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Abstract: In this article, we propose a new computational method for initial value problems in
ordinary differential equations. The algorithm combines the merits of the group preserving scheme
(GPS), which has the ability of avoiding possible spurious solutions utilizing the inherent symmetry
group, the cone structure of the nonlinear dynamical system, and the classic midpoint rule. The
error and stability analysis are included to demonstrate the convergence properties of the presented
method. From the numerical experimental results we obtained, the algorithm can be said to be
computationally effective and possesses better simulation ability generally. Meanwhile, it works well
with the periodic Hamiltonian system.
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1. Introduction

Systems of ordinary differential equations (ODEs) are most versatile for characterizing
the behavior of dynamical systems. They are ubiquitous in fields such as science and
engineering as well as physical processes, biology, etc. ODEs, partial differential equations
(PDEs), as well as other types of equations can then be used to model systems in continuous
time (e.g., integro-differential or delay equations). In discrete time, they can be depicted by
state machines, Petri nets, finite automata, and so on. As an example, consider the most
important hybrid system. Figure 1 illustrates a simple hybrid system: the self-regulating
thermostat, which is well characterized by a hybrid automaton. There are two states, on and
o f f , denoted by q0 and q1, respectively. The temperature is symbolized by the real-valued
variable x. The two ODEs are used to portray the evolution of the continuous operation in
the state q0 cooling and q1 state warming, separately. Initially, the system is in the q0 state,
i.e., o f f , and the temperature is x = 20, which drops depending on the flow condition
ẋ = −0.1x. As the temperature falls below 19, the system state switches from q0 to the on
state q1. The heater opens and the temperature increases depending on the flow condition
ẋ = 5− 0.1x. The state switches from q1 to the o f f q0 if the temperature exceeds 21. Subject
to the invariant term x ≥ 18, the heater is triggered when the temperature falls to 18 degrees
at the least.

From this example, one crucial step for various tasks is solving the flow condition that
characterizes the continuously dynamic evolution. Formally, φq : X ×R → X denotes a
flow on X ⊂ Rn in state q, which is ẋ = f (x) about variable X. Invq ⊆ X is the domain
of permitted evolution in q. ∆i ∈ R+ is the operation time. γi : [0, ∆i] → X denotes the
curve. For all t ∈ [0, ∆i], γi(t) = φqi (γi(0), t) and γi(t) ∈ Invqi . The subsequent sections
cover how our proposed approach can be used to obtain the discretized flow pipes.
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Figure 1. Hybrid automata for temperature controller.

Many successes have been obtained in linear systems with various mathematical
models such as convex polyhedra [1], griddy polyhedra [2], zonetope [3], ellipsoidal [4],
and support function [5] used for approximate simulations expressing the reachable set of
hybrid systems. Many traditional tools have emerged for verifying linear hybrid systems,
such as HYTECH [6], D/DT [7], CheckMate [8], PHAVER [9], SpaceEx [10], etc.

Nevertheless, for a large number of nonlinear continuous systems, no analytical
solution exists and, even if it did, it would be prohibitively expensive to work out and
understand its properties. When dealing with continuous and hybrid systems observed
over real numbers, the term “exact” is insufficient because there may be numerical errors
in observation, noise, and other nonidealities [9,11] over-approximating complex dynamics
with simple rectangular flow constraints on the dotted variables, which is operative under
some relatively simple nonlinear dynamics. However, the mass of the approximation
may be too rough to meet the needs of security verification with comparatively high
accuracy requirements.

Applying numerical analysis methods to discrete nonlinear flow constraints is also a
proven method. The numerical approximation ”captures“ the behavior of the analytical
solution, which is one of the most desirable properties of numerical schemes. Many classical
numerical methods have been proposed for this task in the past, such as Euler and Heun,
Runge–Kutta, and some others. Normally, the first-order numerical method is easy to
implement and low in complexity, but the global error is large and unsuitable for systems
with high accuracy requirements. Conversely, higher-order methods such as the Runge–
Kutta method can produce numerical solutions with higher accuracy but at the expense
of complexity. Furthermore, the spurious solution problem persists in these traditional
numerical methods.

As a valuable class of numerical analysis schemes, geometric numerical integration
methods serve a vital role since they respect the structure of the problem, which is of a
geometric nature. In connection with the geometric characteristics of specific systems,
mathematicians and physicists have formulated various numerical algorithms for structure
preservation. In [12], a nonstandard finite-difference approach was developed for the Lotka–
Volterra system, an essential predator–prey interaction mathematical model. Hamiltonian
systems are dominated by the Hamiltonian equations and are prevalent in modern physics
in an extensive variety of problems. To preserve the contact transformation property of
the Hamilton equations, Ref. [13] devised methods of integration of Hamilton equations
and presented many important findings on numerical symplectic integration for the first
time, including the symplectic Euler method. Ref. [14] later concludes that the leapfrog
method is symplectic. Refs. [15,16] systematically proposed the Hamiltonian equations and
the Hamiltonian algorithm (i.e., the symplectic geometric algorithm), and opened up a new
field of Hamiltonian algorithms. Ref. [17] discussed the discrete analogue of the gradient
of a function and showed how discrete gradients can be used in the numerical integration
of ODEs. Ref. [18] implemented a modified discrete gradient method for the purpose of
preserving (almost completely) small oscillation periods of any time step. Ref. [19] proposed
locally exact discrete gradient numerical integrators, which substitute a function for its step
size and exactly preserve the energy integral. Ref. [20] goes further to develop the results
of the above literature to the Nth order. Refs. [21,22] presented a new geometric integrator,
which combines the implicit midpoint rule (IMR, i.e., second-order implicit Runge–Kutta
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method) [23] with an appropriate spatial discretization in the PDE cases. It can retain the
energy properties of the solution [24], and the function f needs to be evaluated only once at
each step (single-step method, unlike many other Runge–Kutta methods).

Unfortunately, the foregoing numerical approaches either suffer from so-called spuri-
ous solutions and ghost fixed points, or are feasible solely for certain systems. In order to
avoid the flaws, ref. [25] firstly devised the group preserving scheme (GPS) by utilizing
inherent symmetry group and the (null) cone structure of the nonlinear dynamical system.
For the aim of improving the accuracy of GPS, an enhanced GPS is proposed in [26]. In this
paper, combining the merits of the implicit midpoint rule and GPS, we construct a novelty
midpoint group preserving scheme (MGPS). Compared with enhanced GPS, which is also
a predictor–corrector method, MGPS overcomes some weaknesses of enhanced GPS.

• The predictor. In enhanced GPS, the Euler method with the same step size is used to
calculate xn+1, while MGPS uses GPS to calculate xn+1, which can obtain the same
benefits as the advantages of GPS over the Euler method.

• The corrector. When computing ηe
n, the enhanced GPS replaces xn with x̄n; the MGPS

remains unchanged and is still used to calculate ηe
n. This improves the accuracy while

ensuring that the cone structure is held.

The remaining parts of this paper are structured below. Section 2 firstly introduces GPS
and analyzes its stability property. Then, we devise the midpoint group preserving scheme
(MGPS) and details of error and stability properties. Some numerical tests are conducted to
assess the effectiveness of the proposed solver in Section 3. The numerical results are very
encouraging. This demonstrates improved performance and higher accuracy compared
with other well-known second-order methods present in the literature. Finally, Section 4
sums up this work and addresses the path for the future.

2. Discretization

Discretization of the nonlinear continuous dynamic evolution is a vital measure to
understand the properties of the system while differential equations have no explicit
solutions. Consider the following ordinary differential equation with the initial value

ẋ(t) = f(t, x(t)), x(t0) = x0, t ∈ R, x ∈ Rk (1)

It is commonly utilized to demonstrate the attributes and behaviors of dynamic
systems. x represents k-dimensional state vector, and f denotes a vector function about
x and t. The Lipschitz condition is assumed to ensure the existence and uniqueness of
the solution:

|f(t, x1)− f(t, x2)| ≤ L(|x1 − x2|) ∀(t, x1), (t, x2) ∈ R×Rk (2)

Suppose that the running time delay ∆i is uniformly partitioned into n steps. A
sequence of time-value pairs {(tj, uj), j ∈ {0, . . . , n− 1}} are generated along a solution

curve. Take the Euler method as an example, we can obtain curve γi(
j
n · ∆i) ∈ JInvqiK at

each time point tj =
j
n · ∆i, where JInvqiK denotes the collection that meets Invqi . The con-

tinuous trajectory is thus converted into a finite discrete-time sequence in this manner:

η = 〈q1, ∆1 · 0, γ1(0)〉
t→ 〈q1, ∆1 · 1

n , γ1(∆1 · 1
n )〉

t→ · · · t→ 〈q1, ∆1 · n−1
n , γ1(∆1 · n−1

n )〉
rq1,q2−→

〈q2, ∆2 · 0, γ2(0)〉
t→ · · · .

Unfortunately, spurious solutions and ghost fixed points are broadly present in clas-
sical numerical methods and may yield unpredictable outcomes. The problem of such
spurious solutions schemes is studied in [27] when first-order differential equations are
computed employing the Runge–Kutta. Ref. [25] devised a group preserving scheme in the
Minkowski space utilizing homogeneous coordinates to avoid the shortcomings, which
serve as the foundation of our approach.
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2.1. Group Preserving Scheme

The idea of GPS is that embedding Equation (1) into k + 1 dimensional augmented
dynamical system yields the equation below.

d
dt

[
x
‖x‖

]
=

 0k×k
f(t,x)
‖x‖

fT(t,x)
‖x‖ 0

[ x
‖x‖

]
(3)

The first equation in (3) is obviously identical to the original Equation (1), and with
the addition of the second equation, we obtain an enhancement of X := (xT, ‖x‖)T

Minkowskian structure of state variables meeting the cone condition

XTgX = 0 (4)

Herein, g denotes Minkowski metrics and is expressed by

g =

[
Ik 0k×1

01×k −1

]
(5)

where Ik signifies the k-order identity matrix. The inference below leads to this conclusion:

XTgX = x · x− ‖x‖2 = ‖x‖2 − ‖x‖2 = 0 (6)

Then, as a result of the previously stated cone condition, Equation (3) has now become

Ẋ = A(t, X)X (7)

where

A(t, X) :=

 0k×k
f(t,x)
‖x‖

fT(t,x)
‖x‖ 0

 (8)

It is a (local) Lie algebra of the proper orthochronous Lorentz group SOo(k, 1) that
fulfills

ATg + gA = 0 (9)

This motivates the development of the so-called group preserving scheme with dis-
cretized mapping G that preserves exactly the following attributes [25]:

GTgG = g

detG = 1

G0
0 > 0

(10)

G0
0 denotes the 00-th element of G, whereas det signifies the abbreviation for determinant.

Provided that Xn is the value of X at t = tn, it is required to work out Xn+1 at t = tn+1. It
can be known from Equation (8) that A is not a constant matrix. Let h = tn+1 − tn. Then,
the GPS is formulated by

Xn+1 = G(n)Xn (11)

G(n) ∈ SOo(k, 1) denotes the group value at tn. The rest of the issue is determining how
to obtain the expression of G(n). The exponential mapping is adopted to calculate G(n)
with the next expression:

G(n) = exp[hA(n)] =

Ik +
(an−1)
‖fn‖2 fnfT

n
bnfn
‖fn‖

bnfT
n

‖fn‖ an

 (12)
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where

an := cosh(
h‖fn‖
‖xn‖

), bn := sinh(
h‖fn‖
‖xn‖

) (13)

The first line of the formula (11) is picked up and one obtains

xn+1 = xn + ηefn (14)

where

ηe :=
(an − 1)fn · xn + bn‖xn‖‖fn‖

‖fn‖2 (15)

From an > 1, ∀h > 0 and ‖fn‖‖xn‖ ≥ fn · xn ≥ −‖fn‖‖xn‖, the inequalities can
be concluded: 

ηe ≤
[

exp(
h‖fn‖
‖xn‖

)− 1
]
‖xn‖
‖fn‖

ηe ≥
[

1− exp(−h‖fn‖
‖xn‖

)

]
‖xn‖
‖fn‖

(16)

Stable Analysis

This section will analyze the stability of the GPS (14). Regularly, the following test
equation is used for analyzing numerical schemes’s stability.

x′ = λx, x(0) = x0 (17)

whereby λ is a complex number. It is also assumed that x0 6= 0, which would otherwise
infer trivial zero solutions. Putting (17) into (14), one obtains

x1 = x0 + ηe
0f0 = x0 + ηe

0(λx0) = (1 + ληe
0)x0

x2 = x1 + ηe
1f1 = x1 + ηe

1(λx1) = (1 + ληe
0)(1 + ληe

1)x0

Inductively,

xn+1 = x0

n

∏
i=1

(1 + ληe
i ) (18)

is derived. The analytical solution x = x0eλt ultimately converges to 0 as t goes to infinity
under the restriction Re(λ) < 0. In numerical terms, it is corresponding to the situation
where xn becomes 0 when n becomes infinite in Equation (18). In order to meet this
condition, it needs

n

∏
i=1
|(1 + ληe

i )| < 1 (19)

Besides, the following Equations (20)–(25) could be clearly deduced.

x · x = ‖x‖2 (20)

‖f‖ =
√
(λx)(λx) = |λ|‖x‖ (21)

f · f = ‖f‖2 = |λ|2‖x‖2 (22)

f · x = λx · x = λ‖x‖2 (23)

‖x‖ · ‖f‖ = ‖x‖ · ‖λx‖ = |λ|‖x‖2 (24)

bn − an = −e
h‖fn‖
‖xn‖ = −e−h|λ| (25)
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Hence, Equation (15) can be transformed into

ηe
n =

(an − 1)λ‖xn‖2 + bn|λ|‖xn‖2

|λ|2‖xn‖2

=
(an − 1)λ + bn|λ|

|λ|2 (26)

In practice, λ ∈ R is often restricted; then, when λ < 0, Equation (26) could be
transformed into

ηe
n =

(an − 1)λ− bnλ

(−λ)(−λ)

=
bn − (an − 1)

−λ

=
1− e−h|λ|

−λ

=
1− ehλ

−λ
(27)

Consequently, Equation (18) is deduced

xn+1 = x0

n

∏
i=1

(1 + ehλ − 1) = x0(ehλ)n (28)

Thus, ehλ < 1 for ∀h > 0, which implies that the interval of absolute stability con-
tains (−∞, 0).

2.2. Midpoint Group Preserving Scheme

As the well-known second-order Runge–Kutta method, the implicit midpoint rule is a
predictor–corrector numerical algorithm. The predicted value at tn+ 1

2
is approximated by

Euler’s method with a half step [23]

xn+1 = xn + hf(tn+ 1
2
,

xn + xn+1

2
), tn+ 1

2
= tn +

h
2

(29)

The improvement of the midpoint method is to as accurately as possible obtain some
of the curvature that will occur in the solution before calculating xn+1. Integrating the
notion of GPS (14), step size h is replaced with ηe

n. Thus, the midpoint group preserving
scheme can be formulated naturallyxn+1 = xn + ηe

nfn

xn+1 = xn + ηe
nf(tn+ 1

2
,

xn + xn+1

2
)

(30)

where ηe
n is the same as the definition of (15). In the following subsections, we will discuss

its error estimator and stability analysis.

2.2.1. Error Analysis

Firstly, we consider the error associated with the proposed algorithm (30). Let the
local truncation error be en; then,

x(tn+1) = x(tn) + ηe
nf(tn+ 1

2
,

x(tn) + x(tn+1)

2
) + en (31)

We slightly modify the right-hand side and write

x(tn+1) = x(tn) + ηe
nf(tn+ 1

2
, x(tn+ 1

2
)) + en1 + en (32)
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Then, by Lipschitz condition (2),

|en1 | = ηe
n|f(tn+ 1

2
,

x(tn) + x(tn+1)

2
)− f(tn+ 1

2
, x(tn+ 1

2
))|

≤ 1
2

ηe
nL|x(tn) + x(tn+1)− 2x(tn+ 1

2
)| (33)

and expanding x(tn+1) and x(tn+ 1
2
) in Taylor series about point tn with x = x(tn), we have

|en1 | ≤
1
2

ηe
nL|x + (x + hx′)− 2(x +

1
2

hx′) +O(h2)| (34)

In practice, since |ηe
n − h| = O(h), the right side of (34) is O(h3). Now, from (32), since

f(t, x(t)) = x′(t), we obtain

en1 + en = x(tn+1)− x(tn)− ηe
nx′(tn+ 1

2
)

= hx′ +
1
2

h2x′′ − ηe
n(x
′ +

1
2

hx′′) +O(h3)

= O(h3) (35)

Hence,
|en| ≤ |en1 |+O(h

3) ≤ ch3 (36)

Thus, local truncation error en is bounded.
Next, let the global truncation error En = x(tn)− xn. The recurrence relation for En is

obtained by subtracting (30) from (31)

En+1 = En + ηe
n(f(tn+ 1

2
,

x(tn) + x(tn+1)

2
)− f(tn+ 1

2
,

xn + xn+1

2
)) + en (37)

The Lipschitz condition implies

|En+1| ≤ |En|+
1
2

ηe
nL|x(tn) + x(tn+1)

2
− xn + xn+1

2
|+ |en|

≤ |En|+
1
2

ηe
nL(|En|+ |En+1|) + ch3 (38)

Thereby,

|En+1| ≤
1 + 1

2 ηe
nL

1− 1
2 ηe

nL
|En|) + ch3 ≤

1 + 1
2 (h + cnO(h2))L

1− 1
2 (h− cnO(h2))L

+ ch3 cn > 0 (39)

Let R = max{c0O(h2), c1O(h2), · · · , cnO(h2)} and r = min{c0O(h2), c1O(h2), · · · ,
cnO(h2)}; then,

|En+1| ≤
1 + 1

2 (h + R)L
1− 1

2 (h− r)L
+ ch3 (40)

Now, the relations of the form

|En+1| ≤ A|En|+ B, n ≥ 0, E0 = 0 (41)

provide the estimate

|En+1| ≤ B(1 + A + A2 + · · ·+ An) = B
An+1 − 1

A− 1
(42)
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Since 1
2 ≤ 1− 1

2 (h− r)L ≤ 1 for small h, we have

A− 1 =
(h + 1

2 (R + r))L
1− 1

2 (h− r)L
≥ (h +

1
2
(R + r))L (43)

An+1 = (1 +
(h + 1

2 (R + r))L
1− 1

2 (h− r)L
)n+1 ≤ (1 + 2(h +

1
2
(R + r))L)n+1 ≤ e2(h+ 1

2 (R+r))L(n+1) (44)

whence
|En+1| ≤

1
(h + 1

2 (R + r))L
e2(h+ 1

2 (R+r))L(n+1)ch3 ≤ c1h3 (45)

with a constant c1 that only depends on L and t, i.e., we have uniform convergence in any
finite interval [0, t].

2.2.2. Stability Analysis

Just as previously discussed in Section 2, according to Equation (17), we obtain

xn+1 = xn + ηe
nλ(xn +

ηe
n

2
λxn) (46)

= xn(1 + ηe
nλ +

1
2
(ηe

nλ)2) (47)

Similarly, if λ ∈ R is adopted and λ < 0; then, substituting Equation (27) into
Equation (30)

xn+1 = xn(
ehλ + 1

2
) (48)

For any h > 0, 0 < ehλ+1
2 < 1; thus, it also has intervals of absolute stability containing

(−∞, 0).

2.3. Scalability

As a matter of fact, along this line of thought, more classes of midpoint-like group
preserving schemes can be extended.

xn+1 = xn + ηe
n, 1

2
fn

x̄n+1 = xn + ηe
n, 1

2
fn(xn+1)

xn+1 = xn + ηe
nf(tn+ 1

2
,

xn + x̄n+1

2
)

(49)

Comparing Equations (30) and (49), it is intuitively clear that the prediction function
has been further optimized, while the correction function remains in the same format. This
optimization is worthwhile as evidenced by the following examples 3 and 4. This scheme
is shorthanded as OMGPS hereafter.

3. Experiments

In this section, the experiments will be conducted in two types of examples: one for
regular continuous dynamical systems (Examples 1 and 2) and the other for two special
types of systems, Kolmogorov systems (Example 3) and Hamiltonian systems (Example 4).
The proposed method and other second-order methods are adopted and compared. All
tests are performed in MATLAB R2020a.
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3.1. Example 1

The following nonlinear differential equation is use to describe population growth in
a nonlinear hybrid system [11]{

ẋ1 = (2000− x2 − 5x1)x1

ẋ2 = (4x1 − 2600− 4x2)x2
(50)

where initial value x0 = {900, 150} and time t = 0.008. Its true solutions are simulated
using explicit Euler scheme with a step size of h = 0.00001, and other numerical methods
have the same step size h = 0.001. Figure 2 shows their computation results. It is evident
that GPS deviates from the real curve by a large margin. The simulation outcomes of
midpoint, Heun, enhanced-GPS, and MGPS are quite close to each other. By comparison
clearly, OMGPS is on top of them. This is also in accordance with the optimization point of
Section 2.3.

300 400 500 600 700 800 900
0

20

40

60

80

100

120

140

160

true

GPS

enhanced-GPS

heun

midpoint

MGPS

OMGPS

Figure 2. Phase plots for Example 1 with x0 = {900, 150} and h = 0.0001.

3.2. Example 2

The second example is taken from the literature [26], which is a two-dimensional
continuous system. Starting from initial set x0 = {1, 0}, the system evolves from time 0
to 25. 

ẋ1 = x2

ẋ2 = −x1 +
1
3

x3
1 − x2

(51)

Similarly, applying explicit Euler method with h = 0.0001 simulates the true curve.
h = 0.5 is adopted for the remaining methods. The simulation results are exhibited in
Figure 3. Apparently, The conclusion reached is identical to the first example.
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-0.4 -0.2 0 0.2 0.4 0.6 0.8 1
-0.6

-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3
true

GPS

enhanced-GPS

heun

midpoint

MGPS

OMGPS

Figure 3. Phase plots for Example 2 with x0 = {1, 0} and h = 0.5.

3.3. Example 3

The Lotka–Volterra system is an important mathematical model for depicting predator–
prey interactions in the dynamics of biological systems. The Lotka–Volterra equations can
be written simply as follows: {

ẋ1 = ax1 − bx1x2

ẋ2 = −cx2 + dx1x2
(52)

It was mentioned earlier that [12] proposes a nonstandard finite-difference scheme
(abbreviated here as NSFD) for this system, and to facilitate comparison, the same param-
eters as in [12] are employed here for the test, namely, a = b = c = d = 1. As can be
seen in Figure 4, the numerical integration results of MGPS form a closed curve, which is
consistent with the results of NSFD and is very close to the true value, which is simulated
using the Euler method with a step size of 0.0001. The Figure 5 exhibits more clearly the
error accuracy of several methods, and the superiority of MGPS is noticeable.

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

true

GPS

NSFD

MGPS

Figure 4. Phase plots for Example 3 with x0 = {0.1, 1} and h = 0.01.
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0 5 10 15 20 25 30 35 40
-5

-4

-3

-2

-1

0

1

2

3

GPS

NSFD

MGPS

Figure 5. Error plots about x1 of Example 3 with x0 = {0.1, 1} and h = 0.01.

3.4. Example 4

The last example is oriented towards Hamiltonian systems and comes from the litera-
ture [19], which demonstrates the GR family of methods(GR, MOD_GR, GR_LEX, GR_SLEX).
From this, we chose GR_SLEX for comparison. The Hamiltonian system is the simple pendu-

lum H = p2

2 − cosx. The corresponding ODE is{
ẋ = Hp = p

ṗ = −Hx = −sinx
(53)

Here, two sets of experiments were conducted adopting the same parameters as those
listed above in the literature—that is, h = 0.25 and h = 0.01. The rest of parameters are
x0 = 0, p0 = 1.8, t = 20. In Figure 6, GPS performs very poorly and yields erroneous results.
In Figure 7, however, the true value is better simulated, but the accuracy in comparison
with the other two methods is inferior. This illustrates the fact that GPS is less stable in
the Hamilton system. When dealing with this type of problem with GPS, a relatively
small h is recommended. In both sets of experiments, MGPS and GR_SLEX are reliably
capable of modeling the true values. Figures 8 and 9 express that GR_SLEX has better
accuracy. With the step size becoming smaller, the precision gap of MGPS and GR_SLEX
is narrowing, and it can be seen from Figure 9 that MGPS nearly has the same level of
error accuracy as GR_SLEX. Regarding the running efficiency, we executed two sets of
trials—one with 20,000 iterations and the other with 200,000 iterations, to minimize the
effect of other factors—and averaged the running time after three runs for each group.
The outcome of the experimental data is placed in Appendix A and shows that when
the number of iterations is not large, the running times are comparable, and vice versa,
GR_SLEX is superior. Although MGPS is not computed serially, this strength cannot be
fully exploited at low dimensions.
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Figure 6. Phase plots for Example 4 with x0 = 0, p0 = 1.8, and h = 0.25.
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Figure 7. Phase plots for Example 4 with x0 = 0, p0 = 1.8, and h = 0.01.
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Figure 8. Error plots about x of Example 4 with x0 = 0, p0 = 1.8, and h = 0.25.
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Figure 9. Error plots about x of Example 4 with x0 = 0, p0 = 1.8, and h = 0.01.

4. Conclusions

Computing flow pipes is a highly significant problem in the verification of hybrid
systems. This paper constructs an easy-to-implement and extensible midpoint-series
group preserving scheme from a numerical analysis point of view, making use of the
classical midpoint method and the symmetry of the group structure. Yet, the verification
of hybrid systems faces several more problems than this one. How to effectively detect
the termination of continuous evolution is another very important issue. To the best of
our knowledge, there is no viable numerical approach. How to better solve this problem
and the solution of high-dimensional nonlinear dynamic equations will be the focus of our
future work.
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Appendix A

Table A1. Running time data for MGPS and GR_SLEX. The CPU is an Intel(R) Core(TM) i7-10750H
CPU @ 2.60 GHz 2.59 GHz with 32 G of RAM. t = 20 h.

Number of Iterations (and Step Size) Scheme Name Running Time (s) Average Running Time (s)

20,000 (h = 0.0001) MGPS 66.4450 67.3003
68.4420
67.0140

GR_SLEX 65.6050 67.844
71.1950
66.7320

200,000 (h = 0.00001) MGPS 8.7665 × 103 8.5724 × 103

8.4467 × 103

8.5039 × 103

GR_SLEX 7.9818 × 103 7.9215 × 103

7.8997 × 103

7.8831 × 103
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