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Abstract: The minimum-area parallelogram annulus problem is studied, in which one wants to com-
pute a parallelogram annulus of minimum area that includes n input points in the plane. Extending
an usual, doughnut-shaped circular annulus, a parallelogram annulus is defined to be a region be-
tween two edge-parallel parallelograms. As a parallelogram has two distinct orientations for its sides,
so does a parallelogram annulus as well. In this paper, several variants of the problem are considered:
(1) when both side orientations are given and fixed, (2) when one of them is fixed and the other can be
freely chosen, (3) when the interior angles of the resulting parallelogram annulus is given and fixed,
and (4) when both side orientations can be chosen arbitrarily. The first and efficient algorithms for
each of these cases are presented, whose running times are (1) O(n), (2) O(n2 log n), (3) O(n2 log n),
and (4) O(n4+ε), respectively. Further, bicriteria variants of the problem are considered, in which
both width and area of the resulting parallelogram annulus are simultaneously minimized. In order
to obtain these new algorithms, geometric observations, newly obtained in this paper and known in
previous papers, and the symmetric nature of parallelograms and parallelogram annuli are exploited.

Keywords: computational geometry; geometric location; geometric optimization; parallelogram;
parallelogram annulus; area; width; arbitrary orientation; exact algorithm

1. Introduction

The geometric location problem is one of the central topics in computational geometry.
In problems of this type, one is often asked to find an optimal location of particular geomet-
ric shapes in metric spaces in terms of a specified objective function. According to different
shapes, objective functions, and their underlying spaces, there are many algorithmic results
known in the literature. Typical and classical examples include the problem of finding a
smallest circle enclosing a set P of input points in the plane [1] and the problem of finding
a maximum-area rectangle within a prescribed bound that avoids all points in P [2,3].

It was relatively recent that the minimum annulus problem and its variants started to
attract researchers. An annulus is a shape of a doughnut, or the closed region between two
concentric circles, more precisely. The minimum annulus problem asks to find a minimum
annulus that encloses a given set P of points in the plane. Early results on the annulus
problem [4–6] presented O(n2)-time algorithms that compute a circular annulus of mini-
mum width. The currently best algorithm for the same problem takes O(n

3
2+ε) time [7,8]

where ε > 0 denotes an arbitrarily small positive constant. Agarwal et al. [9] and Chan [10]
also presented linear-time approximation schemes for the circular annulus problem.

The minimum annulus problem has a natural application to the shape matching
problem. If input points in P are regarded to be sampled from the boundary of a circle,
then a circular annulus of minimum extent that includes P would best describe the original
circle. For a variety of applications, including the curve matching problem, the minimum
annulus problem has been intensively studied for the last years, with many extensions
and variations. Most of the recent study has focused on rectangular or square annuli,
which extend the doughnut-shaped circular annulus to rectilinear shapes. More precisely,
a rectangular or square annulus is defined as the region between a rectangle or a square
and its inward offset. See Figure 1 for an illustration of annuli of different shapes. Two
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different extent measures, width and area, have been mostly considered in the minimum
annulus problem, so we want to minimize the width or the area of the resulting annulus of
a particular shape.
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Figure 1. Annuli of different shapes whose widths are equal to w: (a) a circular annulus, (b) a square
annulus, (c) a rectangular annulus, and (d) a parallelogram annulus.

The minimum-width axis-parallel rectangular annulus problem was first considered
by Abellanas et al. [11], who presented an O(n)-time algorithm. For the axis-parallel
square annulus, an O(n log n)-time algorithm is known by Gluchshenko et al. [12], who
also proved a lower bound of Ω(n log n). It becomes more difficult when considering
rectangular or square annuli that minimize width over all orientations. For rectangular
annuli in arbitrary orientation, an O(n2 log n)-time algorithm that finds a minimum-width
rectangular annulus was presented by Mukherjee et al. [13]. For the square case, the first
O(n3 log n)-time algorithm that computes a minimum-width square annulus over all
orientations was presented by the author [14]. This algorithm was soon improved to
O(n3) [15] and to O(n2 log n) time [16], subsequently.

Note that all the previous results mentioned above considered the minimum-width
annulus problem, in which the objective is to minimize the width of the resulting annulus.
However, less is known in the literature about the minimum-area annulus problem. It is
known that the minimum-area circular annulus problem can be solved by a linear pro-
gramming formulation, spending linear time, as also pointed out by Chan [10]. Compared
to the currently best running time O(n

3
2+ε) for its minimum-width variant [8], one would

need a different approach to efficiently solve the minimum-area annulus problem. For the
rectangular or square case, the author presented several first algorithms that compute a
rectangular or square annulus with minimum area in fixed or arbitrary orientation [15]. In
particular, a minimum-area rectangular annulus enclosing P over all orientations can be
computed in O(n2 log n) time.

In this paper, we are interested in parallelogram annuli. A parallelogram annulus is
defined to be the closed region between two edge-parallel parallelograms, see Figure 1d.
Its precise definition will be given in the next section. As a square or rectangle is a special
case of a parallelogram, parallelogram annuli generalize both square or rectangular annuli,
with at least one more degree of freedom to determine one such annulus. Very recently,
the author [17,18] studied several variants of the minimum-width parallelogram annulus
problem, and presented first algorithms, see Table 1 for the details.

This paper continues the study of the minimum parallelogram annulus problem with
different objective functions, such as area, width, and their combinations. For these two
popular extent measures, width and area, we reveal their relations and differences in
the parallelogram annulus problem, upon the previous observations for minimum-width
annuli [17], and finally devise first yet efficient algorithms for several variants of the
problem. Our results in this paper are summarized as follows. Note that a parallelogram
has two orientations for its sides, and so does a parallelogram annulus by definition.

(1) When both side orientations are given and fixed, a minimum-area parallelogram
annulus enclosing P can be computed in O(n) time. We also prove that, in this
case, there is a unique minimum-area parallelogram annulus enclosing P, and it also
minimizes the width.
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(2) When one of the two side orientations is fixed and the other can be freely chosen,
a minimum-area parallelogram annulus enclosing P can be found in O(n2 log n)
time.

(3) When the angle between the adjacent sides is fixed, a minimum-area parallelogram
annulus enclosing P can be computed in O(n2 log n) time. This algorithm generalizes
the previous O(n2 log n)-time algorithm [15] finding a minimum-area rectangular
annulus over all orientations, without increasing the running time.

(4) A minimum-width parallelogram annulus enclosing P over all pairs of side orien-
tations can be found in O(n4+ε) time, where ε > 0 is an arbitrarily small positive
constant.

Table 1. Summary on the currently best algorithms for the parallelogram annulus problem. Each
column labeled by ‘W’, ‘A’, ‘AW’, and ‘WA’ stands for ‘minimum-width’, ‘minimum-area’, ‘minimum-
area minimum-width’, and ‘minimum-width minimum-area’, respectively. The parameters θ1 and θ2

represent the two side orientations of parallelogram annuli. Each entry of the table shows the time
complexity of the currently best algorithm in the worst case and its reference. Here, the big-Oh O(·)
symbol is omitted.

W A AW WA

θ1, θ2 fixed n [17] n Thm. 1 n Thm. 2 n Thm. 2
θ1 fixed n2 [17] n2 log n Thm. 3 n2 Thm. 4 n2 log n Coro.1
θ2 − θ1 fixed n2 log n [18] n2 log n Thm. 6 n2 log n Thm. 5 n2 log n Thm. 6
θ1, θ2 arbitrary n3 log n [17] n4+ε Thm. 7 n4 Thm. 8 n4+ε Coro.2

All the above algorithms are the first nontrivial solutions to the corresponding variant
of the problem. To our best knowledge, there was no known algorithm that minimizes
the area of the resulting parallelogram annulus in the literature. We also consider several
bicriteria variants of the problem for each of the above four cases: finding a minimum-width
minimum-area annulus or minimum-area minimum-width annulus. Table 1 summarizes
the currently best algorithms for each of those variants of the minimum parallelogram
annulus problem, including our present results. In order to obtain these new algorithms,
we exploit geometric observations, newly obtained in this paper and known in the previous
papers [15,17,18], and the symmetric nature of parallelograms and parallelogram annuli.

The rest of the paper is organized as follows: Section 2 introduces necessary concepts
and definitions, and precisely formulates our problems. We then investigate the parallelo-
gram annulus problem and devise efficient algorithms in Sections 3–6 for each of the above
four cases. After some discussion on our results in Section 7, we finally conclude the paper
in Section 8 with some remarks.

2. Preliminaries

Throughout the paper, we consider the plane R2 with the horizontal x-axis and the
vertical y-axis. Let A ⊆ R2 be any subset. Let ∂A and int A denote its boundary and
interior. The line segment between any two points p, q ∈ R2 shall be denoted by pq, and its
Euclidean length by |pq|.

Parallelograms and parallelogram annuli are the geometric objects we will mainly
discuss in this paper. Generalizing a circular annulus, a parallelogram annulus is the closed
region obtained by subtracting a parallelogram hole from a larger parallelogram. Note that
a circular annulus is the closed region between two concentric circles. In this paper, we
give a precise definition of a parallelogram annulus in terms of strips.

2.1. Strips and Parallelogram Annuli

A strip is the closed region between two parallel lines in the plane. The orthogonal
distance between the two bounding lines of any strip S is called the width of S, denoted
by width(S). The middle line µ(S) of strip S is the line parallel to its bounding lines such
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that the distance between µ(S) and each of the bounding lines is exactly half the width
width(S) of S, see Figure 2a.

(a) (b)

S

µ(S)

R′

R

µ(S1) = µ(S′
1)

µ(S2) = µ(S′
2)

Figure 2. Illustration to (a) a strip S and its middle line µ(S), and (b) a parallelogram annulus defined
by its outer parallelogram R and inner parallelogram R′, such that R = S1 ∩ S2 and R′ = S′1 ∩ S′2
for defining four strips S1, S2, S′1, S′2 with µ(S1) = µ(S′1) and µ(S2) = µ(S′2). The arrows depict the
width of each shape.

A parallelogram is a quadrilateral obtained by intersecting two non-parallel strips.
A parallelogram annulus A is defined by the closed region between its outer parallelogram
R and inner parallelogram R′ such that the following conditions are satisfied: Letting
S1, S2, S′1, S′2 be four strips such that R = S1 ∩ S2 and R′ = S′1 ∩ S′2,

• µ(S1) = µ(S′1),
• µ(S2) = µ(S′2), and
• width(S1)−width(S′1) = width(S2)−width(S′2) ≥ 0.

The width of A, denoted by width(A), is the distance between its outer parallelogram
R and inner parallelogram R′, that is,

width(A) =
width(S1)−width(S′1)

2
=

width(S2)−width(S′2)
2

.

The area of A, denoted by area(A), is the difference of the areas of R and R′, that is,

area(A) = area(R)− area(R′).

See Figure 2b for an illustration.

2.2. Orientations and the Width Function

Any line or line segment ` has its orientation θ ∈ [0, π) such that rotating ` by θ in the
clockwise direction makes it parallel to the x-axis. A line or line segment is called θ-aligned
if its orientation is θ. For any strip S, if its bounding lines are θ-aligned, then we say that
S is θ-aligned. A parallelogram or parallelogram annulus shall be called (θ1, θ2)-aligned
if it is defined by θ1-aligned and θ2-aligned strips. A (θ1, θ2)-aligned parallelogram or
parallelogram annulus is also called either θ1-aligned or θ2-aligned.

Let p, q ∈ R2 be two points in the plane. Throughout the paper, we will often handle
strips defined by two parallel lines through p and q, and their widths. For any orientation
θ ∈ [0, π), let σθ(p, q) be the width of the strip defined by two θ-aligned lines through p
and q, respectively. We then observe that

σθ(p, q) = |pq| · | sin(θpq − θ)| = |pq| · sin |θ − θpq|,

where θpq ∈ [0, π) denotes the orientation of pq and | · | denotes the absolute value, see
Figure 3a.
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σθ(p, q)

p

q

θ

(a) (b)

θ

`+(θ)

`−(θ)

χ+(θ)

χ−(θ)

conv(P )

θpq

S(θ)

Figure 3. (a) The θ-aligned strip defined by p and q, and its width σθ(p, q). (b) The minimum-width
θ-aligned strip S(θ) enclosing P, and the antipodal pair (χ+(θ), χ−(θ)) of P for orientation θ ∈ [0, π).

2.3. Sinusoidal Functions

A function of the form
a sin(ωθ + φ) + b

for some constants a, b, ω, φ ∈ R is called a sinusoidal function, where a, b, ω, and φ are
called its amplitude, base, (angular) frequency, and phase, respectively.

Sinusoidal functions have several nice behaviors. The following are of special interests
in this paper.

Lemma 1 (Lyons [19]). The sum of two sinusoidal functions of base 0 and frequency ω is another
sinusoidal function of base 0 and frequency ω. Thus, there is at most one solution θ ∈ [0, π) that
makes equal the values of two sinusoidal functions of equal frequency.

Lemma 2. The product of two sinusoidal functions of base 0 and frequency ω is equal to a sinusoidal
functions of frequency 2ω. Specifically, it holds that

a1 sin(ωθ + φ1) · a2 sin(ωθ + φ2) =
a1a2

2

(
sin
(

2ωθ + φ1 + φ2 −
π

2

)
+ cos(φ1 − φ2)

)
,

for any constants a1, a2, φ1, φ2, ω ∈ R.

Proof. We use the exponential form of sinusoidal functions:

sin(x) =
i
2

(
e−ix − eix

)
and cos(x) =

1
2

(
e−ix + eix

)
,

where i denotes the ideal unit such that i2 = −1.
Therefore, we have

a1 sin(ωθ + φ1) · a2 sin(ωθ + φ2)

=− a1a2

4

(
e−i(wθ+φ1) − ei(wθ+φ1)

)(
e−i(wθ+φ2) − ei(wθ+φ2)

)
=− a1a2

4

((
e−i(2wθ+φ1+φ2) + ei(2wθ+φ1+φ2)

)
−
(

ei(φ2−φ1) + ei(φ1−φ2)
))

=
a1a2

2

(
−1

2

(
e−i(2wθ+φ1+φ2) + ei(2wθ+φ1+φ2)

)
+

1
2

(
e−i(φ1−φ2) + ei(φ1−φ2)

))
=

a1a2

2
(− cos(2wθ + φ1 + φ2) + cos(φ1 − φ2))

=
a1a2

2

(
sin
(

2wθ + φ1 + φ2 −
π

2

)
+ cos(φ1 − φ2)

)
,

as claimed, as cos(x) = sin(π/2− x) = − sin(x− π/2) for any x ∈ R.
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Note that, taking θ ∈ [0, π) as a variable, the function σθ(p, q) for fixed points p, q ∈ R2

is piecewise sinusoidal of frequency 1 and base 0 with at most one breakpoint at θ = θpq.

2.4. Extreme Points and Antipodal Pairs

Now, suppose that a set P of n points in R2 is given. Let conv(P) be its convex hull.
An extreme point of P is one that appears as a corner of the convex hull conv(P) of P. For
any θ ∈ [0, π), consider the θ-aligned strip of minimum width that encloses P, and denote
it by S(θ). Then, the two lines that bound S(θ) go through two extreme points of P, one on
each. More precisely, let `+(θ) and `−(θ) be the two bounding lines of S(θ) such that `+(θ)
lies to the left of `−(θ) if θ 6= 0, or `+(θ) lies above `−(θ) if θ = 0. There exists an extreme
point of P on each of `+(θ) and `−(θ); we denote it by χ+(θ) and χ−(θ), respectively. Then,
the width width(S) of S(θ) is represented by

width(S(θ)) = σθ(χ
+(θ), χ−(θ)).

See Figure 3b.
For each θ ∈ [0, π), the pair (χ+(θ), χ−(θ)) is called antipodal. Toussaint [20] invented

the well-known rotating caliper technique and proved the following lemma.

Lemma 3 (Toussaint [20]). There are O(n) different antipodal pairs for P. All these antipodal
pairs can be identified in O(n) time, after the convex hull conv(P) is computed.

Starting from θ = 0, consider the motion of the two lines `+(θ) and `−(θ) as θ
continuously increases. During this motion, observe that the antipodal pair (χ+(θ), χ−(θ))
for θ changes only when either `+(θ) or `−(θ) contains two extreme points of P and thus
an edge of conv(P). Thus, we can decompose the orientation domain [0, π) into maximal
intervals I such that the antipodal pair (χ+(θ), χ−(θ)) remains constant in I. The number
of such intervals I is bounded by O(n) by Lemma 3.

2.5. Problems Definition

In this paper, we study the problem of computing a parallelogram annulus of min-
imum extent enclosing n given points P. The objective extents to be minimized are area,
width, and their combinations. We consider four variants by restricting the two side
orientations of the resulting parallelogram annuli.

To be more precise, for each θ1, θ2 ∈ [0, π/2), let A(θ1, θ2) be the collection of all
(θ1, θ2)-aligned parallelogram annuli enclosing P. Let A(θ) :=

⋃
θ′∈[0,π)A(θ, θ′), and

A :=
⋃

θ∈[0,π)A(θ). We consider the following optimization problems: The minimum-
width problem and the minimum-area problem ask to minimize width(A) and area(A),
respectively,

(1) over all A ∈ A(θ1, θ2) for fixed orientations θ1, θ2 ∈ [0, π),
(2) over all A ∈ A(θ) for a fixed θ ∈ [0, π),
(3) over all A ∈ ⋃θ∈[0,π)A(θ, θ + α) for a fixed angle α ∈ (0, π/2), or
(4) over all A ∈ A.

In some cases, there is a unique optimal annulus for the above optimization problems,
while this is not the case in general. Thus, one can consider a bicriteria optimization problem
that minimizes both width and area. Here, in this paper, we will discuss the following in
each of the above four cases.

• The minimum-area minimum-width problem: find a parallelogram annulus of minimum
area among those with minimum width over A(θ1, θ2), A(θ),

⋃
θ∈[0,π)A(θ, θ + α),

or A.
• The minimum-width minimum-area problem: find a parallelogram annulus of minimum

width among those with minimum area over A(θ1, θ2), A(θ),
⋃

θ∈[0,π)A(θ, θ + α),
or A.
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3. When Both Side Orientations Are Fixed

In this section, we study the problem when two side orientations θ1 and θ2 are fixed.
Thus, in this variant of the problem, we are given a set P of n points in the plane and two
orientations θ1, θ2 ∈ [0, π), and want to find an optimal parallelogram annulus over all
(θ1, θ2)-aligned annuli that encloses P.

3.1. Minimum-Area Annuli

For any θ1, θ2 ∈ [0, π) with θ1 6= θ2, let R(θ1, θ2) := S(θ1) ∩ S(θ2) be the (θ1, θ2)-
aligned parallelogram obtained by intersecting two strips S(θ1) and S(θ2). By definition,
observe that every side of R(θ1, θ2) contains an extreme point of P. Note that if a point
p ∈ P lies at a corner of R(θ1, θ2), then we regard that p lies both on the two sides incident to
the corner. This implies that R(θ1, θ2) is indeed the smallest (θ1, θ2)-aligned parallelogram
that encloses P.

Lemma 4. Let A be any minimum-area (θ1, θ2)-aligned annulus that encloses P. Then, its outer
parallelogram must be R(θ1, θ2).

Proof. Let A be any minimum-area (θ1, θ2)-aligned annulus that encloses P. Let S1 and S2
be the θ1-aligned strip and the θ2-aligned strip, respectively, whose intersection determines
the outer parallelogram R of A. Suppose that the outer parallelogram R is not exactly
equal to R(θ1, θ2), that is, R 6= R(θ1, θ2). As A encloses P, so does R. Since R(θ1, θ2) is the
smallest (θ1, θ2)-aligned parallelogram that encloses P, we have R(θ1, θ2) ( R, and thus
there exists a side of R in which no point of P is contained. In the following, we show that
there exists another (θ1, θ2)-aligned annulus A′ that encloses P with area(A′) < area(A),
leading to a contradiction.

Assume without loss of generality that θ1 = 0 and the upper horizontal side e of R
contains no point of P. Note that e is a portion of the upper boundary line ` of S1, so `
contains no point of P on it, see Figure 4a. Now, we slide ` downwards until it hits a point in
P, and let `′ be the resulting line by this sliding process. We replace the upper bounding line
` of S1 by `′ to have a new strip S′1. Let R′ := S′1 ∩ S2 and A′ be the (θ1, θ2)-aligned annulus
whose outer parallelogram is R′ and width is exactly the same as the width width(A) of A,
see Figure 4b.

Observe that no point of P sticks out above ` during the above sliding process, that
is, the new annulus A′ still encloses P. Further, observe that R′ ⊂ R, thus it holds that
area(A′) < area(A). This leads to a contradiction to the assumption that A is a minimum-
area (θ1, θ2)-aligned annulus.

The argument so far implies that every side of the outer parallelogram R of any
minimum-area (θ1, θ2)-aligned annulus A enclosing P should contain a point of P. There-
fore, R is the smallest (θ1, θ2)-aligned parallelogram enclosing P, that is, R = R(θ1, θ2).

(a)

w wA A′

`

(b)

`′ `′

Figure 4. Illustration to the proof Lemma 4. (a) If the upper horizontal side of the outer parallelogram
R of annulus A contains no point in P, then we can slide it downwards until it hits a point in P so
that (b) a new annulus A′ with smaller area is obtained.

For any w ≥ 0, let A(w) be the (θ1, θ2)-aligned annulus whose outer parallelogram
is R(θ1, θ2) and width is w. By Lemma 4, the minimum-area (θ1, θ2)-aligned annulus that
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encloses P can be computed by finding the smallest width w∗ such that A(w∗) encloses P.
This implies the uniqueness of the annulus of minimum area.

Lemma 5. There exists a unique minimum-area (θ1, θ2)-aligned annulus that encloses P.

Proof. Suppose that there are two distinct minimum-area (θ1, θ2)-annuli A and A′ that
enclose P. Hence, we have area(A) = area(A′) on one hand. By Lemma 4, on the other
hand, any minimum-area (θ1, θ2)-aligned annulus enclosing P has R(θ1, θ2) as its outer
parallelogram. Thus, R(θ1, θ2) is the common outer parallelogram of both A and A′.

Let w := width(A) and w′ := width(A′). As A and A′ have the same outer parallel-
ogram, it must hold that w 6= w′. Assume without loss of generality that w < w′. This
implies that area(A) < area(A′), a contradiction to the assumption that both A and A′ are
of minimum area and thus area(A) = area(A′).

Now, we describe how to compute the minimum width w∗ such that A(w∗) encloses
P. From the definition of parallelogram annuli, note that the inner parallelogram of
A(w) for each w > 0 is determined by the intersection of two strips S′1 and S′2 such that
µ(S′1) = µ(S(θ1)), µ(S′2) = µ(S(θ2)), and width(S(θ1)) −width(S′1) = width(S(θ2)) −
width(S′2) = 2w. Furthermore, observe that A(w) contains a point p ∈ P if and only if the
distance from p to the boundary of R(θ1, θ2) is at most w. Let dp be this distance from p to
the boundary of R(θ1, θ2). Since dp is chosen as the minimum among the distance from p
to every side of R(θ1, θ2), we can write

dp := min{σθ1(χ
+(θ1), p), σθ1(χ

−(θ1), p), σθ2(χ
+(θ2), p), σθ2(χ

+(θ2), p)}.

Since dp is the smallest value of w such that A(w) contains p, we have

w∗ = max
p∈P

dp.

We are now ready to describe our algorithm, when both side orientations θ1, θ2 ∈ [0, π)
are given. First, we find the four extreme points χ+(θ1), χ−(θ1), χ+(θ2), and χ−(θ2). This
can be done in O(n) time. We then compute the values of dp for all p ∈ P and find
their maximum, which is exactly w∗, as discussed above. The corresponding annulus can
be constructed from the outer parallelogram R(θ1, θ2) and its width w∗. Therefore, we
conclude the following.

Theorem 1. Given a set P of n points in the plane and two orientations θ1, θ2 ∈ [0, π) with
θ1 6= θ2, there exists a unique minimum-area (θ1, θ2)-aligned annulus that encloses P and it can be
computed in O(n) time.

3.2. Minimum-Width Annuli

Here, we investigate relations between minimum-area and minimum-width parallelo-
gram annuli in a fixed pair of side orientations.

Let θ1, θ2 ∈ [0, π) be two fixed orientations with θ1 6= θ2 as declared above. Let
A(θ1, θ2) be the unique minimum-area (θ1, θ2)-aligned annulus described in Lemma 5.

The author [17] studied the minimum-width variant of the problem. Unlike the
minimum-area counterpart, it is not difficult to see that there can be infinitely many annuli
of the same minimum width that encloses P. An important observation on the minimum-
width annuli is the following:

Lemma 6 (Bae [17]). Given θ1, θ2 ∈ [0, π) with θ1 6= θ2, there exists a minimum-width (θ1, θ2)-
aligned annulus that encloses P whose outer parallelogram is R(θ1, θ2).

This observation together with the above discussions on the minimum-area annulus
implies the following.
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Lemma 7. For any θ1, θ2 ∈ [0, π) with θ1 6= θ2, the minimum-area annulus A(θ1, θ2) is also a
minimum-width (θ1, θ2)-aligned annulus that encloses P. Therefore, its width width(A(θ1, θ2))
is indeed the minimum possible width over all (θ1, θ2)-aligned annuli that enclosing P.

Proof. Recall that the annulus A(θ1, θ2) is constructed in the way that we minimize its
width given the outer parallelogram R(θ1, θ2). Lemma 6 implies that the existence of a
minimum-width annulus whose outer parallelogram is R(θ1, θ2). Thus, this implies that
A(θ1, θ2) is also a minimum-width (θ1, θ2)-aligned annulus that encloses P.

Summarizing, the annulus A(θ1, θ2) is the optimal solution both to the minimum-area
and minimum-area parallelogram annulus in a fixed pair (θ1, θ2) of side orientations. This
makes all bicriteria optimization variants of the problem trivial to compute the annulus
A(θ1, θ2), thus solved in O(n) time by Theorem 1.

Theorem 2. Given a set P of n points in the plane and two orientations θ1, θ2 ∈ [0, π) with
θ1 6= θ2, the annulus A(θ1, θ2) is the unique common optimal solution to the problems of computing
a minimum-area, minimum-width, minimum-width minimum-area, and minimum-area minimum-
width (θ1, θ2)-aligned parallelogram annulus that encloses P.

3.3. Relation between Width and Area

Finally, we conclude this section by deriving an equation between the width width(A(θ1, θ2))
and the area area(A(θ1, θ2)) of the annulus A(θ1, θ2) for any θ1, θ2 ∈ [0, π) with θ1 6= θ2.
Throughout the paper, we shall write

width(θ1, θ2) = width(A(θ1, θ2))

and
area(θ1, θ2) = area(A(θ1, θ2)),

for short, hereafter.

Lemma 8. For any θ1, θ2 ∈ [0, π) with θ1 6= θ2, it holds that

area(θ1, θ2) =
2width(θ1, θ2)

sin |θ2 − θ1|
(
σθ1(χ

+(θ1), χ−(θ1)) + σθ2(χ
+(θ2), χ−(θ2))− 2 width(θ1, θ2)

)
.

Proof. By a simple geometric observation, we have the following identity:

area(θ1, θ2) = peri(R(θ1, θ2)) ·width(θ1, θ2)−
4(width(θ1, θ2))

2

sin |θ2 − θ1|
,

where peri(·) denotes the perimeter of a polygon, see Figure 5a.
The perimeter of the parallelogram R(θ1, θ2) can be represented as follows in terms

of the extreme points. Note that R(θ1, θ2) = S(θ1) ∩ S(θ2), the intersection of two strips
enclosing P. By definition, the strip S(θ) for any θ ∈ [0, π) is determined by two θ-aligned
lines through the extreme points χ+(θ) and χ−(θ) of P in orientation θ.

Let l1 and l2 be the length of a side of R(θ1, θ2) that is θ1-aligned and θ2-aligned,
respectively. The length l1 is determined by two extreme points χ+(θ2) and χ−(θ2). More
precisely, the endpoints of a θ1-aligned side e of R(θ1, θ2) are the projections of χ+(θ2) and
χ−(θ2) onto the line extending e in direction θ2. This implies that

l1 =
σθ2(χ

+(θ2), χ−(θ2))

| sin(θ2 − θ1)|
.
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See Figure 5b for an illustration. Symmetrically, we have

l2 =
σθ1(χ

+(θ1), χ−(θ1))

| sin(θ1 − θ2)|
.

As sin(x) = sin(−x) for any real x ∈ R, we have | sin(θ2 − θ1)| = sin |θ2 − θ1| =
| sin(θ1 − θ2)|. In turn, the perimeter of R(θ1, θ2) can be represented as follows:

peri(R(θ1, θ2)) = 2l1 + 2l2

=
2

sin |θ2 − θ1|
(
σθ1(χ

+(θ1), χ−(θ1)) + σθ2(χ
+(θ2), χ−(θ2))

)
.

Plugging this into the above equation for area(θ1, θ2), we obtain the claimed equation.

θ1

θ2

α

w

w

π − α

l1

dχ−(θ2)

χ+(θ2)

(a) (b)

w

w

R(θ1, θ2)

Figure 5. Illustrations to Lemma 8. (a) The area area(θ1, θ2) is exactly the perimeter of R(θ1, θ2)

multiplied by width(θ1, θ2) minus the area of the four congruent small parallelograms shaded in
darker blue. Here, α = θ2 − θ1 and w = width(θ1, θ2). (b) The length l1 of a θ1-aligned side of
the outer parallelogram R(θ1, θ2) is exactly d/ sin(π − α) = d/ sin(α) = d/ sin(θ2 − θ1), where
d = σθ2 (χ

+(θ2), χ−(θ2)) denotes the width of S(θ2).

4. When One Orientation Is Fixed and the Other Is Arbitrary

In this section, we consider the case where one side orientation is given and fixed
while the other side orientation can be chosen arbitrarily. That is, given an orientation
φ ∈ [0, π), our goal is to find an optimal annulus over all (φ, θ)-aligned parallelogram
annuli enclosing P. From the discussion in the previous section, Theorem 2 implies that
it suffices to find an optimal one among annuli A(φ, θ) over all θ ∈ (0, π), regardless of
which objective we take into account: the width, the area, or their combinations.

In the following, we assume that φ = 0 without loss of generality. We first solve the
minimum-area problem in this case and then consider the annuli of minimum width.

4.1. Minimum-Area Annuli

For any θ ∈ (0, π), let A0(θ) := A(0, θ). Also, let width0(θ) := width(0, θ) and
area0(θ) := area(θ) be its width and area.

In this section, we consider θ as a variable and the above objects as functions of θ. We
analyze the width and area functions, width0(θ) and area0(θ), and show how to efficiently
compute their explicit description, from which we can minimize width0(θ) and area0(θ)
over θ ∈ (0, π).

We start by investigating the width function width0(θ). For each p ∈ P, define a
function dp : (0, π) → R such that dp(θ) is the distance to the boundary of the outer
parallelogram R(0, θ) of A(0, θ) = A0(θ). Then, the distance dp(θ) can be represented by
the minimum of the distances to the four sides of R(0, θ), that is,

dp(θ) = min{σ0(χ
+(0), p), σ0(χ

−(0), p), σθ(χ
+(θ), p), σθ(χ

−(θ), p)}.
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The width width0(θ) of the annulus A0(θ) is obtained by choosing the maximum of
the values of dp(θ) over all p ∈ P:

width0(θ) = max
p∈P

dp(θ),

since A0(θ) should enclose all points of P.
Recall from Lemma 3 that there are O(n) different antipodal pairs and the orien-

tation domain [0, π) is decomposed into O(n) maximal intervals I such that the pair
(χ+(θ), χ−(θ)) is fixed over all θ ∈ I. We shall call such an interval I a primary interval.
Pick any primary interval I, and consider the functions dp on I for p ∈ P. For θ ∈ I, the cor-
responding extreme points χ+(θ) and χ−(θ) are fixed, so dp is of a constant descriptive
complexity. Note that σ0(χ

+(0), p) and σ0(χ
−(0), p) are just constants, and the other two

terms σθ(χ
+(θ), p) and σθ(χ

−(θ), p) are piecewise sinusoidal of frequency 1 and base 0
with at most one breakpoint, as discussed in Section 2. Since the function dp is indeed the
lower envelope of these four terms, the function dp over I is piecewise sinusoidal with
O(1) breakpoints. As width0 is the upper envelope of the functions dp for all p ∈ P, we
conclude the following.

Lemma 9. Let I ⊂ [0, π) be any primary interval. The width function width0 over I is piecewise
sinusoidal of frequency 1 and base 0 with O(nα(n)) breakpoints, where α(·) denotes the inverse
Ackermann function. Moreover, each sinusoidal piece of width0 is concave. The explicit description
of width0 over I can be computed in O(n log n) time.

Proof. From the above discussion, we know that the function dp for each p ∈ P is piecewise
sinusoidal of frequency 1 and base 0 with O(1) breakpoints over any primary interval I.
In other words, dp can be described O(1) partial functions that are sinusoidal of frequency
1 and base 0. Moreover, note that each of these partial functions are from σθ(q, p) for some
extreme point q ∈ P, and thus it is always nonnegative. This implies that each such partial
function of dp is indeed concave.

Now, consider the function width0 over I. Since width0(θ) = maxp∈P dp(θ), it is the
upper envelope of O(n) sinusoidal partial functions. By Lemma 1, any two sinusoidal
functions cross at most once over I. Thus, the upper envelope of O(n) such sinusoidal
curves corresponds to a Davenport–Schinzel sequence of order 3 and can be described by
at most O(nα(n)) sinusoidal pieces [21]. These pieces are of frequency 1 and base 0, and
concave as they are portions of functions dp.

The explicit description of function width0 over I can be obtained by computing the
upper envelope of the graphs of dp over I. Since the graphs of dp for all p ∈ P consists of
O(n) sinusoidal curves and any two of them cross at most once by Lemma 1, this can be
done by applying the algorithm by Hershberger [22] in O(n log n).

Now, we consider the area function area0(θ). Lemma 8 tells us that area0(θ) is repre-
sented in terms of the width width0(θ). More specifically, we have

area0(θ) =
2width0(θ)

sin θ
(σ0(χ

+(0), χ−(0)) + σθ(χ
+(θ), χ−(θ))− 2 width0(θ)).

In each primary interval I, note that the antipodal pair (χ+(θ), χ−(θ)) is fixed for
any θ ∈ I. Therefore, between any two consecutive breakpoints of function width0, the
function area0(θ) is of the form

area0(θ) =
a sin(2θ + b) + c

sin θ
,

where a, b, c ∈ R are some constants, by Lemmas 1 and 2.
This implies the following.
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Lemma 10. Let I ⊂ [0, π) be any primary interval. The area function area0 over I is piecewise of
the form a sin(2θ+b)+c

sin θ for some constants a, b, c ∈ R with at most O(nα(n)) breakpoints, and its
explicit description can be computed in O(n log n) time.

Proof. Immediate from the above discussion.

For each primary interval I, we can compute the description of function area0 and thus
can minimize it over I. Lemma 10 tells us that the function area0 consists of O(nα(n)) pieces
of constant descriptive complexity. Therefore, we can find the minimum minθ∈I area0(θ) in
O(nα(n)) time. Since there are O(n) primary intervals by Lemma 3, we spend O(n2 log n)
time in total to compute the full description of area0 over [0, π) and to find its global
minimum min0<θ<π area0(θ). Hence, we conclude the following.

Theorem 3. Given a set P of n points in the plane and an orientation φ ∈ [0, π), a minimum-area
φ-aligned parallelogram annulus that encloses P can be computed in O(n2 log n) time.

Proof. Here, we give a brief description of our whole algorithm to compute a minimum-
area φ-aligned parallelogram annulus that encloses P. As above, we assume φ = 0 without
loss of generality. Then, the problem is turn to minimize area0(θ) over θ ∈ (0, π).

First, we compute the convex hull conv(P) in O(n log n) time and specify all extreme
points and antipodal pairs by Lemma 3. This way, we can find all primary intervals. Then,
for each primary interval I, we compute in O(n log n) time the description of function
width0 on I by Lemma 9 and that of function area0 on I by Lemma 10. As discussed above
the minimum of area(θ) over θ ∈ I can be computed in O(nα(n)) time.

Since there are O(n) antipodal pairs by Lemma 3, the total time to compute a global
minimum of area0(θ) over θ ∈ (0, π) is bounded by O(n2 log n).

Note that our algorithm indeed compute the full description of the function area0 to
find its minimum. Thus, we can indeed find all the minimum points of area0 in the same
time bound. This implies the following corollary.

Corollary 1. Given a set P of n points in the plane and an orientation φ ∈ [0, π), all minimum-
area φ-aligned parallelogram annuli that encloses P can be computed in O(n2 log n) time. Therefore,
a minimum-width minimum-area φ-aligned parallelogram annulus that encloses P can be computed
in the same time bound.

4.2. Minimum-Width Annuli

Next, we consider the problem of computing a minimum-area minimum-width annu-
lus. By the above approach, we also obtain the full description of the function width0(θ)
over θ ∈ (0, π) in O(n2 log n) time. This implies that we can specify all minimum-width
annuli and thus compute a minimum-area minimum-width annulus that encloses P. In the
following, we show that it can be done in O(n2) time.

We start by a brief review of the O(n2)-time algorithm that finds a minimum-width an-
nulus for a fixed side orientation presented in the previous paper [17]. Let
w∗ := min0<θ<π width0(θ) be the minimum possible width.

The algorithm in [17] computes w∗ as follows: For each θ ∈ [0, π) and p ∈ P, let fp(θ)
be the distance from p to the boundary of the strip S(θ), that is,

fp(θ) = min{σθ(χ
+(θ), p), σθ(χ

−(θ), p)}.

Sort the points in P in the descending order of the distance to the boundary of the strip
S(0), that is, in the descending order of the values fp(0) = min{σ0(χ

+(0), p), σ0(χ
−(0), p)}

for p ∈ P. Let p1, p2, . . . , pn ∈ P be the points in P in this order, and let
wi := fpi (0) = min{σ0(χ

+(0), pi), σ0(χ
−(0), pi)} for each 1 ≤ i ≤ n. Let

Qi := {p1, p2, . . . , pi−1} for i = 1, . . . , n. For each 1 ≤ i ≤ n, compute the smallest value w′i
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such that there exists an orientation θ ∈ (0, π) such that dp(θ) ≤ w′i for all p ∈ Qi. Then,
we have w∗ = min1≤i≤n max{wi, w′i}.

Note that we have w1 ≥ w2 ≥ · · · ≥ wn = 0 and 0 = w′1 ≤ w′2 ≤ · · · ≤ w′n by
definition. The above procedure is proven to correctly compute w∗ and computing the
values of w′i for all i = 1, 2, . . . , n can be done in O(n2) time in [17].

Here, our goal is to specify all (0, θ)-aligned annuli of width w∗ that enclose P over
all θ ∈ (0, π), and find one with minimum area among them. Let k ∈ {1, . . . , n} be the
smallest index such that w∗ ≥ wk. We then have either w∗ = wk or w∗ = w′k. For θ ∈ [0, π),
define S′(θ) to be the θ-aligned strip such that width(S′(θ)) = width(S(θ))− 2w∗ and its
middle line is equal to the middle line of S(θ), that is, µ(S′(θ)) = µ(S(θ)). Let Q := Qk
for convenience. Then, observe that all points in P \Q are contained in S(0) \ int S′(0). In
order to specify all (0, θ)-aligned annuli of width w∗, we find all θ ∈ (0, π) such that the
rest of points Q are contained in S(θ) \ int S′(θ). For such an orientation θ, the annulus
defined by S(0), S′(0), S(θ), and S′(θ) encloses all points of P and is of width exactly w∗.

For the purpose, we consider the point q ∈ Q that determines the width of S′(θ) for
each θ. For each θ ∈ (0, π), let Q+

θ ⊆ Q be the set of points q ∈ Q that is closer to the
boundary line through χ+(θ) of S(θ), and Q−θ := Q \Q+

θ . Let q+θ ∈ Q+
θ , q−θ ∈ Q−θ be the far-

thest points from the boundary lines of S(θ) through χ+(θ) and χ−(θ), respectively. Then,
define w(θ) to be the minimum value such that the strip S(θ) \ int S′ contains all points of
Q, where S′ denotes the strip with µ(S′) = µ(S(θ)) and width(S′) = width(S(θ))− 2w(θ).
Therefore, we have

w(θ) := max{σθ(χ
+(θ), q+θ ), σθ(χ

−(θ), q−θ )}.

In the following, we show that the explicit description of the function w(θ) for
θ ∈ (0, π) is of complexity O(n2) and can be computed in O(n2) time. After specify-
ing the description of w(θ), we can find all θ ∈ (0, π) such that w(θ) ≤ w∗ and thus there
exists a (0, θ)-aligned annulus of width w∗ enclosing P.

Here, as done in [17], we adopt a geometric dualization ([23], Chapter 8). The plane
R2 in which we have so far discussed things is called the primal plane with the x- and
y-axes. We consider another plane D, called the dual plane, with the u- and v-axes that
correspond to the horizontal and vertical axes, respectively. A duality transform, denoted
by ?, acts on points and lines in the primal plane R2 and the dual plane D. More specifically,
it maps a point p = (a, b) ∈ R2 into a line p? : v = au− b ⊂ D and a non-vertical line
` : y = ax − b ⊂ R2 into a point `? = (a, b) ∈ D, and vice versa. As a result, we have
(p?)? = p and (`?)? = ` for any point p and any non-vertical line ` either in R2 or in D.
A geometric object and its image under the duality transform are said to be dual to each
other. Note that p lies below (on or above, resp.) ` if and only if `? lies below (on or above,
resp.) p?. See Figure 6 for an illustration.

p1

p2

p3

`1

`2

`3
`3

?

`2
?

`1
?

p3
?

p2
?

p1
?

R2 D

⇐⇒?

Figure 6. Illustration to the geometric dual transform ?.
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Back to our problem, we consider the dual of the points in P, that is, the set P? := {p? |
p ∈ P} of n lines in the dual plane D. From the arrangement of these lines in P?, consider
the upper envelope and the lower envelope, denoted by U and L, respectively. By an abuse
of notation, we also consider these envelopes as two functions of u ∈ R so that U (u) and
L(u) are the v-coordinates in D of points on U and L, respectively, at u ∈ R. Define a third
functionM(u) to beM(u) := (U (u) +L(u))/2. Observe thatM(u) is the v-coordinate of
the midpoint of the vertical segment (u,U (u))(u,L(u) for each u ∈ R in the dual plane D.
Analogously, we regardM as the function itself and its graphM = {(u,M(u)) | u ∈ R}
drawn in D at the same time.

By the duality, we observe the correspondence between the above objects in D and the
strip S(θ) in R2.

Lemma 11 (Bae [17]). For each θ ∈ [0, π) with θ 6= π/2, let u := tan θ. Then, the following hold:

(1) The dual of the two bounding lines of S(θ) is the two points (u,U (u)) and (u,L(u)) in D.
(2) The dual (µ(S(θ)))? of the middle line µ(S(θ)) of S(θ) is the point (u,M(u)) in D.

Thus, we may say that the boundary of the strip S(θ) over all θ ∈ [0, π) is dual to U ∪L,
and the middle line µ(S(θ)) is dual toM. It is indeed well known that U ∪ L correspond
to the boundary of conv(P) and thus the extreme points of P. From the correspondence
between µ(S(θ)) and M, we observe that M forms a chain of O(n) line segments by
Lemma 3.

Next, we consider the set Q? := {q? | q ∈ Q} of lines in D, and its arrangementA(Q?).
As Q ⊆ P, all lines in Q? lie in between U and L in the dual plane D. We further addM in
the arrangement to result in A(Q? ∪M). Let Q+ be the lower envelope of the portions of
lines in Q? aboveM. Symmetrically, Q− is defined to be the upper envelope of those in
Q? belowM. From the duality, we then observe the correspondence between (q+θ , q−θ ) and
Q+ ∪Q−.

Lemma 12 (Bae [17]). For each θ ∈ [0, π) with θ 6= π/2, let u := tan θ. Then, the duals of the
two θ-aligned lines through q+θ and q−θ are the two points (u,Q+(u)) and (u,Q−(u)) in D.

Lemma 12 implies that we can specify all pairs (q+θ , q−θ ) over θ ∈ [0, π), once we have
the substructures Q+ and Q− in the arrangement A(Q? ∪M). Consequently, the orienta-
tion space [0, π) is decomposed into maximal intervals in which the pair (q+θ , q−θ ) is fixed
and thus the function w(θ) is expressed in a fairly simple form.

To be more precise, take all breakpoints ofM, Q+, and Q− and their u-coordinates,
say u1 < u2 < · · · < um. Let θi := tan−1 ui ∈ [0, π) and decompose the orientation space
[0, π) into intervals by cutting it at every θi. We call such intervals of [0, π) secondary
intervals. Let J ⊂ [0, π) be any secondary interval. By our construction and Lemma 12,
observe that the four points χ+(θ), χ−(θ), q+θ , and q−θ are fixed over all θ ∈ J. For each
secondary interval J ⊂ [0, π), let χ+

J := χ+(θ), χ−J := χ−(θ), q+J := q+θ , and q−J := q−θ be
these fixed points for any θ ∈ J.

Lemma 13. There are at most O(n2) secondary intervals, and we can compute them with the
corresponding tuple of four points (χ+

J , χ−J , q+J , q−J ) in O(n2) time.

Proof. By definition, the endpoints of each secondary interval correspond to breakpoints
ofM, Q+, and Q−. Therefore, in this proof, we analyze the structural complexity ofM,
Q+, and Q−, and an efficient algorithm to compute them.

Recall thatM is dual to the middle line µ(S(θ)) of S(θ) by Lemma 11, so Lemma 3
implies thatM consists of O(n) line segments that correspond to the antipodal pairs. We
can computeM in O(n log n) time by computing the convex hull conv(P) and the extreme
points of P by Lemma 11.
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In order to bound the complexity of Q+ and Q−, we make use of the Zone Theorem
in the arrangement of lines. For any set Z of lines and a line ` in the plane, the zone of ` in
the arrangement A(Z) of Z is the set of cells of A(Z) that are intersected by `. The Zone
Theorem then states that the total number of vertices, edges, and cells in the zone of ` in
A(Z) is at most 5|Z| [23]. This also enables us to compute the arrangement A(Z) in an
incremental fashion in total quadratic time.

We start by computing the arrangement A(Q?) of lines q? for all q ∈ Q. This takes
O(|Q|2) = O(n2) time. Then, for each segment e of M, we find all intersection points
e ∩ q? for all q ∈ Q. There are at most |Q| ≤ n such intersections for each e. Then, we can
specify the part of Q+ and Q− above and below e, respectively, simply by walking along
the boundary of cells of A(Q?) that are intersected by e. Since the segment e is a portion of
a line extending e, we apply the Zone Theorem to conclude that the number of vertices,
edges, and cells of A(Q?) we traverse is bounded by O(|Q|) = O(n) and the time spent
for the walk is also bounded by O(n) for each segment e ofM. SinceM consists of O(n)
segments, the total complexity to explicitly construct Q+ and Q− is bounded by O(n2).

This also implies the complexity ofQ+ andQ− is O(n2), as the number of intersections
between each segment e of M and lines in Q? is at most n. That is, the number of
breakpoints of Q+ and Q− is O(n2), so the number of secondary intervals is O(n2). The
corresponding tuple of four points (χ+

J , χ−J , q+J , q−J ) for each secondary interval J can be
also identified in the same time bound by traversingM, Q+, and Q− in a linear way.

We then turn to our original problem, and describe our algorithm that computes
a minimum-area minimum-width 0-aligned annulus that encloses P. Recall that we
want to find all θ ∈ [0, π) such that w(θ) ≤ w∗ and minimize the area of annuli among
those orientations.

For each secondary interval J ⊂ [0, π) and any θ ∈ J, we have

w(θ) = max{σθ(χ
+
J , q+J ), σθ(χ

−
J , q−J )}.

Since the four points χ+
J , χ−J , q+J , and q−J are fixed for any θ ∈ J, the function w(θ)

over θ ∈ J is piecewise sinusoidal of frequency 1 and base 0 with O(1) breakpoints by
Lemma 1. Hence, all θ ∈ J such that w(θ) ≤ w∗ form a constant number of disjoint closed
subintervals in J, and those intervals can be computed in O(1) time for each secondary
interval J. We collect all those subintervals for all secondary intervals J in O(n2) time,
denoted by {Θ1, Θ2, . . . , Θm}, where m = O(n2). For each of these subintervals Θi ⊂ J
of some secondary interval J, we minimize the area of the corresponding (0, θ)-aligned
annulus whose width is w∗. By Lemma 8, the area is represented as follows: for any θ ∈ Θi,

a(θ) :=
2w∗

sin θ
(σ0(χ

+(0), χ−(0)) + σθ(χ
+
J , χ−J )− 2w∗).

Note that the terms w∗ and σ0(χ
+(0), χ−(0)) are constants in the above equation,

so a(θ) is of the form a sin(θ+b)+c
sin θ for some constants a, b, c ∈ R in such a subinterval Θi.

Therefore, for each Θi, we can minimize the area a(θ) over θ ∈ Θi in O(1) time. Since the
number m of such subintervals is O(n2), it takes another O(n2) time to minimize a(θ) over
all θ ∈ ⋃i Θi. After identifying an optimal orientation θ∗ ∈ ⋃i Θi that minimizes the area
a(·), the corresponding annulus can be easily constructed by taking R(0, θ∗) as the outer
parallelogram and w∗ as the width.

We finally conclude the following theorem.

Theorem 4. Given a set P of n points in the plane and an orientation φ ∈ [0, π), a minimum-area
minimum-width φ-aligned parallelogram annulus that encloses P can be computed in O(n2) time.
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5. When an Interior Angle Is Fixed

Any parallelogram has two distinct interior angles that sum up to exactly π. We say
that any parallelogram annulus is with interior angles α and π − α if its outer and inner
parallelograms have interior angles α and π − α. It is obvious that any (θ1, θ2)-aligned
annulus with θ2 > θ1 has interior angles θ2 − θ1 and π − θ2 + θ1.

Here, we consider another variant of the minimum parallelogram annulus problem
in which we are given a set P of n points and an angle α ∈ (0, π/2], and want to find
an optimal parallelogram annulus with interior angle α. Again by Lemma 5, it suffices
to handle the annuli A(θ1, θ2) whose outer parallelogram is the smallest (θ1, θ2)-aligned
parallelogram R(θ1, θ2) enclosing P.

Let α ∈ (0, π/2] be a given interior angle that is at most π/2. As discussed above,
the other interior angle is also fixed by π − α, which is at least π/2. Our focus is thus on
the (θ1, θ2)-aligned annuli A(θ1, θ2) such that θ2 − θ1 = α. We thus define the width and
the area functions for such annuli:

w(θ) := width(θ, θ + α) and a(θ) := area(θ, θ + α)

for each θ ∈ [0, π), where θ + α is supposed to be taken in modulo π when it is larger than π.
The author in the previous paper [18] presented an O(n2 log n)-time algorithm that

computes a minimum-width parallelogram annulus with a given interior angle, and proved
the following about the width function w(θ).

Lemma 14 (Bae [18]). The width function w(θ) = width(θ, θ + α) for θ ∈ [0, π) is piecewise
sinusoidal of frequency 1 and base 0 with O(n2α(n)) breakpoints, where α(·) denotes the inverse
Ackermann function, and its explicit description can be computed in O(n2 log n) time.

From the result summarized in Lemma 14, it is not difficult to find all θ that minimizes
w(θ). Hence, we have the following result.

Theorem 5. Given a set P of n points in the plane and an angle α ∈ (0, π/2], all minimum-width
parallelogram annuli with interior angle α that encloses P can be computed in O(n2 log n) time.
Therefore, a minimum-area minimum-width parallelogram annulus with interior angle α that
encloses P can be computed in the same time bound.

Proof. First, we compute the description of the function w(θ) over θ ∈ [0, π) in O(n2 log n)
time by Lemma 14. Moreover, Lemma 14 also states that the function w(θ) consists of
O(n2α(n)) partial functions that are sinusoidal of frequency 1 and base 0. That is, for each
interval J ⊂ [0, π) between two consecutive breakpoints, the function w(θ) is expressed in
the form of a sin(θ + b) for some constants a, b ∈ R. Hence, we can minimize w(θ) over
θ ∈ J in O(1) time. Since there are O(n2α(n)) of such intervals J, it takes O(n2α(n)) time to
find all θ∗ ∈ [0, π) such that w(θ∗) = minθ∈[0,π) w(θ). The total running time is dominated
by O(n2 log n), as α(n) = O(log n).

Next, we consider minimum-area annuli with fixed interior angle. The area a(θ) of
the annulus A(θ, θ + α) can be written as follows by Lemma 8.

a(θ) =
2

sin α

(
w(θ) · σθ(χ

+(θ), χ−(θ)) + w(θ) · σθ+α(χ
+(θ + α), χ−(θ + α))− 2(w(θ))2

)
.

Note that α is a fixed constant and every term in the equation is the product of two
sinusoidal functions of frequency 1 and base 0 in such an interval J that the extreme points
χ+(θ), χ−(θ), χ+(θ + α), and χ−(θ + α) are fixed and w(θ) is also sinusoidal for all θ ∈ J.
Hence, we decompose the orientation space [0, π) into such intervals as follows.

First, take all breakpoints of function w(θ) obtained by Lemma 14 and let B1 ⊂ [0, π)
be the set of these breakpoints. Next, consider all endpoints of primary intervals obtained by
Lemma 3 and let B2 ⊂ [0, π) be the set of these endpoints. Finally, let B3 := {β− α | β ∈ B2}.
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We then decompose the orientation space [0, π) into intervals by cutting it at every orien-
tation in B1 ∪ B2 ∪ B3. Since |B1| = O(n2α(n)) by Lemma 14 and |B2| = |B3| = O(n) by
Lemma 3, we have O(n2α(n)) such intervals.

Lemma 15. The area function a(θ) for θ ∈ [0, π) is piecewise sinusoidal of frequency 2 with
O(n2α(n)) breakpoints.

Proof. As discussed above, the orientation space [0, π) is decomposed into O(n2α(n))
intervals, in each of which the extreme points χ+(θ), χ−(θ), χ+(θ + α), and χ−(θ + α) are
fixed and w(θ) is sinusoidal of frequency 1 and base 0. Hence, in such an interval, the
function a(θ) is the sum of three products of two sinusoidal functions of frequency 1 and
base 0, divided by a constant sin α. By Lemmas 1 and 2, this results in a sinusoidal function
of frequency 2. Thus, the lemma follows.

In order to minimize a(θ) over θ ∈ [0, π), we are done by handling each of these inter-
vals between two consecutive breakpoints of a(θ). In this way, we can find all orientations
θ∗ such that a(θ∗) = minθ∈[0,π) a(θ), and the corresponding annuli.

Theorem 6. Given a set P of n points in the plane and an angle α ∈ [0, π), all minimum-area
parallelogram annulus with interior angle α that encloses P can be computed in O(n2 log n) time.
Therefore, a minimum-width minimum-area parallelogram annulus with interior angle α that
encloses P can be computed in the same time bound.

6. When Both Side Orientations Are Arbitrary

We then consider the most general case where both side orientations can be chosen arbi-
trarily. We first solve the minimum-area problem of finding a minimum-area parallelogram
annulus that encloses a given set P of n points, and then consider the minimum-width problem.

6.1. Minimum-Area Annuli

Specifically, our goal here is to find a global minimum of the bivariate function
area(θ1, θ2) over θ1, θ2 ∈ [0, π). As done in the previous sections, we analyze the width
function width(θ1, θ2) and find its explicit description. Then, we can find the description
of function area(θ1, θ2) by Lemma 8.

Recall that width(θ1, θ2) and area(θ1, θ2) are the width and the area of the minimum
(θ1, θ2)-aligned annulus A(θ1, θ2) whose outer parallelogram is R(θ1, θ2) = S(θ1) ∩ S(θ2).
For each p ∈ P and θ1, θ2 ∈ [0, π), let dp(θ1, θ2) be the distance from p to the boundary
of the outer parallelogram R(θ1, θ2). Since the four sides of R(θ1, θ2) contain the extreme
points of P for orientations θ1 and θ2, we can write

dp(θ1, θ2) = min{σθ1(χ
+(θ1), p), σθ1(χ

−(θ1), p), σθ2(χ
+(θ2), p), σθ2(χ

−(θ2), p)}.

We then have
width(θ1, θ2) = max

p∈P
dp(θ1, θ2).

Consider two primary intervals I1, I2 ⊂ [0, π), and the function width(θ1, θ2) re-
stricted to subdomain I1 × I2. Note that the extreme points χ+(θ) and χ−(θ) are fixed in
any primary interval I, and thus σθ(χ

+(θ), p)) and σθ(χ
−(θ), p)), as functions of θ, are

piecewise sinusoidal of frequency 1 and base 0 with at most one breakpoint, as discussed
above. This implies that the function dp for each p on I1 × I2 is the lower envelope of at
most eight sinusoidal patches in three dimension. More specifically, consider the graph
of the function dp for each p, that is, a surface {(θ1, θ2, z) | θ1, θ2 ∈ [0, π), z = dp(θ1, θ2)}
in a three-dimensional space [0, π)× [0, π)×R, based on the (θ1, θ2)-plane with the third
z-axis. From the above discussion, the graph of dp for (θ1, θ2) ∈ I1 × I2 consists of a
constant number of sinusoidal surface patches. Hence, the function width(θ1, θ2) over
(θ1, θ2) ∈ I1 × I2 is the upper envelope of O(n) sinusoidal patches.
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Lemma 16. Let I1, I2 ⊂ [0, π) be two primary intervals. The graph of function width(θ1, θ2)
over (θ1, θ2) ∈ I1× I2 consists of O(n2+ε) surface patches that are of the form a sin(θ1 + b) + c or
a sin(θ2 + b) + c for some constants a, b, c ∈ R, where ε is an arbitrarily small positive constant.
Its explicit description can be computed in O(n2+ε) time.

Proof. As discussed above, the graph of dp over I1 × I2 consists of O(1) sinusoidal surface
patches. These patches are the graph of partial functions of the form a sin(θ1 + b) + c or
a sin(θ2 + b) + c by definition, for some constants a, b, c ∈ R. Let Γp be the set of these
patches from dp for each p ∈ P.

Since width(θ1, θ2) is the maximum of dp(θ1, θ2) over all p ∈ P, its graph in the three-
dimensional space is the upper envelope of the surface patches in

⋃
p∈P Γp. The number of

patches involved is O(n).
Here, we apply the algorithm by Boissonat et al. [24] that computes the upper envelope

of surface patches in three dimension. This implies that the graph of function width(θ1, θ2)
over I1 × I2 consists of O(n2+ε) surface patches and can be computed in O(n2+ε) time.

We then apply Lemma 8 to obtain the area function area(θ1, θ2) over I1 × I2.

Lemma 17. Let I1, I2 ⊂ [0, π) be two primary intervals. The graph of function area(θ1, θ2) over
(θ1, θ2) ∈ I1 × I2 consists of O(n2+ε) surface patches of the form

1
sin |θ2 − θ1|

(a1 sin(2θ1 + b1) + a2 sin(2θ2 + b2) + a3 sin(θ1 + b3) sin(θ2 + b4) + c),

for some constants a1, a2, a3, b1, b2, b3, b4, c ∈ R. Its explicit description can be computed in
O(n2+ε) time.

Proof. From Lemmas 8 and 16, it follows that the graph of function area(θ1, θ2) over
(θ1, θ2) ∈ I1 × I2 consists of O(n2+ε) surface patches, and these patches can be computed
in the same time bound.

By Lemmas 1, 2, and 16, each of these patches of function area(θ1, θ2) appears to have
the claimed form.

The above lemmas imply that for any two primary intervals I1, I2, the rectangular sub-
domain I1 × I2 is decomposed into O(n2+ε) cells in each of which the function area(θ1, θ2)
is of constant descriptive complexity. Hence, we can minimize area(θ1, θ2) in each cell in
O(1) time. Consequently, we conclude the following.

Theorem 7. Given a set P of n points in the plane, a minimum-area parallelogram annulus that
encloses P can be computed in O(n4+ε) time, where ε > 0 denotes an arbitrarily small positive
real number.

Proof. By Lemma 17 and the above discussion, for two primary intervals I1, I2 ⊂ [0, π), we
can find a minimum of the area function area(θ1, θ2) in O(n2+ε) time by traversing all the
cells in which the function is of constant complexity. Since there are O(n) primary intervals
in total by Lemma 3, there are O(n2) pairs of them. By iterating all the pairs of primary
intervals, we can find a global minimum of function area(θ1, θ2), and the corresponding
annulus, which must be a minimum-area parallelogram annulus that encloses P. The total
time complexity is bounded by O(n4+ε).

Our approach computes the full description of the width and the area functions.
Thus, we can indeed find all minimum-area annuli in the same time bound. This solves a
bicriteria problem of computing a minimum-width minimum-area annulus that encloses P.

Corollary 2. Given a set P of n points in the plane, all minimum-area parallelogram annuli that
encloses P can be computed in O(n4+ε) time, where ε > 0 denotes an arbitrarily small positive real



Symmetry 2022, 14, 359 19 of 22

number. Therefore, a minimum-width minimum-area parallelogram annulus that encloses P can be
computed in the same time bound.

6.2. Minimum-Width Annuli

Analogously, by Lemma 16, we can compute the description of width(θ1, θ2) in total
O(n4+ε) time, and find all minimum-width annuli. This enables us to compute a minimum-
area minimum-width annulus in the same time bound.

In the following, we show that this bicriteria optimization problem can be solved
faster. The author in the previous paper [17] showed that a minimum-width parallelogram
annulus that encloses P can be computed in O(n3 log n) time. This faster algorithm works
with a decision algorithm, which in O(n3) time tests if there exists an annulus of a given
width w ≥ 0 that encloses P and finds one if exists; however, it is not guaranteed that this
algorithm finds all minimum-width annuli.

Let w∗ := minθ1,θ2∈[0,π) width(θ1, θ2) be the minimum width over all parallelogram
annuli that encloses P. The value of w∗ can be computed in O(n3 log n) time by the algo-
rithm mentioned above [17]. We now describe how to find all pairs (θ1, θ2) ∈ [0, π)× [0, π)
such that width(θ1, θ2) = w∗, so we can find one minimizing the area among those pairs.

For each p ∈ P and θ ∈ [0, π), recall the function fp(θ), defined in Section 4 to be the
distance from p to the boundary of the strip S(θ), that is,

fp(θ) = min{σθ(χ
+(θ), p), σθ(χ

−(θ), p)}.

We make use of the following property of minimum-width annuli.

Lemma 18. Let θ1, θ2 ∈ [0, π) be such that width(θ1, θ2) = w∗. Then, there exists at least one
point q ∈ P such that either fq(θ1) = w∗ or fq(θ2) = w∗ holds.

Proof. Let θ1, θ2 ∈ [0, π) be two orientations such that width(θ1, θ2) = w∗. Consider
the corresponding annulus A = A(θ1, θ2). The annulus A is a minimum-width annulus
that encloses P by definition. Recall that the outer parallelogram R(θ1, θ2) of A is the
intersection of two strips S(θ1) and S(θ2).

Suppose to the contrary that the claimed condition does not hold, so we have fp(θ1) 6= w∗

and fp(θ2) 6= w∗ for all p ∈ P. We let P1 ⊆ P be the set of points p ∈ P such that the
distance from the boundary of S(θ1) is at most w∗, that is, fp(θ1) ≤ w∗. Analogously, let
P2 ⊆ P be the set of points p ∈ P such that fp(θ2) ≤ w∗. Since A encloses all points in P
and its width is w∗, we have that P1 ∪ P2 = P. Since we have fp(θ1) 6= w∗ and fp(θ2) 6= w∗

for all p ∈ P, we have strict inequalities

fp(θ1) < w∗ for all p ∈ P1

and
fp(θ2) < w∗ for all p ∈ P2.

We let w1 := maxp∈P1 fp(θ1) and w2 := maxp∈P2 fp(θ2). Note that w1 < w∗ and
w2 < w∗. Now, consider a new annulus A′ of width max{w1, w2} whose outer parallelo-
gram is still R(θ1, θ2). Observe that A′ still encloses P, while width(A′) = max{w1, w2} <
w∗ = width(A). This leads to a contradiction to the assumption that A is a minimum-width
annulus that encloses P. Therefore, the lemma follows.

Now, we describe our algorithm that computes a minimum-area minimum-width
annulus that encloses P. After computing w∗ = minθ1,θ2 width(θ1, θ2), we find all θ such
that fp(θ) = w∗ for each p ∈ P. This can be done in O(n) time per p ∈ P by the
following lemma.
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Lemma 19. For each p ∈ P, the function fp is piecewise sinusoidal of frequency 1 and base 0
with O(n) breakpoints, and its explicit description can be computed in O(n) time, provided that all
primary intervals are specified in order.

Proof. Suppose that all primary intervals have been specified in order. For each primary
interval I, note that fp restricted to I is piecewise sinusoidal of frequency 1 and base 0 with
at most O(1) breakpoints by Lemma 1, since the extreme points χ+(θ) and χ−(θ) are fixed
over θ ∈ I. Since there are only O(n) primary intervals by Lemma 3, the function fp has at
most O(n) breakpoints. Its full description can be computed by iterating primary intervals
in O(n) time if we know the ordering of primary intervals, which can be obtained by once
computing the convex hull conv(P) and scanning its boundary.

After computing the description of fp in O(n) time, we solve the equation fp(θ) = w∗

for each sinusoidal piece of fp. By Lemma 1, the number of solutions is at most two per
piece, and they can be found in O(1) time. We do this for all p ∈ P and collect those
orientations such that fp(θ) = w∗ for some p ∈ P. Let Θ be the set of all those orientations.
Note that |Θ| = O(n2). By construction and our discussion above, any minimum-width
annulus that encloses P is θ-aligned for some θ ∈ Θ. To find one with minimum area among
all minimum-width annuli, we can just invoke the algorithm described in Theorem 4 for
each fixed orientation θ ∈ Θ. As the number of orientations in Θ is bounded by O(n2), we
take O(|Θ| · n2) = O(n4) time in the worst case.

Theorem 8. Given a set P of n points in the plane, a minimum-area minimum-width parallelogram
annulus that encloses P can be computed in O(n4) time.

7. Discussion

We addressed the minimum-area parallelogram annulus problem, and presented
the first algorithms for its several variants, including bicriteria optimization problems
considering both width and area.

Our algorithms that compute a minimum-area annulus take time O(n) when both
side orientations are given and fixed, O(n2 log n) when one orientation is fixed and the
other can be chosen arbitrarily, O(n2 log n) when interior angles are given and fixed, and
O(n4+ε) when both orientations can be chosen arbitrarily. All the above algorithms are the
first nontrivial solutions to the corresponding variant of the problem.

For the bicriteria optimization problems, we considered the minimum-area minimum-
width parallelogram annulus problem and the minimum-width minimum-area parallelo-
gram annulus problem in each of the above four cases. Specifically, our algorithms that
compute a minimum-area minimum-width annulus take time O(n) when both side orienta-
tions are given and fixed, O(n2) when one orientation is fixed and the other can be chosen
arbitrarily, O(n2 log n) when interior angles are given and fixed, and O(n4) when both
orientations can be chosen arbitrarily. In addition, our algorithms that compute a minimum-
width minimum-area annulus take time O(n) when both side orientations are given and
fixed, O(n2 log n) when one orientation is fixed and the other can be chosen arbitrarily,
O(n2 log n) when interior angles are given and fixed, and O(n4+ε) when both orientations
can be chosen arbitrarily. See Table 1 in Section 1 for a summary. These algorithmic results
are also the first nontrivial results to the corresponding variant of the problem.

The present results compare with the currently best algorithms for the minimum-
width counterpart, while the minimum-area problem requires a bit more time for the
general case. This is due to the nature of the objective function: for the minimum-width
problem, two side orientations behave more independently as the width of the resulting
annulus is determined by the maximum of the distance to two defining strips; for the
minimum-area problem, the area function is more involved in both orientations. This
results in an efficient decision algorithm for the width problem, while it is not the case for
the area problem.
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8. Conclusions

We finally conclude the paper by introducing a couple of possible directions of fu-
ture research.

One natural question is how to improve the running times of our present algorithms,
in particular for the most general case, in which both side orientations can be chosen
arbitrarily. This question is also related to the computational complexity of the problems.
What is the lower bound of the problem of computing an optimal parallelogram annulus
in a proper model of computation, such as the algebraic decision tree model?

Another direction of future research is to generalize parallelogram annuli to more
general shapes, or to a three-dimensional space.
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