eTPR) is computed as eTPR: re ,
µTP− αST ∗σTP, where αST adjusts the cost of instability across classes. The coordinates
of (eFPR, eTPR) form the PSD ROC curve. The normalized area under the PSD curve
is the PSD score (PSDS). Given dataset ground truth Y, and the set of evaluation
parameters, (ρDTC, ρGTC, ρCTTC, αCT , αST), a PSDS of a system detection is:

PSDS ,
1

emax

∫ emax

0
r(e)de, (28)

where emax is the maximum eFPR value of interest for the SED application under
evaluation.
In DCASE 2021 task4, the system detection will be evaluated in two scenarios that
emphasize different system properties as follows. In scenario 1, the system needs to
react fast upon event detection (e.g., to trigger an alarm or adapt a home automation
system). The localization of the sound event is then very important. The PSDS
parameters reflecting these needs are:

– Detection tolerance criterion ρDTC: 0.7;
– Ground truth intersection criterion ρGTC: 0.7;
– Cross-trigger tolerance criterion ρCTTC: 0.3;
– Cost of CTs on user experience αCT : 0;
– Cost of instability across class αST : 1.

In scenario 2, the system must avoid confusing between classes, but the reaction time
is less crucial than in the first scenario. The PSDS parameters reflecting these needs are:

– Detection tolerance criterion ρDTC: 0.1;
– Ground truth intersection. Criterion ρGTC: 0.1;
– Cross-trigger tolerance criterion ρCTTC: 0.3;
– Cost of CTs on user experience αCT : 0.5;
– Cost of instability across class αST : 1.

4.4. Implementation Details

All recordings from the development dataset were resampled to 16 kHz and down-
sampled to mono. Then we extracted a 128-dimensional log-mel spectrogram using a
short-time Fourier transform (STFT) with a 2048 FFT window, a hop length of 256, and a
sample rate of 16 kHz. A temporal subsampling rate of 4 was used on the resulting log-mel
spectrogram. In DCASE 2017 we used a batch size of 32 to train for 30 epochs. Four-fold
cross-validation was used to obtain the best model. For DCASE 2021, the median filter
was used to smooth the predictions. We trained the network for 200 epochs using a binary
cross-entropy loss function with a learning rate of 0.001; we adopted an exponential warm
up for the first 50 epochs. We applied a batch size of 48 (1/4 synthetic data, 1/4 weak-label
data, 1/2 unlabeled data). Mixup [39] with a rate of 0.5 and FilterAugment [40] were used
to augment audio data.

5. Discussion

In this section, we describe a series of experiments with the memory-controlled self-
attention mechanism in supervised and semi-supervised models. For the semi-supervised
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model we also investigated the behavior of six pooling methods in DCASE 2021 task4. We
also make a comparison to other solutions (algorithms) provided by other researchers in
this section.

Experimental Results and Analysis

In DCASE 2017, for the purpose of making contrastive analysis of adaptive memory-
controlled self-attention, we trained the supervised learning model via real-life strong
label audio data as the challenge requires. We first heuristically chose a set of fixed length
attention widths for both the DCASE 2017 supervised model and the DCASE 2021 semi-
supervised model. Then we analyzed the corresponding SED performances. Lastly, we
tested our adaptive memory-controlled sequential attention model. We show the proposed
model’s performance on DCASE 2017 in Table 1. Since we used four-fold cross-validation,
all the results from the table are the averages of four attempts. These results suggest that
the improved features of the self-attention mechanism do help in real-life, long duration
sound event detection. Note that it has a better error-rate and F1-score than the winning
system in DCASE 2017 [41]. This might be owed to the fact that sound events with a long
duration are common in real-life recordings; for instance, a car produces a sound lasting
105.8s on average in each recording. The attention memory-controlled model takes the
appropriate amount of context of the sequence into account. For a certain length of context,
the embedding in each frame is the weight sum of the other; some frames’ features are
focused on more, which enables the model to capture the differentiating features among
sound events. From the experimental results, we found that it cannot always gain improved
performance by getting longer attention width. With an attention width of 300, for example,
the performance is inferior to having an attention width of 200. By using an attention width
of 200, we get the best performance. Our proposed adaptive model reached the same level
of performance as the fixed length model.

Table 1. Experimental results of DCASE 2017. The baseline [42] system is using CRNN without any
memory controlled. The bold font indicates the best system.

Detection System
Segment-Based

Error Rate F1-Score

Baseline [42] 0.9358 42.8%
Winner system [41] 0.7914 41.7%
Attention width 20 0.711 48.3%
Attention width 50 0.7063 48.1%
Attention width 100 0.7065 47.4%
Attention width 200 0.6810 49.6%
Attention width 300 0.6980 49.5%
Adaptive strategy 0.6927 49.6%

In DCASE2021, Zheng uses Selective kernel to design CNN and achieve the first
rank [43]. Wang’s CNN-transformer [44] also leverages attention mechanism, however,
they focus on attention among channels. Various augmentation, post-processing and
ensemble learning are used in Wang’s work. Dinkel [45] works on fewer parameters,
which enables a lightweight model and is more adaptable to practical application. We
show their PSDS evaluation result in Table 2. However, note that although the PSDS1 and
PSDS2 are from one work, the detection system’s configuration (e.g., model architecture,
post-processing techniques) might be different. For our semi-supervised model, we first
show the pooling strategy’s influence without any memory control in Table 2. Then we
present our memory-controlled model.
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Table 2. Experimental results in DCASE 2021. PSDS1 means polyphonic sound event detection
score in scenario 1. PSDS2 means polyphonic sound event detection score in scenario 2. The third
column is the sum of PSDS1 and PSDS2, which is the DCASE challenge ranking criterion. attn20
is an abbreviation of a attention width of 20. Note that F-score and error rate are computed by
macro average. The memory-controlled model with a set of memory widths and baseline [3] used
attention pooling. The best in the last row of the table is the sum of attention pooling PSDS1 and auto
pooling PSDS2.

System
Event-Based Segment-Based

PSDS1 PSDS2 Total F-Score Error Rate F-Score Error Rate

max pooling [33] 0.37 0.65 1.02 42.35% 1.08 73.89% 0.46
avg pooling [34] 0.06 0.74 0.80 18.71 % 1.28 67.32 % 0.83
lin pooling [35] 0.38 0.65 1.03 48.37 % 0.94 76.88 0.45
exp pooling [29] 0.07 0.74 0.81 19.77 % 1.27 67.84 % 0.81

attn pooling [31,46] 0.39 0.60 0.99 46.08 % 1.04 75.44 % 0.46
auto pooling [28] 0.08 0.74 0.82 20.48 % 1.26 68.11 % 0.79

attn20 0.14 0.65 0.79 19.87% 1.09 63.12% 0.58
attn50 0.18 0.65 0.83 23.06% 1.06 65.29% 0.55
attn100 0.17 0.62 0.79 24.79% 1.05 64.66% 0.56
attn200 0.05 0.73 0.74 19.51% 1.24 66.70% 0.85

Baseline [3] 0.34 0.52 0.86
CNN-transformer [44] 0.37 0.72 1.09

winner [43] 0.45 0.74 1.19
light weight [45] 0.37 0.60 0.97

best 0.39 0.74 1.13

The evaluation results of Equation (28) in DCSAE2021 are in Figures 4 and 5. We can
observe the trade-off behavior of PSDS scenario 1 and PSDS scenario 2. Among the six
pooling strategies, linear softmax pooling performed the best. Max-pooling performed
nearly equally to linear softmax pooling in PSDS, but linear softmax showed better local-
ization ability. With linear softmax, a larger prediction will be boosted and the frame-level
probabilities are driven to extremes 0 and 1; it enables the model to perform “bold” pre-
dictions. Average, exponential, and auto pooling achieved 0.74 PSDS scores in scenario 2
and had inferior performance in scenario 1. Many false positive frames were produced,
causing a higher error rate, as shown in Table 2. With attention pooling, the contribution
(the frame-level probability will be boosted or suppressed) of each frame is generated by
the learned attention weight, which is referred to as the loss function. A problem may occur
when a recording-level probability is indeed small, but a larger weight was assigned [29].
As a result, the model cannot distinguish between classes. Although attention pooling in
PSDS1 slightly outperformed the linear softmax pooling, it does not seem to present a good
deal because of the cost of the extra learnable weights.
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Figure 4. PSDS evaluation result of six pooling strategies in scenario 1. PSDS is the normalized area
under the PSD curve. In this scenario, we focus on investigating the temporal localization ability.
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Figure 5. PSDS evaluation result of six pooling strategies in scenario 2. PSDS in scenario 2 reflect the
classification ability among inter-class of the detection system.
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Compared to the baseline, the proposed memory-controlled self-attention improved
the PSDS in scenario 2. However, the PSDS and event-based F1 scores in scenario 1 were
heavily reduced. This indicates that a reaction-time-rigid system does not benefit from
an attention mechanism; on the contrary, an attention mechanism results in inappropriate
detection of timestamps of sound events. Due to the event-based F1 scores being computed
by comparing the ground truth labels to annotations event by event, the detected sound
events tended to surpass the predefined collar, leading to a rapid decrease in event-based
F1 score compared to segment-based F1 score. In Table 2, we can also see the trade-off
between different lengths of attention width. In Figure 1, the attention layer is built on top
of the CRNN output layer. The self-attention mechanism can be regarded as assigning a
weight to the output tensor of the CRNN layer. Taken together, we consider that adding an
attention layer to CRNN is a needless repetition in a model that uses both recording-level
and frame-level prediction for the same output. This conclusion can be generalized to
multi-instance learning as well. However, bag prediction and instance prediction are used
to indicate different levels of prediction.

In a nutshell, the experiment results in DCASE 2021 suggest that overall performance
did not improve by memory-controlled self-attention. In DCASE 2021 task4, the ranking
criterion is an aggregation of PSDS-scenario1 and PSDS-scenario2, and it can be obtained
by two different systems. This criterion was decided by the compelling fact that different
systems can be adopted in different settings by the same user. Our work suggests that
specifying different pooling enables the SED system to lay emphasis on different scenarios,
and linear softmax pooling could be a good choice when the evaluation criterion is not
known prior. The effectiveness of our proposed adaptive controlled strategy has also been
confirmed in a supervised model. Since the largest environment sound dataset Audio-Set
was annotated with strong labels recently [47], our future work will focus on validating
our model in a strongly labeled audio set.

6. Conclusions

In this study, we built a memory-controlled sequential self-attention mechanism on
top of a CRNN model to develop a sound event detection system and investigated how
well that attention mechanism could improve SED. DCASE 2021 datasets and DACSE 2017
datasets were used to test our proposed detection system. Evaluations were performed with
various metrics. We found that memory-controlled self-attention can improve performance
in PSDS scenario 2 and overall performance in real-life scenarios, say, in DCASE 2017. Our
strategy for adaptively choosing an attention width was also successful: it forms a better
bottleneck hidden state feature representation by taking appropriate length of context
into consideration. The second major finding is that in cases of aggregating frame-level
probability to form recording-level predictions, adding an attention layer on top of the
CRNN is needless repetition: it fuses with the input of the following pooling layer, leading
to a degradation in performance. While we draw this conclusion specifically for SED, it
can be generalized to multi-instance learning in other domains. Moreover, we investigated
various pooling methods in two scenarios. In scenario 1, linear softmax achieved the
highest PSDS. Average, linear softmax, and auto pooling are more suitable for scenario 2.
Linear softmax is by no means the best choice. It only performed nearly as well as the best
methods in various evaluation metrics, but importantly, it does not require any parameters
to be trained. This conclusion will be of interest to those enrolling in DCASE challenges.
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