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Abstract: In this review, we present the motivation for using relativistic anisotropic hydrodynamics
to study the physics of ultrarelativistic heavy-ion collisions. We then highlight the main ingredients
of the 3+1D quasiparticle anisotropic hydrodynamics model including the underlying symmetry
assumptions and present phenomenological comparisons with experimental data at different col-
lision energies. These comparisons show that anisotropic hydrodynamics can describe many bulk
observables of the quark-gluon plasma.
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1. Introduction

Experiments at the Relativistic Heavy Ion Collider (RHIC) at Brookhaven National
Laboratory and the Large Hadron Collider (LHC) at CERN are probing the nature of hot
and dense matter by colliding heavy-ions at ultrarelativistic center of mass energies of up
to 5 TeV per nucleon [1,2]. The goal of these experiments is to generate conditions similar
to those present in the early universe and during mergers of compact astrophysical objects
such as neutron stars [3]. These conditions correspond to high temperature (T & 150 MeV)
and net baryon density (ρ & 2–3 ρsat), respectively. In both cases it is expected that nuclear
matter undergoes a phase transition from a state in which quarks and gluons are confined
inside hadrons to a deconfined state, called the quark-gluon plasma (QGP), in which quarks
and gluons are not bound inside of hadrons. At finite temperatures and zero net baryon
density it is possible to make use of lattice quantum chromodynamics (QCD) to determine
the temperature at which the deconfinement transition occurs and the nature of the transi-
tion. For realistic quark masses, continuum extrapolated lattice QCD calculations show that
the transition is a smooth crossover with a pseudocritical temperature Tpc ' 155 MeV [4,5].
Due to the fermionic sign problem, it is not possible to perform calculations at finite bary-
ochemical potential µB; however, it is possible to make use of Taylor expansions around
µB = 0 or analytic continuations of imaginary chemical potential calculations to determine
quantities of interest such as various quark susceptibilities and the curvature of the QCD
phase transition line itself [6–16]. These calculations provide constraints on the equation of
state of QCD which can then be used in dynamical simulations of QGP evolution, examples
of such extractions at zero and finite chemical potential can be found in Refs. [17–19].

For modeling the spatiotemporal dynamics of the QGP created in ultrarelativistic heavy-
ion collisions, one of the main tools used is relativistic viscous hydrodynamics [20–22].
Early studies using relativistic hydrodynamics used the ideal limit [23–25] in which all
dissipative transport coefficients, such as the shear viscosity were assumed to be zero.
This is now known to be an idealization because one expects that the ratio of the shear
viscosity to entropy density ratio (η/s) should have a lower bound [26] and explicit lower
bounds on η/s been obtained using the holographic principle applied to conformal field
theories [27]. In order to incorporate finite dissipative transport coefficients in the dynamics
it was necessary to develop a causal version of viscous hydrodynamics called second-order
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viscous hydrodynamics [28–42]. Application of second-order viscous hydrodynamics to
QGP phenomenology quickly followed, with practitioners able to extract estimates of the
shear viscosity to entropy density ratio which were consistent with the generation of a
strongly-coupled QGP. Progress since then has included the development of consistent
second-order truncations of the relativistic dissipative hydrodynamics from relativistic
kinetic theory [35,36] and recently formulations of casual first-order formulations which
make use of different hydrodynamic frames [43,44].

One of the major issues faced by second-order formulations of dissipative relativistic
hydrodynamics is that, at very early times after the nuclear pass through (the time it takes
the highly Lorentz-contracted nuclei to pass through one another), the system is quite far
from equilibrium. The largest non-equilibrium deviations are reflected in the fact that,
in the local rest frame (LRF), the system possesses a much smaller pressure along the
beam-line direction (longitudinal direction) than transverse to it, i.e., PL � PT . This LRF
pressure anisotropy emerges due to the rapid longitudinal expansion of the QGP and has
been shown to exist in both the weak- and strong-coupling limits, with the anisotropy
becoming more pronounced as the coupling is decreased. Importantly, however, one
finds that, at sufficiently early times, one obtains one hundred percent corrections to the
isotropic pressure in both the weak- and strong-coupling limits. The implication of this
is that the viscous corrections, in particular the shear correction, are large at early times,
calling into doubt the reliability of fixed-order truncations in the magnitude of the inverse
shear Reynolds number [45]. This follows because the inverse shear Reynolds number is
proportional to the magnitude of the shear tensor πµν, as we will demonstrate below.

Another issue faced by fixed order truncations of viscous hydrodynamics is that, due
to the assumed polynomial from of the corrections to the one-particle distribution function,
there is the possibility that the viscous-corrected one-particle distribution function can
become negative, which violates the positivity of probabilities. In order to address both
of these issues, in anisotropic hydrodynamics (aHydro) one makes use of a form for the one-
particle distribution function that is, by construction, non-negative while also having kinetic
pressures which are non-negative. The original papers on aHydro focused on application
to systems undergoing boost-invariant conformal Bjorken expansion [46,47]. In Ref. [47] it
was demonstrated that one could obtain both the ideal hydrodynamics and free-streaming
limits in the aHydro framework and numerical solutions to the resulting coupled evolution
equations demonstrated that both the one-particle distribution function and the kinetic
pressures remained positive at all times. Since then many works have extended these initial
studies to include more realistic features associated with heavy-ion collisions, ultimately
allowing practitioners to simulate the full three-dimensional non-conformal evolution of
the QGP with a lattice-based equation of state [18,48–70].

In this review we will summarize the progress made in recent years including phe-
nomenological applications. We will begin with a demonstration that the aHydro dynamical
equations resum an infinite series of terms when expanded as a power series in the in-
verse Reynolds number. We will then present a review of the underpinnings of the 3+1D
quasiparticle aHydro (aHydroQP) framework, which goes beyond traditional approaches
by resumming viscous contributions to all orders in the shear and bulk inverse Reynolds
numbers. In this second part, we will focus on recent phenomenological applications of
3+1D aHydroQP to AA collisions at RHIC and LHC energies.

The structure of this review is as follows. In Section 2, we discuss the case of confor-
mal Bjorken expansion in order to demonstrate how anisotropic hydrodynamics resums
contributions to all orders in the inverse shear Reynolds number. In Section 3, we introduce
quasiparticle anisotropic hydrodynamics. In Section 4, we outline the construction of the
QCD equation in aHydroQP. In Section 5, evolution and freezeout are discussed in the
3+1D aHydroQP model. In Section 6, phenomenological comparisons to experimental
data are presented at various collision energies. Section 7 contains our conclusions and a
summary of ongoing projects.
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2. Resummed Dissipative Hydrodynamics in the Conformal Bjorken Limit

Before presenting the full 3+1D formalism for non-conformal QCD plasmas, it is
instructive to consider the 0+1D conformal limit in which the system undergoes Bjorken
expansion. In the case of conformal Bjorken expansion, at zero chemical potential, the aHy-
dro distribution function contains a single independent anisotropy parameter ξ. In the
local rest frame of the plasma the distribution takes the form [71]

f (x, p) = feq

(√
p2 + ξ p2

z
λ

)
, (1)

where λ is a non-equilibrium momentum scale that becomes the temperature in the limit
ξ → 0 and feq is either a Boltzmann, Bose, or Fermi–Dirac distribution depending on the
assumed equilibrium statistics of the particle being considered. In general ξ measures
the magnitude of the plasma anisotropy in the local rest frame, with −1 < ξ < 0 cor-
responding to a prolate momentum-space distribution and ξ > 0 corresponding to an
oblate distribution.

The evolution equation obtained from requiring energy-momentum conservation can
be written compactly as

∂ε(τ)

∂τ
= − ε(τ) + PL(τ)

τ
, (2)

where ε is the energy density, PL is the longitudional pressure, and τ is the proper time in
Milne coordinates. Using (1) this becomes [47]

R′(ξ)
R(ξ) ∂τξ +

4
λ

∂τλ =
1
τ

[
1

ξ(1 + ξ)R(ξ) −
1
ξ
− 1
]

, (3)

with

R(ξ) = 1
2

[
1

1 + ξ
+

arctan
√

ξ√
ξ

]
. (4)

In the relaxation time approximation, the second evolution equation required can be
obtained from the second moment of the Boltzmann equation. Following the Florkowski-
Tinti prescription [53] one obtains

1
1 + ξ

∂τξ − 2
τ
+
R5/4(ξ)

τeq
ξ
√

1 + ξ = 0 . (5)

where, for a conformal system, one has τeq = 5η̄/T with η̄ = η/s being the specific shear
viscosity and the effective temperature T = R1/4(ξ)λ determined by Landau matching.
In the conformal limit, the first and second moment equations are independent of the
assumed form of feq. The final evolution Equations (3) and (5) for ξ and λ are highly
non-linear but can be easily solved numerically. We note that these equations reproduce
the ideal hydrodynamic limit when τeq → 0 and the free streaming limit when τeq → ∞.

Relation to Second-Order Viscous Hydrodynamics in the Small Anisotropy Limit

In order to make a connection to standard second-order viscous hydrodynamics, one
can rewrite Equations (2) and (5) in terms of the single shear stress tensor component
π ≡ πς

ς required for conformal Bjorken flow. The energy conservation Equation (2) can be
expressed in terms of π as

τ∂τlog ε = −4
3
+

π

ε
, (6)

where we have used π = Peq − PL. To relate π and ξ one can use this definition to obtain

π(ξ) ≡ π

ε
=

1
3

[
1− RL(ξ)

R(ξ)

]
. (7)
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with

RL(ξ) =
3
ξ

[
(ξ + 1)R(ξ)− 1

ξ + 1

]
. (8)

For conformal Bjorken flow, π is related to the shear inverse Reynolds number via

R−1
π ≡

√
πµνπµν

Peq
= 3

√
3
2
|π| . (9)

As a consequence of Equation (9), a series in π maps to a series in R−1
π .

Changing variables to π in (5) and using (6) one obtains [72]

∂τπ

ε
+

π

ετ

(
4
3
− π

ε

)
−
[

2(1 + ξ)

τ
− H(ξ)

τeq

]
π′(ξ) = 0 , (10)

where ξ = ξ(π) is the inverse function from π to ξ, π′ ≡ dπ/dξ, and H(ξ) ≡ ξ(1 +
ξ)3/2R5/4(ξ). When expressed in this form one sees that the aHydro second-moment
equation resums an infinite series in the inverse Reynolds number (9). This is because the
last term on the right hand side of Equation (10) is a function that contains all orders in ξ
and, hence, π. A similar construction can be made in the case of Gubser flow; see Sec. IIIC
of Ref. [73].

Using small-anisotropy expansions one obtains [72]

π′ =
8

45
− 26

21
π +

1061
392

π2 +O(π3) ,

H =
45
8

π

[
1 +

405
56

π +O(π3)

]
. (11)

Plugging these expansions into Equation (10) and keeping terms through second order
in π gives

∂τπ − 4η

3τπτ
+

38
21

π

τ
− 36τπ

245η

π2

τ
= − π

τπ
− 15

56
π2

τπε
+O(π3) . (12)

When truncated at linear order π, this evolution equation agrees exactly with previ-
ously obtained second-order viscous hydrodynamics evolution equations in relaxation time
approximation [35,37,38,74,75]. This demonstrates that, in the limit of small momentum-
space anistropy, aHydro automatically reproduces the correct second-order viscous hy-
drodynamics equations. This was originally proven in Ref. [53]. Note that it is possi-
ble to obtain higher-order terms such as those contributing at the order of the inverse
Reynolds number squared as well. When applied to phenomenology, one does not expand
Equations (5) or (10) in π̄ when solving the aHydro dynamical equations and an infinite
number of orders in the inverse Reynolds number are automatically included. This is
why aHydro represents a resummed dissipative hydrodynamic theory. In practice, aHydro
automatically regulates the magnitude of π̄ such that unphysical behaviour of the kinetic
pressures, e.g., PL < 0, simply cannot occur.

3. Quasiparticle Anisotropic Hydrodynamics

In order to faithfully model heavy-ion collisions one must obtain the evolution equa-
tions for arbitrary 3+1D configurations and include the non-conformality of QCD consistent
with a realistic lattice-based equation of state. In order to do this in quasiparticle anisotropic
hydrodynamics we assume a system of massive relativistic quasiparticles with temperature-
dependent masses m(T). The system is assumed to obey a relativistic Boltzmann equation
with m(T) determined from lattice QCD (LQCD) computations of QCD thermodynamics.
When the masses are temperature dependent, the Boltzmann equation contains an addi-
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tional force term on the left-hand side related to gradients in the temperature, and hence
gradients in m,

pµ∂µ f +
1
2

∂im2∂i
(p) f = − p · u

τeq(T)
[ f − feq(T)]︸ ︷︷ ︸
C[ f ]

. (13)

The right-hand side of the Boltzmann equation is the collisional kernel C[ f ] which we
take to be given by the relaxation time approximation (RTA), where uµ is the four-velocity
associated with the local rest frame (LRF) of the matter and Latin indices such as i indicate
spatial indices. The collisional kernel is a functional of the one-particle distribution function
f (x, p) which depends on space-time coordinates x and momentum p. For a gas of massive
quasiparticles, the relaxation time is given by [76]

τeq(T) = η̄
ε + P

I3,2(m̂eq)
(14)

where η̄ = η/s is the specfic shear viscosity, ε is the energy density, P is the pressure which
is fixed by the equation of state, and the special functions appearing are given by

I3,2(m̂eq) =
NdofT5 m̂5

eq

30π2

[
1

16

(
K5(m̂eq)− 7K3(m̂eq) + 22K1(m̂eq)

)
− Ki,1(m̂eq)

]
, (15)

Ki,1(m̂eq) =
π

2

[
1− m̂eqK0(m̂eq)s−1(m̂eq)− m̂eqK1(m̂eq)s0(m̂eq)

]
, (16)

with m̂eq = m/T, Ndof is the number of degrees of freedom (degeneracy) , Kn are the
modified Bessel functions of the second kind, and sn are the modified Struve functions. The
effective temperature T(τ) is computed by requiring the non-equilibrium kinetic energy
densities calculated from f to be equal to the equilibrium kinetic energy density calculated
from the equilibrium distribution, feq(T, m). We note that the second term on the left-hand
side of Boltzmann equation, 1

2 ∂im2∂i
(p) f , matches exactly the result obtained by deriving

the Boltzmann equation using quantum field theoretical methods [15].
In this review, we assume the distribution function is given by the leading-order

aHydro form, parameterized by a diagonal anisotropy tensor as follows

f (x, p) = feq

(
1
λ

√
pµΞµν pν

)
−→
LRF

feq

 1
λ

√√√√∑
i

p2
i

α2
i
+ m2

 , (17)

where i ∈ {x, y, z}, Ξµν is the anisotropy tensor and the second equality holds in the LRF.
As indicated, in the LRF the argument of the distribution function can be expressed in terms
of three independent momentum-anisotropy parameters αi. Here we will assume that feq is
given by a Boltzmann distribution which depends on p · u and the isotropic temperature T.
Therefore, one can calculate the energy density and pressures by integrating the distribution

function (17) times pµ pν using the Lorentz-invariant integration measure
∫

dP =
∫ d3p

(2π)3
1
E .

Performing the same operation allows one to extract all moments, and then one can create
the requisite dynamical equations.

The first aHydroQP equation of motion is obtained from the first moment of the
left-hand side of the quasiparticle Boltzmann Equation (13), which reduces to ∂µTµν. In the
relaxation time approximation, however, the first moment of the collisional kernel on the
right hand side results in a constraint that must be satisfied in order to conserve energy and
momentum, i.e.,

∫
dP pµC[ f ] = 0. This constraint can be enforced by expressing the effective

temperature in terms of the microscopic parameters λ and~α. As a consequence, computing
the first moment of the Boltzmann equation gives the energy-momentum conservation law
for the system

∂µTµν = 0 , (18)
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where

Tµν =
∫ d3p

(2π)3
1
E

pµ pν f . (19)

For the second equation of motion, we will perform a similar procedure using the
second moment of the quasiparticle Boltzmann equation

∂α Iανλ − J(ν∂λ)m2 = −
∫ d3p

(2π)3
1
E

pν pλC[ f ] , (20)

with Iανλ ≡
∫ d3p

(2π)3
1
E pα pν pλ f and the particle four-current Jµ =

∫ d3p
(2π)3

1
E pµ f .

4. The Equation of State for aHydroQP

For a system of massive particles obeying Boltzmann statistics, the equilibrium energy
density, pressure, and entropy density are given by

εeq(T, m) = 4πÑT4 m̂2
eq

[
3K2

(
m̂eq

)
+ m̂eqK1

(
m̂eq

)]
, (21)

Peq(T, m) = 4πÑT4 m̂2
eqK2

(
m̂eq

)
, (22)

seq(T, m) = 4πÑT3 m̂2
eq

[
4K2

(
m̂eq

)
+ m̂eqK1

(
m̂eq

)]
. (23)

In the quasiparticle approach, one assumes the mass to be temperature dependent,
i.e., m(T). This results in a change in the bulk variables Equation (23). However, one can
not simply insert m(T) into the bulk variables since this will not be thermodynamically
consistent. The entropy density may be obtained in two ways: seq = (εeq + Peq)/T and
seq = ∂Peq/∂T. Then , by basically inserting a temperature-dependent mass m(T), the two
identities will not give the same result. Therefore, the energy-momentum tensor definition
needs a background field to correct this, i.e.,

Tµν = Tµν
kinetic + gµνB(T) . (24)

where B(T) is the additional background contribution. Thus, in an equilibrium Boltzmann
gas with quasiparticles, the bulk thermodynamic variables for the gas become

εeq(T, m) = εkinetic + Beq , (25)

Peq(T, m) = Pkinetic − Beq , (26)

seq(T, m) = skinetic . (27)

As a result of introducing the background field, the energy density and the pressure
are modified by +Beq and −Beq terms, respectively.

To determine the temperature-dependence of Beq one requires thermodynamic consis-
tency

seq = εeq + Peq = T
∂Peq

∂T
(28)

However, we need to know in advance m(T) to determine B(T) which can be deter-
mined using the following thermodynamic identity

εeq + Peq = Tseq = 4πÑT4 m̂3
eqK3

(
m̂eq

)
(29)

As we can see, one can solve numerically for m(T) once the equilibrium energy
density and pressure are determined using the lattice QCD parameterization. The resulting
effective mass scaled by T extracted from continuum extrapolated Wuppertal-Budapest
lattice data [77] is shown in Figure 1 (left panel) [18]. At high temperatures (T ∼ 0.6 GeV)
the scaled mass is ∼ T in agreement with the expected high-temperature behavior of
QCD [78].



Symmetry 2022, 14, 329 7 of 14

0.01 0.05 0.10 0.50 1

0

2

4

6

8

10

T [GeV]

m
/T

(a)

-15 -10 -5 0 5 10 15
0.2

0.3

0.4

0.5

0.6

0.7

0.8

x [fm]

α
z

40-50%

τ=1.25 fm/c

(a) (b)

Figure 1. (a) The temperature dependence of the quasiparticle mass scaled by the temperature [18].
(b) The spatial profile of the anisotropy parameter αz as a function of x [79].

5. Evolution and Freezeout in aHydroQP

The evolution equations for uµ, λ, and αi are obtained from moments of the quasiparti-
cle Boltzmann equation. These can be expressed compactly by introducing a timelike vector
uµ which is normalized as uµuµ = 1 and three spacelike vectors Xµ

i which are individually
normalized as Xµ

i Xµ,i = −1. These vectors are mutually orthogonal and obey uµXµ
i and

Xµ,iX
µ
j = 0 for i 6= j [48,50]. The four equations resulting from the first moment are

Duε + εθu + ∑
j

PjuµDjX
µ
j = 0 , (30)

DiPi + Piθi − εXµ,iDuuµ + PiXµ,iDiX
µ
i −∑

j
PjXµ,iDjX

µ
j = 0 , (31)

where i, j ∈ {x, y, z}, Du ≡ uµ∂µ, and Di ≡ Xµ
i ∂µ. The expansion scalars are θu = ∂µuµ and

θi = ∂µXµ
i . Explicit expressions for the basis vectors, derivative operators and expansion

scalars can be found in Refs. [18,54,60,64]. The quantities ε and Pi are the kinetic energy
density and pressures obtained using the anisotropic hydrodynamics ansatz for the one-
particle distributions function corrected by the background contribution B(T) necessary to
enforce thermodynamic consistency

ε = εkinetic(λ,~α, m) + B(λ,~α) , (32)

Pi = Pi,kinetic(λ,~α, m)− B(λ,~α) , (33)

The three equations resulting from the second moment of the Boltzmann equation are

Du Ii + Ii(θu + 2uµDiX
µ
i ) =

1
τeq

[
Ieq(T, m)− Ii

]
, (34)

with [54]

Ii = α α2
i Ieq(λ, m) ,

Ieq(λ, m) = 4πÑλ5m̂3K3(m̂) , (35)

where m̂ = m/λ, α = αxαyαz and Ñ = Ndof/(2π)3, with Ndof being the number of degrees
of freedom present in the theory under consideration.

Equations (30), (31) and (34) provide seven partial differential equations for ~u, ~α,
and λ which we solve numerically. For this purpose, we use fourth-order Runga-Kutta
integration of the equations of motion in time and a weighted-LAX scheme to regulate
shock propagation. For details of the numerical algorithm, we refer the reader to Ref. [50].

To determine the local effective temperature we make use of Landau matching; re-
quiring the equilibrium and non-equilibrium energy densities in the LRF to be equal and
solving for T. Herein, we assume the system to initially be isotropic in momentum space
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αi(τ0) = 1, with zero transverse flow. However, the system evolves quite fast away from
isotropy τaniso . 1 fm. As an example, in Figure 1-right panel we show the spatial profile of
the longitudinal anisotropy parameter at 40–50% centrality class. As can be seen from this
figure, αz differs from unity especially in the dilute regions |x| > 5 fm. We note here that no
regulation is required in aHydroQP to evolve in these dilute regions. This system of partial
differential equations keep evolving until the effective temperature in the entire simulation
volume falls below a given freeze-out temperature of TFO. From the results, we extract a
three-dimensional freeze-out hypersurface with a fixed energy density (temperature). We
assume in this step that the fluid anisotropy tensor and scale parameter are the same for
all hadronic species. We also assume that all hadrons created are in chemical equilibrium.
With the use of an extended Cooper-Frye prescription [76], we are able to translate the
underlying hydrodynamic evolution values for the flow velocity, the anisotropy parameters,
and the scale into explicit ’primordial’ hadronic distribution functions on this hypersurface.

The values of the aHydroQP parameters on the freezeout hypersurface are passed to
a modified version of THERMINATOR 2 [80], which generates hadronic configurations
using Monte-Carlo sampling. The modification consisted of changing the underlying
assumption for the one-particle distribution function from the canonical linearized viscous
hydrodynamics form to the aHydroQP form including three anisotropy parameters in
the local rest frame. After sampling the primordial hadrons, further hadronic decays are
taken into account using the built-in routines in THERMINATOR 2. The source code for
aHydroQP and our custom version of THERMINATOR 2 are both freely accessible [81].
The aHydroQP formalism was used at different collision energies, and it was found that
the observed differential spectra of identified hadrons, charged particle multiplicity, elliptic
flow, and Hanbury-Brown-Twiss radii could be reproduced.

Finally, in Table 1 we list the fitting parameters that we extracted and used in
the comparisons.

Table 1. The key parameters used in the presented results.

Collision Energy T0 [MeV] η/s

200 GeV 455 0.179
2.76 TeV 600 0.159
5.02 TeV 630 0.159

6. Results and Discussion

In this section, we present phenomenological comparisons of 3+1D aHydroQP model
to experimental data. For the sake of brevity, we present comparisons of a small set of
observables performed at various collision energies

√
sNN = 200 GeV, 2.76 , 5.02 TeV for

Au-Au and Pb-Pb collisions from the PHENIX, PHOBOS, STAR, and ALICE collaborations.
We first present comparisons of bulk observables between our model and experimental

results. In Figure 2, (left panel), we show the spectra of pions, kaons, and protons as a
function of the transverse momentum pT . The agreement shown between our model and
the experimental results is good up to quite large pT ∼ 2 GeV. In this figure, we show
only one centrality class 0–5%, however one can see Ref. [83] for more comparisons up
to 30–40% centrality class. It suffices here to say that the agreement is quite good up to
pT ∼ 1.5 GeV for high centrality classes. Next, we present the centrality dependence of the
average transverse momentum of pions, kaons, and protons at 2.76 TeV in Pb-Pb collisions.
Again, the agreement is very good up to high centrality classes ∼50%. The spectra at this
energy is not presented here, however, it can be found in Ref. [64], where the agreement
between aHydroQP model and the data for different centrality classes is good.
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Figure 2. (Left) Pion, kaon, and proton spectra compared to experimental data by the PHENIX
collaboration at 200 GeV for Au-Au collisions [82,83]. (Right) Pion, kaon, and proton average
transverse momentum as a function of centrality compared to data by the ALICE collaboration at
2.76 TeV in Pb-Pb collisions [64,84].

Next, in the left panel of Figure 3, the kaon-to-pion yield ratio (K+ + K−)/(π+ + π−)
is presented as a function of pT in the 0–5% centrality class. As can be seen from this
figure, our model was able to reproduce the ratios well up to fairly large pT ∼ 2.5 GeV. We
also show, in Figure 3-right panel, the kaon-to-pion yield ratio as a function of centrality
where our model again describes the data quite well over a wide range of centrality classes.
In ref. [79], we showed the kaon-to-pion ratio ratio and also the proton-to-pion yield ratio
for multiple different centrality classes with a reasonable agreement to the data at 5.023
TeV for Pb-Pb collisions from ALICE collaboration.
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Figure 3. (Left) The kaon-to-pion yield ratio as a function of the transverse momentum. (Right) The
centrality dependence of the kaon-to-pion yield ratio. In both panels, the predictions of aHydroQP
model are compared to experimental data from the ALICE collaboration in Pb-Pb collisions at
√

sNN = 5.02 TeV. [79,85].

Next, we present, in Figure 4, the charged particle multiplicity as a function of the
pseduorapidity where data are from the PHOBOS and ALICE collaborations for Au+Au
and Pb-Pb collisions, respectively. In the left panel, the multiplicity is shown for 0–3%,
3–6%, 6–10%, 10–15%, 15–20%, and 20–25% centrality classes. Whereas in the middle
and right panels, the multiplicity is shown for 0–5%, 5–10%, 10–20%, 20–30%, and 30–40%
centrality classes. We find that our model does a good job in reproducing the pseudorapidity
dependence of the multiplicity in a wide range of centrality classes.

Furthermore, in Figure 5 we present comparisons of the anisotropic flow, in the 30–40%
centrality class, where data are from the PHENIX and ALICE collaborations for Au+Au
and Pb-Pb collisions, respectively. As can be seen from all three panels, our model shows
reasonable agreement with data at low pT . A similar agreement between this model and
experimental data is seen across different centrality classes, see Refs. [64,79,83].
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30-40%

200 GeV 2.76 TeV 5.02 TeV

Figure 4. Charged particle multiplicity as a function of pseudorapidity. (Left), (Middle) and (Right)
panels show results obtained at 200 GeV, 2.76 TeV, and 5.02 TeV collision energy in Refs. [64,79,83],
respectively. The 200 GeV data are from the PHOBOS collaboration [86]. The 2.76 TeV and 5.02 TeV
data are from the ALICE collaboration [87,88] , respectively.

200 GeV

2.76 TeV 5.02 TeV

Figure 5. The elliptic flow coefficient (v2) as a function of the transverse momentum. The (Left)
and (Middle) panels show results obtained at 200 GeV and 2.76 TeV collision energies from
Refs. [64,83], respectively. The (Right) panel shows the result obtained at 5.02 TeV collision en-
ergy [79]. The 200 GeV data are from the PHENIX collaboration [89]. The 2.76 TeV and 5.02 TeV data
are from the ALICE collaboration [90,91], respectively.

Finally, we present the aHydroQP predictions for HBT radii determined from pion
correlations. As an example, in Figure 6, we show the Rout/Rside ratio as a function of the
mean transverse momentum of the pair π+π+ in the 5–10 % centrality class. As can be
seen from this figure, our model was able to describe the experimental data from the STAR
collaboration quite well especially for low kT up to ∼ 0.4 GeV. For more details, see [92].
We not here that a similar agreement of the HBT radii and thier ratios to the data is seen at
2.76 TeV for Pb-Pb collisions [64].
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Figure 6. The Rout/Rside ratio as a function of the pair mean transverse momentum (kT) for π+π+ in
the 5–10% centrality class. Data shown are from the STAR collaboration [92,93] for Au-Au collisions
at
√

sNN = 200 GeV.
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7. Conclusions

In this review we presented a summary of recent progress in anisotropic hydrodynam-
ics and its application to heavy-ion phenomenology. We began with a demonstration in
the simple case of conformal Bjorken expansion that aHydro resums an infinite number
of terms in the inverse Reynolds number. This feature allows aHydro to better describe
systems that are far from equilibrium than traditional approaches. In AA collision large
non-equilibrium corrections occur during the initial stages of the QGP (τ < 1 fm/c) and at
all times near the cold edges of the plasma where the relaxation time grows large. In colli-
sions of small systems such as pA and pp one expects that, if a QGP is generated, it will be
much more short-lived than in central AA collisions due to larger transverse gradients and,
as a consequence, it will experience larger deviations from equilibrium during its evolution
and freeze out.

Turning to AA phenomenology, we presented comparisons between the 3+1D aHy-
droQP model and heavy-ion experimental data collected at RHIC and LHC. We list the
extracted initial central temperature and shear viscosity at 200 GeV, 2.76 TeV, and 5.02 TeV
in Table 1. At all three collision energies with these parameters, we were able to describe the
identified hadron spectra well, including the pT-dependence of the kaon-to-pion yield ratio.
In addition, the extracted integrated elliptic flow for charged particles and pT-dependence
of the pion, proton, and kaon elliptic flow were found to also be in good agreement with
the data. Finally, we also presented comparisons between aHydroQP model predictions
and STAR data from the ratio of ‘out’ and ‘side’ HBT radii, again finding good agreement
with the data given current experimental uncertainties.

Looking to the future, final work is underway to release a new computational pipeline
for 3+1D aHydroQP which includes fluctuating initial conditions of various types such
as Trento [94,95] or IP-Glasma [96–98], a custom anisotropic hadronic freeze-out sampler
based on ISS [99], and full URQMD [100,101] or SMASH [102] hadronic afterburners that
include elastic as well as inelastic channels. Once complete, this will allow us to compute
higher-order flow coefficients using aHydroQP in AA, pA, and pp collisions.
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