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Abstract: We present several new results for fourth-order differential subordination and superordina-
tion in this paper by using the differential linear operator Γπ,ρ,β,µ f (z). Relevant connections between
the new results presented here and those considered in previous works are addressed. The properties
and results concerning the differential subordination theory are symmetric to the properties obtained
using the differential superordination theory, and by combining them, sandwich-type theorems
are obtained.
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1. Introduction

The investigation conducted in this paper uses the well-known concepts of differential
subordination and differential superordination. The concept of differential subordination
introduced by Miller and Mocanu is presented in the monograph published in 2000 [1],
and the concept of differential superordination was introduced by the same authors as dual
concept to subordination in 2003 [2]. Third-order differential inequalities in the complex
plane were considered in 1992 [3], and the concept of third-order differential subordination
was introduced in 2011 by Antonino and Miller [4]. Further investigations were done on
third-order differential subordination results for univalent analytic functions involving
an operator in 2020 [5], and continuing the idea, the concept of fourth-order differential
subordination was introduced and studied in 2020 [6,7]. Further results were published
in 2021 [8] regarding the new concepts of higher-order differential subordinations. The
present paper continues this study.

Interesting results were recently obtained regarding higher order differential subor-
dination involving an operator [9–12], and other interesting results involving operators
emerged as can be seen in papers published in 2020 [13–16] and 2021 [17–19]. These results
motivated the introduction of the new operator, which will be presented at the end of this
first section in Definition 1, and will be used in the next sections to obtain the original
results regarding fourth-order differential subordinations and superordinations.

The usual environment provides the context for the present investigation. Well-known
notations and definitions used for obtaining the original results are next presented.
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K
(

U
◦
)

denotes the family of analytic functions in U
◦

that have the form:

K[a, n] =
{

f ∈ K
(

U
◦
)

: f (
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Well-known notations and definitions used for obtaining the original results are next 
presented. 𝒦(U°) denotes the family of analytic functions in U°that have the form: 𝒦[a, 𝔫] = {𝑓 ∈ 𝒦(U°): 𝑓(𝓏) = 𝑎 + 𝑎𝔫𝓏𝔫 + 𝑎𝔫ାଵ𝓏𝔫ାଵ + ⋯ }, 𝑎 ∈ ℂ, 𝔫 ∈ 𝑁 = {1,2, … }, 

and let ℧𝔫 be the collection of the form: ℧𝔫 = {𝑓 ∈ 𝒦(𝑈°): 𝑓(𝓏) = 𝓏 + 𝑎𝔫ାଵ𝓏𝔫ାଵ + ⋯ }, 
where ℧ଵ = ℧, the subclass of normalized analytic functions in U°. Further, indicate by M 
the subfamily of 𝒦(U°) of the form: 

𝑓(𝓏) = 𝓏 + ෍ 𝑎𝔫𝓏𝔫 , 𝓏 ∈ U°ஶ
𝔫ୀଶ , (1)

which are univalent in U°. For analytic functions 𝑓 and 𝐹, the function 𝑓 is said to be 
subordinate to 𝐹, if 𝑓(𝓏) = 𝐹൫Θ(𝓏)൯, (𝓏 ∈ 𝑈°), 

where Θ(𝓏) is analytic and  Θ(0) = 0, |Θ(𝓏)| < 1. This subordination is indicated by 𝑓(𝓏) ≺ 𝐹(𝓏). 
Cho and Kim [20] proposed the multiplier transformation as a linear operator. Let 𝔫 

be any integer; the multiplier transformation ℒఓఉ: 𝑀 → 𝑀  is given by ℒఓఉ𝑓(𝓏) = 𝓏 +∑ ቀ𝔫ାఓଵାఓቁఉ 𝑎𝔫𝓏𝔫 , 𝜇 ≥ 0, 𝛽 ∈ ℤ = {⋯ , −1,0,1, ⋯ }ஶ𝔫ୀଶ . 
 
The Hurwitz–Lerch Zeta function [21] is 

𝜁గ,ఘ(𝓏) = 1𝜌గ + ෍ 𝓏𝔫(𝔫 + 𝜌)గஶ
𝔫ୀଵ , 

(𝜌 ∈ ℂ\𝑍௢ି = {0, −1, −2, … }, 𝜋 ∈ ℂ, where |𝓏| < 1, ℛ𝑒(𝜋) > 1, 𝓏 ∈ 𝜕𝑈°) 

By making use of the following normalized function, we have: 𝐺గ,ఘ(𝓏) = (1 + 𝜌)గൣ𝜁గ,ఘ(𝓏) − 𝜌ିగ൧ = 𝓏 + ∑ ቀଵାఘ𝔫ାఘቁగ   , 𝓏 ∈ 𝑈°ஶ𝔫ୀଶ . 

If 𝑓, 𝑔 ∈ 𝑀, where 𝑓 given by (1) and 𝑔 is defined by 

𝑔(𝓏) = 𝓏 + ෍ 𝑏𝔫𝓏𝔫ஶ
𝔫ୀଶ  , 𝓏 ∈ U°, 

then 

(𝑓 ∗ 𝑔)(𝓏) = 𝓏 + ෍ 𝑎𝔫𝑏𝔫ஶ
𝔫ୀଶ 𝓏𝔫 = (𝑔 ∗ 𝑓)(𝓏). 

Using the convolution defined above, a new operator is next introduced as the 
original part of the present paper. 

  

) = a + an
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n + an+1
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}

,

a ∈ C, n ∈ N = {1, 2, . . .},

and let 0n be the collection of the form:

0n =
{

f ∈ K
(

U
◦
)

: f (
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◦
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Cho and Kim [20] proposed the multiplier transformation as a linear operator. Let

n be any integer; the multiplier transformation Lβ
µ : M→ M is given by Lβ

µ f (
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n , µ ≥ 0, β ∈ Z = {· · · ,−1, 0, 1, · · ·}.
The Hurwitz–Lerch Zeta function [21] is
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(n+ ρ)π ,
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ρ ∈ C\Z−o = {0,−1,−2, . . .}, π ∈ C, where |
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◦
)

By making use of the following normalized function, we have:

Gπ,ρ(
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Using the convolution defined above, a new operator is next introduced as the original
part of the present paper.

Definition 1. Assume f ∈ M,

Symmetry 2022, 14, x FOR PEER REVIEW 2 of 12 
 

 

Well-known notations and definitions used for obtaining the original results are next 
presented. 𝒦(U°) denotes the family of analytic functions in U°that have the form: 𝒦[a, 𝔫] = {𝑓 ∈ 𝒦(U°): 𝑓(𝓏) = 𝑎 + 𝑎𝔫𝓏𝔫 + 𝑎𝔫ାଵ𝓏𝔫ାଵ + ⋯ }, 𝑎 ∈ ℂ, 𝔫 ∈ 𝑁 = {1,2, … }, 

and let ℧𝔫 be the collection of the form: ℧𝔫 = {𝑓 ∈ 𝒦(𝑈°): 𝑓(𝓏) = 𝓏 + 𝑎𝔫ାଵ𝓏𝔫ାଵ + ⋯ }, 
where ℧ଵ = ℧, the subclass of normalized analytic functions in U°. Further, indicate by M 
the subfamily of 𝒦(U°) of the form: 

𝑓(𝓏) = 𝓏 + ෍ 𝑎𝔫𝓏𝔫 , 𝓏 ∈ U°ஶ
𝔫ୀଶ , (1)

which are univalent in U°. For analytic functions 𝑓 and 𝐹, the function 𝑓 is said to be 
subordinate to 𝐹, if 𝑓(𝓏) = 𝐹൫Θ(𝓏)൯, (𝓏 ∈ 𝑈°), 

where Θ(𝓏) is analytic and  Θ(0) = 0, |Θ(𝓏)| < 1. This subordination is indicated by 𝑓(𝓏) ≺ 𝐹(𝓏). 
Cho and Kim [20] proposed the multiplier transformation as a linear operator. Let 𝔫 

be any integer; the multiplier transformation ℒఓఉ: 𝑀 → 𝑀  is given by ℒఓఉ𝑓(𝓏) = 𝓏 +∑ ቀ𝔫ାఓଵାఓቁఉ 𝑎𝔫𝓏𝔫 , 𝜇 ≥ 0, 𝛽 ∈ ℤ = {⋯ , −1,0,1, ⋯ }ஶ𝔫ୀଶ . 
 
The Hurwitz–Lerch Zeta function [21] is 

𝜁గ,ఘ(𝓏) = 1𝜌గ + ෍ 𝓏𝔫(𝔫 + 𝜌)గஶ
𝔫ୀଵ , 

(𝜌 ∈ ℂ\𝑍௢ି = {0, −1, −2, … }, 𝜋 ∈ ℂ, where |𝓏| < 1, ℛ𝑒(𝜋) > 1, 𝓏 ∈ 𝜕𝑈°) 

By making use of the following normalized function, we have: 𝐺గ,ఘ(𝓏) = (1 + 𝜌)గൣ𝜁గ,ఘ(𝓏) − 𝜌ିగ൧ = 𝓏 + ∑ ቀଵାఘ𝔫ାఘቁగ   , 𝓏 ∈ 𝑈°ஶ𝔫ୀଶ . 

If 𝑓, 𝑔 ∈ 𝑀, where 𝑓 given by (1) and 𝑔 is defined by 

𝑔(𝓏) = 𝓏 + ෍ 𝑏𝔫𝓏𝔫ஶ
𝔫ୀଶ  , 𝓏 ∈ U°, 

then 

(𝑓 ∗ 𝑔)(𝓏) = 𝓏 + ෍ 𝑎𝔫𝑏𝔫ஶ
𝔫ୀଶ 𝓏𝔫 = (𝑔 ∗ 𝑓)(𝓏). 

Using the convolution defined above, a new operator is next introduced as the 
original part of the present paper. 

  

∈ ∂U
◦
, ρ ∈ C\Z−o = {0,−1,−2, . . .}, where |

Symmetry 2022, 14, x FOR PEER REVIEW 2 of 12 
 

 

Well-known notations and definitions used for obtaining the original results are next 
presented. 𝒦(U°) denotes the family of analytic functions in U°that have the form: 𝒦[a, 𝔫] = {𝑓 ∈ 𝒦(U°): 𝑓(𝓏) = 𝑎 + 𝑎𝔫𝓏𝔫 + 𝑎𝔫ାଵ𝓏𝔫ାଵ + ⋯ }, 𝑎 ∈ ℂ, 𝔫 ∈ 𝑁 = {1,2, … }, 

and let ℧𝔫 be the collection of the form: ℧𝔫 = {𝑓 ∈ 𝒦(𝑈°): 𝑓(𝓏) = 𝓏 + 𝑎𝔫ାଵ𝓏𝔫ାଵ + ⋯ }, 
where ℧ଵ = ℧, the subclass of normalized analytic functions in U°. Further, indicate by M 
the subfamily of 𝒦(U°) of the form: 

𝑓(𝓏) = 𝓏 + ෍ 𝑎𝔫𝓏𝔫 , 𝓏 ∈ U°ஶ
𝔫ୀଶ , (1)

which are univalent in U°. For analytic functions 𝑓 and 𝐹, the function 𝑓 is said to be 
subordinate to 𝐹, if 𝑓(𝓏) = 𝐹൫Θ(𝓏)൯, (𝓏 ∈ 𝑈°), 

where Θ(𝓏) is analytic and  Θ(0) = 0, |Θ(𝓏)| < 1. This subordination is indicated by 𝑓(𝓏) ≺ 𝐹(𝓏). 
Cho and Kim [20] proposed the multiplier transformation as a linear operator. Let 𝔫 

be any integer; the multiplier transformation ℒఓఉ: 𝑀 → 𝑀  is given by ℒఓఉ𝑓(𝓏) = 𝓏 +∑ ቀ𝔫ାఓଵାఓቁఉ 𝑎𝔫𝓏𝔫 , 𝜇 ≥ 0, 𝛽 ∈ ℤ = {⋯ , −1,0,1, ⋯ }ஶ𝔫ୀଶ . 
 
The Hurwitz–Lerch Zeta function [21] is 

𝜁గ,ఘ(𝓏) = 1𝜌గ + ෍ 𝓏𝔫(𝔫 + 𝜌)గஶ
𝔫ୀଵ , 

(𝜌 ∈ ℂ\𝑍௢ି = {0, −1, −2, … }, 𝜋 ∈ ℂ, where |𝓏| < 1, ℛ𝑒(𝜋) > 1, 𝓏 ∈ 𝜕𝑈°) 

By making use of the following normalized function, we have: 𝐺గ,ఘ(𝓏) = (1 + 𝜌)గൣ𝜁గ,ఘ(𝓏) − 𝜌ିగ൧ = 𝓏 + ∑ ቀଵାఘ𝔫ାఘቁగ   , 𝓏 ∈ 𝑈°ஶ𝔫ୀଶ . 

If 𝑓, 𝑔 ∈ 𝑀, where 𝑓 given by (1) and 𝑔 is defined by 

𝑔(𝓏) = 𝓏 + ෍ 𝑏𝔫𝓏𝔫ஶ
𝔫ୀଶ  , 𝓏 ∈ U°, 

then 

(𝑓 ∗ 𝑔)(𝓏) = 𝓏 + ෍ 𝑎𝔫𝑏𝔫ஶ
𝔫ୀଶ 𝓏𝔫 = (𝑔 ∗ 𝑓)(𝓏). 

Using the convolution defined above, a new operator is next introduced as the 
original part of the present paper. 

  

| < 1,
Re(π) > 1, µ ≥ 0, β ∈ Z, π ∈ C; we define new operator Γπ,ρ,β,µ f (
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) : M→ M, where

Γπ,ρ,β,µ f (
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)π(n+ µ

1 + µ

)β
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). (3)

2. Problem Formulation

The subcollection of various analytic and univalent functions, which are connected to
differential subordination and superordination in the open unit disk U◦, has been initiated
in recent times from a variety of intriguing outcomes and perspectives (cf. [7,22–28]).
Additionally, several authors obtained good results on second- and third-order differential
subordination; e.g., [29–35].

In order to demonstrate the original results, we will need the basic concepts of fourth-
order theory previously introduced, which we present below showing the papers where
they first appeared.

Definition 2. Ref. [4]: Assume that
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2. Problem Formulation 
The subcollection of various analytic and univalent functions, which are connected 

to differential subordination and superordination in the open unit disk U°, has been ini-
tiated in recent times from a variety of intriguing outcomes and perspectives (cf. 
[22,23,24,25,7,26,27,28]). Additionally, several authors obtained good results on second- 
and third-order differential subordination; e.g., [29,30,31–34,35]. 

In order to demonstrate the original results, we will need the basic concepts of 
fourth-order theory previously introduced, which we present below showing the papers 
where they first appeared. 

Definition 2. Ref. [4]: Assume that Ҩ is called the set of functions 𝕢 that are univalent and 
analytic on the set 𝑈°\𝐸(𝕢) , where 𝐸(𝕢) = {𝒥: 𝒥 ∈ 𝜕𝑈° 𝑎𝑛𝑑 𝑙𝑖𝑚𝓏→𝒥 𝕢(𝓏) = ∞}  are such that 𝑚𝑖𝑛|𝕢ᇱ(𝒥)| = 𝛾 > 0 𝑓𝑜𝑟 𝒥 ∈ 𝜕𝑈°\𝐸(𝕢). In addition, indicate by Ҩ(𝑎) the subclass of function 𝕢 for which 𝕢(0) = 𝑎. Note that  Ҩଵ = Ҩ(1) = {𝕢(𝓏) ∈ Ҩ: 𝕢(0) = 1}. 

Definition 3. See [6,7]: Assume that 𝓀 is univalent in 𝑈°and 𝜓: ℂହ × 𝑈° → ℂ. If the analytic 
function 𝑝 fulfills the fourth-order differential subordination 𝜓(𝑝(𝓏), 𝓏𝑝ᇱ(𝓏), 𝓏ଶ𝑝ᇱᇱ(𝓏), 𝓏ଷ𝑝ᇱᇱᇱ(𝓏), 𝓏ସ𝑝ᇱᇱᇱᇱ(𝓏); 𝓏) ≺ 𝓀(𝓏), (4)

then the function 𝑝 is named a solution of the differential subordination (4). A univalent func-
tion 𝕢 is named a dominant of the solutions of the differential subordination if 𝑝 ≺ 𝕢 for all 𝑝 
satisfying (4). A dominant 𝕢෥(𝓏) that fulfills 𝕢෥ ≺ 𝕢 for all dominants 𝕢 of (4) is named the best 
dominant. 

Definition 4. See [6,7]: Assume that 𝕢 ∈ Ҩ and 𝛺 is a set in ℂ. The admissible functions class 𝛷𝓃[𝛺, 𝕢], (𝔫 ∈ 𝑁\{2}) consists of those functions 𝜓: ℂହ × 𝑈° → ℂ that fulfill the following ad-
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Well-known notations and definitions used for obtaining the original results are next 
presented. 𝒦(U°) denotes the family of analytic functions in U°that have the form: 𝒦[a, 𝔫] = {𝑓 ∈ 𝒦(U°): 𝑓(𝓏) = 𝑎 + 𝑎𝔫𝓏𝔫 + 𝑎𝔫ାଵ𝓏𝔫ାଵ + ⋯ }, 𝑎 ∈ ℂ, 𝔫 ∈ 𝑁 = {1,2, … }, 
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where ℧ଵ = ℧, the subclass of normalized analytic functions in U°. Further, indicate by M 
the subfamily of 𝒦(U°) of the form: 

𝑓(𝓏) = 𝓏 + ෍ 𝑎𝔫𝓏𝔫 , 𝓏 ∈ U°ஶ
𝔫ୀଶ , (1)

which are univalent in U°. For analytic functions 𝑓 and 𝐹, the function 𝑓 is said to be 
subordinate to 𝐹, if 𝑓(𝓏) = 𝐹൫Θ(𝓏)൯, (𝓏 ∈ 𝑈°), 

where Θ(𝓏) is analytic and  Θ(0) = 0, |Θ(𝓏)| < 1. This subordination is indicated by 𝑓(𝓏) ≺ 𝐹(𝓏). 
Cho and Kim [20] proposed the multiplier transformation as a linear operator. Let 𝔫 

be any integer; the multiplier transformation ℒఓఉ: 𝑀 → 𝑀  is given by ℒఓఉ𝑓(𝓏) = 𝓏 +∑ ቀ𝔫ାఓଵାఓቁఉ 𝑎𝔫𝓏𝔫 , 𝜇 ≥ 0, 𝛽 ∈ ℤ = {⋯ , −1,0,1, ⋯ }ஶ𝔫ୀଶ . 
 
The Hurwitz–Lerch Zeta function [21] is 

𝜁గ,ఘ(𝓏) = 1𝜌గ + ෍ 𝓏𝔫(𝔫 + 𝜌)గஶ
𝔫ୀଵ , 

(𝜌 ∈ ℂ\𝑍௢ି = {0, −1, −2, … }, 𝜋 ∈ ℂ, where |𝓏| < 1, ℛ𝑒(𝜋) > 1, 𝓏 ∈ 𝜕𝑈°) 

By making use of the following normalized function, we have: 𝐺గ,ఘ(𝓏) = (1 + 𝜌)గൣ𝜁గ,ఘ(𝓏) − 𝜌ିగ൧ = 𝓏 + ∑ ቀଵାఘ𝔫ାఘቁగ   , 𝓏 ∈ 𝑈°ஶ𝔫ୀଶ . 

If 𝑓, 𝑔 ∈ 𝑀, where 𝑓 given by (1) and 𝑔 is defined by 
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𝔫ୀଶ  , 𝓏 ∈ U°, 

then 

(𝑓 ∗ 𝑔)(𝓏) = 𝓏 + ෍ 𝑎𝔫𝑏𝔫ஶ
𝔫ୀଶ 𝓏𝔫 = (𝑔 ∗ 𝑓)(𝓏). 

Using the convolution defined above, a new operator is next introduced as the 
original part of the present paper. 

  

→J
q(
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Definition 1. Assume  𝑓 ∈ 𝑀, 𝓏 ∈ 𝜕𝑈°, 𝜌 ∈ ℂ\𝑍௢ି = {0, −1, −2, … }, 𝑤ℎ𝑒𝑟𝑒 |𝓏| < 1, ℛ𝑒(𝜋) >1, 𝜇 ≥ 0, 𝛽 ∈ ℤ, 𝜋 ∈ ℂ; we define new operator 𝛤గ,ఘ,ఉ,ఓ𝑓(𝓏): 𝑀 → 𝑀, where 

Γగ,ఘ,ఉ,ఓ𝑓(𝓏) = 𝐺గ,ఘ(𝓏) ∗ ℒఓఉ𝑓(𝓏) = 𝓏 + ෍ ൬1 + 𝜌𝔫 + 𝜌൰గ ൬𝔫 + 𝜇1 + 𝜇൰ఉ 𝑎𝔫𝓏𝔫ஶ
𝔫ୀଶ . (2)

After a simple computation, we obtain the relation: 𝓏 ቀΓగ,ఘ,ఉ,ఓ𝑓(𝓏)ቁᇱ = (1 + 𝜇)Γగ,ఘ,ఉାଵ,ఓ𝑓(𝓏) − 𝜇 Γగ,ఘ,ఉ,ఓ𝑓(𝓏). (3)

2. Problem Formulation 
The subcollection of various analytic and univalent functions, which are connected 

to differential subordination and superordination in the open unit disk U°, has been ini-
tiated in recent times from a variety of intriguing outcomes and perspectives (cf. 
[22,23,24,25,7,26,27,28]). Additionally, several authors obtained good results on second- 
and third-order differential subordination; e.g., [29,30,31–34,35]. 

In order to demonstrate the original results, we will need the basic concepts of 
fourth-order theory previously introduced, which we present below showing the papers 
where they first appeared. 

Definition 2. Ref. [4]: Assume that Ҩ is called the set of functions 𝕢 that are univalent and 
analytic on the set 𝑈°\𝐸(𝕢) , where 𝐸(𝕢) = {𝒥: 𝒥 ∈ 𝜕𝑈° 𝑎𝑛𝑑 𝑙𝑖𝑚𝓏→𝒥 𝕢(𝓏) = ∞}  are such that 𝑚𝑖𝑛|𝕢ᇱ(𝒥)| = 𝛾 > 0 𝑓𝑜𝑟 𝒥 ∈ 𝜕𝑈°\𝐸(𝕢). In addition, indicate by Ҩ(𝑎) the subclass of function 𝕢 for which 𝕢(0) = 𝑎. Note that  Ҩଵ = Ҩ(1) = {𝕢(𝓏) ∈ Ҩ: 𝕢(0) = 1}. 

Definition 3. See [6,7]: Assume that 𝓀 is univalent in 𝑈°and 𝜓: ℂହ × 𝑈° → ℂ. If the analytic 
function 𝑝 fulfills the fourth-order differential subordination 𝜓(𝑝(𝓏), 𝓏𝑝ᇱ(𝓏), 𝓏ଶ𝑝ᇱᇱ(𝓏), 𝓏ଷ𝑝ᇱᇱᇱ(𝓏), 𝓏ସ𝑝ᇱᇱᇱᇱ(𝓏); 𝓏) ≺ 𝓀(𝓏), (4)

then the function 𝑝 is named a solution of the differential subordination (4). A univalent func-
tion 𝕢 is named a dominant of the solutions of the differential subordination if 𝑝 ≺ 𝕢 for all 𝑝 
satisfying (4). A dominant 𝕢෥(𝓏) that fulfills 𝕢෥ ≺ 𝕢 for all dominants 𝕢 of (4) is named the best 
dominant. 

Definition 4. See [6,7]: Assume that 𝕢 ∈ Ҩ and 𝛺 is a set in ℂ. The admissible functions class 𝛷𝓃[𝛺, 𝕢], (𝔫 ∈ 𝑁\{2}) consists of those functions 𝜓: ℂହ × 𝑈° → ℂ that fulfill the following ad-
missibility condition: 

ψ(𝔯, 𝔰, 𝔱, 𝔲, 𝑏; 𝓏) ∉ Ω, 
wherever 𝔯 = 𝕢(𝜏)  , 𝔰 = 𝔪𝜏𝕢ᇱ(𝜏) ,    ℛℯ ൬ 𝔱𝔰 + 1൰ ≥ 𝔪ℛℯ ቆ1 + 𝜏𝕢ᇱᇱ(𝜏)𝕢ᇱ(𝜏) ቇ, 

ℯℛ ቀ𝔲𝔰ቁ ≥ 𝔪ଶℛℯ ቀఛమ𝕢ᇲᇲᇲ(ఛ)𝕢ᇲ(ఛ) ቁ ,ℯℛ ቀ௕௦ቁ ≥ 𝔪ଷℛℯ ቀఛయ𝕢ᇲᇲᇲᇲ(ఛ)𝕢ᇲ(ఛ) ቁ, ( 𝓏 ∈ 𝑈°, 𝜏 ∈ 𝜕𝑈°\E(𝕢)  𝑎𝑛𝑑   𝔪 ≥ 𝔫). 
 

Theorem 1. See [7]: Let 𝑝 ∈ 𝒦[𝑎, 𝔫], ( 𝔫 ∈ 𝑁\{2}). In addition, let 𝕢 ∈ Ҩ and fulfill the condi-
tions: 

(a) the subclass of function
q for which q(0) = a. Note that
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satisfying (4). A dominant 𝕢෥(𝓏) that fulfills 𝕢෥ ≺ 𝕢 for all dominants 𝕢 of (4) is named the best 
dominant. 

Definition 4. See [6,7]: Assume that 𝕢 ∈ Ҩ and 𝛺 is a set in ℂ. The admissible functions class 𝛷𝓃[𝛺, 𝕢], (𝔫 ∈ 𝑁\{2}) consists of those functions 𝜓: ℂହ × 𝑈° → ℂ that fulfill the following ad-
missibility condition: 

ψ(𝔯, 𝔰, 𝔱, 𝔲, 𝑏; 𝓏) ∉ Ω, 
wherever 𝔯 = 𝕢(𝜏)  , 𝔰 = 𝔪𝜏𝕢ᇱ(𝜏) ,    ℛℯ ൬ 𝔱𝔰 + 1൰ ≥ 𝔪ℛℯ ቆ1 + 𝜏𝕢ᇱᇱ(𝜏)𝕢ᇱ(𝜏) ቇ, 

ℯℛ ቀ𝔲𝔰ቁ ≥ 𝔪ଶℛℯ ቀఛమ𝕢ᇲᇲᇲ(ఛ)𝕢ᇲ(ఛ) ቁ ,ℯℛ ቀ௕௦ቁ ≥ 𝔪ଷℛℯ ቀఛయ𝕢ᇲᇲᇲᇲ(ఛ)𝕢ᇲ(ఛ) ቁ, ( 𝓏 ∈ 𝑈°, 𝜏 ∈ 𝜕𝑈°\E(𝕢)  𝑎𝑛𝑑   𝔪 ≥ 𝔫). 
 

Theorem 1. See [7]: Let 𝑝 ∈ 𝒦[𝑎, 𝔫], ( 𝔫 ∈ 𝑁\{2}). In addition, let 𝕢 ∈ Ҩ and fulfill the condi-
tions: 

(1) =
{
q(
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presented. 𝒦(U°) denotes the family of analytic functions in U°that have the form: 𝒦[a, 𝔫] = {𝑓 ∈ 𝒦(U°): 𝑓(𝓏) = 𝑎 + 𝑎𝔫𝓏𝔫 + 𝑎𝔫ାଵ𝓏𝔫ାଵ + ⋯ }, 𝑎 ∈ ℂ, 𝔫 ∈ 𝑁 = {1,2, … }, 

and let ℧𝔫 be the collection of the form: ℧𝔫 = {𝑓 ∈ 𝒦(𝑈°): 𝑓(𝓏) = 𝓏 + 𝑎𝔫ାଵ𝓏𝔫ାଵ + ⋯ }, 
where ℧ଵ = ℧, the subclass of normalized analytic functions in U°. Further, indicate by M 
the subfamily of 𝒦(U°) of the form: 

𝑓(𝓏) = 𝓏 + ෍ 𝑎𝔫𝓏𝔫 , 𝓏 ∈ U°ஶ
𝔫ୀଶ , (1)

which are univalent in U°. For analytic functions 𝑓 and 𝐹, the function 𝑓 is said to be 
subordinate to 𝐹, if 𝑓(𝓏) = 𝐹൫Θ(𝓏)൯, (𝓏 ∈ 𝑈°), 

where Θ(𝓏) is analytic and  Θ(0) = 0, |Θ(𝓏)| < 1. This subordination is indicated by 𝑓(𝓏) ≺ 𝐹(𝓏). 
Cho and Kim [20] proposed the multiplier transformation as a linear operator. Let 𝔫 

be any integer; the multiplier transformation ℒఓఉ: 𝑀 → 𝑀  is given by ℒఓఉ𝑓(𝓏) = 𝓏 +∑ ቀ𝔫ାఓଵାఓቁఉ 𝑎𝔫𝓏𝔫 , 𝜇 ≥ 0, 𝛽 ∈ ℤ = {⋯ , −1,0,1, ⋯ }ஶ𝔫ୀଶ . 
 
The Hurwitz–Lerch Zeta function [21] is 

𝜁గ,ఘ(𝓏) = 1𝜌గ + ෍ 𝓏𝔫(𝔫 + 𝜌)గஶ
𝔫ୀଵ , 

(𝜌 ∈ ℂ\𝑍௢ି = {0, −1, −2, … }, 𝜋 ∈ ℂ, where |𝓏| < 1, ℛ𝑒(𝜋) > 1, 𝓏 ∈ 𝜕𝑈°) 

By making use of the following normalized function, we have: 𝐺గ,ఘ(𝓏) = (1 + 𝜌)గൣ𝜁గ,ఘ(𝓏) − 𝜌ିగ൧ = 𝓏 + ∑ ቀଵାఘ𝔫ାఘቁగ   , 𝓏 ∈ 𝑈°ஶ𝔫ୀଶ . 

If 𝑓, 𝑔 ∈ 𝑀, where 𝑓 given by (1) and 𝑔 is defined by 
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Using the convolution defined above, a new operator is next introduced as the 
original part of the present paper. 

  

) ∈
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Definition 1. Assume  𝑓 ∈ 𝑀, 𝓏 ∈ 𝜕𝑈°, 𝜌 ∈ ℂ\𝑍௢ି = {0, −1, −2, … }, 𝑤ℎ𝑒𝑟𝑒 |𝓏| < 1, ℛ𝑒(𝜋) >1, 𝜇 ≥ 0, 𝛽 ∈ ℤ, 𝜋 ∈ ℂ; we define new operator 𝛤గ,ఘ,ఉ,ఓ𝑓(𝓏): 𝑀 → 𝑀, where 

Γగ,ఘ,ఉ,ఓ𝑓(𝓏) = 𝐺గ,ఘ(𝓏) ∗ ℒఓఉ𝑓(𝓏) = 𝓏 + ෍ ൬1 + 𝜌𝔫 + 𝜌൰గ ൬𝔫 + 𝜇1 + 𝜇൰ఉ 𝑎𝔫𝓏𝔫ஶ
𝔫ୀଶ . (2)

After a simple computation, we obtain the relation: 𝓏 ቀΓగ,ఘ,ఉ,ఓ𝑓(𝓏)ቁᇱ = (1 + 𝜇)Γగ,ఘ,ఉାଵ,ఓ𝑓(𝓏) − 𝜇 Γగ,ఘ,ఉ,ఓ𝑓(𝓏). (3)

2. Problem Formulation 
The subcollection of various analytic and univalent functions, which are connected 

to differential subordination and superordination in the open unit disk U°, has been ini-
tiated in recent times from a variety of intriguing outcomes and perspectives (cf. 
[22,23,24,25,7,26,27,28]). Additionally, several authors obtained good results on second- 
and third-order differential subordination; e.g., [29,30,31–34,35]. 

In order to demonstrate the original results, we will need the basic concepts of 
fourth-order theory previously introduced, which we present below showing the papers 
where they first appeared. 

Definition 2. Ref. [4]: Assume that Ҩ is called the set of functions 𝕢 that are univalent and 
analytic on the set 𝑈°\𝐸(𝕢) , where 𝐸(𝕢) = {𝒥: 𝒥 ∈ 𝜕𝑈° 𝑎𝑛𝑑 𝑙𝑖𝑚𝓏→𝒥 𝕢(𝓏) = ∞}  are such that 𝑚𝑖𝑛|𝕢ᇱ(𝒥)| = 𝛾 > 0 𝑓𝑜𝑟 𝒥 ∈ 𝜕𝑈°\𝐸(𝕢). In addition, indicate by Ҩ(𝑎) the subclass of function 𝕢 for which 𝕢(0) = 𝑎. Note that  Ҩଵ = Ҩ(1) = {𝕢(𝓏) ∈ Ҩ: 𝕢(0) = 1}. 

Definition 3. See [6,7]: Assume that 𝓀 is univalent in 𝑈°and 𝜓: ℂହ × 𝑈° → ℂ. If the analytic 
function 𝑝 fulfills the fourth-order differential subordination 𝜓(𝑝(𝓏), 𝓏𝑝ᇱ(𝓏), 𝓏ଶ𝑝ᇱᇱ(𝓏), 𝓏ଷ𝑝ᇱᇱᇱ(𝓏), 𝓏ସ𝑝ᇱᇱᇱᇱ(𝓏); 𝓏) ≺ 𝓀(𝓏), (4)

then the function 𝑝 is named a solution of the differential subordination (4). A univalent func-
tion 𝕢 is named a dominant of the solutions of the differential subordination if 𝑝 ≺ 𝕢 for all 𝑝 
satisfying (4). A dominant 𝕢෥(𝓏) that fulfills 𝕢෥ ≺ 𝕢 for all dominants 𝕢 of (4) is named the best 
dominant. 

Definition 4. See [6,7]: Assume that 𝕢 ∈ Ҩ and 𝛺 is a set in ℂ. The admissible functions class 𝛷𝓃[𝛺, 𝕢], (𝔫 ∈ 𝑁\{2}) consists of those functions 𝜓: ℂହ × 𝑈° → ℂ that fulfill the following ad-
missibility condition: 

ψ(𝔯, 𝔰, 𝔱, 𝔲, 𝑏; 𝓏) ∉ Ω, 
wherever 𝔯 = 𝕢(𝜏)  , 𝔰 = 𝔪𝜏𝕢ᇱ(𝜏) ,    ℛℯ ൬ 𝔱𝔰 + 1൰ ≥ 𝔪ℛℯ ቆ1 + 𝜏𝕢ᇱᇱ(𝜏)𝕢ᇱ(𝜏) ቇ, 

ℯℛ ቀ𝔲𝔰ቁ ≥ 𝔪ଶℛℯ ቀఛమ𝕢ᇲᇲᇲ(ఛ)𝕢ᇲ(ఛ) ቁ ,ℯℛ ቀ௕௦ቁ ≥ 𝔪ଷℛℯ ቀఛయ𝕢ᇲᇲᇲᇲ(ఛ)𝕢ᇲ(ఛ) ቁ, ( 𝓏 ∈ 𝑈°, 𝜏 ∈ 𝜕𝑈°\E(𝕢)  𝑎𝑛𝑑   𝔪 ≥ 𝔫). 
 

Theorem 1. See [7]: Let 𝑝 ∈ 𝒦[𝑎, 𝔫], ( 𝔫 ∈ 𝑁\{2}). In addition, let 𝕢 ∈ Ҩ and fulfill the condi-
tions: 

: q(0) = 1
}

.

Definition 3. See [6,7]: Assume that

Symmetry 2022, 14, x FOR PEER REVIEW 10 of 12 
 

 

{𝜓(𝑝(𝓏), 𝓏𝑝ᇱ(𝓏), 𝓏ଶ𝑝ᇱᇱ(𝓏), 𝓏ଷ𝑝ᇱᇱᇱ(𝓏), 𝓏ସ𝑝ᇱᇱᇱᇱ(𝓏); 𝓏 ∈ 𝑈°)} = 𝓀(𝓏),  (25)

has a solution 𝕢(𝓏) ∈ Ҩଵ. If 𝛤గ,ఘ,ఉ,ఓ𝑓(𝓏) ∈ Ҩଵ, 𝕢 ∈ 𝒦ଵ, 𝕢ᇱ(𝓏) ് 0 and 𝑓 ∈ 𝑀 satisfy the con-
ditions (7) and (22), ൛𝛶൫𝛤గ,ఘ,ఉ,ఓ𝑓(𝓏), 𝛤గ,ఘ,ఉାଵ,ఓ𝑓(𝓏), 𝛤గ,ఘ,ఉାଶ,ఓ𝑓(𝓏), 𝛤గ,ఘ,ఉାଷ,ఓ𝑓(𝓏), 𝛤గ,ఘ,ఉାସ,ఓ𝑓(𝓏)ቁ : 𝓏 ∈ 𝑈°ቅ 
is univalent in 𝑈°, and 𝓀(𝓏) ⊂ {Υ൫Γగ,ఘ,ఉ,ఓ𝑓(𝓏), Γగ,ఘ,ఉାଵ,ఓ𝑓(𝓏), Γగ,ఘ,ఉାଶ,ఓ𝑓(𝓏), Γగ,ఘ,ఉାଷ,ఓ𝑓(𝓏), 𝛤గ,ఘ,ఉାସ,ఓ𝑓(𝓏); 𝓏 ∈ 𝑈°)}, 
then 𝕢(𝓏) ≺ 𝛤గ,ఘ,ఉ,ఋ𝑓(𝓏), and 𝕢(𝓏) is the best subordinate of (24). 

Proof. The proof of theorem is similar to that of Theorem 5 and is omitted here. □ 

5. Sandwich-Type Results 
Now, by using Theorems 5 and 9, we have the sandwich-type result. 

Theorem 11. Consider two analytic functions  𝓀ଵ(𝓏) 𝑎𝑛𝑑 𝕢ଵ(𝓏)  in 𝑈° , and  𝕢ଶ(𝓏) ∈ Ҩଵ 
with  𝕢ଵ(0) = 𝕢ଶ(0) =1. In addition let the function  𝓀ଶ(𝓏) be univalent in  𝑈°  and  𝛶 ∈𝜃௰[ 𝓀ଶ, 𝕢ଶ] ∩ 𝜃௰ᇱ [𝓀ଵ, 𝕢ଵ]. If 𝛤గ,ఘ,ఉ,ఓ𝑓(𝓏) ∈ Ҩଵ ∩ 𝒦, 𝑓 ∈ 𝑀, ൛𝛶൫𝛤గ,ఘ,ఉ,ఓ𝑓(𝓏), 𝛤గ,ఘ,ఉାଵ,ఓ𝑓(𝓏), 𝛤గ,ఘ,ఉାଶ,ఓ𝑓(𝓏), 𝛤గ,ఘ,ఉାଷ,ఓ𝑓(𝓏), 𝛤గ,ఘ,ఉାସ,ఓ𝑓(𝓏)ቁ : 𝓏 ∈ 𝑈°ቅ 

is univalent in 𝑈°, and the two conditions (7) and (22) are satisfied as 𝓀ଵ(𝓏) ≺ {𝛶൫𝛤గ,ఘ,ఉ,ఓ𝑓(𝓏), 𝛤గ,ఘ,ఉାଵ,ఓ𝑓(𝓏), 𝛤గ,ఘ,ఉାଶ,ఓ𝑓(𝓏), 𝛤గ,ఘ,ఉାଷ,ఓ𝑓(𝓏), 𝛤గ,ఘ,ఉାସ,ఓ𝑓(𝓏); 𝓏 ∈ 𝑈°)} ≺  𝓀ଶ(𝓏), 
then 𝕢ଵ(𝓏) ≺ 𝛤గ,ఘ,ఉ,ఓ𝑓(𝓏) ≺ 𝕢ଶ(𝓏) 

6. Conclusions 
A new differential operator is introduced in the present paper in Definition 1. Using 

the concepts of fourth-order differential subordination and superordination, the classes 
of admissible functions are defined related to each of the two concepts, and using those 
definitions, several theorems are proved involving the newly defined operator regarding 
fourth-order subordinations in Section 3 and regarding fourth-order superordination in 
Section 4. By applying a well-known technique, a sandwich-type theorem is stated in 
Section 5 of the paper combining the subordination and superordination results obtained 
before. The results presented here could inspire future work involving other operators 
for obtaining fourth-order differential subordinations and superordinations. Certain 
special classes of univalent functions could be introduced using the operator defined in 
this paper, and studies for obtaining properties of those classes could be done invoking 
the notions of fourth-order differential subordination and superordination using the 
admissibility conditions given here in Definition 7., Definition 8. and Definition 9. and 
the best dominant obtained in Theorem 5. 
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is univalent in U
◦

and ψ : C5 ×U
◦ → C . If the analytic

function p fulfills the fourth-order differential subordination

ψ
(

p(
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Well-known notations and definitions used for obtaining the original results are next 
presented. 𝒦(U°) denotes the family of analytic functions in U°that have the form: 𝒦[a, 𝔫] = {𝑓 ∈ 𝒦(U°): 𝑓(𝓏) = 𝑎 + 𝑎𝔫𝓏𝔫 + 𝑎𝔫ାଵ𝓏𝔫ାଵ + ⋯ }, 𝑎 ∈ ℂ, 𝔫 ∈ 𝑁 = {1,2, … }, 

and let ℧𝔫 be the collection of the form: ℧𝔫 = {𝑓 ∈ 𝒦(𝑈°): 𝑓(𝓏) = 𝓏 + 𝑎𝔫ାଵ𝓏𝔫ାଵ + ⋯ }, 
where ℧ଵ = ℧, the subclass of normalized analytic functions in U°. Further, indicate by M 
the subfamily of 𝒦(U°) of the form: 

𝑓(𝓏) = 𝓏 + ෍ 𝑎𝔫𝓏𝔫 , 𝓏 ∈ U°ஶ
𝔫ୀଶ , (1)

which are univalent in U°. For analytic functions 𝑓 and 𝐹, the function 𝑓 is said to be 
subordinate to 𝐹, if 𝑓(𝓏) = 𝐹൫Θ(𝓏)൯, (𝓏 ∈ 𝑈°), 

where Θ(𝓏) is analytic and  Θ(0) = 0, |Θ(𝓏)| < 1. This subordination is indicated by 𝑓(𝓏) ≺ 𝐹(𝓏). 
Cho and Kim [20] proposed the multiplier transformation as a linear operator. Let 𝔫 

be any integer; the multiplier transformation ℒఓఉ: 𝑀 → 𝑀  is given by ℒఓఉ𝑓(𝓏) = 𝓏 +∑ ቀ𝔫ାఓଵାఓቁఉ 𝑎𝔫𝓏𝔫 , 𝜇 ≥ 0, 𝛽 ∈ ℤ = {⋯ , −1,0,1, ⋯ }ஶ𝔫ୀଶ . 
 
The Hurwitz–Lerch Zeta function [21] is 

𝜁గ,ఘ(𝓏) = 1𝜌గ + ෍ 𝓏𝔫(𝔫 + 𝜌)గஶ
𝔫ୀଵ , 

(𝜌 ∈ ℂ\𝑍௢ି = {0, −1, −2, … }, 𝜋 ∈ ℂ, where |𝓏| < 1, ℛ𝑒(𝜋) > 1, 𝓏 ∈ 𝜕𝑈°) 

By making use of the following normalized function, we have: 𝐺గ,ఘ(𝓏) = (1 + 𝜌)గൣ𝜁గ,ఘ(𝓏) − 𝜌ିగ൧ = 𝓏 + ∑ ቀଵାఘ𝔫ାఘቁగ   , 𝓏 ∈ 𝑈°ஶ𝔫ୀଶ . 

If 𝑓, 𝑔 ∈ 𝑀, where 𝑓 given by (1) and 𝑔 is defined by 

𝑔(𝓏) = 𝓏 + ෍ 𝑏𝔫𝓏𝔫ஶ
𝔫ୀଶ  , 𝓏 ∈ U°, 

then 

(𝑓 ∗ 𝑔)(𝓏) = 𝓏 + ෍ 𝑎𝔫𝑏𝔫ஶ
𝔫ୀଶ 𝓏𝔫 = (𝑔 ∗ 𝑓)(𝓏). 

Using the convolution defined above, a new operator is next introduced as the 
original part of the present paper. 

  

),
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where ℧ଵ = ℧, the subclass of normalized analytic functions in U°. Further, indicate by M 
the subfamily of 𝒦(U°) of the form: 

𝑓(𝓏) = 𝓏 + ෍ 𝑎𝔫𝓏𝔫 , 𝓏 ∈ U°ஶ
𝔫ୀଶ , (1)

which are univalent in U°. For analytic functions 𝑓 and 𝐹, the function 𝑓 is said to be 
subordinate to 𝐹, if 𝑓(𝓏) = 𝐹൫Θ(𝓏)൯, (𝓏 ∈ 𝑈°), 

where Θ(𝓏) is analytic and  Θ(0) = 0, |Θ(𝓏)| < 1. This subordination is indicated by 𝑓(𝓏) ≺ 𝐹(𝓏). 
Cho and Kim [20] proposed the multiplier transformation as a linear operator. Let 𝔫 

be any integer; the multiplier transformation ℒఓఉ: 𝑀 → 𝑀  is given by ℒఓఉ𝑓(𝓏) = 𝓏 +∑ ቀ𝔫ାఓଵାఓቁఉ 𝑎𝔫𝓏𝔫 , 𝜇 ≥ 0, 𝛽 ∈ ℤ = {⋯ , −1,0,1, ⋯ }ஶ𝔫ୀଶ . 
 
The Hurwitz–Lerch Zeta function [21] is 

𝜁గ,ఘ(𝓏) = 1𝜌గ + ෍ 𝓏𝔫(𝔫 + 𝜌)గஶ
𝔫ୀଵ , 

(𝜌 ∈ ℂ\𝑍௢ି = {0, −1, −2, … }, 𝜋 ∈ ℂ, where |𝓏| < 1, ℛ𝑒(𝜋) > 1, 𝓏 ∈ 𝜕𝑈°) 

By making use of the following normalized function, we have: 𝐺గ,ఘ(𝓏) = (1 + 𝜌)గൣ𝜁గ,ఘ(𝓏) − 𝜌ିగ൧ = 𝓏 + ∑ ቀଵାఘ𝔫ାఘቁగ   , 𝓏 ∈ 𝑈°ஶ𝔫ୀଶ . 

If 𝑓, 𝑔 ∈ 𝑀, where 𝑓 given by (1) and 𝑔 is defined by 

𝑔(𝓏) = 𝓏 + ෍ 𝑏𝔫𝓏𝔫ஶ
𝔫ୀଶ  , 𝓏 ∈ U°, 

then 

(𝑓 ∗ 𝑔)(𝓏) = 𝓏 + ෍ 𝑎𝔫𝑏𝔫ஶ
𝔫ୀଶ 𝓏𝔫 = (𝑔 ∗ 𝑓)(𝓏). 

Using the convolution defined above, a new operator is next introduced as the 
original part of the present paper. 

  

);
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{𝜓(𝑝(𝓏), 𝓏𝑝ᇱ(𝓏), 𝓏ଶ𝑝ᇱᇱ(𝓏), 𝓏ଷ𝑝ᇱᇱᇱ(𝓏), 𝓏ସ𝑝ᇱᇱᇱᇱ(𝓏); 𝓏 ∈ 𝑈°)} = 𝓀(𝓏),  (25)

has a solution 𝕢(𝓏) ∈ Ҩଵ. If 𝛤గ,ఘ,ఉ,ఓ𝑓(𝓏) ∈ Ҩଵ, 𝕢 ∈ 𝒦ଵ, 𝕢ᇱ(𝓏) ് 0 and 𝑓 ∈ 𝑀 satisfy the con-
ditions (7) and (22), ൛𝛶൫𝛤గ,ఘ,ఉ,ఓ𝑓(𝓏), 𝛤గ,ఘ,ఉାଵ,ఓ𝑓(𝓏), 𝛤గ,ఘ,ఉାଶ,ఓ𝑓(𝓏), 𝛤గ,ఘ,ఉାଷ,ఓ𝑓(𝓏), 𝛤గ,ఘ,ఉାସ,ఓ𝑓(𝓏)ቁ : 𝓏 ∈ 𝑈°ቅ 
is univalent in 𝑈°, and 𝓀(𝓏) ⊂ {Υ൫Γగ,ఘ,ఉ,ఓ𝑓(𝓏), Γగ,ఘ,ఉାଵ,ఓ𝑓(𝓏), Γగ,ఘ,ఉାଶ,ఓ𝑓(𝓏), Γగ,ఘ,ఉାଷ,ఓ𝑓(𝓏), 𝛤గ,ఘ,ఉାସ,ఓ𝑓(𝓏); 𝓏 ∈ 𝑈°)}, 
then 𝕢(𝓏) ≺ 𝛤గ,ఘ,ఉ,ఋ𝑓(𝓏), and 𝕢(𝓏) is the best subordinate of (24). 

Proof. The proof of theorem is similar to that of Theorem 5 and is omitted here. □ 

5. Sandwich-Type Results 
Now, by using Theorems 5 and 9, we have the sandwich-type result. 

Theorem 11. Consider two analytic functions  𝓀ଵ(𝓏) 𝑎𝑛𝑑 𝕢ଵ(𝓏)  in 𝑈° , and  𝕢ଶ(𝓏) ∈ Ҩଵ 
with  𝕢ଵ(0) = 𝕢ଶ(0) =1. In addition let the function  𝓀ଶ(𝓏) be univalent in  𝑈°  and  𝛶 ∈𝜃௰[ 𝓀ଶ, 𝕢ଶ] ∩ 𝜃௰ᇱ [𝓀ଵ, 𝕢ଵ]. If 𝛤గ,ఘ,ఉ,ఓ𝑓(𝓏) ∈ Ҩଵ ∩ 𝒦, 𝑓 ∈ 𝑀, ൛𝛶൫𝛤గ,ఘ,ఉ,ఓ𝑓(𝓏), 𝛤గ,ఘ,ఉାଵ,ఓ𝑓(𝓏), 𝛤గ,ఘ,ఉାଶ,ఓ𝑓(𝓏), 𝛤గ,ఘ,ఉାଷ,ఓ𝑓(𝓏), 𝛤గ,ఘ,ఉାସ,ఓ𝑓(𝓏)ቁ : 𝓏 ∈ 𝑈°ቅ 

is univalent in 𝑈°, and the two conditions (7) and (22) are satisfied as 𝓀ଵ(𝓏) ≺ {𝛶൫𝛤గ,ఘ,ఉ,ఓ𝑓(𝓏), 𝛤గ,ఘ,ఉାଵ,ఓ𝑓(𝓏), 𝛤గ,ఘ,ఉାଶ,ఓ𝑓(𝓏), 𝛤గ,ఘ,ఉାଷ,ఓ𝑓(𝓏), 𝛤గ,ఘ,ఉାସ,ఓ𝑓(𝓏); 𝓏 ∈ 𝑈°)} ≺  𝓀ଶ(𝓏), 
then 𝕢ଵ(𝓏) ≺ 𝛤గ,ఘ,ఉ,ఓ𝑓(𝓏) ≺ 𝕢ଶ(𝓏) 

6. Conclusions 
A new differential operator is introduced in the present paper in Definition 1. Using 

the concepts of fourth-order differential subordination and superordination, the classes 
of admissible functions are defined related to each of the two concepts, and using those 
definitions, several theorems are proved involving the newly defined operator regarding 
fourth-order subordinations in Section 3 and regarding fourth-order superordination in 
Section 4. By applying a well-known technique, a sandwich-type theorem is stated in 
Section 5 of the paper combining the subordination and superordination results obtained 
before. The results presented here could inspire future work involving other operators 
for obtaining fourth-order differential subordinations and superordinations. Certain 
special classes of univalent functions could be introduced using the operator defined in 
this paper, and studies for obtaining properties of those classes could be done invoking 
the notions of fourth-order differential subordination and superordination using the 
admissibility conditions given here in Definition 7., Definition 8. and Definition 9. and 
the best dominant obtained in Theorem 5. 
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original part of the present paper. 

  

), (4)

then the function p is named a solution of the differential subordination (4). A univalent function q
is named a dominant of the solutions of the differential subordination if p ≺ q for all p satisfying
(4). A dominant q̃(
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) that fulfills q̃ ≺ q for all dominants q of (4) is named the best dominant.

Definition 4. See [6,7]: Assume that q ∈
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Definition 1. Assume  𝑓 ∈ 𝑀, 𝓏 ∈ 𝜕𝑈°, 𝜌 ∈ ℂ\𝑍௢ି = {0, −1, −2, … }, 𝑤ℎ𝑒𝑟𝑒 |𝓏| < 1, ℛ𝑒(𝜋) >1, 𝜇 ≥ 0, 𝛽 ∈ ℤ, 𝜋 ∈ ℂ; we define new operator 𝛤గ,ఘ,ఉ,ఓ𝑓(𝓏): 𝑀 → 𝑀, where 

Γగ,ఘ,ఉ,ఓ𝑓(𝓏) = 𝐺గ,ఘ(𝓏) ∗ ℒఓఉ𝑓(𝓏) = 𝓏 + ෍ ൬1 + 𝜌𝔫 + 𝜌൰గ ൬𝔫 + 𝜇1 + 𝜇൰ఉ 𝑎𝔫𝓏𝔫ஶ
𝔫ୀଶ . (2)

After a simple computation, we obtain the relation: 𝓏 ቀΓగ,ఘ,ఉ,ఓ𝑓(𝓏)ቁᇱ = (1 + 𝜇)Γగ,ఘ,ఉାଵ,ఓ𝑓(𝓏) − 𝜇 Γగ,ఘ,ఉ,ఓ𝑓(𝓏). (3)

2. Problem Formulation 
The subcollection of various analytic and univalent functions, which are connected 

to differential subordination and superordination in the open unit disk U°, has been ini-
tiated in recent times from a variety of intriguing outcomes and perspectives (cf. 
[22,23,24,25,7,26,27,28]). Additionally, several authors obtained good results on second- 
and third-order differential subordination; e.g., [29,30,31–34,35]. 

In order to demonstrate the original results, we will need the basic concepts of 
fourth-order theory previously introduced, which we present below showing the papers 
where they first appeared. 

Definition 2. Ref. [4]: Assume that Ҩ is called the set of functions 𝕢 that are univalent and 
analytic on the set 𝑈°\𝐸(𝕢) , where 𝐸(𝕢) = {𝒥: 𝒥 ∈ 𝜕𝑈° 𝑎𝑛𝑑 𝑙𝑖𝑚𝓏→𝒥 𝕢(𝓏) = ∞}  are such that 𝑚𝑖𝑛|𝕢ᇱ(𝒥)| = 𝛾 > 0 𝑓𝑜𝑟 𝒥 ∈ 𝜕𝑈°\𝐸(𝕢). In addition, indicate by Ҩ(𝑎) the subclass of function 𝕢 for which 𝕢(0) = 𝑎. Note that  Ҩଵ = Ҩ(1) = {𝕢(𝓏) ∈ Ҩ: 𝕢(0) = 1}. 

Definition 3. See [6,7]: Assume that 𝓀 is univalent in 𝑈°and 𝜓: ℂହ × 𝑈° → ℂ. If the analytic 
function 𝑝 fulfills the fourth-order differential subordination 𝜓(𝑝(𝓏), 𝓏𝑝ᇱ(𝓏), 𝓏ଶ𝑝ᇱᇱ(𝓏), 𝓏ଷ𝑝ᇱᇱᇱ(𝓏), 𝓏ସ𝑝ᇱᇱᇱᇱ(𝓏); 𝓏) ≺ 𝓀(𝓏), (4)

then the function 𝑝 is named a solution of the differential subordination (4). A univalent func-
tion 𝕢 is named a dominant of the solutions of the differential subordination if 𝑝 ≺ 𝕢 for all 𝑝 
satisfying (4). A dominant 𝕢෥(𝓏) that fulfills 𝕢෥ ≺ 𝕢 for all dominants 𝕢 of (4) is named the best 
dominant. 

Definition 4. See [6,7]: Assume that 𝕢 ∈ Ҩ and 𝛺 is a set in ℂ. The admissible functions class 𝛷𝓃[𝛺, 𝕢], (𝔫 ∈ 𝑁\{2}) consists of those functions 𝜓: ℂହ × 𝑈° → ℂ that fulfill the following ad-
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ℯℛ ቀ𝔲𝔰ቁ ≥ 𝔪ଶℛℯ ቀఛమ𝕢ᇲᇲᇲ(ఛ)𝕢ᇲ(ఛ) ቁ ,ℯℛ ቀ௕௦ቁ ≥ 𝔪ଷℛℯ ቀఛయ𝕢ᇲᇲᇲᇲ(ఛ)𝕢ᇲ(ఛ) ቁ, ( 𝓏 ∈ 𝑈°, 𝜏 ∈ 𝜕𝑈°\E(𝕢)  𝑎𝑛𝑑   𝔪 ≥ 𝔫). 
 

Theorem 1. See [7]: Let 𝑝 ∈ 𝒦[𝑎, 𝔫], ( 𝔫 ∈ 𝑁\{2}). In addition, let 𝕢 ∈ Ҩ and fulfill the condi-
tions: 

and Ω is a set in C. The admissible functions class
Φn[Ω,q], (n ∈ N\{2}) consists of those functions ψ : C5 ×U

◦ → C that fulfill the following
admissibility condition:

ψ(r, s, t, u, b;
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be any integer; the multiplier transformation ℒఓఉ: 𝑀 → 𝑀  is given by ℒఓఉ𝑓(𝓏) = 𝓏 +∑ ቀ𝔫ାఓଵାఓቁఉ 𝑎𝔫𝓏𝔫 , 𝜇 ≥ 0, 𝛽 ∈ ℤ = {⋯ , −1,0,1, ⋯ }ஶ𝔫ୀଶ . 
 
The Hurwitz–Lerch Zeta function [21] is 

𝜁గ,ఘ(𝓏) = 1𝜌గ + ෍ 𝓏𝔫(𝔫 + 𝜌)గஶ
𝔫ୀଵ , 
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) /∈ Ω,

wherever
r = q(τ), s = mτq′(τ) , Re

(
t
s + 1

)
≥ mRe

(
1 + τq′′ (τ)

q′(τ)

)
,

eR
(
u
s

)
≥ m2Re

(
τ2q′′′ (τ)
q′(τ)

)
, eR

(
b
s

)
≥ m3Re

(
τ3q′′′′ (τ)
q′(τ)

)
,(
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∈ U
◦
, τ ∈ ∂U

◦\E(q) and m ≥ n
)
.

Theorem 1. See [7]: Let p ∈ K[a, n], (n ∈ N\{2}). In addition, let q ∈
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Definition 1. Assume  𝑓 ∈ 𝑀, 𝓏 ∈ 𝜕𝑈°, 𝜌 ∈ ℂ\𝑍௢ି = {0, −1, −2, … }, 𝑤ℎ𝑒𝑟𝑒 |𝓏| < 1, ℛ𝑒(𝜋) >1, 𝜇 ≥ 0, 𝛽 ∈ ℤ, 𝜋 ∈ ℂ; we define new operator 𝛤గ,ఘ,ఉ,ఓ𝑓(𝓏): 𝑀 → 𝑀, where 

Γగ,ఘ,ఉ,ఓ𝑓(𝓏) = 𝐺గ,ఘ(𝓏) ∗ ℒఓఉ𝑓(𝓏) = 𝓏 + ෍ ൬1 + 𝜌𝔫 + 𝜌൰గ ൬𝔫 + 𝜇1 + 𝜇൰ఉ 𝑎𝔫𝓏𝔫ஶ
𝔫ୀଶ . (2)

After a simple computation, we obtain the relation: 𝓏 ቀΓగ,ఘ,ఉ,ఓ𝑓(𝓏)ቁᇱ = (1 + 𝜇)Γగ,ఘ,ఉାଵ,ఓ𝑓(𝓏) − 𝜇 Γగ,ఘ,ఉ,ఓ𝑓(𝓏). (3)

2. Problem Formulation 
The subcollection of various analytic and univalent functions, which are connected 

to differential subordination and superordination in the open unit disk U°, has been ini-
tiated in recent times from a variety of intriguing outcomes and perspectives (cf. 
[22,23,24,25,7,26,27,28]). Additionally, several authors obtained good results on second- 
and third-order differential subordination; e.g., [29,30,31–34,35]. 

In order to demonstrate the original results, we will need the basic concepts of 
fourth-order theory previously introduced, which we present below showing the papers 
where they first appeared. 

Definition 2. Ref. [4]: Assume that Ҩ is called the set of functions 𝕢 that are univalent and 
analytic on the set 𝑈°\𝐸(𝕢) , where 𝐸(𝕢) = {𝒥: 𝒥 ∈ 𝜕𝑈° 𝑎𝑛𝑑 𝑙𝑖𝑚𝓏→𝒥 𝕢(𝓏) = ∞}  are such that 𝑚𝑖𝑛|𝕢ᇱ(𝒥)| = 𝛾 > 0 𝑓𝑜𝑟 𝒥 ∈ 𝜕𝑈°\𝐸(𝕢). In addition, indicate by Ҩ(𝑎) the subclass of function 𝕢 for which 𝕢(0) = 𝑎. Note that  Ҩଵ = Ҩ(1) = {𝕢(𝓏) ∈ Ҩ: 𝕢(0) = 1}. 

Definition 3. See [6,7]: Assume that 𝓀 is univalent in 𝑈°and 𝜓: ℂହ × 𝑈° → ℂ. If the analytic 
function 𝑝 fulfills the fourth-order differential subordination 𝜓(𝑝(𝓏), 𝓏𝑝ᇱ(𝓏), 𝓏ଶ𝑝ᇱᇱ(𝓏), 𝓏ଷ𝑝ᇱᇱᇱ(𝓏), 𝓏ସ𝑝ᇱᇱᇱᇱ(𝓏); 𝓏) ≺ 𝓀(𝓏), (4)

then the function 𝑝 is named a solution of the differential subordination (4). A univalent func-
tion 𝕢 is named a dominant of the solutions of the differential subordination if 𝑝 ≺ 𝕢 for all 𝑝 
satisfying (4). A dominant 𝕢෥(𝓏) that fulfills 𝕢෥ ≺ 𝕢 for all dominants 𝕢 of (4) is named the best 
dominant. 

Definition 4. See [6,7]: Assume that 𝕢 ∈ Ҩ and 𝛺 is a set in ℂ. The admissible functions class 𝛷𝓃[𝛺, 𝕢], (𝔫 ∈ 𝑁\{2}) consists of those functions 𝜓: ℂହ × 𝑈° → ℂ that fulfill the following ad-
missibility condition: 

ψ(𝔯, 𝔰, 𝔱, 𝔲, 𝑏; 𝓏) ∉ Ω, 
wherever 𝔯 = 𝕢(𝜏)  , 𝔰 = 𝔪𝜏𝕢ᇱ(𝜏) ,    ℛℯ ൬ 𝔱𝔰 + 1൰ ≥ 𝔪ℛℯ ቆ1 + 𝜏𝕢ᇱᇱ(𝜏)𝕢ᇱ(𝜏) ቇ, 

ℯℛ ቀ𝔲𝔰ቁ ≥ 𝔪ଶℛℯ ቀఛమ𝕢ᇲᇲᇲ(ఛ)𝕢ᇲ(ఛ) ቁ ,ℯℛ ቀ௕௦ቁ ≥ 𝔪ଷℛℯ ቀఛయ𝕢ᇲᇲᇲᇲ(ఛ)𝕢ᇲ(ఛ) ቁ, ( 𝓏 ∈ 𝑈°, 𝜏 ∈ 𝜕𝑈°\E(𝕢)  𝑎𝑛𝑑   𝔪 ≥ 𝔫). 
 

Theorem 1. See [7]: Let 𝑝 ∈ 𝒦[𝑎, 𝔫], ( 𝔫 ∈ 𝑁\{2}). In addition, let 𝕢 ∈ Ҩ and fulfill the condi-
tions: 

and fulfill the conditions:

Re
(

τ2q′′′ (τ)

q′(τ)

)
≥ 0 ,

∣∣∣∣(
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Cho and Kim [20] proposed the multiplier transformation as a linear operator. Let 𝔫 

be any integer; the multiplier transformation ℒఓఉ: 𝑀 → 𝑀  is given by ℒఓఉ𝑓(𝓏) = 𝓏 +∑ ቀ𝔫ାఓଵାఓቁఉ 𝑎𝔫𝓏𝔫 , 𝜇 ≥ 0, 𝛽 ∈ ℤ = {⋯ , −1,0,1, ⋯ }ஶ𝔫ୀଶ . 
 
The Hurwitz–Lerch Zeta function [21] is 

𝜁గ,ఘ(𝓏) = 1𝜌గ + ෍ 𝓏𝔫(𝔫 + 𝜌)గஶ
𝔫ୀଵ , 

(𝜌 ∈ ℂ\𝑍௢ି = {0, −1, −2, … }, 𝜋 ∈ ℂ, where |𝓏| < 1, ℛ𝑒(𝜋) > 1, 𝓏 ∈ 𝜕𝑈°) 

By making use of the following normalized function, we have: 𝐺గ,ఘ(𝓏) = (1 + 𝜌)గൣ𝜁గ,ఘ(𝓏) − 𝜌ିగ൧ = 𝓏 + ∑ ቀଵାఘ𝔫ାఘቁగ   , 𝓏 ∈ 𝑈°ஶ𝔫ୀଶ . 

If 𝑓, 𝑔 ∈ 𝑀, where 𝑓 given by (1) and 𝑔 is defined by 

𝑔(𝓏) = 𝓏 + ෍ 𝑏𝔫𝓏𝔫ஶ
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(𝑓 ∗ 𝑔)(𝓏) = 𝓏 + ෍ 𝑎𝔫𝑏𝔫ஶ
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Using the convolution defined above, a new operator is next introduced as the 
original part of the present paper. 

  

2 p′′ (τ)
q′(τ)

)∣∣∣∣ ≤ m2, (5)

where
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∈ U
◦
, τ ∈ ∂U

◦\E(q) and m ≥ n. If ψ ∈ Φn[Ω,q], Ω is a set in C and
ψ
(

p(
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◦
.

Definition 5. See [6,7]: Assume that ψ : C5 ×U
◦ → C and
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6. Conclusions 
A new differential operator is introduced in the present paper in Definition 1. Using 

the concepts of fourth-order differential subordination and superordination, the classes 
of admissible functions are defined related to each of the two concepts, and using those 
definitions, several theorems are proved involving the newly defined operator regarding 
fourth-order subordinations in Section 3 and regarding fourth-order superordination in 
Section 4. By applying a well-known technique, a sandwich-type theorem is stated in 
Section 5 of the paper combining the subordination and superordination results obtained 
before. The results presented here could inspire future work involving other operators 
for obtaining fourth-order differential subordinations and superordinations. Certain 
special classes of univalent functions could be introduced using the operator defined in 
this paper, and studies for obtaining properties of those classes could be done invoking 
the notions of fourth-order differential subordination and superordination using the 
admissibility conditions given here in Definition 7., Definition 8. and Definition 9. and 
the best dominant obtained in Theorem 5. 
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where Θ(𝓏) is analytic and  Θ(0) = 0, |Θ(𝓏)| < 1. This subordination is indicated by 𝑓(𝓏) ≺ 𝐹(𝓏). 
Cho and Kim [20] proposed the multiplier transformation as a linear operator. Let 𝔫 

be any integer; the multiplier transformation ℒఓఉ: 𝑀 → 𝑀  is given by ℒఓఉ𝑓(𝓏) = 𝓏 +∑ ቀ𝔫ାఓଵାఓቁఉ 𝑎𝔫𝓏𝔫 , 𝜇 ≥ 0, 𝛽 ∈ ℤ = {⋯ , −1,0,1, ⋯ }ஶ𝔫ୀଶ . 
 
The Hurwitz–Lerch Zeta function [21] is 

𝜁గ,ఘ(𝓏) = 1𝜌గ + ෍ 𝓏𝔫(𝔫 + 𝜌)గஶ
𝔫ୀଵ , 

(𝜌 ∈ ℂ\𝑍௢ି = {0, −1, −2, … }, 𝜋 ∈ ℂ, where |𝓏| < 1, ℛ𝑒(𝜋) > 1, 𝓏 ∈ 𝜕𝑈°) 

By making use of the following normalized function, we have: 𝐺గ,ఘ(𝓏) = (1 + 𝜌)గൣ𝜁గ,ఘ(𝓏) − 𝜌ିగ൧ = 𝓏 + ∑ ቀଵାఘ𝔫ାఘቁగ   , 𝓏 ∈ 𝑈°ஶ𝔫ୀଶ . 

If 𝑓, 𝑔 ∈ 𝑀, where 𝑓 given by (1) and 𝑔 is defined by 

𝑔(𝓏) = 𝓏 + ෍ 𝑏𝔫𝓏𝔫ஶ
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then 

(𝑓 ∗ 𝑔)(𝓏) = 𝓏 + ෍ 𝑎𝔫𝑏𝔫ஶ
𝔫ୀଶ 𝓏𝔫 = (𝑔 ∗ 𝑓)(𝓏). 

Using the convolution defined above, a new operator is next introduced as the 
original part of the present paper. 
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6. Conclusions 
A new differential operator is introduced in the present paper in Definition 1. Using 

the concepts of fourth-order differential subordination and superordination, the classes 
of admissible functions are defined related to each of the two concepts, and using those 
definitions, several theorems are proved involving the newly defined operator regarding 
fourth-order subordinations in Section 3 and regarding fourth-order superordination in 
Section 4. By applying a well-known technique, a sandwich-type theorem is stated in 
Section 5 of the paper combining the subordination and superordination results obtained 
before. The results presented here could inspire future work involving other operators 
for obtaining fourth-order differential subordinations and superordinations. Certain 
special classes of univalent functions could be introduced using the operator defined in 
this paper, and studies for obtaining properties of those classes could be done invoking 
the notions of fourth-order differential subordination and superordination using the 
admissibility conditions given here in Definition 7., Definition 8. and Definition 9. and 
the best dominant obtained in Theorem 5. 
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Well-known notations and definitions used for obtaining the original results are next 
presented. 𝒦(U°) denotes the family of analytic functions in U°that have the form: 𝒦[a, 𝔫] = {𝑓 ∈ 𝒦(U°): 𝑓(𝓏) = 𝑎 + 𝑎𝔫𝓏𝔫 + 𝑎𝔫ାଵ𝓏𝔫ାଵ + ⋯ }, 𝑎 ∈ ℂ, 𝔫 ∈ 𝑁 = {1,2, … }, 

and let ℧𝔫 be the collection of the form: ℧𝔫 = {𝑓 ∈ 𝒦(𝑈°): 𝑓(𝓏) = 𝓏 + 𝑎𝔫ାଵ𝓏𝔫ାଵ + ⋯ }, 
where ℧ଵ = ℧, the subclass of normalized analytic functions in U°. Further, indicate by M 
the subfamily of 𝒦(U°) of the form: 

𝑓(𝓏) = 𝓏 + ෍ 𝑎𝔫𝓏𝔫 , 𝓏 ∈ U°ஶ
𝔫ୀଶ , (1)

which are univalent in U°. For analytic functions 𝑓 and 𝐹, the function 𝑓 is said to be 
subordinate to 𝐹, if 𝑓(𝓏) = 𝐹൫Θ(𝓏)൯, (𝓏 ∈ 𝑈°), 

where Θ(𝓏) is analytic and  Θ(0) = 0, |Θ(𝓏)| < 1. This subordination is indicated by 𝑓(𝓏) ≺ 𝐹(𝓏). 
Cho and Kim [20] proposed the multiplier transformation as a linear operator. Let 𝔫 

be any integer; the multiplier transformation ℒఓఉ: 𝑀 → 𝑀  is given by ℒఓఉ𝑓(𝓏) = 𝓏 +∑ ቀ𝔫ାఓଵାఓቁఉ 𝑎𝔫𝓏𝔫 , 𝜇 ≥ 0, 𝛽 ∈ ℤ = {⋯ , −1,0,1, ⋯ }ஶ𝔫ୀଶ . 
 
The Hurwitz–Lerch Zeta function [21] is 

𝜁గ,ఘ(𝓏) = 1𝜌గ + ෍ 𝓏𝔫(𝔫 + 𝜌)గஶ
𝔫ୀଵ , 

(𝜌 ∈ ℂ\𝑍௢ି = {0, −1, −2, … }, 𝜋 ∈ ℂ, where |𝓏| < 1, ℛ𝑒(𝜋) > 1, 𝓏 ∈ 𝜕𝑈°) 

By making use of the following normalized function, we have: 𝐺గ,ఘ(𝓏) = (1 + 𝜌)గൣ𝜁గ,ఘ(𝓏) − 𝜌ିగ൧ = 𝓏 + ∑ ቀଵାఘ𝔫ାఘቁగ   , 𝓏 ∈ 𝑈°ஶ𝔫ୀଶ . 

If 𝑓, 𝑔 ∈ 𝑀, where 𝑓 given by (1) and 𝑔 is defined by 

𝑔(𝓏) = 𝓏 + ෍ 𝑏𝔫𝓏𝔫ஶ
𝔫ୀଶ  , 𝓏 ∈ U°, 

then 

(𝑓 ∗ 𝑔)(𝓏) = 𝓏 + ෍ 𝑎𝔫𝑏𝔫ஶ
𝔫ୀଶ 𝓏𝔫 = (𝑔 ∗ 𝑓)(𝓏). 

Using the convolution defined above, a new operator is next introduced as the 
original part of the present paper. 

  

) ≺ ψ
(
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𝑓(𝓏) = 𝓏 + ෍ 𝑎𝔫𝓏𝔫 , 𝓏 ∈ U°ஶ
𝔫ୀଶ , (1)

which are univalent in U°. For analytic functions 𝑓 and 𝐹, the function 𝑓 is said to be 
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be any integer; the multiplier transformation ℒఓఉ: 𝑀 → 𝑀  is given by ℒఓఉ𝑓(𝓏) = 𝓏 +∑ ቀ𝔫ାఓଵାఓቁఉ 𝑎𝔫𝓏𝔫 , 𝜇 ≥ 0, 𝛽 ∈ ℤ = {⋯ , −1,0,1, ⋯ }ஶ𝔫ୀଶ . 
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𝜁గ,ఘ(𝓏) = 1𝜌గ + ෍ 𝓏𝔫(𝔫 + 𝜌)గஶ
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(𝜌 ∈ ℂ\𝑍௢ି = {0, −1, −2, … }, 𝜋 ∈ ℂ, where |𝓏| < 1, ℛ𝑒(𝜋) > 1, 𝓏 ∈ 𝜕𝑈°) 
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𝔫ୀଶ 𝓏𝔫 = (𝑔 ∗ 𝑓)(𝓏). 

Using the convolution defined above, a new operator is next introduced as the 
original part of the present paper. 

  

) is called a solution of the differential superordination. An analytic function q(
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) is
denoted a subordinate of the solutions of the differential superordination or more simply a subordinate
if q(
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) of (6) is referred to as the best subordinate. We note that
the best subordinate is unique up to a rotation of U

◦
.

Definition 6. See [6,7]: Assume q(
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) ∈ K[a, n], q′(
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) 6= 0 and Ω is a set in C. The class of
admissible functions Φ′n[Ω,q] consists of those functions:

ψ : C5 ×U
◦
→ C

that satisfy the following admissibility condition:

ψ(r, s, t, u, b;
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) /∈ Ω,

wherever

r = q(
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By making use of the following normalized function, we have: 𝐺గ,ఘ(𝓏) = (1 + 𝜌)గൣ𝜁గ,ఘ(𝓏) − 𝜌ିగ൧ = 𝓏 + ∑ ቀଵାఘ𝔫ାఘቁగ   , 𝓏 ∈ 𝑈°ஶ𝔫ୀଶ . 

If 𝑓, 𝑔 ∈ 𝑀, where 𝑓 given by (1) and 𝑔 is defined by 

𝑔(𝓏) = 𝓏 + ෍ 𝑏𝔫𝓏𝔫ஶ
𝔫ୀଶ  , 𝓏 ∈ U°, 

then 

(𝑓 ∗ 𝑔)(𝓏) = 𝓏 + ෍ 𝑎𝔫𝑏𝔫ஶ
𝔫ୀଶ 𝓏𝔫 = (𝑔 ∗ 𝑓)(𝓏). 

Using the convolution defined above, a new operator is next introduced as the 
original part of the present paper. 
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Well-known notations and definitions used for obtaining the original results are next 
presented. 𝒦(U°) denotes the family of analytic functions in U°that have the form: 𝒦[a, 𝔫] = {𝑓 ∈ 𝒦(U°): 𝑓(𝓏) = 𝑎 + 𝑎𝔫𝓏𝔫 + 𝑎𝔫ାଵ𝓏𝔫ାଵ + ⋯ }, 𝑎 ∈ ℂ, 𝔫 ∈ 𝑁 = {1,2, … }, 
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where ℧ଵ = ℧, the subclass of normalized analytic functions in U°. Further, indicate by M 
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𝑓(𝓏) = 𝓏 + ෍ 𝑎𝔫𝓏𝔫 , 𝓏 ∈ U°ஶ
𝔫ୀଶ , (1)

which are univalent in U°. For analytic functions 𝑓 and 𝐹, the function 𝑓 is said to be 
subordinate to 𝐹, if 𝑓(𝓏) = 𝐹൫Θ(𝓏)൯, (𝓏 ∈ 𝑈°), 

where Θ(𝓏) is analytic and  Θ(0) = 0, |Θ(𝓏)| < 1. This subordination is indicated by 𝑓(𝓏) ≺ 𝐹(𝓏). 
Cho and Kim [20] proposed the multiplier transformation as a linear operator. Let 𝔫 

be any integer; the multiplier transformation ℒఓఉ: 𝑀 → 𝑀  is given by ℒఓఉ𝑓(𝓏) = 𝓏 +∑ ቀ𝔫ାఓଵାఓቁఉ 𝑎𝔫𝓏𝔫 , 𝜇 ≥ 0, 𝛽 ∈ ℤ = {⋯ , −1,0,1, ⋯ }ஶ𝔫ୀଶ . 
 
The Hurwitz–Lerch Zeta function [21] is 

𝜁గ,ఘ(𝓏) = 1𝜌గ + ෍ 𝓏𝔫(𝔫 + 𝜌)గஶ
𝔫ୀଵ , 

(𝜌 ∈ ℂ\𝑍௢ି = {0, −1, −2, … }, 𝜋 ∈ ℂ, where |𝓏| < 1, ℛ𝑒(𝜋) > 1, 𝓏 ∈ 𝜕𝑈°) 

By making use of the following normalized function, we have: 𝐺గ,ఘ(𝓏) = (1 + 𝜌)గൣ𝜁గ,ఘ(𝓏) − 𝜌ିగ൧ = 𝓏 + ∑ ቀଵାఘ𝔫ାఘቁగ   , 𝓏 ∈ 𝑈°ஶ𝔫ୀଶ . 

If 𝑓, 𝑔 ∈ 𝑀, where 𝑓 given by (1) and 𝑔 is defined by 

𝑔(𝓏) = 𝓏 + ෍ 𝑏𝔫𝓏𝔫ஶ
𝔫ୀଶ  , 𝓏 ∈ U°, 

then 

(𝑓 ∗ 𝑔)(𝓏) = 𝓏 + ෍ 𝑎𝔫𝑏𝔫ஶ
𝔫ୀଶ 𝓏𝔫 = (𝑔 ∗ 𝑓)(𝓏). 

Using the convolution defined above, a new operator is next introduced as the 
original part of the present paper. 
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Well-known notations and definitions used for obtaining the original results are next 
presented. 𝒦(U°) denotes the family of analytic functions in U°that have the form: 𝒦[a, 𝔫] = {𝑓 ∈ 𝒦(U°): 𝑓(𝓏) = 𝑎 + 𝑎𝔫𝓏𝔫 + 𝑎𝔫ାଵ𝓏𝔫ାଵ + ⋯ }, 𝑎 ∈ ℂ, 𝔫 ∈ 𝑁 = {1,2, … }, 
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the subfamily of 𝒦(U°) of the form: 

𝑓(𝓏) = 𝓏 + ෍ 𝑎𝔫𝓏𝔫 , 𝓏 ∈ U°ஶ
𝔫ୀଶ , (1)

which are univalent in U°. For analytic functions 𝑓 and 𝐹, the function 𝑓 is said to be 
subordinate to 𝐹, if 𝑓(𝓏) = 𝐹൫Θ(𝓏)൯, (𝓏 ∈ 𝑈°), 

where Θ(𝓏) is analytic and  Θ(0) = 0, |Θ(𝓏)| < 1. This subordination is indicated by 𝑓(𝓏) ≺ 𝐹(𝓏). 
Cho and Kim [20] proposed the multiplier transformation as a linear operator. Let 𝔫 

be any integer; the multiplier transformation ℒఓఉ: 𝑀 → 𝑀  is given by ℒఓఉ𝑓(𝓏) = 𝓏 +∑ ቀ𝔫ାఓଵାఓቁఉ 𝑎𝔫𝓏𝔫 , 𝜇 ≥ 0, 𝛽 ∈ ℤ = {⋯ , −1,0,1, ⋯ }ஶ𝔫ୀଶ . 
 
The Hurwitz–Lerch Zeta function [21] is 

𝜁గ,ఘ(𝓏) = 1𝜌గ + ෍ 𝓏𝔫(𝔫 + 𝜌)గஶ
𝔫ୀଵ , 

(𝜌 ∈ ℂ\𝑍௢ି = {0, −1, −2, … }, 𝜋 ∈ ℂ, where |𝓏| < 1, ℛ𝑒(𝜋) > 1, 𝓏 ∈ 𝜕𝑈°) 

By making use of the following normalized function, we have: 𝐺గ,ఘ(𝓏) = (1 + 𝜌)గൣ𝜁గ,ఘ(𝓏) − 𝜌ିగ൧ = 𝓏 + ∑ ቀଵାఘ𝔫ାఘቁగ   , 𝓏 ∈ 𝑈°ஶ𝔫ୀଶ . 

If 𝑓, 𝑔 ∈ 𝑀, where 𝑓 given by (1) and 𝑔 is defined by 

𝑔(𝓏) = 𝓏 + ෍ 𝑏𝔫𝓏𝔫ஶ
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(𝑓 ∗ 𝑔)(𝓏) = 𝓏 + ෍ 𝑎𝔫𝑏𝔫ஶ
𝔫ୀଶ 𝓏𝔫 = (𝑔 ∗ 𝑓)(𝓏). 

Using the convolution defined above, a new operator is next introduced as the 
original part of the present paper. 
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Well-known notations and definitions used for obtaining the original results are next 
presented. 𝒦(U°) denotes the family of analytic functions in U°that have the form: 𝒦[a, 𝔫] = {𝑓 ∈ 𝒦(U°): 𝑓(𝓏) = 𝑎 + 𝑎𝔫𝓏𝔫 + 𝑎𝔫ାଵ𝓏𝔫ାଵ + ⋯ }, 𝑎 ∈ ℂ, 𝔫 ∈ 𝑁 = {1,2, … }, 
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where ℧ଵ = ℧, the subclass of normalized analytic functions in U°. Further, indicate by M 
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subordinate to 𝐹, if 𝑓(𝓏) = 𝐹൫Θ(𝓏)൯, (𝓏 ∈ 𝑈°), 

where Θ(𝓏) is analytic and  Θ(0) = 0, |Θ(𝓏)| < 1. This subordination is indicated by 𝑓(𝓏) ≺ 𝐹(𝓏). 
Cho and Kim [20] proposed the multiplier transformation as a linear operator. Let 𝔫 

be any integer; the multiplier transformation ℒఓఉ: 𝑀 → 𝑀  is given by ℒఓఉ𝑓(𝓏) = 𝓏 +∑ ቀ𝔫ାఓଵାఓቁఉ 𝑎𝔫𝓏𝔫 , 𝜇 ≥ 0, 𝛽 ∈ ℤ = {⋯ , −1,0,1, ⋯ }ஶ𝔫ୀଶ . 
 
The Hurwitz–Lerch Zeta function [21] is 

𝜁గ,ఘ(𝓏) = 1𝜌గ + ෍ 𝓏𝔫(𝔫 + 𝜌)గஶ
𝔫ୀଵ , 

(𝜌 ∈ ℂ\𝑍௢ି = {0, −1, −2, … }, 𝜋 ∈ ℂ, where |𝓏| < 1, ℛ𝑒(𝜋) > 1, 𝓏 ∈ 𝜕𝑈°) 

By making use of the following normalized function, we have: 𝐺గ,ఘ(𝓏) = (1 + 𝜌)గൣ𝜁గ,ఘ(𝓏) − 𝜌ିగ൧ = 𝓏 + ∑ ቀଵାఘ𝔫ାఘቁగ   , 𝓏 ∈ 𝑈°ஶ𝔫ୀଶ . 

If 𝑓, 𝑔 ∈ 𝑀, where 𝑓 given by (1) and 𝑔 is defined by 

𝑔(𝓏) = 𝓏 + ෍ 𝑏𝔫𝓏𝔫ஶ
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then 

(𝑓 ∗ 𝑔)(𝓏) = 𝓏 + ෍ 𝑎𝔫𝑏𝔫ஶ
𝔫ୀଶ 𝓏𝔫 = (𝑔 ∗ 𝑓)(𝓏). 
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original part of the present paper. 
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Well-known notations and definitions used for obtaining the original results are next 
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where ℧ଵ = ℧, the subclass of normalized analytic functions in U°. Further, indicate by M 
the subfamily of 𝒦(U°) of the form: 

𝑓(𝓏) = 𝓏 + ෍ 𝑎𝔫𝓏𝔫 , 𝓏 ∈ U°ஶ
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where Θ(𝓏) is analytic and  Θ(0) = 0, |Θ(𝓏)| < 1. This subordination is indicated by 𝑓(𝓏) ≺ 𝐹(𝓏). 
Cho and Kim [20] proposed the multiplier transformation as a linear operator. Let 𝔫 

be any integer; the multiplier transformation ℒఓఉ: 𝑀 → 𝑀  is given by ℒఓఉ𝑓(𝓏) = 𝓏 +∑ ቀ𝔫ାఓଵାఓቁఉ 𝑎𝔫𝓏𝔫 , 𝜇 ≥ 0, 𝛽 ∈ ℤ = {⋯ , −1,0,1, ⋯ }ஶ𝔫ୀଶ . 
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𝜁గ,ఘ(𝓏) = 1𝜌గ + ෍ 𝓏𝔫(𝔫 + 𝜌)గஶ
𝔫ୀଵ , 

(𝜌 ∈ ℂ\𝑍௢ି = {0, −1, −2, … }, 𝜋 ∈ ℂ, where |𝓏| < 1, ℛ𝑒(𝜋) > 1, 𝓏 ∈ 𝜕𝑈°) 

By making use of the following normalized function, we have: 𝐺గ,ఘ(𝓏) = (1 + 𝜌)గൣ𝜁గ,ఘ(𝓏) − 𝜌ିగ൧ = 𝓏 + ∑ ቀଵାఘ𝔫ାఘቁగ   , 𝓏 ∈ 𝑈°ஶ𝔫ୀଶ . 

If 𝑓, 𝑔 ∈ 𝑀, where 𝑓 given by (1) and 𝑔 is defined by 

𝑔(𝓏) = 𝓏 + ෍ 𝑏𝔫𝓏𝔫ஶ
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(𝑓 ∗ 𝑔)(𝓏) = 𝓏 + ෍ 𝑎𝔫𝑏𝔫ஶ
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Using the convolution defined above, a new operator is next introduced as the 
original part of the present paper. 
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Well-known notations and definitions used for obtaining the original results are next 
presented. 𝒦(U°) denotes the family of analytic functions in U°that have the form: 𝒦[a, 𝔫] = {𝑓 ∈ 𝒦(U°): 𝑓(𝓏) = 𝑎 + 𝑎𝔫𝓏𝔫 + 𝑎𝔫ାଵ𝓏𝔫ାଵ + ⋯ }, 𝑎 ∈ ℂ, 𝔫 ∈ 𝑁 = {1,2, … }, 

and let ℧𝔫 be the collection of the form: ℧𝔫 = {𝑓 ∈ 𝒦(𝑈°): 𝑓(𝓏) = 𝓏 + 𝑎𝔫ାଵ𝓏𝔫ାଵ + ⋯ }, 
where ℧ଵ = ℧, the subclass of normalized analytic functions in U°. Further, indicate by M 
the subfamily of 𝒦(U°) of the form: 

𝑓(𝓏) = 𝓏 + ෍ 𝑎𝔫𝓏𝔫 , 𝓏 ∈ U°ஶ
𝔫ୀଶ , (1)

which are univalent in U°. For analytic functions 𝑓 and 𝐹, the function 𝑓 is said to be 
subordinate to 𝐹, if 𝑓(𝓏) = 𝐹൫Θ(𝓏)൯, (𝓏 ∈ 𝑈°), 

where Θ(𝓏) is analytic and  Θ(0) = 0, |Θ(𝓏)| < 1. This subordination is indicated by 𝑓(𝓏) ≺ 𝐹(𝓏). 
Cho and Kim [20] proposed the multiplier transformation as a linear operator. Let 𝔫 

be any integer; the multiplier transformation ℒఓఉ: 𝑀 → 𝑀  is given by ℒఓఉ𝑓(𝓏) = 𝓏 +∑ ቀ𝔫ାఓଵାఓቁఉ 𝑎𝔫𝓏𝔫 , 𝜇 ≥ 0, 𝛽 ∈ ℤ = {⋯ , −1,0,1, ⋯ }ஶ𝔫ୀଶ . 
 
The Hurwitz–Lerch Zeta function [21] is 

𝜁గ,ఘ(𝓏) = 1𝜌గ + ෍ 𝓏𝔫(𝔫 + 𝜌)గஶ
𝔫ୀଵ , 

(𝜌 ∈ ℂ\𝑍௢ି = {0, −1, −2, … }, 𝜋 ∈ ℂ, where |𝓏| < 1, ℛ𝑒(𝜋) > 1, 𝓏 ∈ 𝜕𝑈°) 

By making use of the following normalized function, we have: 𝐺గ,ఘ(𝓏) = (1 + 𝜌)గൣ𝜁గ,ఘ(𝓏) − 𝜌ିగ൧ = 𝓏 + ∑ ቀଵାఘ𝔫ାఘቁగ   , 𝓏 ∈ 𝑈°ஶ𝔫ୀଶ . 

If 𝑓, 𝑔 ∈ 𝑀, where 𝑓 given by (1) and 𝑔 is defined by 

𝑔(𝓏) = 𝓏 + ෍ 𝑏𝔫𝓏𝔫ஶ
𝔫ୀଶ  , 𝓏 ∈ U°, 

then 

(𝑓 ∗ 𝑔)(𝓏) = 𝓏 + ෍ 𝑎𝔫𝑏𝔫ஶ
𝔫ୀଶ 𝓏𝔫 = (𝑔 ∗ 𝑓)(𝓏). 

Using the convolution defined above, a new operator is next introduced as the 
original part of the present paper. 
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Well-known notations and definitions used for obtaining the original results are next 
presented. 𝒦(U°) denotes the family of analytic functions in U°that have the form: 𝒦[a, 𝔫] = {𝑓 ∈ 𝒦(U°): 𝑓(𝓏) = 𝑎 + 𝑎𝔫𝓏𝔫 + 𝑎𝔫ାଵ𝓏𝔫ାଵ + ⋯ }, 𝑎 ∈ ℂ, 𝔫 ∈ 𝑁 = {1,2, … }, 

and let ℧𝔫 be the collection of the form: ℧𝔫 = {𝑓 ∈ 𝒦(𝑈°): 𝑓(𝓏) = 𝓏 + 𝑎𝔫ାଵ𝓏𝔫ାଵ + ⋯ }, 
where ℧ଵ = ℧, the subclass of normalized analytic functions in U°. Further, indicate by M 
the subfamily of 𝒦(U°) of the form: 

𝑓(𝓏) = 𝓏 + ෍ 𝑎𝔫𝓏𝔫 , 𝓏 ∈ U°ஶ
𝔫ୀଶ , (1)

which are univalent in U°. For analytic functions 𝑓 and 𝐹, the function 𝑓 is said to be 
subordinate to 𝐹, if 𝑓(𝓏) = 𝐹൫Θ(𝓏)൯, (𝓏 ∈ 𝑈°), 

where Θ(𝓏) is analytic and  Θ(0) = 0, |Θ(𝓏)| < 1. This subordination is indicated by 𝑓(𝓏) ≺ 𝐹(𝓏). 
Cho and Kim [20] proposed the multiplier transformation as a linear operator. Let 𝔫 

be any integer; the multiplier transformation ℒఓఉ: 𝑀 → 𝑀  is given by ℒఓఉ𝑓(𝓏) = 𝓏 +∑ ቀ𝔫ାఓଵାఓቁఉ 𝑎𝔫𝓏𝔫 , 𝜇 ≥ 0, 𝛽 ∈ ℤ = {⋯ , −1,0,1, ⋯ }ஶ𝔫ୀଶ . 
 
The Hurwitz–Lerch Zeta function [21] is 

𝜁గ,ఘ(𝓏) = 1𝜌గ + ෍ 𝓏𝔫(𝔫 + 𝜌)గஶ
𝔫ୀଵ , 

(𝜌 ∈ ℂ\𝑍௢ି = {0, −1, −2, … }, 𝜋 ∈ ℂ, where |𝓏| < 1, ℛ𝑒(𝜋) > 1, 𝓏 ∈ 𝜕𝑈°) 

By making use of the following normalized function, we have: 𝐺గ,ఘ(𝓏) = (1 + 𝜌)గൣ𝜁గ,ఘ(𝓏) − 𝜌ିగ൧ = 𝓏 + ∑ ቀଵାఘ𝔫ାఘቁగ   , 𝓏 ∈ 𝑈°ஶ𝔫ୀଶ . 

If 𝑓, 𝑔 ∈ 𝑀, where 𝑓 given by (1) and 𝑔 is defined by 

𝑔(𝓏) = 𝓏 + ෍ 𝑏𝔫𝓏𝔫ஶ
𝔫ୀଶ  , 𝓏 ∈ U°, 

then 

(𝑓 ∗ 𝑔)(𝓏) = 𝓏 + ෍ 𝑎𝔫𝑏𝔫ஶ
𝔫ୀଶ 𝓏𝔫 = (𝑔 ∗ 𝑓)(𝓏). 

Using the convolution defined above, a new operator is next introduced as the 
original part of the present paper. 
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(𝜌 ∈ ℂ\𝑍௢ି = {0, −1, −2, … }, 𝜋 ∈ ℂ, where |𝓏| < 1, ℛ𝑒(𝜋) > 1, 𝓏 ∈ 𝜕𝑈°) 

By making use of the following normalized function, we have: 𝐺గ,ఘ(𝓏) = (1 + 𝜌)గൣ𝜁గ,ఘ(𝓏) − 𝜌ିగ൧ = 𝓏 + ∑ ቀଵାఘ𝔫ାఘቁగ   , 𝓏 ∈ 𝑈°ஶ𝔫ୀଶ . 
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𝔫ୀଶ 𝓏𝔫 = (𝑔 ∗ 𝑓)(𝓏). 

Using the convolution defined above, a new operator is next introduced as the 
original part of the present paper. 
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Definition 1. Assume  𝑓 ∈ 𝑀, 𝓏 ∈ 𝜕𝑈°, 𝜌 ∈ ℂ\𝑍௢ି = {0, −1, −2, … }, 𝑤ℎ𝑒𝑟𝑒 |𝓏| < 1, ℛ𝑒(𝜋) >1, 𝜇 ≥ 0, 𝛽 ∈ ℤ, 𝜋 ∈ ℂ; we define new operator 𝛤గ,ఘ,ఉ,ఓ𝑓(𝓏): 𝑀 → 𝑀, where 

Γగ,ఘ,ఉ,ఓ𝑓(𝓏) = 𝐺గ,ఘ(𝓏) ∗ ℒఓఉ𝑓(𝓏) = 𝓏 + ෍ ൬1 + 𝜌𝔫 + 𝜌൰గ ൬𝔫 + 𝜇1 + 𝜇൰ఉ 𝑎𝔫𝓏𝔫ஶ
𝔫ୀଶ . (2)

After a simple computation, we obtain the relation: 𝓏 ቀΓగ,ఘ,ఉ,ఓ𝑓(𝓏)ቁᇱ = (1 + 𝜇)Γగ,ఘ,ఉାଵ,ఓ𝑓(𝓏) − 𝜇 Γగ,ఘ,ఉ,ఓ𝑓(𝓏). (3)

2. Problem Formulation 
The subcollection of various analytic and univalent functions, which are connected 

to differential subordination and superordination in the open unit disk U°, has been ini-
tiated in recent times from a variety of intriguing outcomes and perspectives (cf. 
[22,23,24,25,7,26,27,28]). Additionally, several authors obtained good results on second- 
and third-order differential subordination; e.g., [29,30,31–34,35]. 

In order to demonstrate the original results, we will need the basic concepts of 
fourth-order theory previously introduced, which we present below showing the papers 
where they first appeared. 

Definition 2. Ref. [4]: Assume that Ҩ is called the set of functions 𝕢 that are univalent and 
analytic on the set 𝑈°\𝐸(𝕢) , where 𝐸(𝕢) = {𝒥: 𝒥 ∈ 𝜕𝑈° 𝑎𝑛𝑑 𝑙𝑖𝑚𝓏→𝒥 𝕢(𝓏) = ∞}  are such that 𝑚𝑖𝑛|𝕢ᇱ(𝒥)| = 𝛾 > 0 𝑓𝑜𝑟 𝒥 ∈ 𝜕𝑈°\𝐸(𝕢). In addition, indicate by Ҩ(𝑎) the subclass of function 𝕢 for which 𝕢(0) = 𝑎. Note that  Ҩଵ = Ҩ(1) = {𝕢(𝓏) ∈ Ҩ: 𝕢(0) = 1}. 

Definition 3. See [6,7]: Assume that 𝓀 is univalent in 𝑈°and 𝜓: ℂହ × 𝑈° → ℂ. If the analytic 
function 𝑝 fulfills the fourth-order differential subordination 𝜓(𝑝(𝓏), 𝓏𝑝ᇱ(𝓏), 𝓏ଶ𝑝ᇱᇱ(𝓏), 𝓏ଷ𝑝ᇱᇱᇱ(𝓏), 𝓏ସ𝑝ᇱᇱᇱᇱ(𝓏); 𝓏) ≺ 𝓀(𝓏), (4)

then the function 𝑝 is named a solution of the differential subordination (4). A univalent func-
tion 𝕢 is named a dominant of the solutions of the differential subordination if 𝑝 ≺ 𝕢 for all 𝑝 
satisfying (4). A dominant 𝕢෥(𝓏) that fulfills 𝕢෥ ≺ 𝕢 for all dominants 𝕢 of (4) is named the best 
dominant. 

Definition 4. See [6,7]: Assume that 𝕢 ∈ Ҩ and 𝛺 is a set in ℂ. The admissible functions class 𝛷𝓃[𝛺, 𝕢], (𝔫 ∈ 𝑁\{2}) consists of those functions 𝜓: ℂହ × 𝑈° → ℂ that fulfill the following ad-
missibility condition: 

ψ(𝔯, 𝔰, 𝔱, 𝔲, 𝑏; 𝓏) ∉ Ω, 
wherever 𝔯 = 𝕢(𝜏)  , 𝔰 = 𝔪𝜏𝕢ᇱ(𝜏) ,    ℛℯ ൬ 𝔱𝔰 + 1൰ ≥ 𝔪ℛℯ ቆ1 + 𝜏𝕢ᇱᇱ(𝜏)𝕢ᇱ(𝜏) ቇ, 

ℯℛ ቀ𝔲𝔰ቁ ≥ 𝔪ଶℛℯ ቀఛమ𝕢ᇲᇲᇲ(ఛ)𝕢ᇲ(ఛ) ቁ ,ℯℛ ቀ௕௦ቁ ≥ 𝔪ଷℛℯ ቀఛయ𝕢ᇲᇲᇲᇲ(ఛ)𝕢ᇲ(ఛ) ቁ, ( 𝓏 ∈ 𝑈°, 𝜏 ∈ 𝜕𝑈°\E(𝕢)  𝑎𝑛𝑑   𝔪 ≥ 𝔫). 
 

Theorem 1. See [7]: Let 𝑝 ∈ 𝒦[𝑎, 𝔫], ( 𝔫 ∈ 𝑁\{2}). In addition, let 𝕢 ∈ Ҩ and fulfill the condi-
tions: 

(a) satisfy the conditions

Re
(
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be any integer; the multiplier transformation ℒఓఉ: 𝑀 → 𝑀  is given by ℒఓఉ𝑓(𝓏) = 𝓏 +∑ ቀ𝔫ାఓଵାఓቁఉ 𝑎𝔫𝓏𝔫 , 𝜇 ≥ 0, 𝛽 ∈ ℤ = {⋯ , −1,0,1, ⋯ }ஶ𝔫ୀଶ . 
 
The Hurwitz–Lerch Zeta function [21] is 

𝜁గ,ఘ(𝓏) = 1𝜌గ + ෍ 𝓏𝔫(𝔫 + 𝜌)గஶ
𝔫ୀଵ , 

(𝜌 ∈ ℂ\𝑍௢ି = {0, −1, −2, … }, 𝜋 ∈ ℂ, where |𝓏| < 1, ℛ𝑒(𝜋) > 1, 𝓏 ∈ 𝜕𝑈°) 

By making use of the following normalized function, we have: 𝐺గ,ఘ(𝓏) = (1 + 𝜌)గൣ𝜁గ,ఘ(𝓏) − 𝜌ିగ൧ = 𝓏 + ∑ ቀଵାఘ𝔫ାఘቁగ   , 𝓏 ∈ 𝑈°ஶ𝔫ୀଶ . 
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original part of the present paper. 
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original part of the present paper. 
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where Θ(𝓏) is analytic and  Θ(0) = 0, |Θ(𝓏)| < 1. This subordination is indicated by 𝑓(𝓏) ≺ 𝐹(𝓏). 
Cho and Kim [20] proposed the multiplier transformation as a linear operator. Let 𝔫 

be any integer; the multiplier transformation ℒఓఉ: 𝑀 → 𝑀  is given by ℒఓఉ𝑓(𝓏) = 𝓏 +∑ ቀ𝔫ାఓଵାఓቁఉ 𝑎𝔫𝓏𝔫 , 𝜇 ≥ 0, 𝛽 ∈ ℤ = {⋯ , −1,0,1, ⋯ }ஶ𝔫ୀଶ . 
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Using those known definitions and results, in the next two sections, we prove new
fourth-order differential subordination and superordination results involving the operator
introduced in Definition 1. Further, in the last section of the paper, we combine the results
for obtaining a sandwich-type theorem.

3. Fourth-Order Differential Subordination Results Using the Operator Γπ,ρ,β,µf(z)

We give the class of admissible functions, which is required in proving differential
subordination theorems using the operator Γπ,ρ,β,µ f (z) given by (2).
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to differential subordination and superordination in the open unit disk U°, has been ini-
tiated in recent times from a variety of intriguing outcomes and perspectives (cf. 
[22,23,24,25,7,26,27,28]). Additionally, several authors obtained good results on second- 
and third-order differential subordination; e.g., [29,30,31–34,35]. 

In order to demonstrate the original results, we will need the basic concepts of 
fourth-order theory previously introduced, which we present below showing the papers 
where they first appeared. 

Definition 2. Ref. [4]: Assume that Ҩ is called the set of functions 𝕢 that are univalent and 
analytic on the set 𝑈°\𝐸(𝕢) , where 𝐸(𝕢) = {𝒥: 𝒥 ∈ 𝜕𝑈° 𝑎𝑛𝑑 𝑙𝑖𝑚𝓏→𝒥 𝕢(𝓏) = ∞}  are such that 𝑚𝑖𝑛|𝕢ᇱ(𝒥)| = 𝛾 > 0 𝑓𝑜𝑟 𝒥 ∈ 𝜕𝑈°\𝐸(𝕢). In addition, indicate by Ҩ(𝑎) the subclass of function 𝕢 for which 𝕢(0) = 𝑎. Note that  Ҩଵ = Ҩ(1) = {𝕢(𝓏) ∈ Ҩ: 𝕢(0) = 1}. 

Definition 3. See [6,7]: Assume that 𝓀 is univalent in 𝑈°and 𝜓: ℂହ × 𝑈° → ℂ. If the analytic 
function 𝑝 fulfills the fourth-order differential subordination 𝜓(𝑝(𝓏), 𝓏𝑝ᇱ(𝓏), 𝓏ଶ𝑝ᇱᇱ(𝓏), 𝓏ଷ𝑝ᇱᇱᇱ(𝓏), 𝓏ସ𝑝ᇱᇱᇱᇱ(𝓏); 𝓏) ≺ 𝓀(𝓏), (4)

then the function 𝑝 is named a solution of the differential subordination (4). A univalent func-
tion 𝕢 is named a dominant of the solutions of the differential subordination if 𝑝 ≺ 𝕢 for all 𝑝 
satisfying (4). A dominant 𝕢෥(𝓏) that fulfills 𝕢෥ ≺ 𝕢 for all dominants 𝕢 of (4) is named the best 
dominant. 

Definition 4. See [6,7]: Assume that 𝕢 ∈ Ҩ and 𝛺 is a set in ℂ. The admissible functions class 𝛷𝓃[𝛺, 𝕢], (𝔫 ∈ 𝑁\{2}) consists of those functions 𝜓: ℂହ × 𝑈° → ℂ that fulfill the following ad-
missibility condition: 

ψ(𝔯, 𝔰, 𝔱, 𝔲, 𝑏; 𝓏) ∉ Ω, 
wherever 𝔯 = 𝕢(𝜏)  , 𝔰 = 𝔪𝜏𝕢ᇱ(𝜏) ,    ℛℯ ൬ 𝔱𝔰 + 1൰ ≥ 𝔪ℛℯ ቆ1 + 𝜏𝕢ᇱᇱ(𝜏)𝕢ᇱ(𝜏) ቇ, 

ℯℛ ቀ𝔲𝔰ቁ ≥ 𝔪ଶℛℯ ቀఛమ𝕢ᇲᇲᇲ(ఛ)𝕢ᇲ(ఛ) ቁ ,ℯℛ ቀ௕௦ቁ ≥ 𝔪ଷℛℯ ቀఛయ𝕢ᇲᇲᇲᇲ(ఛ)𝕢ᇲ(ఛ) ቁ, ( 𝓏 ∈ 𝑈°, 𝜏 ∈ 𝜕𝑈°\E(𝕢)  𝑎𝑛𝑑   𝔪 ≥ 𝔫). 
 

Theorem 1. See [7]: Let 𝑝 ∈ 𝒦[𝑎, 𝔫], ( 𝔫 ∈ 𝑁\{2}). In addition, let 𝕢 ∈ Ҩ and fulfill the condi-
tions: 

1 ∩ K1 and Ω is a set in C. Let θΓ[Ω,q] be the class of ad-
missible functions that consists of those functions Y : C5 ×U

◦ → C that satisfy the following
admissibility condition:

Y(r, s,x,y,g,
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Well-known notations and definitions used for obtaining the original results are next 
presented. 𝒦(U°) denotes the family of analytic functions in U°that have the form: 𝒦[a, 𝔫] = {𝑓 ∈ 𝒦(U°): 𝑓(𝓏) = 𝑎 + 𝑎𝔫𝓏𝔫 + 𝑎𝔫ାଵ𝓏𝔫ାଵ + ⋯ }, 𝑎 ∈ ℂ, 𝔫 ∈ 𝑁 = {1,2, … }, 

and let ℧𝔫 be the collection of the form: ℧𝔫 = {𝑓 ∈ 𝒦(𝑈°): 𝑓(𝓏) = 𝓏 + 𝑎𝔫ାଵ𝓏𝔫ାଵ + ⋯ }, 
where ℧ଵ = ℧, the subclass of normalized analytic functions in U°. Further, indicate by M 
the subfamily of 𝒦(U°) of the form: 

𝑓(𝓏) = 𝓏 + ෍ 𝑎𝔫𝓏𝔫 , 𝓏 ∈ U°ஶ
𝔫ୀଶ , (1)

which are univalent in U°. For analytic functions 𝑓 and 𝐹, the function 𝑓 is said to be 
subordinate to 𝐹, if 𝑓(𝓏) = 𝐹൫Θ(𝓏)൯, (𝓏 ∈ 𝑈°), 

where Θ(𝓏) is analytic and  Θ(0) = 0, |Θ(𝓏)| < 1. This subordination is indicated by 𝑓(𝓏) ≺ 𝐹(𝓏). 
Cho and Kim [20] proposed the multiplier transformation as a linear operator. Let 𝔫 

be any integer; the multiplier transformation ℒఓఉ: 𝑀 → 𝑀  is given by ℒఓఉ𝑓(𝓏) = 𝓏 +∑ ቀ𝔫ାఓଵାఓቁఉ 𝑎𝔫𝓏𝔫 , 𝜇 ≥ 0, 𝛽 ∈ ℤ = {⋯ , −1,0,1, ⋯ }ஶ𝔫ୀଶ . 
 
The Hurwitz–Lerch Zeta function [21] is 

𝜁గ,ఘ(𝓏) = 1𝜌గ + ෍ 𝓏𝔫(𝔫 + 𝜌)గஶ
𝔫ୀଵ , 

(𝜌 ∈ ℂ\𝑍௢ି = {0, −1, −2, … }, 𝜋 ∈ ℂ, where |𝓏| < 1, ℛ𝑒(𝜋) > 1, 𝓏 ∈ 𝜕𝑈°) 

By making use of the following normalized function, we have: 𝐺గ,ఘ(𝓏) = (1 + 𝜌)గൣ𝜁గ,ఘ(𝓏) − 𝜌ିగ൧ = 𝓏 + ∑ ቀଵାఘ𝔫ାఘቁగ   , 𝓏 ∈ 𝑈°ஶ𝔫ୀଶ . 

If 𝑓, 𝑔 ∈ 𝑀, where 𝑓 given by (1) and 𝑔 is defined by 

𝑔(𝓏) = 𝓏 + ෍ 𝑏𝔫𝓏𝔫ஶ
𝔫ୀଶ  , 𝓏 ∈ U°, 

then 

(𝑓 ∗ 𝑔)(𝓏) = 𝓏 + ෍ 𝑎𝔫𝑏𝔫ஶ
𝔫ୀଶ 𝓏𝔫 = (𝑔 ∗ 𝑓)(𝓏). 

Using the convolution defined above, a new operator is next introduced as the 
original part of the present paper. 

  

) /∈ Ω,

wherever

r = q(J ) , s =
mJ q′(τJ ) + µq(
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)

1 + µ
,

Re

{
(1 + µ)2

x− µ2r

(1 + µ)s− µr
− 2µ

}
≥ mRe

{
J q′′ (J )

q′(J )
+ 1
}

,

Re

{
(1 + µ)2[(1 + µ)y− (3 + 3µ)x] +

(
3µ2 + 2µ3)

r

(1 + µ)s− µr
+
(

2 + 6µ + 3µ2
)}
≥ m2Re

{
J 2

q′′′ (J )

q′(J )

}
,

and

Re{ (1+µ)[(1+µ)3g−(1+µ)2(6+4µ)y+(1+µ)(11+18µ+8µ2)x
(1+µ)s+µr

−(6s+22µ+18µ2+8µ3]+(6µ+11µ2+6µ3+3µ4)s
(1+µ)s+µr

} ≥ m3Re
{
J 3q′′′′ (J )
q′(J )

}
,

where
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∈ U
◦
, µ ∈ ∂U

◦\E(q), µ > −1 and m ≥ 3.

Theorem 3. Assume that Y ∈ θΓ[Ω,q]. If f ∈ 0 and q ∈
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2. Problem Formulation 
The subcollection of various analytic and univalent functions, which are connected 

to differential subordination and superordination in the open unit disk U°, has been ini-
tiated in recent times from a variety of intriguing outcomes and perspectives (cf. 
[22,23,24,25,7,26,27,28]). Additionally, several authors obtained good results on second- 
and third-order differential subordination; e.g., [29,30,31–34,35]. 

In order to demonstrate the original results, we will need the basic concepts of 
fourth-order theory previously introduced, which we present below showing the papers 
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then the function 𝑝 is named a solution of the differential subordination (4). A univalent func-
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Theorem 1. See [7]: Let 𝑝 ∈ 𝒦[𝑎, 𝔫], ( 𝔫 ∈ 𝑁\{2}). In addition, let 𝕢 ∈ Ҩ and fulfill the condi-
tions: 

1 satisfy the following conditions:

Re
(
J 2q′′′ (J )

q′(J )

)
≥ 0 ,

∣∣∣∣(Γπ,ρ,β,µ f (
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subordinate to 𝐹, if 𝑓(𝓏) = 𝐹൫Θ(𝓏)൯, (𝓏 ∈ 𝑈°), 

where Θ(𝓏) is analytic and  Θ(0) = 0, |Θ(𝓏)| < 1. This subordination is indicated by 𝑓(𝓏) ≺ 𝐹(𝓏). 
Cho and Kim [20] proposed the multiplier transformation as a linear operator. Let 𝔫 

be any integer; the multiplier transformation ℒఓఉ: 𝑀 → 𝑀  is given by ℒఓఉ𝑓(𝓏) = 𝓏 +∑ ቀ𝔫ାఓଵାఓቁఉ 𝑎𝔫𝓏𝔫 , 𝜇 ≥ 0, 𝛽 ∈ ℤ = {⋯ , −1,0,1, ⋯ }ஶ𝔫ୀଶ . 
 
The Hurwitz–Lerch Zeta function [21] is 

𝜁గ,ఘ(𝓏) = 1𝜌గ + ෍ 𝓏𝔫(𝔫 + 𝜌)గஶ
𝔫ୀଵ , 

(𝜌 ∈ ℂ\𝑍௢ି = {0, −1, −2, … }, 𝜋 ∈ ℂ, where |𝓏| < 1, ℛ𝑒(𝜋) > 1, 𝓏 ∈ 𝜕𝑈°) 

By making use of the following normalized function, we have: 𝐺గ,ఘ(𝓏) = (1 + 𝜌)గൣ𝜁గ,ఘ(𝓏) − 𝜌ିగ൧ = 𝓏 + ∑ ቀଵାఘ𝔫ାఘቁగ   , 𝓏 ∈ 𝑈°ஶ𝔫ୀଶ . 

If 𝑓, 𝑔 ∈ 𝑀, where 𝑓 given by (1) and 𝑔 is defined by 

𝑔(𝓏) = 𝓏 + ෍ 𝑏𝔫𝓏𝔫ஶ
𝔫ୀଶ  , 𝓏 ∈ U°, 

then 

(𝑓 ∗ 𝑔)(𝓏) = 𝓏 + ෍ 𝑎𝔫𝑏𝔫ஶ
𝔫ୀଶ 𝓏𝔫 = (𝑔 ∗ 𝑓)(𝓏). 

Using the convolution defined above, a new operator is next introduced as the 
original part of the present paper. 

  

)

q′(J )

)∣∣∣∣ ≤ m2 (7)

and{
Y
(
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Well-known notations and definitions used for obtaining the original results are next 
presented. 𝒦(U°) denotes the family of analytic functions in U°that have the form: 𝒦[a, 𝔫] = {𝑓 ∈ 𝒦(U°): 𝑓(𝓏) = 𝑎 + 𝑎𝔫𝓏𝔫 + 𝑎𝔫ାଵ𝓏𝔫ାଵ + ⋯ }, 𝑎 ∈ ℂ, 𝔫 ∈ 𝑁 = {1,2, … }, 

and let ℧𝔫 be the collection of the form: ℧𝔫 = {𝑓 ∈ 𝒦(𝑈°): 𝑓(𝓏) = 𝓏 + 𝑎𝔫ାଵ𝓏𝔫ାଵ + ⋯ }, 
where ℧ଵ = ℧, the subclass of normalized analytic functions in U°. Further, indicate by M 
the subfamily of 𝒦(U°) of the form: 

𝑓(𝓏) = 𝓏 + ෍ 𝑎𝔫𝓏𝔫 , 𝓏 ∈ U°ஶ
𝔫ୀଶ , (1)

which are univalent in U°. For analytic functions 𝑓 and 𝐹, the function 𝑓 is said to be 
subordinate to 𝐹, if 𝑓(𝓏) = 𝐹൫Θ(𝓏)൯, (𝓏 ∈ 𝑈°), 

where Θ(𝓏) is analytic and  Θ(0) = 0, |Θ(𝓏)| < 1. This subordination is indicated by 𝑓(𝓏) ≺ 𝐹(𝓏). 
Cho and Kim [20] proposed the multiplier transformation as a linear operator. Let 𝔫 

be any integer; the multiplier transformation ℒఓఉ: 𝑀 → 𝑀  is given by ℒఓఉ𝑓(𝓏) = 𝓏 +∑ ቀ𝔫ାఓଵାఓቁఉ 𝑎𝔫𝓏𝔫 , 𝜇 ≥ 0, 𝛽 ∈ ℤ = {⋯ , −1,0,1, ⋯ }ஶ𝔫ୀଶ . 
 
The Hurwitz–Lerch Zeta function [21] is 

𝜁గ,ఘ(𝓏) = 1𝜌గ + ෍ 𝓏𝔫(𝔫 + 𝜌)గஶ
𝔫ୀଵ , 

(𝜌 ∈ ℂ\𝑍௢ି = {0, −1, −2, … }, 𝜋 ∈ ℂ, where |𝓏| < 1, ℛ𝑒(𝜋) > 1, 𝓏 ∈ 𝜕𝑈°) 

By making use of the following normalized function, we have: 𝐺గ,ఘ(𝓏) = (1 + 𝜌)గൣ𝜁గ,ఘ(𝓏) − 𝜌ିగ൧ = 𝓏 + ∑ ቀଵାఘ𝔫ାఘቁగ   , 𝓏 ∈ 𝑈°ஶ𝔫ୀଶ . 

If 𝑓, 𝑔 ∈ 𝑀, where 𝑓 given by (1) and 𝑔 is defined by 

𝑔(𝓏) = 𝓏 + ෍ 𝑏𝔫𝓏𝔫ஶ
𝔫ୀଶ  , 𝓏 ∈ U°, 

then 

(𝑓 ∗ 𝑔)(𝓏) = 𝓏 + ෍ 𝑎𝔫𝑏𝔫ஶ
𝔫ୀଶ 𝓏𝔫 = (𝑔 ∗ 𝑓)(𝓏). 

Using the convolution defined above, a new operator is next introduced as the 
original part of the present paper. 

  

), Γπ,ρ,β+1,µ f (
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Well-known notations and definitions used for obtaining the original results are next 
presented. 𝒦(U°) denotes the family of analytic functions in U°that have the form: 𝒦[a, 𝔫] = {𝑓 ∈ 𝒦(U°): 𝑓(𝓏) = 𝑎 + 𝑎𝔫𝓏𝔫 + 𝑎𝔫ାଵ𝓏𝔫ାଵ + ⋯ }, 𝑎 ∈ ℂ, 𝔫 ∈ 𝑁 = {1,2, … }, 

and let ℧𝔫 be the collection of the form: ℧𝔫 = {𝑓 ∈ 𝒦(𝑈°): 𝑓(𝓏) = 𝓏 + 𝑎𝔫ାଵ𝓏𝔫ାଵ + ⋯ }, 
where ℧ଵ = ℧, the subclass of normalized analytic functions in U°. Further, indicate by M 
the subfamily of 𝒦(U°) of the form: 

𝑓(𝓏) = 𝓏 + ෍ 𝑎𝔫𝓏𝔫 , 𝓏 ∈ U°ஶ
𝔫ୀଶ , (1)

which are univalent in U°. For analytic functions 𝑓 and 𝐹, the function 𝑓 is said to be 
subordinate to 𝐹, if 𝑓(𝓏) = 𝐹൫Θ(𝓏)൯, (𝓏 ∈ 𝑈°), 

where Θ(𝓏) is analytic and  Θ(0) = 0, |Θ(𝓏)| < 1. This subordination is indicated by 𝑓(𝓏) ≺ 𝐹(𝓏). 
Cho and Kim [20] proposed the multiplier transformation as a linear operator. Let 𝔫 

be any integer; the multiplier transformation ℒఓఉ: 𝑀 → 𝑀  is given by ℒఓఉ𝑓(𝓏) = 𝓏 +∑ ቀ𝔫ାఓଵାఓቁఉ 𝑎𝔫𝓏𝔫 , 𝜇 ≥ 0, 𝛽 ∈ ℤ = {⋯ , −1,0,1, ⋯ }ஶ𝔫ୀଶ . 
 
The Hurwitz–Lerch Zeta function [21] is 

𝜁గ,ఘ(𝓏) = 1𝜌గ + ෍ 𝓏𝔫(𝔫 + 𝜌)గஶ
𝔫ୀଵ , 

(𝜌 ∈ ℂ\𝑍௢ି = {0, −1, −2, … }, 𝜋 ∈ ℂ, where |𝓏| < 1, ℛ𝑒(𝜋) > 1, 𝓏 ∈ 𝜕𝑈°) 

By making use of the following normalized function, we have: 𝐺గ,ఘ(𝓏) = (1 + 𝜌)గൣ𝜁గ,ఘ(𝓏) − 𝜌ିగ൧ = 𝓏 + ∑ ቀଵାఘ𝔫ାఘቁగ   , 𝓏 ∈ 𝑈°ஶ𝔫ୀଶ . 

If 𝑓, 𝑔 ∈ 𝑀, where 𝑓 given by (1) and 𝑔 is defined by 

𝑔(𝓏) = 𝓏 + ෍ 𝑏𝔫𝓏𝔫ஶ
𝔫ୀଶ  , 𝓏 ∈ U°, 

then 

(𝑓 ∗ 𝑔)(𝓏) = 𝓏 + ෍ 𝑎𝔫𝑏𝔫ஶ
𝔫ୀଶ 𝓏𝔫 = (𝑔 ∗ 𝑓)(𝓏). 

Using the convolution defined above, a new operator is next introduced as the 
original part of the present paper. 

  

), Γπ,ρ,β+2,µ f (
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Well-known notations and definitions used for obtaining the original results are next 
presented. 𝒦(U°) denotes the family of analytic functions in U°that have the form: 𝒦[a, 𝔫] = {𝑓 ∈ 𝒦(U°): 𝑓(𝓏) = 𝑎 + 𝑎𝔫𝓏𝔫 + 𝑎𝔫ାଵ𝓏𝔫ାଵ + ⋯ }, 𝑎 ∈ ℂ, 𝔫 ∈ 𝑁 = {1,2, … }, 

and let ℧𝔫 be the collection of the form: ℧𝔫 = {𝑓 ∈ 𝒦(𝑈°): 𝑓(𝓏) = 𝓏 + 𝑎𝔫ାଵ𝓏𝔫ାଵ + ⋯ }, 
where ℧ଵ = ℧, the subclass of normalized analytic functions in U°. Further, indicate by M 
the subfamily of 𝒦(U°) of the form: 

𝑓(𝓏) = 𝓏 + ෍ 𝑎𝔫𝓏𝔫 , 𝓏 ∈ U°ஶ
𝔫ୀଶ , (1)

which are univalent in U°. For analytic functions 𝑓 and 𝐹, the function 𝑓 is said to be 
subordinate to 𝐹, if 𝑓(𝓏) = 𝐹൫Θ(𝓏)൯, (𝓏 ∈ 𝑈°), 

where Θ(𝓏) is analytic and  Θ(0) = 0, |Θ(𝓏)| < 1. This subordination is indicated by 𝑓(𝓏) ≺ 𝐹(𝓏). 
Cho and Kim [20] proposed the multiplier transformation as a linear operator. Let 𝔫 

be any integer; the multiplier transformation ℒఓఉ: 𝑀 → 𝑀  is given by ℒఓఉ𝑓(𝓏) = 𝓏 +∑ ቀ𝔫ାఓଵାఓቁఉ 𝑎𝔫𝓏𝔫 , 𝜇 ≥ 0, 𝛽 ∈ ℤ = {⋯ , −1,0,1, ⋯ }ஶ𝔫ୀଶ . 
 
The Hurwitz–Lerch Zeta function [21] is 

𝜁గ,ఘ(𝓏) = 1𝜌గ + ෍ 𝓏𝔫(𝔫 + 𝜌)గஶ
𝔫ୀଵ , 

(𝜌 ∈ ℂ\𝑍௢ି = {0, −1, −2, … }, 𝜋 ∈ ℂ, where |𝓏| < 1, ℛ𝑒(𝜋) > 1, 𝓏 ∈ 𝜕𝑈°) 

By making use of the following normalized function, we have: 𝐺గ,ఘ(𝓏) = (1 + 𝜌)గൣ𝜁గ,ఘ(𝓏) − 𝜌ିగ൧ = 𝓏 + ∑ ቀଵାఘ𝔫ାఘቁగ   , 𝓏 ∈ 𝑈°ஶ𝔫ୀଶ . 

If 𝑓, 𝑔 ∈ 𝑀, where 𝑓 given by (1) and 𝑔 is defined by 

𝑔(𝓏) = 𝓏 + ෍ 𝑏𝔫𝓏𝔫ஶ
𝔫ୀଶ  , 𝓏 ∈ U°, 

then 

(𝑓 ∗ 𝑔)(𝓏) = 𝓏 + ෍ 𝑎𝔫𝑏𝔫ஶ
𝔫ୀଶ 𝓏𝔫 = (𝑔 ∗ 𝑓)(𝓏). 

Using the convolution defined above, a new operator is next introduced as the 
original part of the present paper. 

  

), Γπ,ρ,β+3,µ f (
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Well-known notations and definitions used for obtaining the original results are next 
presented. 𝒦(U°) denotes the family of analytic functions in U°that have the form: 𝒦[a, 𝔫] = {𝑓 ∈ 𝒦(U°): 𝑓(𝓏) = 𝑎 + 𝑎𝔫𝓏𝔫 + 𝑎𝔫ାଵ𝓏𝔫ାଵ + ⋯ }, 𝑎 ∈ ℂ, 𝔫 ∈ 𝑁 = {1,2, … }, 

and let ℧𝔫 be the collection of the form: ℧𝔫 = {𝑓 ∈ 𝒦(𝑈°): 𝑓(𝓏) = 𝓏 + 𝑎𝔫ାଵ𝓏𝔫ାଵ + ⋯ }, 
where ℧ଵ = ℧, the subclass of normalized analytic functions in U°. Further, indicate by M 
the subfamily of 𝒦(U°) of the form: 

𝑓(𝓏) = 𝓏 + ෍ 𝑎𝔫𝓏𝔫 , 𝓏 ∈ U°ஶ
𝔫ୀଶ , (1)

which are univalent in U°. For analytic functions 𝑓 and 𝐹, the function 𝑓 is said to be 
subordinate to 𝐹, if 𝑓(𝓏) = 𝐹൫Θ(𝓏)൯, (𝓏 ∈ 𝑈°), 

where Θ(𝓏) is analytic and  Θ(0) = 0, |Θ(𝓏)| < 1. This subordination is indicated by 𝑓(𝓏) ≺ 𝐹(𝓏). 
Cho and Kim [20] proposed the multiplier transformation as a linear operator. Let 𝔫 

be any integer; the multiplier transformation ℒఓఉ: 𝑀 → 𝑀  is given by ℒఓఉ𝑓(𝓏) = 𝓏 +∑ ቀ𝔫ାఓଵାఓቁఉ 𝑎𝔫𝓏𝔫 , 𝜇 ≥ 0, 𝛽 ∈ ℤ = {⋯ , −1,0,1, ⋯ }ஶ𝔫ୀଶ . 
 
The Hurwitz–Lerch Zeta function [21] is 

𝜁గ,ఘ(𝓏) = 1𝜌గ + ෍ 𝓏𝔫(𝔫 + 𝜌)గஶ
𝔫ୀଵ , 

(𝜌 ∈ ℂ\𝑍௢ି = {0, −1, −2, … }, 𝜋 ∈ ℂ, where |𝓏| < 1, ℛ𝑒(𝜋) > 1, 𝓏 ∈ 𝜕𝑈°) 

By making use of the following normalized function, we have: 𝐺గ,ఘ(𝓏) = (1 + 𝜌)గൣ𝜁గ,ఘ(𝓏) − 𝜌ିగ൧ = 𝓏 + ∑ ቀଵାఘ𝔫ାఘቁగ   , 𝓏 ∈ 𝑈°ஶ𝔫ୀଶ . 

If 𝑓, 𝑔 ∈ 𝑀, where 𝑓 given by (1) and 𝑔 is defined by 

𝑔(𝓏) = 𝓏 + ෍ 𝑏𝔫𝓏𝔫ஶ
𝔫ୀଶ  , 𝓏 ∈ U°, 

then 

(𝑓 ∗ 𝑔)(𝓏) = 𝓏 + ෍ 𝑎𝔫𝑏𝔫ஶ
𝔫ୀଶ 𝓏𝔫 = (𝑔 ∗ 𝑓)(𝓏). 

Using the convolution defined above, a new operator is next introduced as the 
original part of the present paper. 

  

), Γπ,ρ,β+4,µ f (
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Well-known notations and definitions used for obtaining the original results are next 
presented. 𝒦(U°) denotes the family of analytic functions in U°that have the form: 𝒦[a, 𝔫] = {𝑓 ∈ 𝒦(U°): 𝑓(𝓏) = 𝑎 + 𝑎𝔫𝓏𝔫 + 𝑎𝔫ାଵ𝓏𝔫ାଵ + ⋯ }, 𝑎 ∈ ℂ, 𝔫 ∈ 𝑁 = {1,2, … }, 

and let ℧𝔫 be the collection of the form: ℧𝔫 = {𝑓 ∈ 𝒦(𝑈°): 𝑓(𝓏) = 𝓏 + 𝑎𝔫ାଵ𝓏𝔫ାଵ + ⋯ }, 
where ℧ଵ = ℧, the subclass of normalized analytic functions in U°. Further, indicate by M 
the subfamily of 𝒦(U°) of the form: 

𝑓(𝓏) = 𝓏 + ෍ 𝑎𝔫𝓏𝔫 , 𝓏 ∈ U°ஶ
𝔫ୀଶ , (1)

which are univalent in U°. For analytic functions 𝑓 and 𝐹, the function 𝑓 is said to be 
subordinate to 𝐹, if 𝑓(𝓏) = 𝐹൫Θ(𝓏)൯, (𝓏 ∈ 𝑈°), 

where Θ(𝓏) is analytic and  Θ(0) = 0, |Θ(𝓏)| < 1. This subordination is indicated by 𝑓(𝓏) ≺ 𝐹(𝓏). 
Cho and Kim [20] proposed the multiplier transformation as a linear operator. Let 𝔫 

be any integer; the multiplier transformation ℒఓఉ: 𝑀 → 𝑀  is given by ℒఓఉ𝑓(𝓏) = 𝓏 +∑ ቀ𝔫ାఓଵାఓቁఉ 𝑎𝔫𝓏𝔫 , 𝜇 ≥ 0, 𝛽 ∈ ℤ = {⋯ , −1,0,1, ⋯ }ஶ𝔫ୀଶ . 
 
The Hurwitz–Lerch Zeta function [21] is 

𝜁గ,ఘ(𝓏) = 1𝜌గ + ෍ 𝓏𝔫(𝔫 + 𝜌)గஶ
𝔫ୀଵ , 

(𝜌 ∈ ℂ\𝑍௢ି = {0, −1, −2, … }, 𝜋 ∈ ℂ, where |𝓏| < 1, ℛ𝑒(𝜋) > 1, 𝓏 ∈ 𝜕𝑈°) 

By making use of the following normalized function, we have: 𝐺గ,ఘ(𝓏) = (1 + 𝜌)గൣ𝜁గ,ఘ(𝓏) − 𝜌ିగ൧ = 𝓏 + ∑ ቀଵାఘ𝔫ାఘቁగ   , 𝓏 ∈ 𝑈°ஶ𝔫ୀଶ . 

If 𝑓, 𝑔 ∈ 𝑀, where 𝑓 given by (1) and 𝑔 is defined by 

𝑔(𝓏) = 𝓏 + ෍ 𝑏𝔫𝓏𝔫ஶ
𝔫ୀଶ  , 𝓏 ∈ U°, 

then 

(𝑓 ∗ 𝑔)(𝓏) = 𝓏 + ෍ 𝑎𝔫𝑏𝔫ஶ
𝔫ୀଶ 𝓏𝔫 = (𝑔 ∗ 𝑓)(𝓏). 

Using the convolution defined above, a new operator is next introduced as the 
original part of the present paper. 

  

)
)

:
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Well-known notations and definitions used for obtaining the original results are next 
presented. 𝒦(U°) denotes the family of analytic functions in U°that have the form: 𝒦[a, 𝔫] = {𝑓 ∈ 𝒦(U°): 𝑓(𝓏) = 𝑎 + 𝑎𝔫𝓏𝔫 + 𝑎𝔫ାଵ𝓏𝔫ାଵ + ⋯ }, 𝑎 ∈ ℂ, 𝔫 ∈ 𝑁 = {1,2, … }, 

and let ℧𝔫 be the collection of the form: ℧𝔫 = {𝑓 ∈ 𝒦(𝑈°): 𝑓(𝓏) = 𝓏 + 𝑎𝔫ାଵ𝓏𝔫ାଵ + ⋯ }, 
where ℧ଵ = ℧, the subclass of normalized analytic functions in U°. Further, indicate by M 
the subfamily of 𝒦(U°) of the form: 

𝑓(𝓏) = 𝓏 + ෍ 𝑎𝔫𝓏𝔫 , 𝓏 ∈ U°ஶ
𝔫ୀଶ , (1)

which are univalent in U°. For analytic functions 𝑓 and 𝐹, the function 𝑓 is said to be 
subordinate to 𝐹, if 𝑓(𝓏) = 𝐹൫Θ(𝓏)൯, (𝓏 ∈ 𝑈°), 

where Θ(𝓏) is analytic and  Θ(0) = 0, |Θ(𝓏)| < 1. This subordination is indicated by 𝑓(𝓏) ≺ 𝐹(𝓏). 
Cho and Kim [20] proposed the multiplier transformation as a linear operator. Let 𝔫 

be any integer; the multiplier transformation ℒఓఉ: 𝑀 → 𝑀  is given by ℒఓఉ𝑓(𝓏) = 𝓏 +∑ ቀ𝔫ାఓଵାఓቁఉ 𝑎𝔫𝓏𝔫 , 𝜇 ≥ 0, 𝛽 ∈ ℤ = {⋯ , −1,0,1, ⋯ }ஶ𝔫ୀଶ . 
 
The Hurwitz–Lerch Zeta function [21] is 

𝜁గ,ఘ(𝓏) = 1𝜌గ + ෍ 𝓏𝔫(𝔫 + 𝜌)గஶ
𝔫ୀଵ , 
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𝔫ୀଶ 𝓏𝔫 = (𝑔 ∗ 𝑓)(𝓏). 

Using the convolution defined above, a new operator is next introduced as the 
original part of the present paper. 

  

∈ U
◦
}
⊂ Ω, (8)

then Γπ,ρ,β,µ f (
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Now, by differentiating (9) with respect to
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Using the convolution defined above, a new operator is next introduced as the 
original part of the present paper. 

  

and by applying (3), we obtain:
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Well-known notations and definitions used for obtaining the original results are next 
presented. 𝒦(U°) denotes the family of analytic functions in U°that have the form: 𝒦[a, 𝔫] = {𝑓 ∈ 𝒦(U°): 𝑓(𝓏) = 𝑎 + 𝑎𝔫𝓏𝔫 + 𝑎𝔫ାଵ𝓏𝔫ାଵ + ⋯ }, 𝑎 ∈ ℂ, 𝔫 ∈ 𝑁 = {1,2, … }, 

and let ℧𝔫 be the collection of the form: ℧𝔫 = {𝑓 ∈ 𝒦(𝑈°): 𝑓(𝓏) = 𝓏 + 𝑎𝔫ାଵ𝓏𝔫ାଵ + ⋯ }, 
where ℧ଵ = ℧, the subclass of normalized analytic functions in U°. Further, indicate by M 
the subfamily of 𝒦(U°) of the form: 

𝑓(𝓏) = 𝓏 + ෍ 𝑎𝔫𝓏𝔫 , 𝓏 ∈ U°ஶ
𝔫ୀଶ , (1)

which are univalent in U°. For analytic functions 𝑓 and 𝐹, the function 𝑓 is said to be 
subordinate to 𝐹, if 𝑓(𝓏) = 𝐹൫Θ(𝓏)൯, (𝓏 ∈ 𝑈°), 

where Θ(𝓏) is analytic and  Θ(0) = 0, |Θ(𝓏)| < 1. This subordination is indicated by 𝑓(𝓏) ≺ 𝐹(𝓏). 
Cho and Kim [20] proposed the multiplier transformation as a linear operator. Let 𝔫 

be any integer; the multiplier transformation ℒఓఉ: 𝑀 → 𝑀  is given by ℒఓఉ𝑓(𝓏) = 𝓏 +∑ ቀ𝔫ାఓଵାఓቁఉ 𝑎𝔫𝓏𝔫 , 𝜇 ≥ 0, 𝛽 ∈ ℤ = {⋯ , −1,0,1, ⋯ }ஶ𝔫ୀଶ . 
 
The Hurwitz–Lerch Zeta function [21] is 

𝜁గ,ఘ(𝓏) = 1𝜌గ + ෍ 𝓏𝔫(𝔫 + 𝜌)గஶ
𝔫ୀଵ , 

(𝜌 ∈ ℂ\𝑍௢ି = {0, −1, −2, … }, 𝜋 ∈ ℂ, where |𝓏| < 1, ℛ𝑒(𝜋) > 1, 𝓏 ∈ 𝜕𝑈°) 

By making use of the following normalized function, we have: 𝐺గ,ఘ(𝓏) = (1 + 𝜌)గൣ𝜁గ,ఘ(𝓏) − 𝜌ିగ൧ = 𝓏 + ∑ ቀଵାఘ𝔫ାఘቁగ   , 𝓏 ∈ 𝑈°ஶ𝔫ୀଶ . 

If 𝑓, 𝑔 ∈ 𝑀, where 𝑓 given by (1) and 𝑔 is defined by 

𝑔(𝓏) = 𝓏 + ෍ 𝑏𝔫𝓏𝔫ஶ
𝔫ୀଶ  , 𝓏 ∈ U°, 

then 

(𝑓 ∗ 𝑔)(𝓏) = 𝓏 + ෍ 𝑎𝔫𝑏𝔫ஶ
𝔫ୀଶ 𝓏𝔫 = (𝑔 ∗ 𝑓)(𝓏). 

Using the convolution defined above, a new operator is next introduced as the 
original part of the present paper. 

  

) =
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Well-known notations and definitions used for obtaining the original results are next 
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the subfamily of 𝒦(U°) of the form: 

𝑓(𝓏) = 𝓏 + ෍ 𝑎𝔫𝓏𝔫 , 𝓏 ∈ U°ஶ
𝔫ୀଶ , (1)

which are univalent in U°. For analytic functions 𝑓 and 𝐹, the function 𝑓 is said to be 
subordinate to 𝐹, if 𝑓(𝓏) = 𝐹൫Θ(𝓏)൯, (𝓏 ∈ 𝑈°), 

where Θ(𝓏) is analytic and  Θ(0) = 0, |Θ(𝓏)| < 1. This subordination is indicated by 𝑓(𝓏) ≺ 𝐹(𝓏). 
Cho and Kim [20] proposed the multiplier transformation as a linear operator. Let 𝔫 

be any integer; the multiplier transformation ℒఓఉ: 𝑀 → 𝑀  is given by ℒఓఉ𝑓(𝓏) = 𝓏 +∑ ቀ𝔫ାఓଵାఓቁఉ 𝑎𝔫𝓏𝔫 , 𝜇 ≥ 0, 𝛽 ∈ ℤ = {⋯ , −1,0,1, ⋯ }ஶ𝔫ୀଶ . 
 
The Hurwitz–Lerch Zeta function [21] is 

𝜁గ,ఘ(𝓏) = 1𝜌గ + ෍ 𝓏𝔫(𝔫 + 𝜌)గஶ
𝔫ୀଵ , 

(𝜌 ∈ ℂ\𝑍௢ି = {0, −1, −2, … }, 𝜋 ∈ ℂ, where |𝓏| < 1, ℛ𝑒(𝜋) > 1, 𝓏 ∈ 𝜕𝑈°) 

By making use of the following normalized function, we have: 𝐺గ,ఘ(𝓏) = (1 + 𝜌)గൣ𝜁గ,ఘ(𝓏) − 𝜌ିగ൧ = 𝓏 + ∑ ቀଵାఘ𝔫ାఘቁగ   , 𝓏 ∈ 𝑈°ஶ𝔫ୀଶ . 

If 𝑓, 𝑔 ∈ 𝑀, where 𝑓 given by (1) and 𝑔 is defined by 

𝑔(𝓏) = 𝓏 + ෍ 𝑏𝔫𝓏𝔫ஶ
𝔫ୀଶ  , 𝓏 ∈ U°, 

then 

(𝑓 ∗ 𝑔)(𝓏) = 𝓏 + ෍ 𝑎𝔫𝑏𝔫ஶ
𝔫ୀଶ 𝓏𝔫 = (𝑔 ∗ 𝑓)(𝓏). 

Using the convolution defined above, a new operator is next introduced as the 
original part of the present paper. 
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Well-known notations and definitions used for obtaining the original results are next 
presented. 𝒦(U°) denotes the family of analytic functions in U°that have the form: 𝒦[a, 𝔫] = {𝑓 ∈ 𝒦(U°): 𝑓(𝓏) = 𝑎 + 𝑎𝔫𝓏𝔫 + 𝑎𝔫ାଵ𝓏𝔫ାଵ + ⋯ }, 𝑎 ∈ ℂ, 𝔫 ∈ 𝑁 = {1,2, … }, 

and let ℧𝔫 be the collection of the form: ℧𝔫 = {𝑓 ∈ 𝒦(𝑈°): 𝑓(𝓏) = 𝓏 + 𝑎𝔫ାଵ𝓏𝔫ାଵ + ⋯ }, 
where ℧ଵ = ℧, the subclass of normalized analytic functions in U°. Further, indicate by M 
the subfamily of 𝒦(U°) of the form: 

𝑓(𝓏) = 𝓏 + ෍ 𝑎𝔫𝓏𝔫 , 𝓏 ∈ U°ஶ
𝔫ୀଶ , (1)

which are univalent in U°. For analytic functions 𝑓 and 𝐹, the function 𝑓 is said to be 
subordinate to 𝐹, if 𝑓(𝓏) = 𝐹൫Θ(𝓏)൯, (𝓏 ∈ 𝑈°), 

where Θ(𝓏) is analytic and  Θ(0) = 0, |Θ(𝓏)| < 1. This subordination is indicated by 𝑓(𝓏) ≺ 𝐹(𝓏). 
Cho and Kim [20] proposed the multiplier transformation as a linear operator. Let 𝔫 

be any integer; the multiplier transformation ℒఓఉ: 𝑀 → 𝑀  is given by ℒఓఉ𝑓(𝓏) = 𝓏 +∑ ቀ𝔫ାఓଵାఓቁఉ 𝑎𝔫𝓏𝔫 , 𝜇 ≥ 0, 𝛽 ∈ ℤ = {⋯ , −1,0,1, ⋯ }ஶ𝔫ୀଶ . 
 
The Hurwitz–Lerch Zeta function [21] is 

𝜁గ,ఘ(𝓏) = 1𝜌గ + ෍ 𝓏𝔫(𝔫 + 𝜌)గஶ
𝔫ୀଵ , 

(𝜌 ∈ ℂ\𝑍௢ି = {0, −1, −2, … }, 𝜋 ∈ ℂ, where |𝓏| < 1, ℛ𝑒(𝜋) > 1, 𝓏 ∈ 𝜕𝑈°) 

By making use of the following normalized function, we have: 𝐺గ,ఘ(𝓏) = (1 + 𝜌)గൣ𝜁గ,ఘ(𝓏) − 𝜌ିగ൧ = 𝓏 + ∑ ቀଵାఘ𝔫ାఘቁగ   , 𝓏 ∈ 𝑈°ஶ𝔫ୀଶ . 

If 𝑓, 𝑔 ∈ 𝑀, where 𝑓 given by (1) and 𝑔 is defined by 

𝑔(𝓏) = 𝓏 + ෍ 𝑏𝔫𝓏𝔫ஶ
𝔫ୀଶ  , 𝓏 ∈ U°, 

then 

(𝑓 ∗ 𝑔)(𝓏) = 𝓏 + ෍ 𝑎𝔫𝑏𝔫ஶ
𝔫ୀଶ 𝓏𝔫 = (𝑔 ∗ 𝑓)(𝓏). 

Using the convolution defined above, a new operator is next introduced as the 
original part of the present paper. 

  

) + µp(
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Well-known notations and definitions used for obtaining the original results are next 
presented. 𝒦(U°) denotes the family of analytic functions in U°that have the form: 𝒦[a, 𝔫] = {𝑓 ∈ 𝒦(U°): 𝑓(𝓏) = 𝑎 + 𝑎𝔫𝓏𝔫 + 𝑎𝔫ାଵ𝓏𝔫ାଵ + ⋯ }, 𝑎 ∈ ℂ, 𝔫 ∈ 𝑁 = {1,2, … }, 

and let ℧𝔫 be the collection of the form: ℧𝔫 = {𝑓 ∈ 𝒦(𝑈°): 𝑓(𝓏) = 𝓏 + 𝑎𝔫ାଵ𝓏𝔫ାଵ + ⋯ }, 
where ℧ଵ = ℧, the subclass of normalized analytic functions in U°. Further, indicate by M 
the subfamily of 𝒦(U°) of the form: 

𝑓(𝓏) = 𝓏 + ෍ 𝑎𝔫𝓏𝔫 , 𝓏 ∈ U°ஶ
𝔫ୀଶ , (1)

which are univalent in U°. For analytic functions 𝑓 and 𝐹, the function 𝑓 is said to be 
subordinate to 𝐹, if 𝑓(𝓏) = 𝐹൫Θ(𝓏)൯, (𝓏 ∈ 𝑈°), 

where Θ(𝓏) is analytic and  Θ(0) = 0, |Θ(𝓏)| < 1. This subordination is indicated by 𝑓(𝓏) ≺ 𝐹(𝓏). 
Cho and Kim [20] proposed the multiplier transformation as a linear operator. Let 𝔫 

be any integer; the multiplier transformation ℒఓఉ: 𝑀 → 𝑀  is given by ℒఓఉ𝑓(𝓏) = 𝓏 +∑ ቀ𝔫ାఓଵାఓቁఉ 𝑎𝔫𝓏𝔫 , 𝜇 ≥ 0, 𝛽 ∈ ℤ = {⋯ , −1,0,1, ⋯ }ஶ𝔫ୀଶ . 
 
The Hurwitz–Lerch Zeta function [21] is 

𝜁గ,ఘ(𝓏) = 1𝜌గ + ෍ 𝓏𝔫(𝔫 + 𝜌)గஶ
𝔫ୀଵ , 

(𝜌 ∈ ℂ\𝑍௢ି = {0, −1, −2, … }, 𝜋 ∈ ℂ, where |𝓏| < 1, ℛ𝑒(𝜋) > 1, 𝓏 ∈ 𝜕𝑈°) 

By making use of the following normalized function, we have: 𝐺గ,ఘ(𝓏) = (1 + 𝜌)గൣ𝜁గ,ఘ(𝓏) − 𝜌ିగ൧ = 𝓏 + ∑ ቀଵାఘ𝔫ାఘቁగ   , 𝓏 ∈ 𝑈°ஶ𝔫ୀଶ . 

If 𝑓, 𝑔 ∈ 𝑀, where 𝑓 given by (1) and 𝑔 is defined by 

𝑔(𝓏) = 𝓏 + ෍ 𝑏𝔫𝓏𝔫ஶ
𝔫ୀଶ  , 𝓏 ∈ U°, 

then 

(𝑓 ∗ 𝑔)(𝓏) = 𝓏 + ෍ 𝑎𝔫𝑏𝔫ஶ
𝔫ୀଶ 𝓏𝔫 = (𝑔 ∗ 𝑓)(𝓏). 

Using the convolution defined above, a new operator is next introduced as the 
original part of the present paper. 

  

)

(1 + µ)
. (10)

Further computations show that

Γπ,ρ,β+2,µ f (
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Well-known notations and definitions used for obtaining the original results are next 
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where Θ(𝓏) is analytic and  Θ(0) = 0, |Θ(𝓏)| < 1. This subordination is indicated by 𝑓(𝓏) ≺ 𝐹(𝓏). 
Cho and Kim [20] proposed the multiplier transformation as a linear operator. Let 𝔫 

be any integer; the multiplier transformation ℒఓఉ: 𝑀 → 𝑀  is given by ℒఓఉ𝑓(𝓏) = 𝓏 +∑ ቀ𝔫ାఓଵାఓቁఉ 𝑎𝔫𝓏𝔫 , 𝜇 ≥ 0, 𝛽 ∈ ℤ = {⋯ , −1,0,1, ⋯ }ஶ𝔫ୀଶ . 
 
The Hurwitz–Lerch Zeta function [21] is 

𝜁గ,ఘ(𝓏) = 1𝜌గ + ෍ 𝓏𝔫(𝔫 + 𝜌)గஶ
𝔫ୀଵ , 

(𝜌 ∈ ℂ\𝑍௢ି = {0, −1, −2, … }, 𝜋 ∈ ℂ, where |𝓏| < 1, ℛ𝑒(𝜋) > 1, 𝓏 ∈ 𝜕𝑈°) 

By making use of the following normalized function, we have: 𝐺గ,ఘ(𝓏) = (1 + 𝜌)గൣ𝜁గ,ఘ(𝓏) − 𝜌ିగ൧ = 𝓏 + ∑ ቀଵାఘ𝔫ାఘቁగ   , 𝓏 ∈ 𝑈°ஶ𝔫ୀଶ . 

If 𝑓, 𝑔 ∈ 𝑀, where 𝑓 given by (1) and 𝑔 is defined by 

𝑔(𝓏) = 𝓏 + ෍ 𝑏𝔫𝓏𝔫ஶ
𝔫ୀଶ  , 𝓏 ∈ U°, 

then 

(𝑓 ∗ 𝑔)(𝓏) = 𝓏 + ෍ 𝑎𝔫𝑏𝔫ஶ
𝔫ୀଶ 𝓏𝔫 = (𝑔 ∗ 𝑓)(𝓏). 

Using the convolution defined above, a new operator is next introduced as the 
original part of the present paper. 
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Well-known notations and definitions used for obtaining the original results are next 
presented. 𝒦(U°) denotes the family of analytic functions in U°that have the form: 𝒦[a, 𝔫] = {𝑓 ∈ 𝒦(U°): 𝑓(𝓏) = 𝑎 + 𝑎𝔫𝓏𝔫 + 𝑎𝔫ାଵ𝓏𝔫ାଵ + ⋯ }, 𝑎 ∈ ℂ, 𝔫 ∈ 𝑁 = {1,2, … }, 

and let ℧𝔫 be the collection of the form: ℧𝔫 = {𝑓 ∈ 𝒦(𝑈°): 𝑓(𝓏) = 𝓏 + 𝑎𝔫ାଵ𝓏𝔫ାଵ + ⋯ }, 
where ℧ଵ = ℧, the subclass of normalized analytic functions in U°. Further, indicate by M 
the subfamily of 𝒦(U°) of the form: 

𝑓(𝓏) = 𝓏 + ෍ 𝑎𝔫𝓏𝔫 , 𝓏 ∈ U°ஶ
𝔫ୀଶ , (1)

which are univalent in U°. For analytic functions 𝑓 and 𝐹, the function 𝑓 is said to be 
subordinate to 𝐹, if 𝑓(𝓏) = 𝐹൫Θ(𝓏)൯, (𝓏 ∈ 𝑈°), 

where Θ(𝓏) is analytic and  Θ(0) = 0, |Θ(𝓏)| < 1. This subordination is indicated by 𝑓(𝓏) ≺ 𝐹(𝓏). 
Cho and Kim [20] proposed the multiplier transformation as a linear operator. Let 𝔫 

be any integer; the multiplier transformation ℒఓఉ: 𝑀 → 𝑀  is given by ℒఓఉ𝑓(𝓏) = 𝓏 +∑ ቀ𝔫ାఓଵାఓቁఉ 𝑎𝔫𝓏𝔫 , 𝜇 ≥ 0, 𝛽 ∈ ℤ = {⋯ , −1,0,1, ⋯ }ஶ𝔫ୀଶ . 
 
The Hurwitz–Lerch Zeta function [21] is 

𝜁గ,ఘ(𝓏) = 1𝜌గ + ෍ 𝓏𝔫(𝔫 + 𝜌)గஶ
𝔫ୀଵ , 

(𝜌 ∈ ℂ\𝑍௢ି = {0, −1, −2, … }, 𝜋 ∈ ℂ, where |𝓏| < 1, ℛ𝑒(𝜋) > 1, 𝓏 ∈ 𝜕𝑈°) 

By making use of the following normalized function, we have: 𝐺గ,ఘ(𝓏) = (1 + 𝜌)గൣ𝜁గ,ఘ(𝓏) − 𝜌ିగ൧ = 𝓏 + ∑ ቀଵାఘ𝔫ାఘቁగ   , 𝓏 ∈ 𝑈°ஶ𝔫ୀଶ . 

If 𝑓, 𝑔 ∈ 𝑀, where 𝑓 given by (1) and 𝑔 is defined by 

𝑔(𝓏) = 𝓏 + ෍ 𝑏𝔫𝓏𝔫ஶ
𝔫ୀଶ  , 𝓏 ∈ U°, 

then 

(𝑓 ∗ 𝑔)(𝓏) = 𝓏 + ෍ 𝑎𝔫𝑏𝔫ஶ
𝔫ୀଶ 𝓏𝔫 = (𝑔 ∗ 𝑓)(𝓏). 

Using the convolution defined above, a new operator is next introduced as the 
original part of the present paper. 

  

2 p′′ (
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Well-known notations and definitions used for obtaining the original results are next 
presented. 𝒦(U°) denotes the family of analytic functions in U°that have the form: 𝒦[a, 𝔫] = {𝑓 ∈ 𝒦(U°): 𝑓(𝓏) = 𝑎 + 𝑎𝔫𝓏𝔫 + 𝑎𝔫ାଵ𝓏𝔫ାଵ + ⋯ }, 𝑎 ∈ ℂ, 𝔫 ∈ 𝑁 = {1,2, … }, 

and let ℧𝔫 be the collection of the form: ℧𝔫 = {𝑓 ∈ 𝒦(𝑈°): 𝑓(𝓏) = 𝓏 + 𝑎𝔫ାଵ𝓏𝔫ାଵ + ⋯ }, 
where ℧ଵ = ℧, the subclass of normalized analytic functions in U°. Further, indicate by M 
the subfamily of 𝒦(U°) of the form: 

𝑓(𝓏) = 𝓏 + ෍ 𝑎𝔫𝓏𝔫 , 𝓏 ∈ U°ஶ
𝔫ୀଶ , (1)

which are univalent in U°. For analytic functions 𝑓 and 𝐹, the function 𝑓 is said to be 
subordinate to 𝐹, if 𝑓(𝓏) = 𝐹൫Θ(𝓏)൯, (𝓏 ∈ 𝑈°), 

where Θ(𝓏) is analytic and  Θ(0) = 0, |Θ(𝓏)| < 1. This subordination is indicated by 𝑓(𝓏) ≺ 𝐹(𝓏). 
Cho and Kim [20] proposed the multiplier transformation as a linear operator. Let 𝔫 

be any integer; the multiplier transformation ℒఓఉ: 𝑀 → 𝑀  is given by ℒఓఉ𝑓(𝓏) = 𝓏 +∑ ቀ𝔫ାఓଵାఓቁఉ 𝑎𝔫𝓏𝔫 , 𝜇 ≥ 0, 𝛽 ∈ ℤ = {⋯ , −1,0,1, ⋯ }ஶ𝔫ୀଶ . 
 
The Hurwitz–Lerch Zeta function [21] is 

𝜁గ,ఘ(𝓏) = 1𝜌గ + ෍ 𝓏𝔫(𝔫 + 𝜌)గஶ
𝔫ୀଵ , 

(𝜌 ∈ ℂ\𝑍௢ି = {0, −1, −2, … }, 𝜋 ∈ ℂ, where |𝓏| < 1, ℛ𝑒(𝜋) > 1, 𝓏 ∈ 𝜕𝑈°) 

By making use of the following normalized function, we have: 𝐺గ,ఘ(𝓏) = (1 + 𝜌)గൣ𝜁గ,ఘ(𝓏) − 𝜌ିగ൧ = 𝓏 + ∑ ቀଵାఘ𝔫ାఘቁగ   , 𝓏 ∈ 𝑈°ஶ𝔫ୀଶ . 

If 𝑓, 𝑔 ∈ 𝑀, where 𝑓 given by (1) and 𝑔 is defined by 

𝑔(𝓏) = 𝓏 + ෍ 𝑏𝔫𝓏𝔫ஶ
𝔫ୀଶ  , 𝓏 ∈ U°, 

then 

(𝑓 ∗ 𝑔)(𝓏) = 𝓏 + ෍ 𝑎𝔫𝑏𝔫ஶ
𝔫ୀଶ 𝓏𝔫 = (𝑔 ∗ 𝑓)(𝓏). 

Using the convolution defined above, a new operator is next introduced as the 
original part of the present paper. 

  

) + (12µ + 1)
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Well-known notations and definitions used for obtaining the original results are next 
presented. 𝒦(U°) denotes the family of analytic functions in U°that have the form: 𝒦[a, 𝔫] = {𝑓 ∈ 𝒦(U°): 𝑓(𝓏) = 𝑎 + 𝑎𝔫𝓏𝔫 + 𝑎𝔫ାଵ𝓏𝔫ାଵ + ⋯ }, 𝑎 ∈ ℂ, 𝔫 ∈ 𝑁 = {1,2, … }, 

and let ℧𝔫 be the collection of the form: ℧𝔫 = {𝑓 ∈ 𝒦(𝑈°): 𝑓(𝓏) = 𝓏 + 𝑎𝔫ାଵ𝓏𝔫ାଵ + ⋯ }, 
where ℧ଵ = ℧, the subclass of normalized analytic functions in U°. Further, indicate by M 
the subfamily of 𝒦(U°) of the form: 

𝑓(𝓏) = 𝓏 + ෍ 𝑎𝔫𝓏𝔫 , 𝓏 ∈ U°ஶ
𝔫ୀଶ , (1)

which are univalent in U°. For analytic functions 𝑓 and 𝐹, the function 𝑓 is said to be 
subordinate to 𝐹, if 𝑓(𝓏) = 𝐹൫Θ(𝓏)൯, (𝓏 ∈ 𝑈°), 

where Θ(𝓏) is analytic and  Θ(0) = 0, |Θ(𝓏)| < 1. This subordination is indicated by 𝑓(𝓏) ≺ 𝐹(𝓏). 
Cho and Kim [20] proposed the multiplier transformation as a linear operator. Let 𝔫 

be any integer; the multiplier transformation ℒఓఉ: 𝑀 → 𝑀  is given by ℒఓఉ𝑓(𝓏) = 𝓏 +∑ ቀ𝔫ାఓଵାఓቁఉ 𝑎𝔫𝓏𝔫 , 𝜇 ≥ 0, 𝛽 ∈ ℤ = {⋯ , −1,0,1, ⋯ }ஶ𝔫ୀଶ . 
 
The Hurwitz–Lerch Zeta function [21] is 

𝜁గ,ఘ(𝓏) = 1𝜌గ + ෍ 𝓏𝔫(𝔫 + 𝜌)గஶ
𝔫ୀଵ , 

(𝜌 ∈ ℂ\𝑍௢ି = {0, −1, −2, … }, 𝜋 ∈ ℂ, where |𝓏| < 1, ℛ𝑒(𝜋) > 1, 𝓏 ∈ 𝜕𝑈°) 

By making use of the following normalized function, we have: 𝐺గ,ఘ(𝓏) = (1 + 𝜌)గൣ𝜁గ,ఘ(𝓏) − 𝜌ିగ൧ = 𝓏 + ∑ ቀଵାఘ𝔫ାఘቁగ   , 𝓏 ∈ 𝑈°ஶ𝔫ୀଶ . 

If 𝑓, 𝑔 ∈ 𝑀, where 𝑓 given by (1) and 𝑔 is defined by 

𝑔(𝓏) = 𝓏 + ෍ 𝑏𝔫𝓏𝔫ஶ
𝔫ୀଶ  , 𝓏 ∈ U°, 

then 

(𝑓 ∗ 𝑔)(𝓏) = 𝓏 + ෍ 𝑎𝔫𝑏𝔫ஶ
𝔫ୀଶ 𝓏𝔫 = (𝑔 ∗ 𝑓)(𝓏). 

Using the convolution defined above, a new operator is next introduced as the 
original part of the present paper. 

  

p′(
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Well-known notations and definitions used for obtaining the original results are next 
presented. 𝒦(U°) denotes the family of analytic functions in U°that have the form: 𝒦[a, 𝔫] = {𝑓 ∈ 𝒦(U°): 𝑓(𝓏) = 𝑎 + 𝑎𝔫𝓏𝔫 + 𝑎𝔫ାଵ𝓏𝔫ାଵ + ⋯ }, 𝑎 ∈ ℂ, 𝔫 ∈ 𝑁 = {1,2, … }, 

and let ℧𝔫 be the collection of the form: ℧𝔫 = {𝑓 ∈ 𝒦(𝑈°): 𝑓(𝓏) = 𝓏 + 𝑎𝔫ାଵ𝓏𝔫ାଵ + ⋯ }, 
where ℧ଵ = ℧, the subclass of normalized analytic functions in U°. Further, indicate by M 
the subfamily of 𝒦(U°) of the form: 

𝑓(𝓏) = 𝓏 + ෍ 𝑎𝔫𝓏𝔫 , 𝓏 ∈ U°ஶ
𝔫ୀଶ , (1)

which are univalent in U°. For analytic functions 𝑓 and 𝐹, the function 𝑓 is said to be 
subordinate to 𝐹, if 𝑓(𝓏) = 𝐹൫Θ(𝓏)൯, (𝓏 ∈ 𝑈°), 

where Θ(𝓏) is analytic and  Θ(0) = 0, |Θ(𝓏)| < 1. This subordination is indicated by 𝑓(𝓏) ≺ 𝐹(𝓏). 
Cho and Kim [20] proposed the multiplier transformation as a linear operator. Let 𝔫 

be any integer; the multiplier transformation ℒఓఉ: 𝑀 → 𝑀  is given by ℒఓఉ𝑓(𝓏) = 𝓏 +∑ ቀ𝔫ାఓଵାఓቁఉ 𝑎𝔫𝓏𝔫 , 𝜇 ≥ 0, 𝛽 ∈ ℤ = {⋯ , −1,0,1, ⋯ }ஶ𝔫ୀଶ . 
 
The Hurwitz–Lerch Zeta function [21] is 

𝜁గ,ఘ(𝓏) = 1𝜌గ + ෍ 𝓏𝔫(𝔫 + 𝜌)గஶ
𝔫ୀଵ , 

(𝜌 ∈ ℂ\𝑍௢ି = {0, −1, −2, … }, 𝜋 ∈ ℂ, where |𝓏| < 1, ℛ𝑒(𝜋) > 1, 𝓏 ∈ 𝜕𝑈°) 

By making use of the following normalized function, we have: 𝐺గ,ఘ(𝓏) = (1 + 𝜌)గൣ𝜁గ,ఘ(𝓏) − 𝜌ିగ൧ = 𝓏 + ∑ ቀଵାఘ𝔫ାఘቁగ   , 𝓏 ∈ 𝑈°ஶ𝔫ୀଶ . 

If 𝑓, 𝑔 ∈ 𝑀, where 𝑓 given by (1) and 𝑔 is defined by 

𝑔(𝓏) = 𝓏 + ෍ 𝑏𝔫𝓏𝔫ஶ
𝔫ୀଶ  , 𝓏 ∈ U°, 

then 

(𝑓 ∗ 𝑔)(𝓏) = 𝓏 + ෍ 𝑎𝔫𝑏𝔫ஶ
𝔫ୀଶ 𝓏𝔫 = (𝑔 ∗ 𝑓)(𝓏). 

Using the convolution defined above, a new operator is next introduced as the 
original part of the present paper. 

  

) + µ2 p(
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Well-known notations and definitions used for obtaining the original results are next 
presented. 𝒦(U°) denotes the family of analytic functions in U°that have the form: 𝒦[a, 𝔫] = {𝑓 ∈ 𝒦(U°): 𝑓(𝓏) = 𝑎 + 𝑎𝔫𝓏𝔫 + 𝑎𝔫ାଵ𝓏𝔫ାଵ + ⋯ }, 𝑎 ∈ ℂ, 𝔫 ∈ 𝑁 = {1,2, … }, 

and let ℧𝔫 be the collection of the form: ℧𝔫 = {𝑓 ∈ 𝒦(𝑈°): 𝑓(𝓏) = 𝓏 + 𝑎𝔫ାଵ𝓏𝔫ାଵ + ⋯ }, 
where ℧ଵ = ℧, the subclass of normalized analytic functions in U°. Further, indicate by M 
the subfamily of 𝒦(U°) of the form: 

𝑓(𝓏) = 𝓏 + ෍ 𝑎𝔫𝓏𝔫 , 𝓏 ∈ U°ஶ
𝔫ୀଶ , (1)

which are univalent in U°. For analytic functions 𝑓 and 𝐹, the function 𝑓 is said to be 
subordinate to 𝐹, if 𝑓(𝓏) = 𝐹൫Θ(𝓏)൯, (𝓏 ∈ 𝑈°), 

where Θ(𝓏) is analytic and  Θ(0) = 0, |Θ(𝓏)| < 1. This subordination is indicated by 𝑓(𝓏) ≺ 𝐹(𝓏). 
Cho and Kim [20] proposed the multiplier transformation as a linear operator. Let 𝔫 

be any integer; the multiplier transformation ℒఓఉ: 𝑀 → 𝑀  is given by ℒఓఉ𝑓(𝓏) = 𝓏 +∑ ቀ𝔫ାఓଵାఓቁఉ 𝑎𝔫𝓏𝔫 , 𝜇 ≥ 0, 𝛽 ∈ ℤ = {⋯ , −1,0,1, ⋯ }ஶ𝔫ୀଶ . 
 
The Hurwitz–Lerch Zeta function [21] is 

𝜁గ,ఘ(𝓏) = 1𝜌గ + ෍ 𝓏𝔫(𝔫 + 𝜌)గஶ
𝔫ୀଵ , 

(𝜌 ∈ ℂ\𝑍௢ି = {0, −1, −2, … }, 𝜋 ∈ ℂ, where |𝓏| < 1, ℛ𝑒(𝜋) > 1, 𝓏 ∈ 𝜕𝑈°) 

By making use of the following normalized function, we have: 𝐺గ,ఘ(𝓏) = (1 + 𝜌)గൣ𝜁గ,ఘ(𝓏) − 𝜌ିగ൧ = 𝓏 + ∑ ቀଵାఘ𝔫ାఘቁగ   , 𝓏 ∈ 𝑈°ஶ𝔫ୀଶ . 

If 𝑓, 𝑔 ∈ 𝑀, where 𝑓 given by (1) and 𝑔 is defined by 

𝑔(𝓏) = 𝓏 + ෍ 𝑏𝔫𝓏𝔫ஶ
𝔫ୀଶ  , 𝓏 ∈ U°, 

then 

(𝑓 ∗ 𝑔)(𝓏) = 𝓏 + ෍ 𝑎𝔫𝑏𝔫ஶ
𝔫ୀଶ 𝓏𝔫 = (𝑔 ∗ 𝑓)(𝓏). 

Using the convolution defined above, a new operator is next introduced as the 
original part of the present paper. 

  

)

(1 + µ)2 , (11)

Γπ,ρ,β+3,µ f (
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Well-known notations and definitions used for obtaining the original results are next 
presented. 𝒦(U°) denotes the family of analytic functions in U°that have the form: 𝒦[a, 𝔫] = {𝑓 ∈ 𝒦(U°): 𝑓(𝓏) = 𝑎 + 𝑎𝔫𝓏𝔫 + 𝑎𝔫ାଵ𝓏𝔫ାଵ + ⋯ }, 𝑎 ∈ ℂ, 𝔫 ∈ 𝑁 = {1,2, … }, 

and let ℧𝔫 be the collection of the form: ℧𝔫 = {𝑓 ∈ 𝒦(𝑈°): 𝑓(𝓏) = 𝓏 + 𝑎𝔫ାଵ𝓏𝔫ାଵ + ⋯ }, 
where ℧ଵ = ℧, the subclass of normalized analytic functions in U°. Further, indicate by M 
the subfamily of 𝒦(U°) of the form: 

𝑓(𝓏) = 𝓏 + ෍ 𝑎𝔫𝓏𝔫 , 𝓏 ∈ U°ஶ
𝔫ୀଶ , (1)

which are univalent in U°. For analytic functions 𝑓 and 𝐹, the function 𝑓 is said to be 
subordinate to 𝐹, if 𝑓(𝓏) = 𝐹൫Θ(𝓏)൯, (𝓏 ∈ 𝑈°), 

where Θ(𝓏) is analytic and  Θ(0) = 0, |Θ(𝓏)| < 1. This subordination is indicated by 𝑓(𝓏) ≺ 𝐹(𝓏). 
Cho and Kim [20] proposed the multiplier transformation as a linear operator. Let 𝔫 

be any integer; the multiplier transformation ℒఓఉ: 𝑀 → 𝑀  is given by ℒఓఉ𝑓(𝓏) = 𝓏 +∑ ቀ𝔫ାఓଵାఓቁఉ 𝑎𝔫𝓏𝔫 , 𝜇 ≥ 0, 𝛽 ∈ ℤ = {⋯ , −1,0,1, ⋯ }ஶ𝔫ୀଶ . 
 
The Hurwitz–Lerch Zeta function [21] is 

𝜁గ,ఘ(𝓏) = 1𝜌గ + ෍ 𝓏𝔫(𝔫 + 𝜌)గஶ
𝔫ୀଵ , 

(𝜌 ∈ ℂ\𝑍௢ି = {0, −1, −2, … }, 𝜋 ∈ ℂ, where |𝓏| < 1, ℛ𝑒(𝜋) > 1, 𝓏 ∈ 𝜕𝑈°) 

By making use of the following normalized function, we have: 𝐺గ,ఘ(𝓏) = (1 + 𝜌)గൣ𝜁గ,ఘ(𝓏) − 𝜌ିగ൧ = 𝓏 + ∑ ቀଵାఘ𝔫ାఘቁగ   , 𝓏 ∈ 𝑈°ஶ𝔫ୀଶ . 

If 𝑓, 𝑔 ∈ 𝑀, where 𝑓 given by (1) and 𝑔 is defined by 

𝑔(𝓏) = 𝓏 + ෍ 𝑏𝔫𝓏𝔫ஶ
𝔫ୀଶ  , 𝓏 ∈ U°, 

then 

(𝑓 ∗ 𝑔)(𝓏) = 𝓏 + ෍ 𝑎𝔫𝑏𝔫ஶ
𝔫ୀଶ 𝓏𝔫 = (𝑔 ∗ 𝑓)(𝓏). 

Using the convolution defined above, a new operator is next introduced as the 
original part of the present paper. 

  

) =
µ3 p′′′ (
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Well-known notations and definitions used for obtaining the original results are next 
presented. 𝒦(U°) denotes the family of analytic functions in U°that have the form: 𝒦[a, 𝔫] = {𝑓 ∈ 𝒦(U°): 𝑓(𝓏) = 𝑎 + 𝑎𝔫𝓏𝔫 + 𝑎𝔫ାଵ𝓏𝔫ାଵ + ⋯ }, 𝑎 ∈ ℂ, 𝔫 ∈ 𝑁 = {1,2, … }, 

and let ℧𝔫 be the collection of the form: ℧𝔫 = {𝑓 ∈ 𝒦(𝑈°): 𝑓(𝓏) = 𝓏 + 𝑎𝔫ାଵ𝓏𝔫ାଵ + ⋯ }, 
where ℧ଵ = ℧, the subclass of normalized analytic functions in U°. Further, indicate by M 
the subfamily of 𝒦(U°) of the form: 

𝑓(𝓏) = 𝓏 + ෍ 𝑎𝔫𝓏𝔫 , 𝓏 ∈ U°ஶ
𝔫ୀଶ , (1)

which are univalent in U°. For analytic functions 𝑓 and 𝐹, the function 𝑓 is said to be 
subordinate to 𝐹, if 𝑓(𝓏) = 𝐹൫Θ(𝓏)൯, (𝓏 ∈ 𝑈°), 

where Θ(𝓏) is analytic and  Θ(0) = 0, |Θ(𝓏)| < 1. This subordination is indicated by 𝑓(𝓏) ≺ 𝐹(𝓏). 
Cho and Kim [20] proposed the multiplier transformation as a linear operator. Let 𝔫 

be any integer; the multiplier transformation ℒఓఉ: 𝑀 → 𝑀  is given by ℒఓఉ𝑓(𝓏) = 𝓏 +∑ ቀ𝔫ାఓଵାఓቁఉ 𝑎𝔫𝓏𝔫 , 𝜇 ≥ 0, 𝛽 ∈ ℤ = {⋯ , −1,0,1, ⋯ }ஶ𝔫ୀଶ . 
 
The Hurwitz–Lerch Zeta function [21] is 

𝜁గ,ఘ(𝓏) = 1𝜌గ + ෍ 𝓏𝔫(𝔫 + 𝜌)గஶ
𝔫ୀଵ , 

(𝜌 ∈ ℂ\𝑍௢ି = {0, −1, −2, … }, 𝜋 ∈ ℂ, where |𝓏| < 1, ℛ𝑒(𝜋) > 1, 𝓏 ∈ 𝜕𝑈°) 

By making use of the following normalized function, we have: 𝐺గ,ఘ(𝓏) = (1 + 𝜌)గൣ𝜁గ,ఘ(𝓏) − 𝜌ିగ൧ = 𝓏 + ∑ ቀଵାఘ𝔫ାఘቁగ   , 𝓏 ∈ 𝑈°ஶ𝔫ୀଶ . 

If 𝑓, 𝑔 ∈ 𝑀, where 𝑓 given by (1) and 𝑔 is defined by 

𝑔(𝓏) = 𝓏 + ෍ 𝑏𝔫𝓏𝔫ஶ
𝔫ୀଶ  , 𝓏 ∈ U°, 

then 

(𝑓 ∗ 𝑔)(𝓏) = 𝓏 + ෍ 𝑎𝔫𝑏𝔫ஶ
𝔫ୀଶ 𝓏𝔫 = (𝑔 ∗ 𝑓)(𝓏). 

Using the convolution defined above, a new operator is next introduced as the 
original part of the present paper. 

  

) + (3 + 3µ)
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Well-known notations and definitions used for obtaining the original results are next 
presented. 𝒦(U°) denotes the family of analytic functions in U°that have the form: 𝒦[a, 𝔫] = {𝑓 ∈ 𝒦(U°): 𝑓(𝓏) = 𝑎 + 𝑎𝔫𝓏𝔫 + 𝑎𝔫ାଵ𝓏𝔫ାଵ + ⋯ }, 𝑎 ∈ ℂ, 𝔫 ∈ 𝑁 = {1,2, … }, 

and let ℧𝔫 be the collection of the form: ℧𝔫 = {𝑓 ∈ 𝒦(𝑈°): 𝑓(𝓏) = 𝓏 + 𝑎𝔫ାଵ𝓏𝔫ାଵ + ⋯ }, 
where ℧ଵ = ℧, the subclass of normalized analytic functions in U°. Further, indicate by M 
the subfamily of 𝒦(U°) of the form: 

𝑓(𝓏) = 𝓏 + ෍ 𝑎𝔫𝓏𝔫 , 𝓏 ∈ U°ஶ
𝔫ୀଶ , (1)

which are univalent in U°. For analytic functions 𝑓 and 𝐹, the function 𝑓 is said to be 
subordinate to 𝐹, if 𝑓(𝓏) = 𝐹൫Θ(𝓏)൯, (𝓏 ∈ 𝑈°), 

where Θ(𝓏) is analytic and  Θ(0) = 0, |Θ(𝓏)| < 1. This subordination is indicated by 𝑓(𝓏) ≺ 𝐹(𝓏). 
Cho and Kim [20] proposed the multiplier transformation as a linear operator. Let 𝔫 

be any integer; the multiplier transformation ℒఓఉ: 𝑀 → 𝑀  is given by ℒఓఉ𝑓(𝓏) = 𝓏 +∑ ቀ𝔫ାఓଵାఓቁఉ 𝑎𝔫𝓏𝔫 , 𝜇 ≥ 0, 𝛽 ∈ ℤ = {⋯ , −1,0,1, ⋯ }ஶ𝔫ୀଶ . 
 
The Hurwitz–Lerch Zeta function [21] is 

𝜁గ,ఘ(𝓏) = 1𝜌గ + ෍ 𝓏𝔫(𝔫 + 𝜌)గஶ
𝔫ୀଵ , 

(𝜌 ∈ ℂ\𝑍௢ି = {0, −1, −2, … }, 𝜋 ∈ ℂ, where |𝓏| < 1, ℛ𝑒(𝜋) > 1, 𝓏 ∈ 𝜕𝑈°) 

By making use of the following normalized function, we have: 𝐺గ,ఘ(𝓏) = (1 + 𝜌)గൣ𝜁గ,ఘ(𝓏) − 𝜌ିగ൧ = 𝓏 + ∑ ቀଵାఘ𝔫ାఘቁగ   , 𝓏 ∈ 𝑈°ஶ𝔫ୀଶ . 

If 𝑓, 𝑔 ∈ 𝑀, where 𝑓 given by (1) and 𝑔 is defined by 

𝑔(𝓏) = 𝓏 + ෍ 𝑏𝔫𝓏𝔫ஶ
𝔫ୀଶ  , 𝓏 ∈ U°, 

then 

(𝑓 ∗ 𝑔)(𝓏) = 𝓏 + ෍ 𝑎𝔫𝑏𝔫ஶ
𝔫ୀଶ 𝓏𝔫 = (𝑔 ∗ 𝑓)(𝓏). 

Using the convolution defined above, a new operator is next introduced as the 
original part of the present paper. 

  

2 p′′ (
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Well-known notations and definitions used for obtaining the original results are next 
presented. 𝒦(U°) denotes the family of analytic functions in U°that have the form: 𝒦[a, 𝔫] = {𝑓 ∈ 𝒦(U°): 𝑓(𝓏) = 𝑎 + 𝑎𝔫𝓏𝔫 + 𝑎𝔫ାଵ𝓏𝔫ାଵ + ⋯ }, 𝑎 ∈ ℂ, 𝔫 ∈ 𝑁 = {1,2, … }, 

and let ℧𝔫 be the collection of the form: ℧𝔫 = {𝑓 ∈ 𝒦(𝑈°): 𝑓(𝓏) = 𝓏 + 𝑎𝔫ାଵ𝓏𝔫ାଵ + ⋯ }, 
where ℧ଵ = ℧, the subclass of normalized analytic functions in U°. Further, indicate by M 
the subfamily of 𝒦(U°) of the form: 

𝑓(𝓏) = 𝓏 + ෍ 𝑎𝔫𝓏𝔫 , 𝓏 ∈ U°ஶ
𝔫ୀଶ , (1)

which are univalent in U°. For analytic functions 𝑓 and 𝐹, the function 𝑓 is said to be 
subordinate to 𝐹, if 𝑓(𝓏) = 𝐹൫Θ(𝓏)൯, (𝓏 ∈ 𝑈°), 

where Θ(𝓏) is analytic and  Θ(0) = 0, |Θ(𝓏)| < 1. This subordination is indicated by 𝑓(𝓏) ≺ 𝐹(𝓏). 
Cho and Kim [20] proposed the multiplier transformation as a linear operator. Let 𝔫 

be any integer; the multiplier transformation ℒఓఉ: 𝑀 → 𝑀  is given by ℒఓఉ𝑓(𝓏) = 𝓏 +∑ ቀ𝔫ାఓଵାఓቁఉ 𝑎𝔫𝓏𝔫 , 𝜇 ≥ 0, 𝛽 ∈ ℤ = {⋯ , −1,0,1, ⋯ }ஶ𝔫ୀଶ . 
 
The Hurwitz–Lerch Zeta function [21] is 

𝜁గ,ఘ(𝓏) = 1𝜌గ + ෍ 𝓏𝔫(𝔫 + 𝜌)గஶ
𝔫ୀଵ , 

(𝜌 ∈ ℂ\𝑍௢ି = {0, −1, −2, … }, 𝜋 ∈ ℂ, where |𝓏| < 1, ℛ𝑒(𝜋) > 1, 𝓏 ∈ 𝜕𝑈°) 

By making use of the following normalized function, we have: 𝐺గ,ఘ(𝓏) = (1 + 𝜌)గൣ𝜁గ,ఘ(𝓏) − 𝜌ିగ൧ = 𝓏 + ∑ ቀଵାఘ𝔫ାఘቁగ   , 𝓏 ∈ 𝑈°ஶ𝔫ୀଶ . 

If 𝑓, 𝑔 ∈ 𝑀, where 𝑓 given by (1) and 𝑔 is defined by 

𝑔(𝓏) = 𝓏 + ෍ 𝑏𝔫𝓏𝔫ஶ
𝔫ୀଶ  , 𝓏 ∈ U°, 

then 

(𝑓 ∗ 𝑔)(𝓏) = 𝓏 + ෍ 𝑎𝔫𝑏𝔫ஶ
𝔫ୀଶ 𝓏𝔫 = (𝑔 ∗ 𝑓)(𝓏). 

Using the convolution defined above, a new operator is next introduced as the 
original part of the present paper. 

  

) +
(
1 + 3µ + 3µ2)
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Well-known notations and definitions used for obtaining the original results are next 
presented. 𝒦(U°) denotes the family of analytic functions in U°that have the form: 𝒦[a, 𝔫] = {𝑓 ∈ 𝒦(U°): 𝑓(𝓏) = 𝑎 + 𝑎𝔫𝓏𝔫 + 𝑎𝔫ାଵ𝓏𝔫ାଵ + ⋯ }, 𝑎 ∈ ℂ, 𝔫 ∈ 𝑁 = {1,2, … }, 

and let ℧𝔫 be the collection of the form: ℧𝔫 = {𝑓 ∈ 𝒦(𝑈°): 𝑓(𝓏) = 𝓏 + 𝑎𝔫ାଵ𝓏𝔫ାଵ + ⋯ }, 
where ℧ଵ = ℧, the subclass of normalized analytic functions in U°. Further, indicate by M 
the subfamily of 𝒦(U°) of the form: 

𝑓(𝓏) = 𝓏 + ෍ 𝑎𝔫𝓏𝔫 , 𝓏 ∈ U°ஶ
𝔫ୀଶ , (1)

which are univalent in U°. For analytic functions 𝑓 and 𝐹, the function 𝑓 is said to be 
subordinate to 𝐹, if 𝑓(𝓏) = 𝐹൫Θ(𝓏)൯, (𝓏 ∈ 𝑈°), 

where Θ(𝓏) is analytic and  Θ(0) = 0, |Θ(𝓏)| < 1. This subordination is indicated by 𝑓(𝓏) ≺ 𝐹(𝓏). 
Cho and Kim [20] proposed the multiplier transformation as a linear operator. Let 𝔫 

be any integer; the multiplier transformation ℒఓఉ: 𝑀 → 𝑀  is given by ℒఓఉ𝑓(𝓏) = 𝓏 +∑ ቀ𝔫ାఓଵାఓቁఉ 𝑎𝔫𝓏𝔫 , 𝜇 ≥ 0, 𝛽 ∈ ℤ = {⋯ , −1,0,1, ⋯ }ஶ𝔫ୀଶ . 
 
The Hurwitz–Lerch Zeta function [21] is 

𝜁గ,ఘ(𝓏) = 1𝜌గ + ෍ 𝓏𝔫(𝔫 + 𝜌)గஶ
𝔫ୀଵ , 

(𝜌 ∈ ℂ\𝑍௢ି = {0, −1, −2, … }, 𝜋 ∈ ℂ, where |𝓏| < 1, ℛ𝑒(𝜋) > 1, 𝓏 ∈ 𝜕𝑈°) 

By making use of the following normalized function, we have: 𝐺గ,ఘ(𝓏) = (1 + 𝜌)గൣ𝜁గ,ఘ(𝓏) − 𝜌ିగ൧ = 𝓏 + ∑ ቀଵାఘ𝔫ାఘቁగ   , 𝓏 ∈ 𝑈°ஶ𝔫ୀଶ . 

If 𝑓, 𝑔 ∈ 𝑀, where 𝑓 given by (1) and 𝑔 is defined by 

𝑔(𝓏) = 𝓏 + ෍ 𝑏𝔫𝓏𝔫ஶ
𝔫ୀଶ  , 𝓏 ∈ U°, 

then 

(𝑓 ∗ 𝑔)(𝓏) = 𝓏 + ෍ 𝑎𝔫𝑏𝔫ஶ
𝔫ୀଶ 𝓏𝔫 = (𝑔 ∗ 𝑓)(𝓏). 

Using the convolution defined above, a new operator is next introduced as the 
original part of the present paper. 

  

p′(
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Well-known notations and definitions used for obtaining the original results are next 
presented. 𝒦(U°) denotes the family of analytic functions in U°that have the form: 𝒦[a, 𝔫] = {𝑓 ∈ 𝒦(U°): 𝑓(𝓏) = 𝑎 + 𝑎𝔫𝓏𝔫 + 𝑎𝔫ାଵ𝓏𝔫ାଵ + ⋯ }, 𝑎 ∈ ℂ, 𝔫 ∈ 𝑁 = {1,2, … }, 

and let ℧𝔫 be the collection of the form: ℧𝔫 = {𝑓 ∈ 𝒦(𝑈°): 𝑓(𝓏) = 𝓏 + 𝑎𝔫ାଵ𝓏𝔫ାଵ + ⋯ }, 
where ℧ଵ = ℧, the subclass of normalized analytic functions in U°. Further, indicate by M 
the subfamily of 𝒦(U°) of the form: 

𝑓(𝓏) = 𝓏 + ෍ 𝑎𝔫𝓏𝔫 , 𝓏 ∈ U°ஶ
𝔫ୀଶ , (1)

which are univalent in U°. For analytic functions 𝑓 and 𝐹, the function 𝑓 is said to be 
subordinate to 𝐹, if 𝑓(𝓏) = 𝐹൫Θ(𝓏)൯, (𝓏 ∈ 𝑈°), 

where Θ(𝓏) is analytic and  Θ(0) = 0, |Θ(𝓏)| < 1. This subordination is indicated by 𝑓(𝓏) ≺ 𝐹(𝓏). 
Cho and Kim [20] proposed the multiplier transformation as a linear operator. Let 𝔫 

be any integer; the multiplier transformation ℒఓఉ: 𝑀 → 𝑀  is given by ℒఓఉ𝑓(𝓏) = 𝓏 +∑ ቀ𝔫ାఓଵାఓቁఉ 𝑎𝔫𝓏𝔫 , 𝜇 ≥ 0, 𝛽 ∈ ℤ = {⋯ , −1,0,1, ⋯ }ஶ𝔫ୀଶ . 
 
The Hurwitz–Lerch Zeta function [21] is 

𝜁గ,ఘ(𝓏) = 1𝜌గ + ෍ 𝓏𝔫(𝔫 + 𝜌)గஶ
𝔫ୀଵ , 

(𝜌 ∈ ℂ\𝑍௢ି = {0, −1, −2, … }, 𝜋 ∈ ℂ, where |𝓏| < 1, ℛ𝑒(𝜋) > 1, 𝓏 ∈ 𝜕𝑈°) 

By making use of the following normalized function, we have: 𝐺గ,ఘ(𝓏) = (1 + 𝜌)గൣ𝜁గ,ఘ(𝓏) − 𝜌ିగ൧ = 𝓏 + ∑ ቀଵାఘ𝔫ାఘቁగ   , 𝓏 ∈ 𝑈°ஶ𝔫ୀଶ . 

If 𝑓, 𝑔 ∈ 𝑀, where 𝑓 given by (1) and 𝑔 is defined by 

𝑔(𝓏) = 𝓏 + ෍ 𝑏𝔫𝓏𝔫ஶ
𝔫ୀଶ  , 𝓏 ∈ U°, 

then 

(𝑓 ∗ 𝑔)(𝓏) = 𝓏 + ෍ 𝑎𝔫𝑏𝔫ஶ
𝔫ୀଶ 𝓏𝔫 = (𝑔 ∗ 𝑓)(𝓏). 

Using the convolution defined above, a new operator is next introduced as the 
original part of the present paper. 

  

) + µ3 p(
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Well-known notations and definitions used for obtaining the original results are next 
presented. 𝒦(U°) denotes the family of analytic functions in U°that have the form: 𝒦[a, 𝔫] = {𝑓 ∈ 𝒦(U°): 𝑓(𝓏) = 𝑎 + 𝑎𝔫𝓏𝔫 + 𝑎𝔫ାଵ𝓏𝔫ାଵ + ⋯ }, 𝑎 ∈ ℂ, 𝔫 ∈ 𝑁 = {1,2, … }, 

and let ℧𝔫 be the collection of the form: ℧𝔫 = {𝑓 ∈ 𝒦(𝑈°): 𝑓(𝓏) = 𝓏 + 𝑎𝔫ାଵ𝓏𝔫ାଵ + ⋯ }, 
where ℧ଵ = ℧, the subclass of normalized analytic functions in U°. Further, indicate by M 
the subfamily of 𝒦(U°) of the form: 

𝑓(𝓏) = 𝓏 + ෍ 𝑎𝔫𝓏𝔫 , 𝓏 ∈ U°ஶ
𝔫ୀଶ , (1)

which are univalent in U°. For analytic functions 𝑓 and 𝐹, the function 𝑓 is said to be 
subordinate to 𝐹, if 𝑓(𝓏) = 𝐹൫Θ(𝓏)൯, (𝓏 ∈ 𝑈°), 

where Θ(𝓏) is analytic and  Θ(0) = 0, |Θ(𝓏)| < 1. This subordination is indicated by 𝑓(𝓏) ≺ 𝐹(𝓏). 
Cho and Kim [20] proposed the multiplier transformation as a linear operator. Let 𝔫 

be any integer; the multiplier transformation ℒఓఉ: 𝑀 → 𝑀  is given by ℒఓఉ𝑓(𝓏) = 𝓏 +∑ ቀ𝔫ାఓଵାఓቁఉ 𝑎𝔫𝓏𝔫 , 𝜇 ≥ 0, 𝛽 ∈ ℤ = {⋯ , −1,0,1, ⋯ }ஶ𝔫ୀଶ . 
 
The Hurwitz–Lerch Zeta function [21] is 

𝜁గ,ఘ(𝓏) = 1𝜌గ + ෍ 𝓏𝔫(𝔫 + 𝜌)గஶ
𝔫ୀଵ , 

(𝜌 ∈ ℂ\𝑍௢ି = {0, −1, −2, … }, 𝜋 ∈ ℂ, where |𝓏| < 1, ℛ𝑒(𝜋) > 1, 𝓏 ∈ 𝜕𝑈°) 

By making use of the following normalized function, we have: 𝐺గ,ఘ(𝓏) = (1 + 𝜌)గൣ𝜁గ,ఘ(𝓏) − 𝜌ିగ൧ = 𝓏 + ∑ ቀଵାఘ𝔫ାఘቁగ   , 𝓏 ∈ 𝑈°ஶ𝔫ୀଶ . 

If 𝑓, 𝑔 ∈ 𝑀, where 𝑓 given by (1) and 𝑔 is defined by 

𝑔(𝓏) = 𝓏 + ෍ 𝑏𝔫𝓏𝔫ஶ
𝔫ୀଶ  , 𝓏 ∈ U°, 

then 

(𝑓 ∗ 𝑔)(𝓏) = 𝓏 + ෍ 𝑎𝔫𝑏𝔫ஶ
𝔫ୀଶ 𝓏𝔫 = (𝑔 ∗ 𝑓)(𝓏). 

Using the convolution defined above, a new operator is next introduced as the 
original part of the present paper. 

  

)

(1 + µ)4 (12)

and

Γπ,ρ,β+4,µ f (
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Well-known notations and definitions used for obtaining the original results are next 
presented. 𝒦(U°) denotes the family of analytic functions in U°that have the form: 𝒦[a, 𝔫] = {𝑓 ∈ 𝒦(U°): 𝑓(𝓏) = 𝑎 + 𝑎𝔫𝓏𝔫 + 𝑎𝔫ାଵ𝓏𝔫ାଵ + ⋯ }, 𝑎 ∈ ℂ, 𝔫 ∈ 𝑁 = {1,2, … }, 

and let ℧𝔫 be the collection of the form: ℧𝔫 = {𝑓 ∈ 𝒦(𝑈°): 𝑓(𝓏) = 𝓏 + 𝑎𝔫ାଵ𝓏𝔫ାଵ + ⋯ }, 
where ℧ଵ = ℧, the subclass of normalized analytic functions in U°. Further, indicate by M 
the subfamily of 𝒦(U°) of the form: 

𝑓(𝓏) = 𝓏 + ෍ 𝑎𝔫𝓏𝔫 , 𝓏 ∈ U°ஶ
𝔫ୀଶ , (1)

which are univalent in U°. For analytic functions 𝑓 and 𝐹, the function 𝑓 is said to be 
subordinate to 𝐹, if 𝑓(𝓏) = 𝐹൫Θ(𝓏)൯, (𝓏 ∈ 𝑈°), 

where Θ(𝓏) is analytic and  Θ(0) = 0, |Θ(𝓏)| < 1. This subordination is indicated by 𝑓(𝓏) ≺ 𝐹(𝓏). 
Cho and Kim [20] proposed the multiplier transformation as a linear operator. Let 𝔫 

be any integer; the multiplier transformation ℒఓఉ: 𝑀 → 𝑀  is given by ℒఓఉ𝑓(𝓏) = 𝓏 +∑ ቀ𝔫ାఓଵାఓቁఉ 𝑎𝔫𝓏𝔫 , 𝜇 ≥ 0, 𝛽 ∈ ℤ = {⋯ , −1,0,1, ⋯ }ஶ𝔫ୀଶ . 
 
The Hurwitz–Lerch Zeta function [21] is 

𝜁గ,ఘ(𝓏) = 1𝜌గ + ෍ 𝓏𝔫(𝔫 + 𝜌)గஶ
𝔫ୀଵ , 

(𝜌 ∈ ℂ\𝑍௢ି = {0, −1, −2, … }, 𝜋 ∈ ℂ, where |𝓏| < 1, ℛ𝑒(𝜋) > 1, 𝓏 ∈ 𝜕𝑈°) 

By making use of the following normalized function, we have: 𝐺గ,ఘ(𝓏) = (1 + 𝜌)గൣ𝜁గ,ఘ(𝓏) − 𝜌ିగ൧ = 𝓏 + ∑ ቀଵାఘ𝔫ାఘቁగ   , 𝓏 ∈ 𝑈°ஶ𝔫ୀଶ . 

If 𝑓, 𝑔 ∈ 𝑀, where 𝑓 given by (1) and 𝑔 is defined by 

𝑔(𝓏) = 𝓏 + ෍ 𝑏𝔫𝓏𝔫ஶ
𝔫ୀଶ  , 𝓏 ∈ U°, 

then 

(𝑓 ∗ 𝑔)(𝓏) = 𝓏 + ෍ 𝑎𝔫𝑏𝔫ஶ
𝔫ୀଶ 𝓏𝔫 = (𝑔 ∗ 𝑓)(𝓏). 

Using the convolution defined above, a new operator is next introduced as the 
original part of the present paper. 

  

)

=
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where Θ(𝓏) is analytic and  Θ(0) = 0, |Θ(𝓏)| < 1. This subordination is indicated by 𝑓(𝓏) ≺ 𝐹(𝓏). 
Cho and Kim [20] proposed the multiplier transformation as a linear operator. Let 𝔫 

be any integer; the multiplier transformation ℒఓఉ: 𝑀 → 𝑀  is given by ℒఓఉ𝑓(𝓏) = 𝓏 +∑ ቀ𝔫ାఓଵାఓቁఉ 𝑎𝔫𝓏𝔫 , 𝜇 ≥ 0, 𝛽 ∈ ℤ = {⋯ , −1,0,1, ⋯ }ஶ𝔫ୀଶ . 
 
The Hurwitz–Lerch Zeta function [21] is 

𝜁గ,ఘ(𝓏) = 1𝜌గ + ෍ 𝓏𝔫(𝔫 + 𝜌)గஶ
𝔫ୀଵ , 

(𝜌 ∈ ℂ\𝑍௢ି = {0, −1, −2, … }, 𝜋 ∈ ℂ, where |𝓏| < 1, ℛ𝑒(𝜋) > 1, 𝓏 ∈ 𝜕𝑈°) 

By making use of the following normalized function, we have: 𝐺గ,ఘ(𝓏) = (1 + 𝜌)గൣ𝜁గ,ఘ(𝓏) − 𝜌ିగ൧ = 𝓏 + ∑ ቀଵାఘ𝔫ାఘቁగ   , 𝓏 ∈ 𝑈°ஶ𝔫ୀଶ . 

If 𝑓, 𝑔 ∈ 𝑀, where 𝑓 given by (1) and 𝑔 is defined by 

𝑔(𝓏) = 𝓏 + ෍ 𝑏𝔫𝓏𝔫ஶ
𝔫ୀଶ  , 𝓏 ∈ U°, 

then 

(𝑓 ∗ 𝑔)(𝓏) = 𝓏 + ෍ 𝑎𝔫𝑏𝔫ஶ
𝔫ୀଶ 𝓏𝔫 = (𝑔 ∗ 𝑓)(𝓏). 

Using the convolution defined above, a new operator is next introduced as the 
original part of the present paper. 

  

4 p′′′′ (

Symmetry 2022, 14, x FOR PEER REVIEW 2 of 12 
 

 

Well-known notations and definitions used for obtaining the original results are next 
presented. 𝒦(U°) denotes the family of analytic functions in U°that have the form: 𝒦[a, 𝔫] = {𝑓 ∈ 𝒦(U°): 𝑓(𝓏) = 𝑎 + 𝑎𝔫𝓏𝔫 + 𝑎𝔫ାଵ𝓏𝔫ାଵ + ⋯ }, 𝑎 ∈ ℂ, 𝔫 ∈ 𝑁 = {1,2, … }, 

and let ℧𝔫 be the collection of the form: ℧𝔫 = {𝑓 ∈ 𝒦(𝑈°): 𝑓(𝓏) = 𝓏 + 𝑎𝔫ାଵ𝓏𝔫ାଵ + ⋯ }, 
where ℧ଵ = ℧, the subclass of normalized analytic functions in U°. Further, indicate by M 
the subfamily of 𝒦(U°) of the form: 

𝑓(𝓏) = 𝓏 + ෍ 𝑎𝔫𝓏𝔫 , 𝓏 ∈ U°ஶ
𝔫ୀଶ , (1)

which are univalent in U°. For analytic functions 𝑓 and 𝐹, the function 𝑓 is said to be 
subordinate to 𝐹, if 𝑓(𝓏) = 𝐹൫Θ(𝓏)൯, (𝓏 ∈ 𝑈°), 

where Θ(𝓏) is analytic and  Θ(0) = 0, |Θ(𝓏)| < 1. This subordination is indicated by 𝑓(𝓏) ≺ 𝐹(𝓏). 
Cho and Kim [20] proposed the multiplier transformation as a linear operator. Let 𝔫 

be any integer; the multiplier transformation ℒఓఉ: 𝑀 → 𝑀  is given by ℒఓఉ𝑓(𝓏) = 𝓏 +∑ ቀ𝔫ାఓଵାఓቁఉ 𝑎𝔫𝓏𝔫 , 𝜇 ≥ 0, 𝛽 ∈ ℤ = {⋯ , −1,0,1, ⋯ }ஶ𝔫ୀଶ . 
 
The Hurwitz–Lerch Zeta function [21] is 

𝜁గ,ఘ(𝓏) = 1𝜌గ + ෍ 𝓏𝔫(𝔫 + 𝜌)గஶ
𝔫ୀଵ , 

(𝜌 ∈ ℂ\𝑍௢ି = {0, −1, −2, … }, 𝜋 ∈ ℂ, where |𝓏| < 1, ℛ𝑒(𝜋) > 1, 𝓏 ∈ 𝜕𝑈°) 

By making use of the following normalized function, we have: 𝐺గ,ఘ(𝓏) = (1 + 𝜌)గൣ𝜁గ,ఘ(𝓏) − 𝜌ିగ൧ = 𝓏 + ∑ ቀଵାఘ𝔫ାఘቁగ   , 𝓏 ∈ 𝑈°ஶ𝔫ୀଶ . 

If 𝑓, 𝑔 ∈ 𝑀, where 𝑓 given by (1) and 𝑔 is defined by 

𝑔(𝓏) = 𝓏 + ෍ 𝑏𝔫𝓏𝔫ஶ
𝔫ୀଶ  , 𝓏 ∈ U°, 

then 

(𝑓 ∗ 𝑔)(𝓏) = 𝓏 + ෍ 𝑎𝔫𝑏𝔫ஶ
𝔫ୀଶ 𝓏𝔫 = (𝑔 ∗ 𝑓)(𝓏). 

Using the convolution defined above, a new operator is next introduced as the 
original part of the present paper. 
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Symmetry 2022, 14, x FOR PEER REVIEW 2 of 12 
 

 

Well-known notations and definitions used for obtaining the original results are next 
presented. 𝒦(U°) denotes the family of analytic functions in U°that have the form: 𝒦[a, 𝔫] = {𝑓 ∈ 𝒦(U°): 𝑓(𝓏) = 𝑎 + 𝑎𝔫𝓏𝔫 + 𝑎𝔫ାଵ𝓏𝔫ାଵ + ⋯ }, 𝑎 ∈ ℂ, 𝔫 ∈ 𝑁 = {1,2, … }, 

and let ℧𝔫 be the collection of the form: ℧𝔫 = {𝑓 ∈ 𝒦(𝑈°): 𝑓(𝓏) = 𝓏 + 𝑎𝔫ାଵ𝓏𝔫ାଵ + ⋯ }, 
where ℧ଵ = ℧, the subclass of normalized analytic functions in U°. Further, indicate by M 
the subfamily of 𝒦(U°) of the form: 

𝑓(𝓏) = 𝓏 + ෍ 𝑎𝔫𝓏𝔫 , 𝓏 ∈ U°ஶ
𝔫ୀଶ , (1)

which are univalent in U°. For analytic functions 𝑓 and 𝐹, the function 𝑓 is said to be 
subordinate to 𝐹, if 𝑓(𝓏) = 𝐹൫Θ(𝓏)൯, (𝓏 ∈ 𝑈°), 

where Θ(𝓏) is analytic and  Θ(0) = 0, |Θ(𝓏)| < 1. This subordination is indicated by 𝑓(𝓏) ≺ 𝐹(𝓏). 
Cho and Kim [20] proposed the multiplier transformation as a linear operator. Let 𝔫 

be any integer; the multiplier transformation ℒఓఉ: 𝑀 → 𝑀  is given by ℒఓఉ𝑓(𝓏) = 𝓏 +∑ ቀ𝔫ାఓଵାఓቁఉ 𝑎𝔫𝓏𝔫 , 𝜇 ≥ 0, 𝛽 ∈ ℤ = {⋯ , −1,0,1, ⋯ }ஶ𝔫ୀଶ . 
 
The Hurwitz–Lerch Zeta function [21] is 

𝜁గ,ఘ(𝓏) = 1𝜌గ + ෍ 𝓏𝔫(𝔫 + 𝜌)గஶ
𝔫ୀଵ , 

(𝜌 ∈ ℂ\𝑍௢ି = {0, −1, −2, … }, 𝜋 ∈ ℂ, where |𝓏| < 1, ℛ𝑒(𝜋) > 1, 𝓏 ∈ 𝜕𝑈°) 

By making use of the following normalized function, we have: 𝐺గ,ఘ(𝓏) = (1 + 𝜌)గൣ𝜁గ,ఘ(𝓏) − 𝜌ିగ൧ = 𝓏 + ∑ ቀଵାఘ𝔫ାఘቁగ   , 𝓏 ∈ 𝑈°ஶ𝔫ୀଶ . 

If 𝑓, 𝑔 ∈ 𝑀, where 𝑓 given by (1) and 𝑔 is defined by 

𝑔(𝓏) = 𝓏 + ෍ 𝑏𝔫𝓏𝔫ஶ
𝔫ୀଶ  , 𝓏 ∈ U°, 

then 

(𝑓 ∗ 𝑔)(𝓏) = 𝓏 + ෍ 𝑎𝔫𝑏𝔫ஶ
𝔫ୀଶ 𝓏𝔫 = (𝑔 ∗ 𝑓)(𝓏). 

Using the convolution defined above, a new operator is next introduced as the 
original part of the present paper. 
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Well-known notations and definitions used for obtaining the original results are next 
presented. 𝒦(U°) denotes the family of analytic functions in U°that have the form: 𝒦[a, 𝔫] = {𝑓 ∈ 𝒦(U°): 𝑓(𝓏) = 𝑎 + 𝑎𝔫𝓏𝔫 + 𝑎𝔫ାଵ𝓏𝔫ାଵ + ⋯ }, 𝑎 ∈ ℂ, 𝔫 ∈ 𝑁 = {1,2, … }, 

and let ℧𝔫 be the collection of the form: ℧𝔫 = {𝑓 ∈ 𝒦(𝑈°): 𝑓(𝓏) = 𝓏 + 𝑎𝔫ାଵ𝓏𝔫ାଵ + ⋯ }, 
where ℧ଵ = ℧, the subclass of normalized analytic functions in U°. Further, indicate by M 
the subfamily of 𝒦(U°) of the form: 

𝑓(𝓏) = 𝓏 + ෍ 𝑎𝔫𝓏𝔫 , 𝓏 ∈ U°ஶ
𝔫ୀଶ , (1)

which are univalent in U°. For analytic functions 𝑓 and 𝐹, the function 𝑓 is said to be 
subordinate to 𝐹, if 𝑓(𝓏) = 𝐹൫Θ(𝓏)൯, (𝓏 ∈ 𝑈°), 

where Θ(𝓏) is analytic and  Θ(0) = 0, |Θ(𝓏)| < 1. This subordination is indicated by 𝑓(𝓏) ≺ 𝐹(𝓏). 
Cho and Kim [20] proposed the multiplier transformation as a linear operator. Let 𝔫 

be any integer; the multiplier transformation ℒఓఉ: 𝑀 → 𝑀  is given by ℒఓఉ𝑓(𝓏) = 𝓏 +∑ ቀ𝔫ାఓଵାఓቁఉ 𝑎𝔫𝓏𝔫 , 𝜇 ≥ 0, 𝛽 ∈ ℤ = {⋯ , −1,0,1, ⋯ }ஶ𝔫ୀଶ . 
 
The Hurwitz–Lerch Zeta function [21] is 

𝜁గ,ఘ(𝓏) = 1𝜌గ + ෍ 𝓏𝔫(𝔫 + 𝜌)గஶ
𝔫ୀଵ , 

(𝜌 ∈ ℂ\𝑍௢ି = {0, −1, −2, … }, 𝜋 ∈ ℂ, where |𝓏| < 1, ℛ𝑒(𝜋) > 1, 𝓏 ∈ 𝜕𝑈°) 

By making use of the following normalized function, we have: 𝐺గ,ఘ(𝓏) = (1 + 𝜌)గൣ𝜁గ,ఘ(𝓏) − 𝜌ିగ൧ = 𝓏 + ∑ ቀଵାఘ𝔫ାఘቁగ   , 𝓏 ∈ 𝑈°ஶ𝔫ୀଶ . 

If 𝑓, 𝑔 ∈ 𝑀, where 𝑓 given by (1) and 𝑔 is defined by 

𝑔(𝓏) = 𝓏 + ෍ 𝑏𝔫𝓏𝔫ஶ
𝔫ୀଶ  , 𝓏 ∈ U°, 

then 

(𝑓 ∗ 𝑔)(𝓏) = 𝓏 + ෍ 𝑎𝔫𝑏𝔫ஶ
𝔫ୀଶ 𝓏𝔫 = (𝑔 ∗ 𝑓)(𝓏). 

Using the convolution defined above, a new operator is next introduced as the 
original part of the present paper. 
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Well-known notations and definitions used for obtaining the original results are next 
presented. 𝒦(U°) denotes the family of analytic functions in U°that have the form: 𝒦[a, 𝔫] = {𝑓 ∈ 𝒦(U°): 𝑓(𝓏) = 𝑎 + 𝑎𝔫𝓏𝔫 + 𝑎𝔫ାଵ𝓏𝔫ାଵ + ⋯ }, 𝑎 ∈ ℂ, 𝔫 ∈ 𝑁 = {1,2, … }, 

and let ℧𝔫 be the collection of the form: ℧𝔫 = {𝑓 ∈ 𝒦(𝑈°): 𝑓(𝓏) = 𝓏 + 𝑎𝔫ାଵ𝓏𝔫ାଵ + ⋯ }, 
where ℧ଵ = ℧, the subclass of normalized analytic functions in U°. Further, indicate by M 
the subfamily of 𝒦(U°) of the form: 

𝑓(𝓏) = 𝓏 + ෍ 𝑎𝔫𝓏𝔫 , 𝓏 ∈ U°ஶ
𝔫ୀଶ , (1)

which are univalent in U°. For analytic functions 𝑓 and 𝐹, the function 𝑓 is said to be 
subordinate to 𝐹, if 𝑓(𝓏) = 𝐹൫Θ(𝓏)൯, (𝓏 ∈ 𝑈°), 

where Θ(𝓏) is analytic and  Θ(0) = 0, |Θ(𝓏)| < 1. This subordination is indicated by 𝑓(𝓏) ≺ 𝐹(𝓏). 
Cho and Kim [20] proposed the multiplier transformation as a linear operator. Let 𝔫 

be any integer; the multiplier transformation ℒఓఉ: 𝑀 → 𝑀  is given by ℒఓఉ𝑓(𝓏) = 𝓏 +∑ ቀ𝔫ାఓଵାఓቁఉ 𝑎𝔫𝓏𝔫 , 𝜇 ≥ 0, 𝛽 ∈ ℤ = {⋯ , −1,0,1, ⋯ }ஶ𝔫ୀଶ . 
 
The Hurwitz–Lerch Zeta function [21] is 

𝜁గ,ఘ(𝓏) = 1𝜌గ + ෍ 𝓏𝔫(𝔫 + 𝜌)గஶ
𝔫ୀଵ , 

(𝜌 ∈ ℂ\𝑍௢ି = {0, −1, −2, … }, 𝜋 ∈ ℂ, where |𝓏| < 1, ℛ𝑒(𝜋) > 1, 𝓏 ∈ 𝜕𝑈°) 

By making use of the following normalized function, we have: 𝐺గ,ఘ(𝓏) = (1 + 𝜌)గൣ𝜁గ,ఘ(𝓏) − 𝜌ିగ൧ = 𝓏 + ∑ ቀଵାఘ𝔫ାఘቁగ   , 𝓏 ∈ 𝑈°ஶ𝔫ୀଶ . 

If 𝑓, 𝑔 ∈ 𝑀, where 𝑓 given by (1) and 𝑔 is defined by 

𝑔(𝓏) = 𝓏 + ෍ 𝑏𝔫𝓏𝔫ஶ
𝔫ୀଶ  , 𝓏 ∈ U°, 

then 

(𝑓 ∗ 𝑔)(𝓏) = 𝓏 + ෍ 𝑎𝔫𝑏𝔫ஶ
𝔫ୀଶ 𝓏𝔫 = (𝑔 ∗ 𝑓)(𝓏). 

Using the convolution defined above, a new operator is next introduced as the 
original part of the present paper. 
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Well-known notations and definitions used for obtaining the original results are next 
presented. 𝒦(U°) denotes the family of analytic functions in U°that have the form: 𝒦[a, 𝔫] = {𝑓 ∈ 𝒦(U°): 𝑓(𝓏) = 𝑎 + 𝑎𝔫𝓏𝔫 + 𝑎𝔫ାଵ𝓏𝔫ାଵ + ⋯ }, 𝑎 ∈ ℂ, 𝔫 ∈ 𝑁 = {1,2, … }, 

and let ℧𝔫 be the collection of the form: ℧𝔫 = {𝑓 ∈ 𝒦(𝑈°): 𝑓(𝓏) = 𝓏 + 𝑎𝔫ାଵ𝓏𝔫ାଵ + ⋯ }, 
where ℧ଵ = ℧, the subclass of normalized analytic functions in U°. Further, indicate by M 
the subfamily of 𝒦(U°) of the form: 

𝑓(𝓏) = 𝓏 + ෍ 𝑎𝔫𝓏𝔫 , 𝓏 ∈ U°ஶ
𝔫ୀଶ , (1)

which are univalent in U°. For analytic functions 𝑓 and 𝐹, the function 𝑓 is said to be 
subordinate to 𝐹, if 𝑓(𝓏) = 𝐹൫Θ(𝓏)൯, (𝓏 ∈ 𝑈°), 

where Θ(𝓏) is analytic and  Θ(0) = 0, |Θ(𝓏)| < 1. This subordination is indicated by 𝑓(𝓏) ≺ 𝐹(𝓏). 
Cho and Kim [20] proposed the multiplier transformation as a linear operator. Let 𝔫 

be any integer; the multiplier transformation ℒఓఉ: 𝑀 → 𝑀  is given by ℒఓఉ𝑓(𝓏) = 𝓏 +∑ ቀ𝔫ାఓଵାఓቁఉ 𝑎𝔫𝓏𝔫 , 𝜇 ≥ 0, 𝛽 ∈ ℤ = {⋯ , −1,0,1, ⋯ }ஶ𝔫ୀଶ . 
 
The Hurwitz–Lerch Zeta function [21] is 

𝜁గ,ఘ(𝓏) = 1𝜌గ + ෍ 𝓏𝔫(𝔫 + 𝜌)గஶ
𝔫ୀଵ , 

(𝜌 ∈ ℂ\𝑍௢ି = {0, −1, −2, … }, 𝜋 ∈ ℂ, where |𝓏| < 1, ℛ𝑒(𝜋) > 1, 𝓏 ∈ 𝜕𝑈°) 

By making use of the following normalized function, we have: 𝐺గ,ఘ(𝓏) = (1 + 𝜌)గൣ𝜁గ,ఘ(𝓏) − 𝜌ିగ൧ = 𝓏 + ∑ ቀଵାఘ𝔫ାఘቁగ   , 𝓏 ∈ 𝑈°ஶ𝔫ୀଶ . 

If 𝑓, 𝑔 ∈ 𝑀, where 𝑓 given by (1) and 𝑔 is defined by 

𝑔(𝓏) = 𝓏 + ෍ 𝑏𝔫𝓏𝔫ஶ
𝔫ୀଶ  , 𝓏 ∈ U°, 

then 

(𝑓 ∗ 𝑔)(𝓏) = 𝓏 + ෍ 𝑎𝔫𝑏𝔫ஶ
𝔫ୀଶ 𝓏𝔫 = (𝑔 ∗ 𝑓)(𝓏). 

Using the convolution defined above, a new operator is next introduced as the 
original part of the present paper. 
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Well-known notations and definitions used for obtaining the original results are next 
presented. 𝒦(U°) denotes the family of analytic functions in U°that have the form: 𝒦[a, 𝔫] = {𝑓 ∈ 𝒦(U°): 𝑓(𝓏) = 𝑎 + 𝑎𝔫𝓏𝔫 + 𝑎𝔫ାଵ𝓏𝔫ାଵ + ⋯ }, 𝑎 ∈ ℂ, 𝔫 ∈ 𝑁 = {1,2, … }, 

and let ℧𝔫 be the collection of the form: ℧𝔫 = {𝑓 ∈ 𝒦(𝑈°): 𝑓(𝓏) = 𝓏 + 𝑎𝔫ାଵ𝓏𝔫ାଵ + ⋯ }, 
where ℧ଵ = ℧, the subclass of normalized analytic functions in U°. Further, indicate by M 
the subfamily of 𝒦(U°) of the form: 

𝑓(𝓏) = 𝓏 + ෍ 𝑎𝔫𝓏𝔫 , 𝓏 ∈ U°ஶ
𝔫ୀଶ , (1)

which are univalent in U°. For analytic functions 𝑓 and 𝐹, the function 𝑓 is said to be 
subordinate to 𝐹, if 𝑓(𝓏) = 𝐹൫Θ(𝓏)൯, (𝓏 ∈ 𝑈°), 

where Θ(𝓏) is analytic and  Θ(0) = 0, |Θ(𝓏)| < 1. This subordination is indicated by 𝑓(𝓏) ≺ 𝐹(𝓏). 
Cho and Kim [20] proposed the multiplier transformation as a linear operator. Let 𝔫 

be any integer; the multiplier transformation ℒఓఉ: 𝑀 → 𝑀  is given by ℒఓఉ𝑓(𝓏) = 𝓏 +∑ ቀ𝔫ାఓଵାఓቁఉ 𝑎𝔫𝓏𝔫 , 𝜇 ≥ 0, 𝛽 ∈ ℤ = {⋯ , −1,0,1, ⋯ }ஶ𝔫ୀଶ . 
 
The Hurwitz–Lerch Zeta function [21] is 

𝜁గ,ఘ(𝓏) = 1𝜌గ + ෍ 𝓏𝔫(𝔫 + 𝜌)గஶ
𝔫ୀଵ , 

(𝜌 ∈ ℂ\𝑍௢ି = {0, −1, −2, … }, 𝜋 ∈ ℂ, where |𝓏| < 1, ℛ𝑒(𝜋) > 1, 𝓏 ∈ 𝜕𝑈°) 

By making use of the following normalized function, we have: 𝐺గ,ఘ(𝓏) = (1 + 𝜌)గൣ𝜁గ,ఘ(𝓏) − 𝜌ିగ൧ = 𝓏 + ∑ ቀଵାఘ𝔫ାఘቁగ   , 𝓏 ∈ 𝑈°ஶ𝔫ୀଶ . 

If 𝑓, 𝑔 ∈ 𝑀, where 𝑓 given by (1) and 𝑔 is defined by 

𝑔(𝓏) = 𝓏 + ෍ 𝑏𝔫𝓏𝔫ஶ
𝔫ୀଶ  , 𝓏 ∈ U°, 

then 

(𝑓 ∗ 𝑔)(𝓏) = 𝓏 + ෍ 𝑎𝔫𝑏𝔫ஶ
𝔫ୀଶ 𝓏𝔫 = (𝑔 ∗ 𝑓)(𝓏). 

Using the convolution defined above, a new operator is next introduced as the 
original part of the present paper. 
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Well-known notations and definitions used for obtaining the original results are next 
presented. 𝒦(U°) denotes the family of analytic functions in U°that have the form: 𝒦[a, 𝔫] = {𝑓 ∈ 𝒦(U°): 𝑓(𝓏) = 𝑎 + 𝑎𝔫𝓏𝔫 + 𝑎𝔫ାଵ𝓏𝔫ାଵ + ⋯ }, 𝑎 ∈ ℂ, 𝔫 ∈ 𝑁 = {1,2, … }, 

and let ℧𝔫 be the collection of the form: ℧𝔫 = {𝑓 ∈ 𝒦(𝑈°): 𝑓(𝓏) = 𝓏 + 𝑎𝔫ାଵ𝓏𝔫ାଵ + ⋯ }, 
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𝔫ୀଶ 𝓏𝔫 = (𝑔 ∗ 𝑓)(𝓏). 
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original part of the present paper. 
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Now, we present the transformation from C5 to C by

r(r, s, t, u, b;
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1 + µ
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) =
t+ (1 + 2µ)s+ µ2r

(1 + µ)2 ,

y(r, s, t, u, b;
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) =
u+ (3 + 3µ)t+

(
1 + 3µ + 3µ2)s+ µ3r

(1 + µ)3 ,

and

g(r, s, t, u, b;
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) =
b + (4µ + 6)u+

(
4µ2 + 12µ + 7

)
t+
(
4µ3 + 4µ2 + 4µ + 1

)
s+ µ4r

(1 + µ)4 . (14)

Assume

ψ(r, s, t, u, b;
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),

= Y(r, s+µr
1+µ , t+(1+2µ)s+µ2r

(1+µ)2 ,
u+(3+3µ)t+(1+3µ+3µ2)s+µ3r

(1+µ)3 ,

b+(6+4µ)u+(7+12µ+4µ2)t+(1+4µ+4µ2+4µ3)s+µ4r

(1+µ)4 ;
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)
.

(15)

We conclude the proof by using Theorem 1, and by using Equation (9) in (13), we
obtain from (15) that

(ψ
(

p(
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Using the convolution defined above, a new operator is next introduced as the 
original part of the present paper. 

  

);
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Well-known notations and definitions used for obtaining the original results are next 
presented. 𝒦(U°) denotes the family of analytic functions in U°that have the form: 𝒦[a, 𝔫] = {𝑓 ∈ 𝒦(U°): 𝑓(𝓏) = 𝑎 + 𝑎𝔫𝓏𝔫 + 𝑎𝔫ାଵ𝓏𝔫ାଵ + ⋯ }, 𝑎 ∈ ℂ, 𝔫 ∈ 𝑁 = {1,2, … }, 

and let ℧𝔫 be the collection of the form: ℧𝔫 = {𝑓 ∈ 𝒦(𝑈°): 𝑓(𝓏) = 𝓏 + 𝑎𝔫ାଵ𝓏𝔫ାଵ + ⋯ }, 
where ℧ଵ = ℧, the subclass of normalized analytic functions in U°. Further, indicate by M 
the subfamily of 𝒦(U°) of the form: 

𝑓(𝓏) = 𝓏 + ෍ 𝑎𝔫𝓏𝔫 , 𝓏 ∈ U°ஶ
𝔫ୀଶ , (1)

which are univalent in U°. For analytic functions 𝑓 and 𝐹, the function 𝑓 is said to be 
subordinate to 𝐹, if 𝑓(𝓏) = 𝐹൫Θ(𝓏)൯, (𝓏 ∈ 𝑈°), 

where Θ(𝓏) is analytic and  Θ(0) = 0, |Θ(𝓏)| < 1. This subordination is indicated by 𝑓(𝓏) ≺ 𝐹(𝓏). 
Cho and Kim [20] proposed the multiplier transformation as a linear operator. Let 𝔫 

be any integer; the multiplier transformation ℒఓఉ: 𝑀 → 𝑀  is given by ℒఓఉ𝑓(𝓏) = 𝓏 +∑ ቀ𝔫ାఓଵାఓቁఉ 𝑎𝔫𝓏𝔫 , 𝜇 ≥ 0, 𝛽 ∈ ℤ = {⋯ , −1,0,1, ⋯ }ஶ𝔫ୀଶ . 
 
The Hurwitz–Lerch Zeta function [21] is 

𝜁గ,ఘ(𝓏) = 1𝜌గ + ෍ 𝓏𝔫(𝔫 + 𝜌)గஶ
𝔫ୀଵ , 

(𝜌 ∈ ℂ\𝑍௢ି = {0, −1, −2, … }, 𝜋 ∈ ℂ, where |𝓏| < 1, ℛ𝑒(𝜋) > 1, 𝓏 ∈ 𝜕𝑈°) 

By making use of the following normalized function, we have: 𝐺గ,ఘ(𝓏) = (1 + 𝜌)గൣ𝜁గ,ఘ(𝓏) − 𝜌ିగ൧ = 𝓏 + ∑ ቀଵାఘ𝔫ାఘቁగ   , 𝓏 ∈ 𝑈°ஶ𝔫ୀଶ . 

If 𝑓, 𝑔 ∈ 𝑀, where 𝑓 given by (1) and 𝑔 is defined by 

𝑔(𝓏) = 𝓏 + ෍ 𝑏𝔫𝓏𝔫ஶ
𝔫ୀଶ  , 𝓏 ∈ U°, 

then 

(𝑓 ∗ 𝑔)(𝓏) = 𝓏 + ෍ 𝑎𝔫𝑏𝔫ஶ
𝔫ୀଶ 𝓏𝔫 = (𝑔 ∗ 𝑓)(𝓏). 

Using the convolution defined above, a new operator is next introduced as the 
original part of the present paper. 

  

)
=

Y
(
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Well-known notations and definitions used for obtaining the original results are next 
presented. 𝒦(U°) denotes the family of analytic functions in U°that have the form: 𝒦[a, 𝔫] = {𝑓 ∈ 𝒦(U°): 𝑓(𝓏) = 𝑎 + 𝑎𝔫𝓏𝔫 + 𝑎𝔫ାଵ𝓏𝔫ାଵ + ⋯ }, 𝑎 ∈ ℂ, 𝔫 ∈ 𝑁 = {1,2, … }, 

and let ℧𝔫 be the collection of the form: ℧𝔫 = {𝑓 ∈ 𝒦(𝑈°): 𝑓(𝓏) = 𝓏 + 𝑎𝔫ାଵ𝓏𝔫ାଵ + ⋯ }, 
where ℧ଵ = ℧, the subclass of normalized analytic functions in U°. Further, indicate by M 
the subfamily of 𝒦(U°) of the form: 

𝑓(𝓏) = 𝓏 + ෍ 𝑎𝔫𝓏𝔫 , 𝓏 ∈ U°ஶ
𝔫ୀଶ , (1)

which are univalent in U°. For analytic functions 𝑓 and 𝐹, the function 𝑓 is said to be 
subordinate to 𝐹, if 𝑓(𝓏) = 𝐹൫Θ(𝓏)൯, (𝓏 ∈ 𝑈°), 

where Θ(𝓏) is analytic and  Θ(0) = 0, |Θ(𝓏)| < 1. This subordination is indicated by 𝑓(𝓏) ≺ 𝐹(𝓏). 
Cho and Kim [20] proposed the multiplier transformation as a linear operator. Let 𝔫 

be any integer; the multiplier transformation ℒఓఉ: 𝑀 → 𝑀  is given by ℒఓఉ𝑓(𝓏) = 𝓏 +∑ ቀ𝔫ାఓଵାఓቁఉ 𝑎𝔫𝓏𝔫 , 𝜇 ≥ 0, 𝛽 ∈ ℤ = {⋯ , −1,0,1, ⋯ }ஶ𝔫ୀଶ . 
 
The Hurwitz–Lerch Zeta function [21] is 

𝜁గ,ఘ(𝓏) = 1𝜌గ + ෍ 𝓏𝔫(𝔫 + 𝜌)గஶ
𝔫ୀଵ , 

(𝜌 ∈ ℂ\𝑍௢ି = {0, −1, −2, … }, 𝜋 ∈ ℂ, where |𝓏| < 1, ℛ𝑒(𝜋) > 1, 𝓏 ∈ 𝜕𝑈°) 

By making use of the following normalized function, we have: 𝐺గ,ఘ(𝓏) = (1 + 𝜌)గൣ𝜁గ,ఘ(𝓏) − 𝜌ିగ൧ = 𝓏 + ∑ ቀଵାఘ𝔫ାఘቁగ   , 𝓏 ∈ 𝑈°ஶ𝔫ୀଶ . 

If 𝑓, 𝑔 ∈ 𝑀, where 𝑓 given by (1) and 𝑔 is defined by 

𝑔(𝓏) = 𝓏 + ෍ 𝑏𝔫𝓏𝔫ஶ
𝔫ୀଶ  , 𝓏 ∈ U°, 

then 

(𝑓 ∗ 𝑔)(𝓏) = 𝓏 + ෍ 𝑎𝔫𝑏𝔫ஶ
𝔫ୀଶ 𝓏𝔫 = (𝑔 ∗ 𝑓)(𝓏). 

Using the convolution defined above, a new operator is next introduced as the 
original part of the present paper. 

  

), Γπ,ρ,β+1,µ f (
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Well-known notations and definitions used for obtaining the original results are next 
presented. 𝒦(U°) denotes the family of analytic functions in U°that have the form: 𝒦[a, 𝔫] = {𝑓 ∈ 𝒦(U°): 𝑓(𝓏) = 𝑎 + 𝑎𝔫𝓏𝔫 + 𝑎𝔫ାଵ𝓏𝔫ାଵ + ⋯ }, 𝑎 ∈ ℂ, 𝔫 ∈ 𝑁 = {1,2, … }, 

and let ℧𝔫 be the collection of the form: ℧𝔫 = {𝑓 ∈ 𝒦(𝑈°): 𝑓(𝓏) = 𝓏 + 𝑎𝔫ାଵ𝓏𝔫ାଵ + ⋯ }, 
where ℧ଵ = ℧, the subclass of normalized analytic functions in U°. Further, indicate by M 
the subfamily of 𝒦(U°) of the form: 

𝑓(𝓏) = 𝓏 + ෍ 𝑎𝔫𝓏𝔫 , 𝓏 ∈ U°ஶ
𝔫ୀଶ , (1)

which are univalent in U°. For analytic functions 𝑓 and 𝐹, the function 𝑓 is said to be 
subordinate to 𝐹, if 𝑓(𝓏) = 𝐹൫Θ(𝓏)൯, (𝓏 ∈ 𝑈°), 

where Θ(𝓏) is analytic and  Θ(0) = 0, |Θ(𝓏)| < 1. This subordination is indicated by 𝑓(𝓏) ≺ 𝐹(𝓏). 
Cho and Kim [20] proposed the multiplier transformation as a linear operator. Let 𝔫 

be any integer; the multiplier transformation ℒఓఉ: 𝑀 → 𝑀  is given by ℒఓఉ𝑓(𝓏) = 𝓏 +∑ ቀ𝔫ାఓଵାఓቁఉ 𝑎𝔫𝓏𝔫 , 𝜇 ≥ 0, 𝛽 ∈ ℤ = {⋯ , −1,0,1, ⋯ }ஶ𝔫ୀଶ . 
 
The Hurwitz–Lerch Zeta function [21] is 

𝜁గ,ఘ(𝓏) = 1𝜌గ + ෍ 𝓏𝔫(𝔫 + 𝜌)గஶ
𝔫ୀଵ , 

(𝜌 ∈ ℂ\𝑍௢ି = {0, −1, −2, … }, 𝜋 ∈ ℂ, where |𝓏| < 1, ℛ𝑒(𝜋) > 1, 𝓏 ∈ 𝜕𝑈°) 

By making use of the following normalized function, we have: 𝐺గ,ఘ(𝓏) = (1 + 𝜌)గൣ𝜁గ,ఘ(𝓏) − 𝜌ିగ൧ = 𝓏 + ∑ ቀଵାఘ𝔫ାఘቁగ   , 𝓏 ∈ 𝑈°ஶ𝔫ୀଶ . 

If 𝑓, 𝑔 ∈ 𝑀, where 𝑓 given by (1) and 𝑔 is defined by 

𝑔(𝓏) = 𝓏 + ෍ 𝑏𝔫𝓏𝔫ஶ
𝔫ୀଶ  , 𝓏 ∈ U°, 

then 

(𝑓 ∗ 𝑔)(𝓏) = 𝓏 + ෍ 𝑎𝔫𝑏𝔫ஶ
𝔫ୀଶ 𝓏𝔫 = (𝑔 ∗ 𝑓)(𝓏). 

Using the convolution defined above, a new operator is next introduced as the 
original part of the present paper. 

  

), Γπ,ρ,β+2,µ f (
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Well-known notations and definitions used for obtaining the original results are next 
presented. 𝒦(U°) denotes the family of analytic functions in U°that have the form: 𝒦[a, 𝔫] = {𝑓 ∈ 𝒦(U°): 𝑓(𝓏) = 𝑎 + 𝑎𝔫𝓏𝔫 + 𝑎𝔫ାଵ𝓏𝔫ାଵ + ⋯ }, 𝑎 ∈ ℂ, 𝔫 ∈ 𝑁 = {1,2, … }, 

and let ℧𝔫 be the collection of the form: ℧𝔫 = {𝑓 ∈ 𝒦(𝑈°): 𝑓(𝓏) = 𝓏 + 𝑎𝔫ାଵ𝓏𝔫ାଵ + ⋯ }, 
where ℧ଵ = ℧, the subclass of normalized analytic functions in U°. Further, indicate by M 
the subfamily of 𝒦(U°) of the form: 

𝑓(𝓏) = 𝓏 + ෍ 𝑎𝔫𝓏𝔫 , 𝓏 ∈ U°ஶ
𝔫ୀଶ , (1)

which are univalent in U°. For analytic functions 𝑓 and 𝐹, the function 𝑓 is said to be 
subordinate to 𝐹, if 𝑓(𝓏) = 𝐹൫Θ(𝓏)൯, (𝓏 ∈ 𝑈°), 

where Θ(𝓏) is analytic and  Θ(0) = 0, |Θ(𝓏)| < 1. This subordination is indicated by 𝑓(𝓏) ≺ 𝐹(𝓏). 
Cho and Kim [20] proposed the multiplier transformation as a linear operator. Let 𝔫 

be any integer; the multiplier transformation ℒఓఉ: 𝑀 → 𝑀  is given by ℒఓఉ𝑓(𝓏) = 𝓏 +∑ ቀ𝔫ାఓଵାఓቁఉ 𝑎𝔫𝓏𝔫 , 𝜇 ≥ 0, 𝛽 ∈ ℤ = {⋯ , −1,0,1, ⋯ }ஶ𝔫ୀଶ . 
 
The Hurwitz–Lerch Zeta function [21] is 

𝜁గ,ఘ(𝓏) = 1𝜌గ + ෍ 𝓏𝔫(𝔫 + 𝜌)గஶ
𝔫ୀଵ , 

(𝜌 ∈ ℂ\𝑍௢ି = {0, −1, −2, … }, 𝜋 ∈ ℂ, where |𝓏| < 1, ℛ𝑒(𝜋) > 1, 𝓏 ∈ 𝜕𝑈°) 

By making use of the following normalized function, we have: 𝐺గ,ఘ(𝓏) = (1 + 𝜌)గൣ𝜁గ,ఘ(𝓏) − 𝜌ିగ൧ = 𝓏 + ∑ ቀଵାఘ𝔫ାఘቁగ   , 𝓏 ∈ 𝑈°ஶ𝔫ୀଶ . 

If 𝑓, 𝑔 ∈ 𝑀, where 𝑓 given by (1) and 𝑔 is defined by 

𝑔(𝓏) = 𝓏 + ෍ 𝑏𝔫𝓏𝔫ஶ
𝔫ୀଶ  , 𝓏 ∈ U°, 

then 

(𝑓 ∗ 𝑔)(𝓏) = 𝓏 + ෍ 𝑎𝔫𝑏𝔫ஶ
𝔫ୀଶ 𝓏𝔫 = (𝑔 ∗ 𝑓)(𝓏). 

Using the convolution defined above, a new operator is next introduced as the 
original part of the present paper. 

  

), Γπ,ρ,β+3,µ f (
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Well-known notations and definitions used for obtaining the original results are next 
presented. 𝒦(U°) denotes the family of analytic functions in U°that have the form: 𝒦[a, 𝔫] = {𝑓 ∈ 𝒦(U°): 𝑓(𝓏) = 𝑎 + 𝑎𝔫𝓏𝔫 + 𝑎𝔫ାଵ𝓏𝔫ାଵ + ⋯ }, 𝑎 ∈ ℂ, 𝔫 ∈ 𝑁 = {1,2, … }, 

and let ℧𝔫 be the collection of the form: ℧𝔫 = {𝑓 ∈ 𝒦(𝑈°): 𝑓(𝓏) = 𝓏 + 𝑎𝔫ାଵ𝓏𝔫ାଵ + ⋯ }, 
where ℧ଵ = ℧, the subclass of normalized analytic functions in U°. Further, indicate by M 
the subfamily of 𝒦(U°) of the form: 

𝑓(𝓏) = 𝓏 + ෍ 𝑎𝔫𝓏𝔫 , 𝓏 ∈ U°ஶ
𝔫ୀଶ , (1)

which are univalent in U°. For analytic functions 𝑓 and 𝐹, the function 𝑓 is said to be 
subordinate to 𝐹, if 𝑓(𝓏) = 𝐹൫Θ(𝓏)൯, (𝓏 ∈ 𝑈°), 

where Θ(𝓏) is analytic and  Θ(0) = 0, |Θ(𝓏)| < 1. This subordination is indicated by 𝑓(𝓏) ≺ 𝐹(𝓏). 
Cho and Kim [20] proposed the multiplier transformation as a linear operator. Let 𝔫 

be any integer; the multiplier transformation ℒఓఉ: 𝑀 → 𝑀  is given by ℒఓఉ𝑓(𝓏) = 𝓏 +∑ ቀ𝔫ାఓଵାఓቁఉ 𝑎𝔫𝓏𝔫 , 𝜇 ≥ 0, 𝛽 ∈ ℤ = {⋯ , −1,0,1, ⋯ }ஶ𝔫ୀଶ . 
 
The Hurwitz–Lerch Zeta function [21] is 

𝜁గ,ఘ(𝓏) = 1𝜌గ + ෍ 𝓏𝔫(𝔫 + 𝜌)గஶ
𝔫ୀଵ , 

(𝜌 ∈ ℂ\𝑍௢ି = {0, −1, −2, … }, 𝜋 ∈ ℂ, where |𝓏| < 1, ℛ𝑒(𝜋) > 1, 𝓏 ∈ 𝜕𝑈°) 

By making use of the following normalized function, we have: 𝐺గ,ఘ(𝓏) = (1 + 𝜌)గൣ𝜁గ,ఘ(𝓏) − 𝜌ିగ൧ = 𝓏 + ∑ ቀଵାఘ𝔫ାఘቁగ   , 𝓏 ∈ 𝑈°ஶ𝔫ୀଶ . 

If 𝑓, 𝑔 ∈ 𝑀, where 𝑓 given by (1) and 𝑔 is defined by 

𝑔(𝓏) = 𝓏 + ෍ 𝑏𝔫𝓏𝔫ஶ
𝔫ୀଶ  , 𝓏 ∈ U°, 

then 

(𝑓 ∗ 𝑔)(𝓏) = 𝓏 + ෍ 𝑎𝔫𝑏𝔫ஶ
𝔫ୀଶ 𝓏𝔫 = (𝑔 ∗ 𝑓)(𝓏). 

Using the convolution defined above, a new operator is next introduced as the 
original part of the present paper. 

  

), Γπ,ρ,β+4,µ f (
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Well-known notations and definitions used for obtaining the original results are next 
presented. 𝒦(U°) denotes the family of analytic functions in U°that have the form: 𝒦[a, 𝔫] = {𝑓 ∈ 𝒦(U°): 𝑓(𝓏) = 𝑎 + 𝑎𝔫𝓏𝔫 + 𝑎𝔫ାଵ𝓏𝔫ାଵ + ⋯ }, 𝑎 ∈ ℂ, 𝔫 ∈ 𝑁 = {1,2, … }, 

and let ℧𝔫 be the collection of the form: ℧𝔫 = {𝑓 ∈ 𝒦(𝑈°): 𝑓(𝓏) = 𝓏 + 𝑎𝔫ାଵ𝓏𝔫ାଵ + ⋯ }, 
where ℧ଵ = ℧, the subclass of normalized analytic functions in U°. Further, indicate by M 
the subfamily of 𝒦(U°) of the form: 

𝑓(𝓏) = 𝓏 + ෍ 𝑎𝔫𝓏𝔫 , 𝓏 ∈ U°ஶ
𝔫ୀଶ , (1)

which are univalent in U°. For analytic functions 𝑓 and 𝐹, the function 𝑓 is said to be 
subordinate to 𝐹, if 𝑓(𝓏) = 𝐹൫Θ(𝓏)൯, (𝓏 ∈ 𝑈°), 

where Θ(𝓏) is analytic and  Θ(0) = 0, |Θ(𝓏)| < 1. This subordination is indicated by 𝑓(𝓏) ≺ 𝐹(𝓏). 
Cho and Kim [20] proposed the multiplier transformation as a linear operator. Let 𝔫 

be any integer; the multiplier transformation ℒఓఉ: 𝑀 → 𝑀  is given by ℒఓఉ𝑓(𝓏) = 𝓏 +∑ ቀ𝔫ାఓଵାఓቁఉ 𝑎𝔫𝓏𝔫 , 𝜇 ≥ 0, 𝛽 ∈ ℤ = {⋯ , −1,0,1, ⋯ }ஶ𝔫ୀଶ . 
 
The Hurwitz–Lerch Zeta function [21] is 

𝜁గ,ఘ(𝓏) = 1𝜌గ + ෍ 𝓏𝔫(𝔫 + 𝜌)గஶ
𝔫ୀଵ , 

(𝜌 ∈ ℂ\𝑍௢ି = {0, −1, −2, … }, 𝜋 ∈ ℂ, where |𝓏| < 1, ℛ𝑒(𝜋) > 1, 𝓏 ∈ 𝜕𝑈°) 

By making use of the following normalized function, we have: 𝐺గ,ఘ(𝓏) = (1 + 𝜌)గൣ𝜁గ,ఘ(𝓏) − 𝜌ିగ൧ = 𝓏 + ∑ ቀଵାఘ𝔫ାఘቁగ   , 𝓏 ∈ 𝑈°ஶ𝔫ୀଶ . 

If 𝑓, 𝑔 ∈ 𝑀, where 𝑓 given by (1) and 𝑔 is defined by 

𝑔(𝓏) = 𝓏 + ෍ 𝑏𝔫𝓏𝔫ஶ
𝔫ୀଶ  , 𝓏 ∈ U°, 

then 

(𝑓 ∗ 𝑔)(𝓏) = 𝓏 + ෍ 𝑎𝔫𝑏𝔫ஶ
𝔫ୀଶ 𝓏𝔫 = (𝑔 ∗ 𝑓)(𝓏). 

Using the convolution defined above, a new operator is next introduced as the 
original part of the present paper. 

  

);
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Well-known notations and definitions used for obtaining the original results are next 
presented. 𝒦(U°) denotes the family of analytic functions in U°that have the form: 𝒦[a, 𝔫] = {𝑓 ∈ 𝒦(U°): 𝑓(𝓏) = 𝑎 + 𝑎𝔫𝓏𝔫 + 𝑎𝔫ାଵ𝓏𝔫ାଵ + ⋯ }, 𝑎 ∈ ℂ, 𝔫 ∈ 𝑁 = {1,2, … }, 

and let ℧𝔫 be the collection of the form: ℧𝔫 = {𝑓 ∈ 𝒦(𝑈°): 𝑓(𝓏) = 𝓏 + 𝑎𝔫ାଵ𝓏𝔫ାଵ + ⋯ }, 
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𝔫ୀଶ , (1)
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The Hurwitz–Lerch Zeta function [21] is 
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Therefore, (8) transforms into

ψ
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)
∈ Ω,

and we observe that
t

s
+ 1 =

(1 + µ)2
x− µ2r

(1 + µ)s− µr
− 2µ,

u

s
=

(1 + µ)2[(1 + µ)y− (3 + 3µ)x] +
(
3µ2 + 2µ3)r

(1 + µ)s− µr
+
(

2 + 6µ + 3µ2
)

,

and

b
s =

(1+µ)[(1+µ)3g−(1+µ)2(6+4µ)y+(1+µ)(11+18µ+8µ2)x−(6+22µ+18µ2+8µ3)s]+(6µ+11µ2+6µ3+3µ4)r
(1+µ)s−µr

.

Hence, we have the equivalent of the admissibility condition for θΓ[Ω,q] in Definition 7
with the admissibility condition for ψ ∈ Φn [Ω,q] as known in Definition 4, n = 3. Thus,
by using Theorem 1 with Equation (7), we have p(
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The below corollary is the extension of the above theorem for the case where the action
of q(
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with q(0) = 1 and Ω ⊂ C. Assume
Y ∈ θΓ[Ω,qγ] for some γ ∈ (0, 1), such that qγ(
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Using the convolution defined above, a new operator is next introduced as the 
original part of the present paper. 
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Well-known notations and definitions used for obtaining the original results are next 
presented. 𝒦(U°) denotes the family of analytic functions in U°that have the form: 𝒦[a, 𝔫] = {𝑓 ∈ 𝒦(U°): 𝑓(𝓏) = 𝑎 + 𝑎𝔫𝓏𝔫 + 𝑎𝔫ାଵ𝓏𝔫ାଵ + ⋯ }, 𝑎 ∈ ℂ, 𝔫 ∈ 𝑁 = {1,2, … }, 

and let ℧𝔫 be the collection of the form: ℧𝔫 = {𝑓 ∈ 𝒦(𝑈°): 𝑓(𝓏) = 𝓏 + 𝑎𝔫ାଵ𝓏𝔫ାଵ + ⋯ }, 
where ℧ଵ = ℧, the subclass of normalized analytic functions in U°. Further, indicate by M 
the subfamily of 𝒦(U°) of the form: 

𝑓(𝓏) = 𝓏 + ෍ 𝑎𝔫𝓏𝔫 , 𝓏 ∈ U°ஶ
𝔫ୀଶ , (1)

which are univalent in U°. For analytic functions 𝑓 and 𝐹, the function 𝑓 is said to be 
subordinate to 𝐹, if 𝑓(𝓏) = 𝐹൫Θ(𝓏)൯, (𝓏 ∈ 𝑈°), 

where Θ(𝓏) is analytic and  Θ(0) = 0, |Θ(𝓏)| < 1. This subordination is indicated by 𝑓(𝓏) ≺ 𝐹(𝓏). 
Cho and Kim [20] proposed the multiplier transformation as a linear operator. Let 𝔫 

be any integer; the multiplier transformation ℒఓఉ: 𝑀 → 𝑀  is given by ℒఓఉ𝑓(𝓏) = 𝓏 +∑ ቀ𝔫ାఓଵାఓቁఉ 𝑎𝔫𝓏𝔫 , 𝜇 ≥ 0, 𝛽 ∈ ℤ = {⋯ , −1,0,1, ⋯ }ஶ𝔫ୀଶ . 
 
The Hurwitz–Lerch Zeta function [21] is 

𝜁గ,ఘ(𝓏) = 1𝜌గ + ෍ 𝓏𝔫(𝔫 + 𝜌)గஶ
𝔫ୀଵ , 

(𝜌 ∈ ℂ\𝑍௢ି = {0, −1, −2, … }, 𝜋 ∈ ℂ, where |𝓏| < 1, ℛ𝑒(𝜋) > 1, 𝓏 ∈ 𝜕𝑈°) 

By making use of the following normalized function, we have: 𝐺గ,ఘ(𝓏) = (1 + 𝜌)గൣ𝜁గ,ఘ(𝓏) − 𝜌ିగ൧ = 𝓏 + ∑ ቀଵାఘ𝔫ାఘቁగ   , 𝓏 ∈ 𝑈°ஶ𝔫ୀଶ . 

If 𝑓, 𝑔 ∈ 𝑀, where 𝑓 given by (1) and 𝑔 is defined by 

𝑔(𝓏) = 𝓏 + ෍ 𝑏𝔫𝓏𝔫ஶ
𝔫ୀଶ  , 𝓏 ∈ U°, 

then 

(𝑓 ∗ 𝑔)(𝓏) = 𝓏 + ෍ 𝑎𝔫𝑏𝔫ஶ
𝔫ୀଶ 𝓏𝔫 = (𝑔 ∗ 𝑓)(𝓏). 

Using the convolution defined above, a new operator is next introduced as the 
original part of the present paper. 

  

) satisfy the following conditions:

Re
(
J 2q′′′ (

Symmetry 2022, 14, x FOR PEER REVIEW 2 of 12 
 

 

Well-known notations and definitions used for obtaining the original results are next 
presented. 𝒦(U°) denotes the family of analytic functions in U°that have the form: 𝒦[a, 𝔫] = {𝑓 ∈ 𝒦(U°): 𝑓(𝓏) = 𝑎 + 𝑎𝔫𝓏𝔫 + 𝑎𝔫ାଵ𝓏𝔫ାଵ + ⋯ }, 𝑎 ∈ ℂ, 𝔫 ∈ 𝑁 = {1,2, … }, 

and let ℧𝔫 be the collection of the form: ℧𝔫 = {𝑓 ∈ 𝒦(𝑈°): 𝑓(𝓏) = 𝓏 + 𝑎𝔫ାଵ𝓏𝔫ାଵ + ⋯ }, 
where ℧ଵ = ℧, the subclass of normalized analytic functions in U°. Further, indicate by M 
the subfamily of 𝒦(U°) of the form: 

𝑓(𝓏) = 𝓏 + ෍ 𝑎𝔫𝓏𝔫 , 𝓏 ∈ U°ஶ
𝔫ୀଶ , (1)

which are univalent in U°. For analytic functions 𝑓 and 𝐹, the function 𝑓 is said to be 
subordinate to 𝐹, if 𝑓(𝓏) = 𝐹൫Θ(𝓏)൯, (𝓏 ∈ 𝑈°), 

where Θ(𝓏) is analytic and  Θ(0) = 0, |Θ(𝓏)| < 1. This subordination is indicated by 𝑓(𝓏) ≺ 𝐹(𝓏). 
Cho and Kim [20] proposed the multiplier transformation as a linear operator. Let 𝔫 

be any integer; the multiplier transformation ℒఓఉ: 𝑀 → 𝑀  is given by ℒఓఉ𝑓(𝓏) = 𝓏 +∑ ቀ𝔫ାఓଵାఓቁఉ 𝑎𝔫𝓏𝔫 , 𝜇 ≥ 0, 𝛽 ∈ ℤ = {⋯ , −1,0,1, ⋯ }ஶ𝔫ୀଶ . 
 
The Hurwitz–Lerch Zeta function [21] is 

𝜁గ,ఘ(𝓏) = 1𝜌గ + ෍ 𝓏𝔫(𝔫 + 𝜌)గஶ
𝔫ୀଵ , 

(𝜌 ∈ ℂ\𝑍௢ି = {0, −1, −2, … }, 𝜋 ∈ ℂ, where |𝓏| < 1, ℛ𝑒(𝜋) > 1, 𝓏 ∈ 𝜕𝑈°) 

By making use of the following normalized function, we have: 𝐺గ,ఘ(𝓏) = (1 + 𝜌)గൣ𝜁గ,ఘ(𝓏) − 𝜌ିగ൧ = 𝓏 + ∑ ቀଵାఘ𝔫ାఘቁగ   , 𝓏 ∈ 𝑈°ஶ𝔫ୀଶ . 

If 𝑓, 𝑔 ∈ 𝑀, where 𝑓 given by (1) and 𝑔 is defined by 

𝑔(𝓏) = 𝓏 + ෍ 𝑏𝔫𝓏𝔫ஶ
𝔫ୀଶ  , 𝓏 ∈ U°, 

then 

(𝑓 ∗ 𝑔)(𝓏) = 𝓏 + ෍ 𝑎𝔫𝑏𝔫ஶ
𝔫ୀଶ 𝓏𝔫 = (𝑔 ∗ 𝑓)(𝓏). 

Using the convolution defined above, a new operator is next introduced as the 
original part of the present paper. 
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Well-known notations and definitions used for obtaining the original results are next 
presented. 𝒦(U°) denotes the family of analytic functions in U°that have the form: 𝒦[a, 𝔫] = {𝑓 ∈ 𝒦(U°): 𝑓(𝓏) = 𝑎 + 𝑎𝔫𝓏𝔫 + 𝑎𝔫ାଵ𝓏𝔫ାଵ + ⋯ }, 𝑎 ∈ ℂ, 𝔫 ∈ 𝑁 = {1,2, … }, 

and let ℧𝔫 be the collection of the form: ℧𝔫 = {𝑓 ∈ 𝒦(𝑈°): 𝑓(𝓏) = 𝓏 + 𝑎𝔫ାଵ𝓏𝔫ାଵ + ⋯ }, 
where ℧ଵ = ℧, the subclass of normalized analytic functions in U°. Further, indicate by M 
the subfamily of 𝒦(U°) of the form: 

𝑓(𝓏) = 𝓏 + ෍ 𝑎𝔫𝓏𝔫 , 𝓏 ∈ U°ஶ
𝔫ୀଶ , (1)

which are univalent in U°. For analytic functions 𝑓 and 𝐹, the function 𝑓 is said to be 
subordinate to 𝐹, if 𝑓(𝓏) = 𝐹൫Θ(𝓏)൯, (𝓏 ∈ 𝑈°), 

where Θ(𝓏) is analytic and  Θ(0) = 0, |Θ(𝓏)| < 1. This subordination is indicated by 𝑓(𝓏) ≺ 𝐹(𝓏). 
Cho and Kim [20] proposed the multiplier transformation as a linear operator. Let 𝔫 

be any integer; the multiplier transformation ℒఓఉ: 𝑀 → 𝑀  is given by ℒఓఉ𝑓(𝓏) = 𝓏 +∑ ቀ𝔫ାఓଵାఓቁఉ 𝑎𝔫𝓏𝔫 , 𝜇 ≥ 0, 𝛽 ∈ ℤ = {⋯ , −1,0,1, ⋯ }ஶ𝔫ୀଶ . 
 
The Hurwitz–Lerch Zeta function [21] is 

𝜁గ,ఘ(𝓏) = 1𝜌గ + ෍ 𝓏𝔫(𝔫 + 𝜌)గஶ
𝔫ୀଵ , 

(𝜌 ∈ ℂ\𝑍௢ି = {0, −1, −2, … }, 𝜋 ∈ ℂ, where |𝓏| < 1, ℛ𝑒(𝜋) > 1, 𝓏 ∈ 𝜕𝑈°) 

By making use of the following normalized function, we have: 𝐺గ,ఘ(𝓏) = (1 + 𝜌)గൣ𝜁గ,ఘ(𝓏) − 𝜌ିగ൧ = 𝓏 + ∑ ቀଵାఘ𝔫ାఘቁగ   , 𝓏 ∈ 𝑈°ஶ𝔫ୀଶ . 

If 𝑓, 𝑔 ∈ 𝑀, where 𝑓 given by (1) and 𝑔 is defined by 

𝑔(𝓏) = 𝓏 + ෍ 𝑏𝔫𝓏𝔫ஶ
𝔫ୀଶ  , 𝓏 ∈ U°, 

then 

(𝑓 ∗ 𝑔)(𝓏) = 𝓏 + ෍ 𝑎𝔫𝑏𝔫ஶ
𝔫ୀଶ 𝓏𝔫 = (𝑔 ∗ 𝑓)(𝓏). 

Using the convolution defined above, a new operator is next introduced as the 
original part of the present paper. 
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Well-known notations and definitions used for obtaining the original results are next 
presented. 𝒦(U°) denotes the family of analytic functions in U°that have the form: 𝒦[a, 𝔫] = {𝑓 ∈ 𝒦(U°): 𝑓(𝓏) = 𝑎 + 𝑎𝔫𝓏𝔫 + 𝑎𝔫ାଵ𝓏𝔫ାଵ + ⋯ }, 𝑎 ∈ ℂ, 𝔫 ∈ 𝑁 = {1,2, … }, 

and let ℧𝔫 be the collection of the form: ℧𝔫 = {𝑓 ∈ 𝒦(𝑈°): 𝑓(𝓏) = 𝓏 + 𝑎𝔫ାଵ𝓏𝔫ାଵ + ⋯ }, 
where ℧ଵ = ℧, the subclass of normalized analytic functions in U°. Further, indicate by M 
the subfamily of 𝒦(U°) of the form: 

𝑓(𝓏) = 𝓏 + ෍ 𝑎𝔫𝓏𝔫 , 𝓏 ∈ U°ஶ
𝔫ୀଶ , (1)

which are univalent in U°. For analytic functions 𝑓 and 𝐹, the function 𝑓 is said to be 
subordinate to 𝐹, if 𝑓(𝓏) = 𝐹൫Θ(𝓏)൯, (𝓏 ∈ 𝑈°), 

where Θ(𝓏) is analytic and  Θ(0) = 0, |Θ(𝓏)| < 1. This subordination is indicated by 𝑓(𝓏) ≺ 𝐹(𝓏). 
Cho and Kim [20] proposed the multiplier transformation as a linear operator. Let 𝔫 

be any integer; the multiplier transformation ℒఓఉ: 𝑀 → 𝑀  is given by ℒఓఉ𝑓(𝓏) = 𝓏 +∑ ቀ𝔫ାఓଵାఓቁఉ 𝑎𝔫𝓏𝔫 , 𝜇 ≥ 0, 𝛽 ∈ ℤ = {⋯ , −1,0,1, ⋯ }ஶ𝔫ୀଶ . 
 
The Hurwitz–Lerch Zeta function [21] is 

𝜁గ,ఘ(𝓏) = 1𝜌గ + ෍ 𝓏𝔫(𝔫 + 𝜌)గஶ
𝔫ୀଵ , 

(𝜌 ∈ ℂ\𝑍௢ି = {0, −1, −2, … }, 𝜋 ∈ ℂ, where |𝓏| < 1, ℛ𝑒(𝜋) > 1, 𝓏 ∈ 𝜕𝑈°) 

By making use of the following normalized function, we have: 𝐺గ,ఘ(𝓏) = (1 + 𝜌)గൣ𝜁గ,ఘ(𝓏) − 𝜌ିగ൧ = 𝓏 + ∑ ቀଵାఘ𝔫ାఘቁగ   , 𝓏 ∈ 𝑈°ஶ𝔫ୀଶ . 

If 𝑓, 𝑔 ∈ 𝑀, where 𝑓 given by (1) and 𝑔 is defined by 

𝑔(𝓏) = 𝓏 + ෍ 𝑏𝔫𝓏𝔫ஶ
𝔫ୀଶ  , 𝓏 ∈ U°, 

then 

(𝑓 ∗ 𝑔)(𝓏) = 𝓏 + ෍ 𝑎𝔫𝑏𝔫ஶ
𝔫ୀଶ 𝓏𝔫 = (𝑔 ∗ 𝑓)(𝓏). 

Using the convolution defined above, a new operator is next introduced as the 
original part of the present paper. 
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Well-known notations and definitions used for obtaining the original results are next 
presented. 𝒦(U°) denotes the family of analytic functions in U°that have the form: 𝒦[a, 𝔫] = {𝑓 ∈ 𝒦(U°): 𝑓(𝓏) = 𝑎 + 𝑎𝔫𝓏𝔫 + 𝑎𝔫ାଵ𝓏𝔫ାଵ + ⋯ }, 𝑎 ∈ ℂ, 𝔫 ∈ 𝑁 = {1,2, … }, 

and let ℧𝔫 be the collection of the form: ℧𝔫 = {𝑓 ∈ 𝒦(𝑈°): 𝑓(𝓏) = 𝓏 + 𝑎𝔫ାଵ𝓏𝔫ାଵ + ⋯ }, 
where ℧ଵ = ℧, the subclass of normalized analytic functions in U°. Further, indicate by M 
the subfamily of 𝒦(U°) of the form: 

𝑓(𝓏) = 𝓏 + ෍ 𝑎𝔫𝓏𝔫 , 𝓏 ∈ U°ஶ
𝔫ୀଶ , (1)

which are univalent in U°. For analytic functions 𝑓 and 𝐹, the function 𝑓 is said to be 
subordinate to 𝐹, if 𝑓(𝓏) = 𝐹൫Θ(𝓏)൯, (𝓏 ∈ 𝑈°), 

where Θ(𝓏) is analytic and  Θ(0) = 0, |Θ(𝓏)| < 1. This subordination is indicated by 𝑓(𝓏) ≺ 𝐹(𝓏). 
Cho and Kim [20] proposed the multiplier transformation as a linear operator. Let 𝔫 

be any integer; the multiplier transformation ℒఓఉ: 𝑀 → 𝑀  is given by ℒఓఉ𝑓(𝓏) = 𝓏 +∑ ቀ𝔫ାఓଵାఓቁఉ 𝑎𝔫𝓏𝔫 , 𝜇 ≥ 0, 𝛽 ∈ ℤ = {⋯ , −1,0,1, ⋯ }ஶ𝔫ୀଶ . 
 
The Hurwitz–Lerch Zeta function [21] is 

𝜁గ,ఘ(𝓏) = 1𝜌గ + ෍ 𝓏𝔫(𝔫 + 𝜌)గஶ
𝔫ୀଵ , 

(𝜌 ∈ ℂ\𝑍௢ି = {0, −1, −2, … }, 𝜋 ∈ ℂ, where |𝓏| < 1, ℛ𝑒(𝜋) > 1, 𝓏 ∈ 𝜕𝑈°) 

By making use of the following normalized function, we have: 𝐺గ,ఘ(𝓏) = (1 + 𝜌)గൣ𝜁గ,ఘ(𝓏) − 𝜌ିగ൧ = 𝓏 + ∑ ቀଵାఘ𝔫ାఘቁగ   , 𝓏 ∈ 𝑈°ஶ𝔫ୀଶ . 

If 𝑓, 𝑔 ∈ 𝑀, where 𝑓 given by (1) and 𝑔 is defined by 

𝑔(𝓏) = 𝓏 + ෍ 𝑏𝔫𝓏𝔫ஶ
𝔫ୀଶ  , 𝓏 ∈ U°, 

then 

(𝑓 ∗ 𝑔)(𝓏) = 𝓏 + ෍ 𝑎𝔫𝑏𝔫ஶ
𝔫ୀଶ 𝓏𝔫 = (𝑔 ∗ 𝑓)(𝓏). 

Using the convolution defined above, a new operator is next introduced as the 
original part of the present paper. 
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Well-known notations and definitions used for obtaining the original results are next 
presented. 𝒦(U°) denotes the family of analytic functions in U°that have the form: 𝒦[a, 𝔫] = {𝑓 ∈ 𝒦(U°): 𝑓(𝓏) = 𝑎 + 𝑎𝔫𝓏𝔫 + 𝑎𝔫ାଵ𝓏𝔫ାଵ + ⋯ }, 𝑎 ∈ ℂ, 𝔫 ∈ 𝑁 = {1,2, … }, 

and let ℧𝔫 be the collection of the form: ℧𝔫 = {𝑓 ∈ 𝒦(𝑈°): 𝑓(𝓏) = 𝓏 + 𝑎𝔫ାଵ𝓏𝔫ାଵ + ⋯ }, 
where ℧ଵ = ℧, the subclass of normalized analytic functions in U°. Further, indicate by M 
the subfamily of 𝒦(U°) of the form: 

𝑓(𝓏) = 𝓏 + ෍ 𝑎𝔫𝓏𝔫 , 𝓏 ∈ U°ஶ
𝔫ୀଶ , (1)

which are univalent in U°. For analytic functions 𝑓 and 𝐹, the function 𝑓 is said to be 
subordinate to 𝐹, if 𝑓(𝓏) = 𝐹൫Θ(𝓏)൯, (𝓏 ∈ 𝑈°), 

where Θ(𝓏) is analytic and  Θ(0) = 0, |Θ(𝓏)| < 1. This subordination is indicated by 𝑓(𝓏) ≺ 𝐹(𝓏). 
Cho and Kim [20] proposed the multiplier transformation as a linear operator. Let 𝔫 

be any integer; the multiplier transformation ℒఓఉ: 𝑀 → 𝑀  is given by ℒఓఉ𝑓(𝓏) = 𝓏 +∑ ቀ𝔫ାఓଵାఓቁఉ 𝑎𝔫𝓏𝔫 , 𝜇 ≥ 0, 𝛽 ∈ ℤ = {⋯ , −1,0,1, ⋯ }ஶ𝔫ୀଶ . 
 
The Hurwitz–Lerch Zeta function [21] is 

𝜁గ,ఘ(𝓏) = 1𝜌గ + ෍ 𝓏𝔫(𝔫 + 𝜌)గஶ
𝔫ୀଵ , 

(𝜌 ∈ ℂ\𝑍௢ି = {0, −1, −2, … }, 𝜋 ∈ ℂ, where |𝓏| < 1, ℛ𝑒(𝜋) > 1, 𝓏 ∈ 𝜕𝑈°) 

By making use of the following normalized function, we have: 𝐺గ,ఘ(𝓏) = (1 + 𝜌)గൣ𝜁గ,ఘ(𝓏) − 𝜌ିగ൧ = 𝓏 + ∑ ቀଵାఘ𝔫ାఘቁగ   , 𝓏 ∈ 𝑈°ஶ𝔫ୀଶ . 

If 𝑓, 𝑔 ∈ 𝑀, where 𝑓 given by (1) and 𝑔 is defined by 

𝑔(𝓏) = 𝓏 + ෍ 𝑏𝔫𝓏𝔫ஶ
𝔫ୀଶ  , 𝓏 ∈ U°, 

then 

(𝑓 ∗ 𝑔)(𝓏) = 𝓏 + ෍ 𝑎𝔫𝑏𝔫ஶ
𝔫ୀଶ 𝓏𝔫 = (𝑔 ∗ 𝑓)(𝓏). 

Using the convolution defined above, a new operator is next introduced as the 
original part of the present paper. 
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Well-known notations and definitions used for obtaining the original results are next 
presented. 𝒦(U°) denotes the family of analytic functions in U°that have the form: 𝒦[a, 𝔫] = {𝑓 ∈ 𝒦(U°): 𝑓(𝓏) = 𝑎 + 𝑎𝔫𝓏𝔫 + 𝑎𝔫ାଵ𝓏𝔫ାଵ + ⋯ }, 𝑎 ∈ ℂ, 𝔫 ∈ 𝑁 = {1,2, … }, 

and let ℧𝔫 be the collection of the form: ℧𝔫 = {𝑓 ∈ 𝒦(𝑈°): 𝑓(𝓏) = 𝓏 + 𝑎𝔫ାଵ𝓏𝔫ାଵ + ⋯ }, 
where ℧ଵ = ℧, the subclass of normalized analytic functions in U°. Further, indicate by M 
the subfamily of 𝒦(U°) of the form: 

𝑓(𝓏) = 𝓏 + ෍ 𝑎𝔫𝓏𝔫 , 𝓏 ∈ U°ஶ
𝔫ୀଶ , (1)

which are univalent in U°. For analytic functions 𝑓 and 𝐹, the function 𝑓 is said to be 
subordinate to 𝐹, if 𝑓(𝓏) = 𝐹൫Θ(𝓏)൯, (𝓏 ∈ 𝑈°), 

where Θ(𝓏) is analytic and  Θ(0) = 0, |Θ(𝓏)| < 1. This subordination is indicated by 𝑓(𝓏) ≺ 𝐹(𝓏). 
Cho and Kim [20] proposed the multiplier transformation as a linear operator. Let 𝔫 

be any integer; the multiplier transformation ℒఓఉ: 𝑀 → 𝑀  is given by ℒఓఉ𝑓(𝓏) = 𝓏 +∑ ቀ𝔫ାఓଵାఓቁఉ 𝑎𝔫𝓏𝔫 , 𝜇 ≥ 0, 𝛽 ∈ ℤ = {⋯ , −1,0,1, ⋯ }ஶ𝔫ୀଶ . 
 
The Hurwitz–Lerch Zeta function [21] is 

𝜁గ,ఘ(𝓏) = 1𝜌గ + ෍ 𝓏𝔫(𝔫 + 𝜌)గஶ
𝔫ୀଵ , 

(𝜌 ∈ ℂ\𝑍௢ି = {0, −1, −2, … }, 𝜋 ∈ ℂ, where |𝓏| < 1, ℛ𝑒(𝜋) > 1, 𝓏 ∈ 𝜕𝑈°) 

By making use of the following normalized function, we have: 𝐺గ,ఘ(𝓏) = (1 + 𝜌)గൣ𝜁గ,ఘ(𝓏) − 𝜌ିగ൧ = 𝓏 + ∑ ቀଵାఘ𝔫ାఘቁగ   , 𝓏 ∈ 𝑈°ஶ𝔫ୀଶ . 

If 𝑓, 𝑔 ∈ 𝑀, where 𝑓 given by (1) and 𝑔 is defined by 

𝑔(𝓏) = 𝓏 + ෍ 𝑏𝔫𝓏𝔫ஶ
𝔫ୀଶ  , 𝓏 ∈ U°, 

then 

(𝑓 ∗ 𝑔)(𝓏) = 𝓏 + ෍ 𝑎𝔫𝑏𝔫ஶ
𝔫ୀଶ 𝓏𝔫 = (𝑔 ∗ 𝑓)(𝓏). 

Using the convolution defined above, a new operator is next introduced as the 
original part of the present paper. 

  

), Γπ,ρ,β+1,µ f (
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Well-known notations and definitions used for obtaining the original results are next 
presented. 𝒦(U°) denotes the family of analytic functions in U°that have the form: 𝒦[a, 𝔫] = {𝑓 ∈ 𝒦(U°): 𝑓(𝓏) = 𝑎 + 𝑎𝔫𝓏𝔫 + 𝑎𝔫ାଵ𝓏𝔫ାଵ + ⋯ }, 𝑎 ∈ ℂ, 𝔫 ∈ 𝑁 = {1,2, … }, 

and let ℧𝔫 be the collection of the form: ℧𝔫 = {𝑓 ∈ 𝒦(𝑈°): 𝑓(𝓏) = 𝓏 + 𝑎𝔫ାଵ𝓏𝔫ାଵ + ⋯ }, 
where ℧ଵ = ℧, the subclass of normalized analytic functions in U°. Further, indicate by M 
the subfamily of 𝒦(U°) of the form: 

𝑓(𝓏) = 𝓏 + ෍ 𝑎𝔫𝓏𝔫 , 𝓏 ∈ U°ஶ
𝔫ୀଶ , (1)

which are univalent in U°. For analytic functions 𝑓 and 𝐹, the function 𝑓 is said to be 
subordinate to 𝐹, if 𝑓(𝓏) = 𝐹൫Θ(𝓏)൯, (𝓏 ∈ 𝑈°), 

where Θ(𝓏) is analytic and  Θ(0) = 0, |Θ(𝓏)| < 1. This subordination is indicated by 𝑓(𝓏) ≺ 𝐹(𝓏). 
Cho and Kim [20] proposed the multiplier transformation as a linear operator. Let 𝔫 

be any integer; the multiplier transformation ℒఓఉ: 𝑀 → 𝑀  is given by ℒఓఉ𝑓(𝓏) = 𝓏 +∑ ቀ𝔫ାఓଵାఓቁఉ 𝑎𝔫𝓏𝔫 , 𝜇 ≥ 0, 𝛽 ∈ ℤ = {⋯ , −1,0,1, ⋯ }ஶ𝔫ୀଶ . 
 
The Hurwitz–Lerch Zeta function [21] is 

𝜁గ,ఘ(𝓏) = 1𝜌గ + ෍ 𝓏𝔫(𝔫 + 𝜌)గஶ
𝔫ୀଵ , 

(𝜌 ∈ ℂ\𝑍௢ି = {0, −1, −2, … }, 𝜋 ∈ ℂ, where |𝓏| < 1, ℛ𝑒(𝜋) > 1, 𝓏 ∈ 𝜕𝑈°) 

By making use of the following normalized function, we have: 𝐺గ,ఘ(𝓏) = (1 + 𝜌)గൣ𝜁గ,ఘ(𝓏) − 𝜌ିగ൧ = 𝓏 + ∑ ቀଵାఘ𝔫ାఘቁగ   , 𝓏 ∈ 𝑈°ஶ𝔫ୀଶ . 

If 𝑓, 𝑔 ∈ 𝑀, where 𝑓 given by (1) and 𝑔 is defined by 

𝑔(𝓏) = 𝓏 + ෍ 𝑏𝔫𝓏𝔫ஶ
𝔫ୀଶ  , 𝓏 ∈ U°, 

then 

(𝑓 ∗ 𝑔)(𝓏) = 𝓏 + ෍ 𝑎𝔫𝑏𝔫ஶ
𝔫ୀଶ 𝓏𝔫 = (𝑔 ∗ 𝑓)(𝓏). 

Using the convolution defined above, a new operator is next introduced as the 
original part of the present paper. 

  

), Γπ,ρ,β+2,µ f (
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Well-known notations and definitions used for obtaining the original results are next 
presented. 𝒦(U°) denotes the family of analytic functions in U°that have the form: 𝒦[a, 𝔫] = {𝑓 ∈ 𝒦(U°): 𝑓(𝓏) = 𝑎 + 𝑎𝔫𝓏𝔫 + 𝑎𝔫ାଵ𝓏𝔫ାଵ + ⋯ }, 𝑎 ∈ ℂ, 𝔫 ∈ 𝑁 = {1,2, … }, 

and let ℧𝔫 be the collection of the form: ℧𝔫 = {𝑓 ∈ 𝒦(𝑈°): 𝑓(𝓏) = 𝓏 + 𝑎𝔫ାଵ𝓏𝔫ାଵ + ⋯ }, 
where ℧ଵ = ℧, the subclass of normalized analytic functions in U°. Further, indicate by M 
the subfamily of 𝒦(U°) of the form: 

𝑓(𝓏) = 𝓏 + ෍ 𝑎𝔫𝓏𝔫 , 𝓏 ∈ U°ஶ
𝔫ୀଶ , (1)

which are univalent in U°. For analytic functions 𝑓 and 𝐹, the function 𝑓 is said to be 
subordinate to 𝐹, if 𝑓(𝓏) = 𝐹൫Θ(𝓏)൯, (𝓏 ∈ 𝑈°), 

where Θ(𝓏) is analytic and  Θ(0) = 0, |Θ(𝓏)| < 1. This subordination is indicated by 𝑓(𝓏) ≺ 𝐹(𝓏). 
Cho and Kim [20] proposed the multiplier transformation as a linear operator. Let 𝔫 

be any integer; the multiplier transformation ℒఓఉ: 𝑀 → 𝑀  is given by ℒఓఉ𝑓(𝓏) = 𝓏 +∑ ቀ𝔫ାఓଵାఓቁఉ 𝑎𝔫𝓏𝔫 , 𝜇 ≥ 0, 𝛽 ∈ ℤ = {⋯ , −1,0,1, ⋯ }ஶ𝔫ୀଶ . 
 
The Hurwitz–Lerch Zeta function [21] is 

𝜁గ,ఘ(𝓏) = 1𝜌గ + ෍ 𝓏𝔫(𝔫 + 𝜌)గஶ
𝔫ୀଵ , 

(𝜌 ∈ ℂ\𝑍௢ି = {0, −1, −2, … }, 𝜋 ∈ ℂ, where |𝓏| < 1, ℛ𝑒(𝜋) > 1, 𝓏 ∈ 𝜕𝑈°) 

By making use of the following normalized function, we have: 𝐺గ,ఘ(𝓏) = (1 + 𝜌)గൣ𝜁గ,ఘ(𝓏) − 𝜌ିగ൧ = 𝓏 + ∑ ቀଵାఘ𝔫ାఘቁగ   , 𝓏 ∈ 𝑈°ஶ𝔫ୀଶ . 

If 𝑓, 𝑔 ∈ 𝑀, where 𝑓 given by (1) and 𝑔 is defined by 

𝑔(𝓏) = 𝓏 + ෍ 𝑏𝔫𝓏𝔫ஶ
𝔫ୀଶ  , 𝓏 ∈ U°, 

then 

(𝑓 ∗ 𝑔)(𝓏) = 𝓏 + ෍ 𝑎𝔫𝑏𝔫ஶ
𝔫ୀଶ 𝓏𝔫 = (𝑔 ∗ 𝑓)(𝓏). 

Using the convolution defined above, a new operator is next introduced as the 
original part of the present paper. 

  

), Γπ,ρ,β+3,µ f (
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Well-known notations and definitions used for obtaining the original results are next 
presented. 𝒦(U°) denotes the family of analytic functions in U°that have the form: 𝒦[a, 𝔫] = {𝑓 ∈ 𝒦(U°): 𝑓(𝓏) = 𝑎 + 𝑎𝔫𝓏𝔫 + 𝑎𝔫ାଵ𝓏𝔫ାଵ + ⋯ }, 𝑎 ∈ ℂ, 𝔫 ∈ 𝑁 = {1,2, … }, 

and let ℧𝔫 be the collection of the form: ℧𝔫 = {𝑓 ∈ 𝒦(𝑈°): 𝑓(𝓏) = 𝓏 + 𝑎𝔫ାଵ𝓏𝔫ାଵ + ⋯ }, 
where ℧ଵ = ℧, the subclass of normalized analytic functions in U°. Further, indicate by M 
the subfamily of 𝒦(U°) of the form: 

𝑓(𝓏) = 𝓏 + ෍ 𝑎𝔫𝓏𝔫 , 𝓏 ∈ U°ஶ
𝔫ୀଶ , (1)

which are univalent in U°. For analytic functions 𝑓 and 𝐹, the function 𝑓 is said to be 
subordinate to 𝐹, if 𝑓(𝓏) = 𝐹൫Θ(𝓏)൯, (𝓏 ∈ 𝑈°), 

where Θ(𝓏) is analytic and  Θ(0) = 0, |Θ(𝓏)| < 1. This subordination is indicated by 𝑓(𝓏) ≺ 𝐹(𝓏). 
Cho and Kim [20] proposed the multiplier transformation as a linear operator. Let 𝔫 

be any integer; the multiplier transformation ℒఓఉ: 𝑀 → 𝑀  is given by ℒఓఉ𝑓(𝓏) = 𝓏 +∑ ቀ𝔫ାఓଵାఓቁఉ 𝑎𝔫𝓏𝔫 , 𝜇 ≥ 0, 𝛽 ∈ ℤ = {⋯ , −1,0,1, ⋯ }ஶ𝔫ୀଶ . 
 
The Hurwitz–Lerch Zeta function [21] is 

𝜁గ,ఘ(𝓏) = 1𝜌గ + ෍ 𝓏𝔫(𝔫 + 𝜌)గஶ
𝔫ୀଵ , 

(𝜌 ∈ ℂ\𝑍௢ି = {0, −1, −2, … }, 𝜋 ∈ ℂ, where |𝓏| < 1, ℛ𝑒(𝜋) > 1, 𝓏 ∈ 𝜕𝑈°) 

By making use of the following normalized function, we have: 𝐺గ,ఘ(𝓏) = (1 + 𝜌)గൣ𝜁గ,ఘ(𝓏) − 𝜌ିగ൧ = 𝓏 + ∑ ቀଵାఘ𝔫ାఘቁగ   , 𝓏 ∈ 𝑈°ஶ𝔫ୀଶ . 

If 𝑓, 𝑔 ∈ 𝑀, where 𝑓 given by (1) and 𝑔 is defined by 

𝑔(𝓏) = 𝓏 + ෍ 𝑏𝔫𝓏𝔫ஶ
𝔫ୀଶ  , 𝓏 ∈ U°, 

then 

(𝑓 ∗ 𝑔)(𝓏) = 𝓏 + ෍ 𝑎𝔫𝑏𝔫ஶ
𝔫ୀଶ 𝓏𝔫 = (𝑔 ∗ 𝑓)(𝓏). 

Using the convolution defined above, a new operator is next introduced as the 
original part of the present paper. 

  

), Γπ,ρ,β+4,µ f (

Symmetry 2022, 14, x FOR PEER REVIEW 2 of 12 
 

 

Well-known notations and definitions used for obtaining the original results are next 
presented. 𝒦(U°) denotes the family of analytic functions in U°that have the form: 𝒦[a, 𝔫] = {𝑓 ∈ 𝒦(U°): 𝑓(𝓏) = 𝑎 + 𝑎𝔫𝓏𝔫 + 𝑎𝔫ାଵ𝓏𝔫ାଵ + ⋯ }, 𝑎 ∈ ℂ, 𝔫 ∈ 𝑁 = {1,2, … }, 

and let ℧𝔫 be the collection of the form: ℧𝔫 = {𝑓 ∈ 𝒦(𝑈°): 𝑓(𝓏) = 𝓏 + 𝑎𝔫ାଵ𝓏𝔫ାଵ + ⋯ }, 
where ℧ଵ = ℧, the subclass of normalized analytic functions in U°. Further, indicate by M 
the subfamily of 𝒦(U°) of the form: 

𝑓(𝓏) = 𝓏 + ෍ 𝑎𝔫𝓏𝔫 , 𝓏 ∈ U°ஶ
𝔫ୀଶ , (1)

which are univalent in U°. For analytic functions 𝑓 and 𝐹, the function 𝑓 is said to be 
subordinate to 𝐹, if 𝑓(𝓏) = 𝐹൫Θ(𝓏)൯, (𝓏 ∈ 𝑈°), 

where Θ(𝓏) is analytic and  Θ(0) = 0, |Θ(𝓏)| < 1. This subordination is indicated by 𝑓(𝓏) ≺ 𝐹(𝓏). 
Cho and Kim [20] proposed the multiplier transformation as a linear operator. Let 𝔫 

be any integer; the multiplier transformation ℒఓఉ: 𝑀 → 𝑀  is given by ℒఓఉ𝑓(𝓏) = 𝓏 +∑ ቀ𝔫ାఓଵାఓቁఉ 𝑎𝔫𝓏𝔫 , 𝜇 ≥ 0, 𝛽 ∈ ℤ = {⋯ , −1,0,1, ⋯ }ஶ𝔫ୀଶ . 
 
The Hurwitz–Lerch Zeta function [21] is 

𝜁గ,ఘ(𝓏) = 1𝜌గ + ෍ 𝓏𝔫(𝔫 + 𝜌)గஶ
𝔫ୀଵ , 

(𝜌 ∈ ℂ\𝑍௢ି = {0, −1, −2, … }, 𝜋 ∈ ℂ, where |𝓏| < 1, ℛ𝑒(𝜋) > 1, 𝓏 ∈ 𝜕𝑈°) 

By making use of the following normalized function, we have: 𝐺గ,ఘ(𝓏) = (1 + 𝜌)గൣ𝜁గ,ఘ(𝓏) − 𝜌ିగ൧ = 𝓏 + ∑ ቀଵାఘ𝔫ାఘቁగ   , 𝓏 ∈ 𝑈°ஶ𝔫ୀଶ . 

If 𝑓, 𝑔 ∈ 𝑀, where 𝑓 given by (1) and 𝑔 is defined by 

𝑔(𝓏) = 𝓏 + ෍ 𝑏𝔫𝓏𝔫ஶ
𝔫ୀଶ  , 𝓏 ∈ U°, 

then 

(𝑓 ∗ 𝑔)(𝓏) = 𝓏 + ෍ 𝑎𝔫𝑏𝔫ஶ
𝔫ୀଶ 𝓏𝔫 = (𝑔 ∗ 𝑓)(𝓏). 

Using the convolution defined above, a new operator is next introduced as the 
original part of the present paper. 

  

)
)

:
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Well-known notations and definitions used for obtaining the original results are next 
presented. 𝒦(U°) denotes the family of analytic functions in U°that have the form: 𝒦[a, 𝔫] = {𝑓 ∈ 𝒦(U°): 𝑓(𝓏) = 𝑎 + 𝑎𝔫𝓏𝔫 + 𝑎𝔫ାଵ𝓏𝔫ାଵ + ⋯ }, 𝑎 ∈ ℂ, 𝔫 ∈ 𝑁 = {1,2, … }, 

and let ℧𝔫 be the collection of the form: ℧𝔫 = {𝑓 ∈ 𝒦(𝑈°): 𝑓(𝓏) = 𝓏 + 𝑎𝔫ାଵ𝓏𝔫ାଵ + ⋯ }, 
where ℧ଵ = ℧, the subclass of normalized analytic functions in U°. Further, indicate by M 
the subfamily of 𝒦(U°) of the form: 

𝑓(𝓏) = 𝓏 + ෍ 𝑎𝔫𝓏𝔫 , 𝓏 ∈ U°ஶ
𝔫ୀଶ , (1)

which are univalent in U°. For analytic functions 𝑓 and 𝐹, the function 𝑓 is said to be 
subordinate to 𝐹, if 𝑓(𝓏) = 𝐹൫Θ(𝓏)൯, (𝓏 ∈ 𝑈°), 

where Θ(𝓏) is analytic and  Θ(0) = 0, |Θ(𝓏)| < 1. This subordination is indicated by 𝑓(𝓏) ≺ 𝐹(𝓏). 
Cho and Kim [20] proposed the multiplier transformation as a linear operator. Let 𝔫 

be any integer; the multiplier transformation ℒఓఉ: 𝑀 → 𝑀  is given by ℒఓఉ𝑓(𝓏) = 𝓏 +∑ ቀ𝔫ାఓଵାఓቁఉ 𝑎𝔫𝓏𝔫 , 𝜇 ≥ 0, 𝛽 ∈ ℤ = {⋯ , −1,0,1, ⋯ }ஶ𝔫ୀଶ . 
 
The Hurwitz–Lerch Zeta function [21] is 

𝜁గ,ఘ(𝓏) = 1𝜌గ + ෍ 𝓏𝔫(𝔫 + 𝜌)గஶ
𝔫ୀଵ , 

(𝜌 ∈ ℂ\𝑍௢ି = {0, −1, −2, … }, 𝜋 ∈ ℂ, where |𝓏| < 1, ℛ𝑒(𝜋) > 1, 𝓏 ∈ 𝜕𝑈°) 

By making use of the following normalized function, we have: 𝐺గ,ఘ(𝓏) = (1 + 𝜌)గൣ𝜁గ,ఘ(𝓏) − 𝜌ିగ൧ = 𝓏 + ∑ ቀଵାఘ𝔫ାఘቁగ   , 𝓏 ∈ 𝑈°ஶ𝔫ୀଶ . 

If 𝑓, 𝑔 ∈ 𝑀, where 𝑓 given by (1) and 𝑔 is defined by 

𝑔(𝓏) = 𝓏 + ෍ 𝑏𝔫𝓏𝔫ஶ
𝔫ୀଶ  , 𝓏 ∈ U°, 

then 

(𝑓 ∗ 𝑔)(𝓏) = 𝓏 + ෍ 𝑎𝔫𝑏𝔫ஶ
𝔫ୀଶ 𝓏𝔫 = (𝑔 ∗ 𝑓)(𝓏). 

Using the convolution defined above, a new operator is next introduced as the 
original part of the present paper. 

  

∈ U
◦
}
⊂ Ω.

Then
Γπ,ρ,β,µ f (
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Well-known notations and definitions used for obtaining the original results are next 
presented. 𝒦(U°) denotes the family of analytic functions in U°that have the form: 𝒦[a, 𝔫] = {𝑓 ∈ 𝒦(U°): 𝑓(𝓏) = 𝑎 + 𝑎𝔫𝓏𝔫 + 𝑎𝔫ାଵ𝓏𝔫ାଵ + ⋯ }, 𝑎 ∈ ℂ, 𝔫 ∈ 𝑁 = {1,2, … }, 

and let ℧𝔫 be the collection of the form: ℧𝔫 = {𝑓 ∈ 𝒦(𝑈°): 𝑓(𝓏) = 𝓏 + 𝑎𝔫ାଵ𝓏𝔫ାଵ + ⋯ }, 
where ℧ଵ = ℧, the subclass of normalized analytic functions in U°. Further, indicate by M 
the subfamily of 𝒦(U°) of the form: 

𝑓(𝓏) = 𝓏 + ෍ 𝑎𝔫𝓏𝔫 , 𝓏 ∈ U°ஶ
𝔫ୀଶ , (1)

which are univalent in U°. For analytic functions 𝑓 and 𝐹, the function 𝑓 is said to be 
subordinate to 𝐹, if 𝑓(𝓏) = 𝐹൫Θ(𝓏)൯, (𝓏 ∈ 𝑈°), 

where Θ(𝓏) is analytic and  Θ(0) = 0, |Θ(𝓏)| < 1. This subordination is indicated by 𝑓(𝓏) ≺ 𝐹(𝓏). 
Cho and Kim [20] proposed the multiplier transformation as a linear operator. Let 𝔫 
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Proof. By applying the theorem above, we have Γπ,ρ,β,µf(
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If 𝑓, 𝑔 ∈ 𝑀, where 𝑓 given by (1) and 𝑔 is defined by 

𝑔(𝓏) = 𝓏 + ෍ 𝑏𝔫𝓏𝔫ஶ
𝔫ୀଶ  , 𝓏 ∈ U°, 

then 

(𝑓 ∗ 𝑔)(𝓏) = 𝓏 + ෍ 𝑎𝔫𝑏𝔫ஶ
𝔫ୀଶ 𝓏𝔫 = (𝑔 ∗ 𝑓)(𝓏). 

Using the convolution defined above, a new operator is next introduced as the 
original part of the present paper. 
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∈ U
◦
. If Ω 6= C is a simply connected domain, then

Ω =
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has a solution 𝕢(𝓏) ∈ Ҩଵ. If 𝛤గ,ఘ,ఉ,ఓ𝑓(𝓏) ∈ Ҩଵ, 𝕢 ∈ 𝒦ଵ, 𝕢ᇱ(𝓏) ് 0 and 𝑓 ∈ 𝑀 satisfy the con-
ditions (7) and (22), ൛𝛶൫𝛤గ,ఘ,ఉ,ఓ𝑓(𝓏), 𝛤గ,ఘ,ఉାଵ,ఓ𝑓(𝓏), 𝛤గ,ఘ,ఉାଶ,ఓ𝑓(𝓏), 𝛤గ,ఘ,ఉାଷ,ఓ𝑓(𝓏), 𝛤గ,ఘ,ఉାସ,ఓ𝑓(𝓏)ቁ : 𝓏 ∈ 𝑈°ቅ 
is univalent in 𝑈°, and 𝓀(𝓏) ⊂ {Υ൫Γగ,ఘ,ఉ,ఓ𝑓(𝓏), Γగ,ఘ,ఉାଵ,ఓ𝑓(𝓏), Γగ,ఘ,ఉାଶ,ఓ𝑓(𝓏), Γగ,ఘ,ఉାଷ,ఓ𝑓(𝓏), 𝛤గ,ఘ,ఉାସ,ఓ𝑓(𝓏); 𝓏 ∈ 𝑈°)}, 
then 𝕢(𝓏) ≺ 𝛤గ,ఘ,ఉ,ఋ𝑓(𝓏), and 𝕢(𝓏) is the best subordinate of (24). 

Proof. The proof of theorem is similar to that of Theorem 5 and is omitted here. □ 

5. Sandwich-Type Results 
Now, by using Theorems 5 and 9, we have the sandwich-type result. 

Theorem 11. Consider two analytic functions  𝓀ଵ(𝓏) 𝑎𝑛𝑑 𝕢ଵ(𝓏)  in 𝑈° , and  𝕢ଶ(𝓏) ∈ Ҩଵ 
with  𝕢ଵ(0) = 𝕢ଶ(0) =1. In addition let the function  𝓀ଶ(𝓏) be univalent in  𝑈°  and  𝛶 ∈𝜃௰[ 𝓀ଶ, 𝕢ଶ] ∩ 𝜃௰ᇱ [𝓀ଵ, 𝕢ଵ]. If 𝛤గ,ఘ,ఉ,ఓ𝑓(𝓏) ∈ Ҩଵ ∩ 𝒦, 𝑓 ∈ 𝑀, ൛𝛶൫𝛤గ,ఘ,ఉ,ఓ𝑓(𝓏), 𝛤గ,ఘ,ఉାଵ,ఓ𝑓(𝓏), 𝛤గ,ఘ,ఉାଶ,ఓ𝑓(𝓏), 𝛤గ,ఘ,ఉାଷ,ఓ𝑓(𝓏), 𝛤గ,ఘ,ఉାସ,ఓ𝑓(𝓏)ቁ : 𝓏 ∈ 𝑈°ቅ 

is univalent in 𝑈°, and the two conditions (7) and (22) are satisfied as 𝓀ଵ(𝓏) ≺ {𝛶൫𝛤గ,ఘ,ఉ,ఓ𝑓(𝓏), 𝛤గ,ఘ,ఉାଵ,ఓ𝑓(𝓏), 𝛤గ,ఘ,ఉାଶ,ఓ𝑓(𝓏), 𝛤గ,ఘ,ఉାଷ,ఓ𝑓(𝓏), 𝛤గ,ఘ,ఉାସ,ఓ𝑓(𝓏); 𝓏 ∈ 𝑈°)} ≺  𝓀ଶ(𝓏), 
then 𝕢ଵ(𝓏) ≺ 𝛤గ,ఘ,ఉ,ఓ𝑓(𝓏) ≺ 𝕢ଶ(𝓏) 

6. Conclusions 
A new differential operator is introduced in the present paper in Definition 1. Using 

the concepts of fourth-order differential subordination and superordination, the classes 
of admissible functions are defined related to each of the two concepts, and using those 
definitions, several theorems are proved involving the newly defined operator regarding 
fourth-order subordinations in Section 3 and regarding fourth-order superordination in 
Section 4. By applying a well-known technique, a sandwich-type theorem is stated in 
Section 5 of the paper combining the subordination and superordination results obtained 
before. The results presented here could inspire future work involving other operators 
for obtaining fourth-order differential subordinations and superordinations. Certain 
special classes of univalent functions could be introduced using the operator defined in 
this paper, and studies for obtaining properties of those classes could be done invoking 
the notions of fourth-order differential subordination and superordination using the 
admissibility conditions given here in Definition 7., Definition 8. and Definition 9. and 
the best dominant obtained in Theorem 5. 
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subordinate to 𝐹, if 𝑓(𝓏) = 𝐹൫Θ(𝓏)൯, (𝓏 ∈ 𝑈°), 

where Θ(𝓏) is analytic and  Θ(0) = 0, |Θ(𝓏)| < 1. This subordination is indicated by 𝑓(𝓏) ≺ 𝐹(𝓏). 
Cho and Kim [20] proposed the multiplier transformation as a linear operator. Let 𝔫 
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Using the convolution defined above, a new operator is next introduced as the 
original part of the present paper. 

  

) of U
◦

onto Ω. In this case, the
class θΓ
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definitions, several theorems are proved involving the newly defined operator regarding 
fourth-order subordinations in Section 3 and regarding fourth-order superordination in 
Section 4. By applying a well-known technique, a sandwich-type theorem is stated in 
Section 5 of the paper combining the subordination and superordination results obtained 
before. The results presented here could inspire future work involving other operators 
for obtaining fourth-order differential subordinations and superordinations. Certain 
special classes of univalent functions could be introduced using the operator defined in 
this paper, and studies for obtaining properties of those classes could be done invoking 
the notions of fourth-order differential subordination and superordination using the 
admissibility conditions given here in Definition 7., Definition 8. and Definition 9. and 
the best dominant obtained in Theorem 5. 
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Now, we obtain the next two results from the above theorem and corollary.

Theorem 4. Assume that Y ∈ θΓ

[

Symmetry 2022, 14, x FOR PEER REVIEW 10 of 12 
 

 

{𝜓(𝑝(𝓏), 𝓏𝑝ᇱ(𝓏), 𝓏ଶ𝑝ᇱᇱ(𝓏), 𝓏ଷ𝑝ᇱᇱᇱ(𝓏), 𝓏ସ𝑝ᇱᇱᇱᇱ(𝓏); 𝓏 ∈ 𝑈°)} = 𝓀(𝓏),  (25)

has a solution 𝕢(𝓏) ∈ Ҩଵ. If 𝛤గ,ఘ,ఉ,ఓ𝑓(𝓏) ∈ Ҩଵ, 𝕢 ∈ 𝒦ଵ, 𝕢ᇱ(𝓏) ് 0 and 𝑓 ∈ 𝑀 satisfy the con-
ditions (7) and (22), ൛𝛶൫𝛤గ,ఘ,ఉ,ఓ𝑓(𝓏), 𝛤గ,ఘ,ఉାଵ,ఓ𝑓(𝓏), 𝛤గ,ఘ,ఉାଶ,ఓ𝑓(𝓏), 𝛤గ,ఘ,ఉାଷ,ఓ𝑓(𝓏), 𝛤గ,ఘ,ఉାସ,ఓ𝑓(𝓏)ቁ : 𝓏 ∈ 𝑈°ቅ 
is univalent in 𝑈°, and 𝓀(𝓏) ⊂ {Υ൫Γగ,ఘ,ఉ,ఓ𝑓(𝓏), Γగ,ఘ,ఉାଵ,ఓ𝑓(𝓏), Γగ,ఘ,ఉାଶ,ఓ𝑓(𝓏), Γగ,ఘ,ఉାଷ,ఓ𝑓(𝓏), 𝛤గ,ఘ,ఉାସ,ఓ𝑓(𝓏); 𝓏 ∈ 𝑈°)}, 
then 𝕢(𝓏) ≺ 𝛤గ,ఘ,ఉ,ఋ𝑓(𝓏), and 𝕢(𝓏) is the best subordinate of (24). 

Proof. The proof of theorem is similar to that of Theorem 5 and is omitted here. □ 

5. Sandwich-Type Results 
Now, by using Theorems 5 and 9, we have the sandwich-type result. 

Theorem 11. Consider two analytic functions  𝓀ଵ(𝓏) 𝑎𝑛𝑑 𝕢ଵ(𝓏)  in 𝑈° , and  𝕢ଶ(𝓏) ∈ Ҩଵ 
with  𝕢ଵ(0) = 𝕢ଶ(0) =1. In addition let the function  𝓀ଶ(𝓏) be univalent in  𝑈°  and  𝛶 ∈𝜃௰[ 𝓀ଶ, 𝕢ଶ] ∩ 𝜃௰ᇱ [𝓀ଵ, 𝕢ଵ]. If 𝛤గ,ఘ,ఉ,ఓ𝑓(𝓏) ∈ Ҩଵ ∩ 𝒦, 𝑓 ∈ 𝑀, ൛𝛶൫𝛤గ,ఘ,ఉ,ఓ𝑓(𝓏), 𝛤గ,ఘ,ఉାଵ,ఓ𝑓(𝓏), 𝛤గ,ఘ,ఉାଶ,ఓ𝑓(𝓏), 𝛤గ,ఘ,ఉାଷ,ఓ𝑓(𝓏), 𝛤గ,ఘ,ఉାସ,ఓ𝑓(𝓏)ቁ : 𝓏 ∈ 𝑈°ቅ 

is univalent in 𝑈°, and the two conditions (7) and (22) are satisfied as 𝓀ଵ(𝓏) ≺ {𝛶൫𝛤గ,ఘ,ఉ,ఓ𝑓(𝓏), 𝛤గ,ఘ,ఉାଵ,ఓ𝑓(𝓏), 𝛤గ,ఘ,ఉାଶ,ఓ𝑓(𝓏), 𝛤గ,ఘ,ఉାଷ,ఓ𝑓(𝓏), 𝛤గ,ఘ,ఉାସ,ఓ𝑓(𝓏); 𝓏 ∈ 𝑈°)} ≺  𝓀ଶ(𝓏), 
then 𝕢ଵ(𝓏) ≺ 𝛤గ,ఘ,ఉ,ఓ𝑓(𝓏) ≺ 𝕢ଶ(𝓏) 

6. Conclusions 
A new differential operator is introduced in the present paper in Definition 1. Using 

the concepts of fourth-order differential subordination and superordination, the classes 
of admissible functions are defined related to each of the two concepts, and using those 
definitions, several theorems are proved involving the newly defined operator regarding 
fourth-order subordinations in Section 3 and regarding fourth-order superordination in 
Section 4. By applying a well-known technique, a sandwich-type theorem is stated in 
Section 5 of the paper combining the subordination and superordination results obtained 
before. The results presented here could inspire future work involving other operators 
for obtaining fourth-order differential subordinations and superordinations. Certain 
special classes of univalent functions could be introduced using the operator defined in 
this paper, and studies for obtaining properties of those classes could be done invoking 
the notions of fourth-order differential subordination and superordination using the 
admissibility conditions given here in Definition 7., Definition 8. and Definition 9. and 
the best dominant obtained in Theorem 5. 

Author Contributions: Conceptualization, methodology, software by A.A.L., validation, formal 
analysis, investigation, resources, by S.S.A., data curation, writing—original draft preparation, 
writing—review and editing, visualization by W.G.A., supervision, project administration, funding 
acquisition, by B.K.M. All authors have read and agreed to the published version of the manu-
script. 

Funding: This research received no external funding. 

Institutional Review Board Statement: Not applicable. 

Informed Consent Statement: Not applicable. 

,q
]
, if q ∈

Symmetry 2022, 14, x FOR PEER REVIEW 3 of 12 
 

 

Definition 1. Assume  𝑓 ∈ 𝑀, 𝓏 ∈ 𝜕𝑈°, 𝜌 ∈ ℂ\𝑍௢ି = {0, −1, −2, … }, 𝑤ℎ𝑒𝑟𝑒 |𝓏| < 1, ℛ𝑒(𝜋) >1, 𝜇 ≥ 0, 𝛽 ∈ ℤ, 𝜋 ∈ ℂ; we define new operator 𝛤గ,ఘ,ఉ,ఓ𝑓(𝓏): 𝑀 → 𝑀, where 

Γగ,ఘ,ఉ,ఓ𝑓(𝓏) = 𝐺గ,ఘ(𝓏) ∗ ℒఓఉ𝑓(𝓏) = 𝓏 + ෍ ൬1 + 𝜌𝔫 + 𝜌൰గ ൬𝔫 + 𝜇1 + 𝜇൰ఉ 𝑎𝔫𝓏𝔫ஶ
𝔫ୀଶ . (2)

After a simple computation, we obtain the relation: 𝓏 ቀΓగ,ఘ,ఉ,ఓ𝑓(𝓏)ቁᇱ = (1 + 𝜇)Γగ,ఘ,ఉାଵ,ఓ𝑓(𝓏) − 𝜇 Γగ,ఘ,ఉ,ఓ𝑓(𝓏). (3)

2. Problem Formulation 
The subcollection of various analytic and univalent functions, which are connected 

to differential subordination and superordination in the open unit disk U°, has been ini-
tiated in recent times from a variety of intriguing outcomes and perspectives (cf. 
[22,23,24,25,7,26,27,28]). Additionally, several authors obtained good results on second- 
and third-order differential subordination; e.g., [29,30,31–34,35]. 

In order to demonstrate the original results, we will need the basic concepts of 
fourth-order theory previously introduced, which we present below showing the papers 
where they first appeared. 

Definition 2. Ref. [4]: Assume that Ҩ is called the set of functions 𝕢 that are univalent and 
analytic on the set 𝑈°\𝐸(𝕢) , where 𝐸(𝕢) = {𝒥: 𝒥 ∈ 𝜕𝑈° 𝑎𝑛𝑑 𝑙𝑖𝑚𝓏→𝒥 𝕢(𝓏) = ∞}  are such that 𝑚𝑖𝑛|𝕢ᇱ(𝒥)| = 𝛾 > 0 𝑓𝑜𝑟 𝒥 ∈ 𝜕𝑈°\𝐸(𝕢). In addition, indicate by Ҩ(𝑎) the subclass of function 𝕢 for which 𝕢(0) = 𝑎. Note that  Ҩଵ = Ҩ(1) = {𝕢(𝓏) ∈ Ҩ: 𝕢(0) = 1}. 

Definition 3. See [6,7]: Assume that 𝓀 is univalent in 𝑈°and 𝜓: ℂହ × 𝑈° → ℂ. If the analytic 
function 𝑝 fulfills the fourth-order differential subordination 𝜓(𝑝(𝓏), 𝓏𝑝ᇱ(𝓏), 𝓏ଶ𝑝ᇱᇱ(𝓏), 𝓏ଷ𝑝ᇱᇱᇱ(𝓏), 𝓏ସ𝑝ᇱᇱᇱᇱ(𝓏); 𝓏) ≺ 𝓀(𝓏), (4)

then the function 𝑝 is named a solution of the differential subordination (4). A univalent func-
tion 𝕢 is named a dominant of the solutions of the differential subordination if 𝑝 ≺ 𝕢 for all 𝑝 
satisfying (4). A dominant 𝕢෥(𝓏) that fulfills 𝕢෥ ≺ 𝕢 for all dominants 𝕢 of (4) is named the best 
dominant. 

Definition 4. See [6,7]: Assume that 𝕢 ∈ Ҩ and 𝛺 is a set in ℂ. The admissible functions class 𝛷𝓃[𝛺, 𝕢], (𝔫 ∈ 𝑁\{2}) consists of those functions 𝜓: ℂହ × 𝑈° → ℂ that fulfill the following ad-
missibility condition: 

ψ(𝔯, 𝔰, 𝔱, 𝔲, 𝑏; 𝓏) ∉ Ω, 
wherever 𝔯 = 𝕢(𝜏)  , 𝔰 = 𝔪𝜏𝕢ᇱ(𝜏) ,    ℛℯ ൬ 𝔱𝔰 + 1൰ ≥ 𝔪ℛℯ ቆ1 + 𝜏𝕢ᇱᇱ(𝜏)𝕢ᇱ(𝜏) ቇ, 

ℯℛ ቀ𝔲𝔰ቁ ≥ 𝔪ଶℛℯ ቀఛమ𝕢ᇲᇲᇲ(ఛ)𝕢ᇲ(ఛ) ቁ ,ℯℛ ቀ௕௦ቁ ≥ 𝔪ଷℛℯ ቀఛయ𝕢ᇲᇲᇲᇲ(ఛ)𝕢ᇲ(ఛ) ቁ, ( 𝓏 ∈ 𝑈°, 𝜏 ∈ 𝜕𝑈°\E(𝕢)  𝑎𝑛𝑑   𝔪 ≥ 𝔫). 
 

Theorem 1. See [7]: Let 𝑝 ∈ 𝒦[𝑎, 𝔫], ( 𝔫 ∈ 𝑁\{2}). In addition, let 𝕢 ∈ Ҩ and fulfill the condi-
tions: 

1 and f ∈ 0 fulfills the condition (7) and

Y
(

Γπ,ρ,β,µ f (
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Well-known notations and definitions used for obtaining the original results are next 
presented. 𝒦(U°) denotes the family of analytic functions in U°that have the form: 𝒦[a, 𝔫] = {𝑓 ∈ 𝒦(U°): 𝑓(𝓏) = 𝑎 + 𝑎𝔫𝓏𝔫 + 𝑎𝔫ାଵ𝓏𝔫ାଵ + ⋯ }, 𝑎 ∈ ℂ, 𝔫 ∈ 𝑁 = {1,2, … }, 

and let ℧𝔫 be the collection of the form: ℧𝔫 = {𝑓 ∈ 𝒦(𝑈°): 𝑓(𝓏) = 𝓏 + 𝑎𝔫ାଵ𝓏𝔫ାଵ + ⋯ }, 
where ℧ଵ = ℧, the subclass of normalized analytic functions in U°. Further, indicate by M 
the subfamily of 𝒦(U°) of the form: 

𝑓(𝓏) = 𝓏 + ෍ 𝑎𝔫𝓏𝔫 , 𝓏 ∈ U°ஶ
𝔫ୀଶ , (1)

which are univalent in U°. For analytic functions 𝑓 and 𝐹, the function 𝑓 is said to be 
subordinate to 𝐹, if 𝑓(𝓏) = 𝐹൫Θ(𝓏)൯, (𝓏 ∈ 𝑈°), 

where Θ(𝓏) is analytic and  Θ(0) = 0, |Θ(𝓏)| < 1. This subordination is indicated by 𝑓(𝓏) ≺ 𝐹(𝓏). 
Cho and Kim [20] proposed the multiplier transformation as a linear operator. Let 𝔫 

be any integer; the multiplier transformation ℒఓఉ: 𝑀 → 𝑀  is given by ℒఓఉ𝑓(𝓏) = 𝓏 +∑ ቀ𝔫ାఓଵାఓቁఉ 𝑎𝔫𝓏𝔫 , 𝜇 ≥ 0, 𝛽 ∈ ℤ = {⋯ , −1,0,1, ⋯ }ஶ𝔫ୀଶ . 
 
The Hurwitz–Lerch Zeta function [21] is 

𝜁గ,ఘ(𝓏) = 1𝜌గ + ෍ 𝓏𝔫(𝔫 + 𝜌)గஶ
𝔫ୀଵ , 

(𝜌 ∈ ℂ\𝑍௢ି = {0, −1, −2, … }, 𝜋 ∈ ℂ, where |𝓏| < 1, ℛ𝑒(𝜋) > 1, 𝓏 ∈ 𝜕𝑈°) 

By making use of the following normalized function, we have: 𝐺గ,ఘ(𝓏) = (1 + 𝜌)గൣ𝜁గ,ఘ(𝓏) − 𝜌ିగ൧ = 𝓏 + ∑ ቀଵାఘ𝔫ାఘቁగ   , 𝓏 ∈ 𝑈°ஶ𝔫ୀଶ . 

If 𝑓, 𝑔 ∈ 𝑀, where 𝑓 given by (1) and 𝑔 is defined by 

𝑔(𝓏) = 𝓏 + ෍ 𝑏𝔫𝓏𝔫ஶ
𝔫ୀଶ  , 𝓏 ∈ U°, 

then 

(𝑓 ∗ 𝑔)(𝓏) = 𝓏 + ෍ 𝑎𝔫𝑏𝔫ஶ
𝔫ୀଶ 𝓏𝔫 = (𝑔 ∗ 𝑓)(𝓏). 

Using the convolution defined above, a new operator is next introduced as the 
original part of the present paper. 

  

), Γπ,ρ,β+1,µ f (
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The Hurwitz–Lerch Zeta function [21] is 

𝜁గ,ఘ(𝓏) = 1𝜌గ + ෍ 𝓏𝔫(𝔫 + 𝜌)గஶ
𝔫ୀଵ , 

(𝜌 ∈ ℂ\𝑍௢ି = {0, −1, −2, … }, 𝜋 ∈ ℂ, where |𝓏| < 1, ℛ𝑒(𝜋) > 1, 𝓏 ∈ 𝜕𝑈°) 

By making use of the following normalized function, we have: 𝐺గ,ఘ(𝓏) = (1 + 𝜌)గൣ𝜁గ,ఘ(𝓏) − 𝜌ିగ൧ = 𝓏 + ∑ ቀଵାఘ𝔫ାఘቁగ   , 𝓏 ∈ 𝑈°ஶ𝔫ୀଶ . 

If 𝑓, 𝑔 ∈ 𝑀, where 𝑓 given by (1) and 𝑔 is defined by 

𝑔(𝓏) = 𝓏 + ෍ 𝑏𝔫𝓏𝔫ஶ
𝔫ୀଶ  , 𝓏 ∈ U°, 

then 

(𝑓 ∗ 𝑔)(𝓏) = 𝓏 + ෍ 𝑎𝔫𝑏𝔫ஶ
𝔫ୀଶ 𝓏𝔫 = (𝑔 ∗ 𝑓)(𝓏). 

Using the convolution defined above, a new operator is next introduced as the 
original part of the present paper. 

  

), Γπ,ρ,β+2,µ f (
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Well-known notations and definitions used for obtaining the original results are next 
presented. 𝒦(U°) denotes the family of analytic functions in U°that have the form: 𝒦[a, 𝔫] = {𝑓 ∈ 𝒦(U°): 𝑓(𝓏) = 𝑎 + 𝑎𝔫𝓏𝔫 + 𝑎𝔫ାଵ𝓏𝔫ାଵ + ⋯ }, 𝑎 ∈ ℂ, 𝔫 ∈ 𝑁 = {1,2, … }, 

and let ℧𝔫 be the collection of the form: ℧𝔫 = {𝑓 ∈ 𝒦(𝑈°): 𝑓(𝓏) = 𝓏 + 𝑎𝔫ାଵ𝓏𝔫ାଵ + ⋯ }, 
where ℧ଵ = ℧, the subclass of normalized analytic functions in U°. Further, indicate by M 
the subfamily of 𝒦(U°) of the form: 

𝑓(𝓏) = 𝓏 + ෍ 𝑎𝔫𝓏𝔫 , 𝓏 ∈ U°ஶ
𝔫ୀଶ , (1)

which are univalent in U°. For analytic functions 𝑓 and 𝐹, the function 𝑓 is said to be 
subordinate to 𝐹, if 𝑓(𝓏) = 𝐹൫Θ(𝓏)൯, (𝓏 ∈ 𝑈°), 

where Θ(𝓏) is analytic and  Θ(0) = 0, |Θ(𝓏)| < 1. This subordination is indicated by 𝑓(𝓏) ≺ 𝐹(𝓏). 
Cho and Kim [20] proposed the multiplier transformation as a linear operator. Let 𝔫 

be any integer; the multiplier transformation ℒఓఉ: 𝑀 → 𝑀  is given by ℒఓఉ𝑓(𝓏) = 𝓏 +∑ ቀ𝔫ାఓଵାఓቁఉ 𝑎𝔫𝓏𝔫 , 𝜇 ≥ 0, 𝛽 ∈ ℤ = {⋯ , −1,0,1, ⋯ }ஶ𝔫ୀଶ . 
 
The Hurwitz–Lerch Zeta function [21] is 

𝜁గ,ఘ(𝓏) = 1𝜌గ + ෍ 𝓏𝔫(𝔫 + 𝜌)గஶ
𝔫ୀଵ , 

(𝜌 ∈ ℂ\𝑍௢ି = {0, −1, −2, … }, 𝜋 ∈ ℂ, where |𝓏| < 1, ℛ𝑒(𝜋) > 1, 𝓏 ∈ 𝜕𝑈°) 

By making use of the following normalized function, we have: 𝐺గ,ఘ(𝓏) = (1 + 𝜌)గൣ𝜁గ,ఘ(𝓏) − 𝜌ିగ൧ = 𝓏 + ∑ ቀଵାఘ𝔫ାఘቁగ   , 𝓏 ∈ 𝑈°ஶ𝔫ୀଶ . 

If 𝑓, 𝑔 ∈ 𝑀, where 𝑓 given by (1) and 𝑔 is defined by 

𝑔(𝓏) = 𝓏 + ෍ 𝑏𝔫𝓏𝔫ஶ
𝔫ୀଶ  , 𝓏 ∈ U°, 

then 

(𝑓 ∗ 𝑔)(𝓏) = 𝓏 + ෍ 𝑎𝔫𝑏𝔫ஶ
𝔫ୀଶ 𝓏𝔫 = (𝑔 ∗ 𝑓)(𝓏). 

Using the convolution defined above, a new operator is next introduced as the 
original part of the present paper. 

  

), Γπ,ρ,β+3,µ f (

Symmetry 2022, 14, x FOR PEER REVIEW 2 of 12 
 

 

Well-known notations and definitions used for obtaining the original results are next 
presented. 𝒦(U°) denotes the family of analytic functions in U°that have the form: 𝒦[a, 𝔫] = {𝑓 ∈ 𝒦(U°): 𝑓(𝓏) = 𝑎 + 𝑎𝔫𝓏𝔫 + 𝑎𝔫ାଵ𝓏𝔫ାଵ + ⋯ }, 𝑎 ∈ ℂ, 𝔫 ∈ 𝑁 = {1,2, … }, 

and let ℧𝔫 be the collection of the form: ℧𝔫 = {𝑓 ∈ 𝒦(𝑈°): 𝑓(𝓏) = 𝓏 + 𝑎𝔫ାଵ𝓏𝔫ାଵ + ⋯ }, 
where ℧ଵ = ℧, the subclass of normalized analytic functions in U°. Further, indicate by M 
the subfamily of 𝒦(U°) of the form: 

𝑓(𝓏) = 𝓏 + ෍ 𝑎𝔫𝓏𝔫 , 𝓏 ∈ U°ஶ
𝔫ୀଶ , (1)

which are univalent in U°. For analytic functions 𝑓 and 𝐹, the function 𝑓 is said to be 
subordinate to 𝐹, if 𝑓(𝓏) = 𝐹൫Θ(𝓏)൯, (𝓏 ∈ 𝑈°), 

where Θ(𝓏) is analytic and  Θ(0) = 0, |Θ(𝓏)| < 1. This subordination is indicated by 𝑓(𝓏) ≺ 𝐹(𝓏). 
Cho and Kim [20] proposed the multiplier transformation as a linear operator. Let 𝔫 

be any integer; the multiplier transformation ℒఓఉ: 𝑀 → 𝑀  is given by ℒఓఉ𝑓(𝓏) = 𝓏 +∑ ቀ𝔫ାఓଵାఓቁఉ 𝑎𝔫𝓏𝔫 , 𝜇 ≥ 0, 𝛽 ∈ ℤ = {⋯ , −1,0,1, ⋯ }ஶ𝔫ୀଶ . 
 
The Hurwitz–Lerch Zeta function [21] is 

𝜁గ,ఘ(𝓏) = 1𝜌గ + ෍ 𝓏𝔫(𝔫 + 𝜌)గஶ
𝔫ୀଵ , 

(𝜌 ∈ ℂ\𝑍௢ି = {0, −1, −2, … }, 𝜋 ∈ ℂ, where |𝓏| < 1, ℛ𝑒(𝜋) > 1, 𝓏 ∈ 𝜕𝑈°) 

By making use of the following normalized function, we have: 𝐺గ,ఘ(𝓏) = (1 + 𝜌)గൣ𝜁గ,ఘ(𝓏) − 𝜌ିగ൧ = 𝓏 + ∑ ቀଵାఘ𝔫ାఘቁగ   , 𝓏 ∈ 𝑈°ஶ𝔫ୀଶ . 

If 𝑓, 𝑔 ∈ 𝑀, where 𝑓 given by (1) and 𝑔 is defined by 

𝑔(𝓏) = 𝓏 + ෍ 𝑏𝔫𝓏𝔫ஶ
𝔫ୀଶ  , 𝓏 ∈ U°, 

then 

(𝑓 ∗ 𝑔)(𝓏) = 𝓏 + ෍ 𝑎𝔫𝑏𝔫ஶ
𝔫ୀଶ 𝓏𝔫 = (𝑔 ∗ 𝑓)(𝓏). 

Using the convolution defined above, a new operator is next introduced as the 
original part of the present paper. 

  

), Γπ,ρ,β+4,µ f (
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Well-known notations and definitions used for obtaining the original results are next 
presented. 𝒦(U°) denotes the family of analytic functions in U°that have the form: 𝒦[a, 𝔫] = {𝑓 ∈ 𝒦(U°): 𝑓(𝓏) = 𝑎 + 𝑎𝔫𝓏𝔫 + 𝑎𝔫ାଵ𝓏𝔫ାଵ + ⋯ }, 𝑎 ∈ ℂ, 𝔫 ∈ 𝑁 = {1,2, … }, 

and let ℧𝔫 be the collection of the form: ℧𝔫 = {𝑓 ∈ 𝒦(𝑈°): 𝑓(𝓏) = 𝓏 + 𝑎𝔫ାଵ𝓏𝔫ାଵ + ⋯ }, 
where ℧ଵ = ℧, the subclass of normalized analytic functions in U°. Further, indicate by M 
the subfamily of 𝒦(U°) of the form: 

𝑓(𝓏) = 𝓏 + ෍ 𝑎𝔫𝓏𝔫 , 𝓏 ∈ U°ஶ
𝔫ୀଶ , (1)

which are univalent in U°. For analytic functions 𝑓 and 𝐹, the function 𝑓 is said to be 
subordinate to 𝐹, if 𝑓(𝓏) = 𝐹൫Θ(𝓏)൯, (𝓏 ∈ 𝑈°), 

where Θ(𝓏) is analytic and  Θ(0) = 0, |Θ(𝓏)| < 1. This subordination is indicated by 𝑓(𝓏) ≺ 𝐹(𝓏). 
Cho and Kim [20] proposed the multiplier transformation as a linear operator. Let 𝔫 

be any integer; the multiplier transformation ℒఓఉ: 𝑀 → 𝑀  is given by ℒఓఉ𝑓(𝓏) = 𝓏 +∑ ቀ𝔫ାఓଵାఓቁఉ 𝑎𝔫𝓏𝔫 , 𝜇 ≥ 0, 𝛽 ∈ ℤ = {⋯ , −1,0,1, ⋯ }ஶ𝔫ୀଶ . 
 
The Hurwitz–Lerch Zeta function [21] is 

𝜁గ,ఘ(𝓏) = 1𝜌గ + ෍ 𝓏𝔫(𝔫 + 𝜌)గஶ
𝔫ୀଵ , 

(𝜌 ∈ ℂ\𝑍௢ି = {0, −1, −2, … }, 𝜋 ∈ ℂ, where |𝓏| < 1, ℛ𝑒(𝜋) > 1, 𝓏 ∈ 𝜕𝑈°) 

By making use of the following normalized function, we have: 𝐺గ,ఘ(𝓏) = (1 + 𝜌)గൣ𝜁గ,ఘ(𝓏) − 𝜌ିగ൧ = 𝓏 + ∑ ቀଵାఘ𝔫ାఘቁగ   , 𝓏 ∈ 𝑈°ஶ𝔫ୀଶ . 

If 𝑓, 𝑔 ∈ 𝑀, where 𝑓 given by (1) and 𝑔 is defined by 

𝑔(𝓏) = 𝓏 + ෍ 𝑏𝔫𝓏𝔫ஶ
𝔫ୀଶ  , 𝓏 ∈ U°, 

then 

(𝑓 ∗ 𝑔)(𝓏) = 𝓏 + ෍ 𝑎𝔫𝑏𝔫ஶ
𝔫ୀଶ 𝓏𝔫 = (𝑔 ∗ 𝑓)(𝓏). 

Using the convolution defined above, a new operator is next introduced as the 
original part of the present paper. 

  

);
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Well-known notations and definitions used for obtaining the original results are next 
presented. 𝒦(U°) denotes the family of analytic functions in U°that have the form: 𝒦[a, 𝔫] = {𝑓 ∈ 𝒦(U°): 𝑓(𝓏) = 𝑎 + 𝑎𝔫𝓏𝔫 + 𝑎𝔫ାଵ𝓏𝔫ାଵ + ⋯ }, 𝑎 ∈ ℂ, 𝔫 ∈ 𝑁 = {1,2, … }, 

and let ℧𝔫 be the collection of the form: ℧𝔫 = {𝑓 ∈ 𝒦(𝑈°): 𝑓(𝓏) = 𝓏 + 𝑎𝔫ାଵ𝓏𝔫ାଵ + ⋯ }, 
where ℧ଵ = ℧, the subclass of normalized analytic functions in U°. Further, indicate by M 
the subfamily of 𝒦(U°) of the form: 

𝑓(𝓏) = 𝓏 + ෍ 𝑎𝔫𝓏𝔫 , 𝓏 ∈ U°ஶ
𝔫ୀଶ , (1)

which are univalent in U°. For analytic functions 𝑓 and 𝐹, the function 𝑓 is said to be 
subordinate to 𝐹, if 𝑓(𝓏) = 𝐹൫Θ(𝓏)൯, (𝓏 ∈ 𝑈°), 

where Θ(𝓏) is analytic and  Θ(0) = 0, |Θ(𝓏)| < 1. This subordination is indicated by 𝑓(𝓏) ≺ 𝐹(𝓏). 
Cho and Kim [20] proposed the multiplier transformation as a linear operator. Let 𝔫 

be any integer; the multiplier transformation ℒఓఉ: 𝑀 → 𝑀  is given by ℒఓఉ𝑓(𝓏) = 𝓏 +∑ ቀ𝔫ାఓଵାఓቁఉ 𝑎𝔫𝓏𝔫 , 𝜇 ≥ 0, 𝛽 ∈ ℤ = {⋯ , −1,0,1, ⋯ }ஶ𝔫ୀଶ . 
 
The Hurwitz–Lerch Zeta function [21] is 

𝜁గ,ఘ(𝓏) = 1𝜌గ + ෍ 𝓏𝔫(𝔫 + 𝜌)గஶ
𝔫ୀଵ , 

(𝜌 ∈ ℂ\𝑍௢ି = {0, −1, −2, … }, 𝜋 ∈ ℂ, where |𝓏| < 1, ℛ𝑒(𝜋) > 1, 𝓏 ∈ 𝜕𝑈°) 

By making use of the following normalized function, we have: 𝐺గ,ఘ(𝓏) = (1 + 𝜌)గൣ𝜁గ,ఘ(𝓏) − 𝜌ିగ൧ = 𝓏 + ∑ ቀଵାఘ𝔫ାఘቁగ   , 𝓏 ∈ 𝑈°ஶ𝔫ୀଶ . 

If 𝑓, 𝑔 ∈ 𝑀, where 𝑓 given by (1) and 𝑔 is defined by 

𝑔(𝓏) = 𝓏 + ෍ 𝑏𝔫𝓏𝔫ஶ
𝔫ୀଶ  , 𝓏 ∈ U°, 

then 

(𝑓 ∗ 𝑔)(𝓏) = 𝓏 + ෍ 𝑎𝔫𝑏𝔫ஶ
𝔫ୀଶ 𝓏𝔫 = (𝑔 ∗ 𝑓)(𝓏). 

Using the convolution defined above, a new operator is next introduced as the 
original part of the present paper. 

  

)
≺
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{𝜓(𝑝(𝓏), 𝓏𝑝ᇱ(𝓏), 𝓏ଶ𝑝ᇱᇱ(𝓏), 𝓏ଷ𝑝ᇱᇱᇱ(𝓏), 𝓏ସ𝑝ᇱᇱᇱᇱ(𝓏); 𝓏 ∈ 𝑈°)} = 𝓀(𝓏),  (25)

has a solution 𝕢(𝓏) ∈ Ҩଵ. If 𝛤గ,ఘ,ఉ,ఓ𝑓(𝓏) ∈ Ҩଵ, 𝕢 ∈ 𝒦ଵ, 𝕢ᇱ(𝓏) ് 0 and 𝑓 ∈ 𝑀 satisfy the con-
ditions (7) and (22), ൛𝛶൫𝛤గ,ఘ,ఉ,ఓ𝑓(𝓏), 𝛤గ,ఘ,ఉାଵ,ఓ𝑓(𝓏), 𝛤గ,ఘ,ఉାଶ,ఓ𝑓(𝓏), 𝛤గ,ఘ,ఉାଷ,ఓ𝑓(𝓏), 𝛤గ,ఘ,ఉାସ,ఓ𝑓(𝓏)ቁ : 𝓏 ∈ 𝑈°ቅ 
is univalent in 𝑈°, and 𝓀(𝓏) ⊂ {Υ൫Γగ,ఘ,ఉ,ఓ𝑓(𝓏), Γగ,ఘ,ఉାଵ,ఓ𝑓(𝓏), Γగ,ఘ,ఉାଶ,ఓ𝑓(𝓏), Γగ,ఘ,ఉାଷ,ఓ𝑓(𝓏), 𝛤గ,ఘ,ఉାସ,ఓ𝑓(𝓏); 𝓏 ∈ 𝑈°)}, 
then 𝕢(𝓏) ≺ 𝛤గ,ఘ,ఉ,ఋ𝑓(𝓏), and 𝕢(𝓏) is the best subordinate of (24). 

Proof. The proof of theorem is similar to that of Theorem 5 and is omitted here. □ 

5. Sandwich-Type Results 
Now, by using Theorems 5 and 9, we have the sandwich-type result. 

Theorem 11. Consider two analytic functions  𝓀ଵ(𝓏) 𝑎𝑛𝑑 𝕢ଵ(𝓏)  in 𝑈° , and  𝕢ଶ(𝓏) ∈ Ҩଵ 
with  𝕢ଵ(0) = 𝕢ଶ(0) =1. In addition let the function  𝓀ଶ(𝓏) be univalent in  𝑈°  and  𝛶 ∈𝜃௰[ 𝓀ଶ, 𝕢ଶ] ∩ 𝜃௰ᇱ [𝓀ଵ, 𝕢ଵ]. If 𝛤గ,ఘ,ఉ,ఓ𝑓(𝓏) ∈ Ҩଵ ∩ 𝒦, 𝑓 ∈ 𝑀, ൛𝛶൫𝛤గ,ఘ,ఉ,ఓ𝑓(𝓏), 𝛤గ,ఘ,ఉାଵ,ఓ𝑓(𝓏), 𝛤గ,ఘ,ఉାଶ,ఓ𝑓(𝓏), 𝛤గ,ఘ,ఉାଷ,ఓ𝑓(𝓏), 𝛤గ,ఘ,ఉାସ,ఓ𝑓(𝓏)ቁ : 𝓏 ∈ 𝑈°ቅ 

is univalent in 𝑈°, and the two conditions (7) and (22) are satisfied as 𝓀ଵ(𝓏) ≺ {𝛶൫𝛤గ,ఘ,ఉ,ఓ𝑓(𝓏), 𝛤గ,ఘ,ఉାଵ,ఓ𝑓(𝓏), 𝛤గ,ఘ,ఉାଶ,ఓ𝑓(𝓏), 𝛤గ,ఘ,ఉାଷ,ఓ𝑓(𝓏), 𝛤గ,ఘ,ఉାସ,ఓ𝑓(𝓏); 𝓏 ∈ 𝑈°)} ≺  𝓀ଶ(𝓏), 
then 𝕢ଵ(𝓏) ≺ 𝛤గ,ఘ,ఉ,ఓ𝑓(𝓏) ≺ 𝕢ଶ(𝓏) 

6. Conclusions 
A new differential operator is introduced in the present paper in Definition 1. Using 

the concepts of fourth-order differential subordination and superordination, the classes 
of admissible functions are defined related to each of the two concepts, and using those 
definitions, several theorems are proved involving the newly defined operator regarding 
fourth-order subordinations in Section 3 and regarding fourth-order superordination in 
Section 4. By applying a well-known technique, a sandwich-type theorem is stated in 
Section 5 of the paper combining the subordination and superordination results obtained 
before. The results presented here could inspire future work involving other operators 
for obtaining fourth-order differential subordinations and superordinations. Certain 
special classes of univalent functions could be introduced using the operator defined in 
this paper, and studies for obtaining properties of those classes could be done invoking 
the notions of fourth-order differential subordination and superordination using the 
admissibility conditions given here in Definition 7., Definition 8. and Definition 9. and 
the best dominant obtained in Theorem 5. 
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Well-known notations and definitions used for obtaining the original results are next 
presented. 𝒦(U°) denotes the family of analytic functions in U°that have the form: 𝒦[a, 𝔫] = {𝑓 ∈ 𝒦(U°): 𝑓(𝓏) = 𝑎 + 𝑎𝔫𝓏𝔫 + 𝑎𝔫ାଵ𝓏𝔫ାଵ + ⋯ }, 𝑎 ∈ ℂ, 𝔫 ∈ 𝑁 = {1,2, … }, 

and let ℧𝔫 be the collection of the form: ℧𝔫 = {𝑓 ∈ 𝒦(𝑈°): 𝑓(𝓏) = 𝓏 + 𝑎𝔫ାଵ𝓏𝔫ାଵ + ⋯ }, 
where ℧ଵ = ℧, the subclass of normalized analytic functions in U°. Further, indicate by M 
the subfamily of 𝒦(U°) of the form: 

𝑓(𝓏) = 𝓏 + ෍ 𝑎𝔫𝓏𝔫 , 𝓏 ∈ U°ஶ
𝔫ୀଶ , (1)

which are univalent in U°. For analytic functions 𝑓 and 𝐹, the function 𝑓 is said to be 
subordinate to 𝐹, if 𝑓(𝓏) = 𝐹൫Θ(𝓏)൯, (𝓏 ∈ 𝑈°), 

where Θ(𝓏) is analytic and  Θ(0) = 0, |Θ(𝓏)| < 1. This subordination is indicated by 𝑓(𝓏) ≺ 𝐹(𝓏). 
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), (18)

then Γπ,ρ,β,µ f (
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,q(0) = 1 and Ω ⊂ C. As-

sume Y ∈ θΓ

[
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{𝜓(𝑝(𝓏), 𝓏𝑝ᇱ(𝓏), 𝓏ଶ𝑝ᇱᇱ(𝓏), 𝓏ଷ𝑝ᇱᇱᇱ(𝓏), 𝓏ସ𝑝ᇱᇱᇱᇱ(𝓏); 𝓏 ∈ 𝑈°)} = 𝓀(𝓏),  (25)

has a solution 𝕢(𝓏) ∈ Ҩଵ. If 𝛤గ,ఘ,ఉ,ఓ𝑓(𝓏) ∈ Ҩଵ, 𝕢 ∈ 𝒦ଵ, 𝕢ᇱ(𝓏) ് 0 and 𝑓 ∈ 𝑀 satisfy the con-
ditions (7) and (22), ൛𝛶൫𝛤గ,ఘ,ఉ,ఓ𝑓(𝓏), 𝛤గ,ఘ,ఉାଵ,ఓ𝑓(𝓏), 𝛤గ,ఘ,ఉାଶ,ఓ𝑓(𝓏), 𝛤గ,ఘ,ఉାଷ,ఓ𝑓(𝓏), 𝛤గ,ఘ,ఉାସ,ఓ𝑓(𝓏)ቁ : 𝓏 ∈ 𝑈°ቅ 
is univalent in 𝑈°, and 𝓀(𝓏) ⊂ {Υ൫Γగ,ఘ,ఉ,ఓ𝑓(𝓏), Γగ,ఘ,ఉାଵ,ఓ𝑓(𝓏), Γగ,ఘ,ఉାଶ,ఓ𝑓(𝓏), Γగ,ఘ,ఉାଷ,ఓ𝑓(𝓏), 𝛤గ,ఘ,ఉାସ,ఓ𝑓(𝓏); 𝓏 ∈ 𝑈°)}, 
then 𝕢(𝓏) ≺ 𝛤గ,ఘ,ఉ,ఋ𝑓(𝓏), and 𝕢(𝓏) is the best subordinate of (24). 

Proof. The proof of theorem is similar to that of Theorem 5 and is omitted here. □ 

5. Sandwich-Type Results 
Now, by using Theorems 5 and 9, we have the sandwich-type result. 

Theorem 11. Consider two analytic functions  𝓀ଵ(𝓏) 𝑎𝑛𝑑 𝕢ଵ(𝓏)  in 𝑈° , and  𝕢ଶ(𝓏) ∈ Ҩଵ 
with  𝕢ଵ(0) = 𝕢ଶ(0) =1. In addition let the function  𝓀ଶ(𝓏) be univalent in  𝑈°  and  𝛶 ∈𝜃௰[ 𝓀ଶ, 𝕢ଶ] ∩ 𝜃௰ᇱ [𝓀ଵ, 𝕢ଵ]. If 𝛤గ,ఘ,ఉ,ఓ𝑓(𝓏) ∈ Ҩଵ ∩ 𝒦, 𝑓 ∈ 𝑀, ൛𝛶൫𝛤గ,ఘ,ఉ,ఓ𝑓(𝓏), 𝛤గ,ఘ,ఉାଵ,ఓ𝑓(𝓏), 𝛤గ,ఘ,ఉାଶ,ఓ𝑓(𝓏), 𝛤గ,ఘ,ఉାଷ,ఓ𝑓(𝓏), 𝛤గ,ఘ,ఉାସ,ఓ𝑓(𝓏)ቁ : 𝓏 ∈ 𝑈°ቅ 

is univalent in 𝑈°, and the two conditions (7) and (22) are satisfied as 𝓀ଵ(𝓏) ≺ {𝛶൫𝛤గ,ఘ,ఉ,ఓ𝑓(𝓏), 𝛤గ,ఘ,ఉାଵ,ఓ𝑓(𝓏), 𝛤గ,ఘ,ఉାଶ,ఓ𝑓(𝓏), 𝛤గ,ఘ,ఉାଷ,ఓ𝑓(𝓏), 𝛤గ,ఘ,ఉାସ,ఓ𝑓(𝓏); 𝓏 ∈ 𝑈°)} ≺  𝓀ଶ(𝓏), 
then 𝕢ଵ(𝓏) ≺ 𝛤గ,ఘ,ఉ,ఓ𝑓(𝓏) ≺ 𝕢ଶ(𝓏) 

6. Conclusions 
A new differential operator is introduced in the present paper in Definition 1. Using 

the concepts of fourth-order differential subordination and superordination, the classes 
of admissible functions are defined related to each of the two concepts, and using those 
definitions, several theorems are proved involving the newly defined operator regarding 
fourth-order subordinations in Section 3 and regarding fourth-order superordination in 
Section 4. By applying a well-known technique, a sandwich-type theorem is stated in 
Section 5 of the paper combining the subordination and superordination results obtained 
before. The results presented here could inspire future work involving other operators 
for obtaining fourth-order differential subordinations and superordinations. Certain 
special classes of univalent functions could be introduced using the operator defined in 
this paper, and studies for obtaining properties of those classes could be done invoking 
the notions of fourth-order differential subordination and superordination using the 
admissibility conditions given here in Definition 7., Definition 8. and Definition 9. and 
the best dominant obtained in Theorem 5. 
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the subfamily of 𝒦(U°) of the form: 

𝑓(𝓏) = 𝓏 + ෍ 𝑎𝔫𝓏𝔫 , 𝓏 ∈ U°ஶ
𝔫ୀଶ , (1)

which are univalent in U°. For analytic functions 𝑓 and 𝐹, the function 𝑓 is said to be 
subordinate to 𝐹, if 𝑓(𝓏) = 𝐹൫Θ(𝓏)൯, (𝓏 ∈ 𝑈°), 

where Θ(𝓏) is analytic and  Θ(0) = 0, |Θ(𝓏)| < 1. This subordination is indicated by 𝑓(𝓏) ≺ 𝐹(𝓏). 
Cho and Kim [20] proposed the multiplier transformation as a linear operator. Let 𝔫 

be any integer; the multiplier transformation ℒఓఉ: 𝑀 → 𝑀  is given by ℒఓఉ𝑓(𝓏) = 𝓏 +∑ ቀ𝔫ାఓଵାఓቁఉ 𝑎𝔫𝓏𝔫 , 𝜇 ≥ 0, 𝛽 ∈ ℤ = {⋯ , −1,0,1, ⋯ }ஶ𝔫ୀଶ . 
 
The Hurwitz–Lerch Zeta function [21] is 

𝜁గ,ఘ(𝓏) = 1𝜌గ + ෍ 𝓏𝔫(𝔫 + 𝜌)గஶ
𝔫ୀଵ , 

(𝜌 ∈ ℂ\𝑍௢ି = {0, −1, −2, … }, 𝜋 ∈ ℂ, where |𝓏| < 1, ℛ𝑒(𝜋) > 1, 𝓏 ∈ 𝜕𝑈°) 

By making use of the following normalized function, we have: 𝐺గ,ఘ(𝓏) = (1 + 𝜌)గൣ𝜁గ,ఘ(𝓏) − 𝜌ିగ൧ = 𝓏 + ∑ ቀଵାఘ𝔫ାఘቁగ   , 𝓏 ∈ 𝑈°ஶ𝔫ୀଶ . 

If 𝑓, 𝑔 ∈ 𝑀, where 𝑓 given by (1) and 𝑔 is defined by 

𝑔(𝓏) = 𝓏 + ෍ 𝑏𝔫𝓏𝔫ஶ
𝔫ୀଶ  , 𝓏 ∈ U°, 

then 

(𝑓 ∗ 𝑔)(𝓏) = 𝓏 + ෍ 𝑎𝔫𝑏𝔫ஶ
𝔫ୀଶ 𝓏𝔫 = (𝑔 ∗ 𝑓)(𝓏). 

Using the convolution defined above, a new operator is next introduced as the 
original part of the present paper. 

  

) = q(γ
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Well-known notations and definitions used for obtaining the original results are next 
presented. 𝒦(U°) denotes the family of analytic functions in U°that have the form: 𝒦[a, 𝔫] = {𝑓 ∈ 𝒦(U°): 𝑓(𝓏) = 𝑎 + 𝑎𝔫𝓏𝔫 + 𝑎𝔫ାଵ𝓏𝔫ାଵ + ⋯ }, 𝑎 ∈ ℂ, 𝔫 ∈ 𝑁 = {1,2, … }, 

and let ℧𝔫 be the collection of the form: ℧𝔫 = {𝑓 ∈ 𝒦(𝑈°): 𝑓(𝓏) = 𝓏 + 𝑎𝔫ାଵ𝓏𝔫ାଵ + ⋯ }, 
where ℧ଵ = ℧, the subclass of normalized analytic functions in U°. Further, indicate by M 
the subfamily of 𝒦(U°) of the form: 

𝑓(𝓏) = 𝓏 + ෍ 𝑎𝔫𝓏𝔫 , 𝓏 ∈ U°ஶ
𝔫ୀଶ , (1)

which are univalent in U°. For analytic functions 𝑓 and 𝐹, the function 𝑓 is said to be 
subordinate to 𝐹, if 𝑓(𝓏) = 𝐹൫Θ(𝓏)൯, (𝓏 ∈ 𝑈°), 

where Θ(𝓏) is analytic and  Θ(0) = 0, |Θ(𝓏)| < 1. This subordination is indicated by 𝑓(𝓏) ≺ 𝐹(𝓏). 
Cho and Kim [20] proposed the multiplier transformation as a linear operator. Let 𝔫 

be any integer; the multiplier transformation ℒఓఉ: 𝑀 → 𝑀  is given by ℒఓఉ𝑓(𝓏) = 𝓏 +∑ ቀ𝔫ାఓଵାఓቁఉ 𝑎𝔫𝓏𝔫 , 𝜇 ≥ 0, 𝛽 ∈ ℤ = {⋯ , −1,0,1, ⋯ }ஶ𝔫ୀଶ . 
 
The Hurwitz–Lerch Zeta function [21] is 

𝜁గ,ఘ(𝓏) = 1𝜌గ + ෍ 𝓏𝔫(𝔫 + 𝜌)గஶ
𝔫ୀଵ , 

(𝜌 ∈ ℂ\𝑍௢ି = {0, −1, −2, … }, 𝜋 ∈ ℂ, where |𝓏| < 1, ℛ𝑒(𝜋) > 1, 𝓏 ∈ 𝜕𝑈°) 

By making use of the following normalized function, we have: 𝐺గ,ఘ(𝓏) = (1 + 𝜌)గൣ𝜁గ,ఘ(𝓏) − 𝜌ିగ൧ = 𝓏 + ∑ ቀଵାఘ𝔫ାఘቁగ   , 𝓏 ∈ 𝑈°ஶ𝔫ୀଶ . 

If 𝑓, 𝑔 ∈ 𝑀, where 𝑓 given by (1) and 𝑔 is defined by 

𝑔(𝓏) = 𝓏 + ෍ 𝑏𝔫𝓏𝔫ஶ
𝔫ୀଶ  , 𝓏 ∈ U°, 

then 

(𝑓 ∗ 𝑔)(𝓏) = 𝓏 + ෍ 𝑎𝔫𝑏𝔫ஶ
𝔫ୀଶ 𝓏𝔫 = (𝑔 ∗ 𝑓)(𝓏). 

Using the convolution defined above, a new operator is next introduced as the 
original part of the present paper. 

  

). If qγ satisfies the
condition (17), f ∈ 0 and

Y
(

Γπ,ρ,β,µ f (
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Well-known notations and definitions used for obtaining the original results are next 
presented. 𝒦(U°) denotes the family of analytic functions in U°that have the form: 𝒦[a, 𝔫] = {𝑓 ∈ 𝒦(U°): 𝑓(𝓏) = 𝑎 + 𝑎𝔫𝓏𝔫 + 𝑎𝔫ାଵ𝓏𝔫ାଵ + ⋯ }, 𝑎 ∈ ℂ, 𝔫 ∈ 𝑁 = {1,2, … }, 

and let ℧𝔫 be the collection of the form: ℧𝔫 = {𝑓 ∈ 𝒦(𝑈°): 𝑓(𝓏) = 𝓏 + 𝑎𝔫ାଵ𝓏𝔫ାଵ + ⋯ }, 
where ℧ଵ = ℧, the subclass of normalized analytic functions in U°. Further, indicate by M 
the subfamily of 𝒦(U°) of the form: 

𝑓(𝓏) = 𝓏 + ෍ 𝑎𝔫𝓏𝔫 , 𝓏 ∈ U°ஶ
𝔫ୀଶ , (1)

which are univalent in U°. For analytic functions 𝑓 and 𝐹, the function 𝑓 is said to be 
subordinate to 𝐹, if 𝑓(𝓏) = 𝐹൫Θ(𝓏)൯, (𝓏 ∈ 𝑈°), 

where Θ(𝓏) is analytic and  Θ(0) = 0, |Θ(𝓏)| < 1. This subordination is indicated by 𝑓(𝓏) ≺ 𝐹(𝓏). 
Cho and Kim [20] proposed the multiplier transformation as a linear operator. Let 𝔫 

be any integer; the multiplier transformation ℒఓఉ: 𝑀 → 𝑀  is given by ℒఓఉ𝑓(𝓏) = 𝓏 +∑ ቀ𝔫ାఓଵାఓቁఉ 𝑎𝔫𝓏𝔫 , 𝜇 ≥ 0, 𝛽 ∈ ℤ = {⋯ , −1,0,1, ⋯ }ஶ𝔫ୀଶ . 
 
The Hurwitz–Lerch Zeta function [21] is 

𝜁గ,ఘ(𝓏) = 1𝜌గ + ෍ 𝓏𝔫(𝔫 + 𝜌)గஶ
𝔫ୀଵ , 

(𝜌 ∈ ℂ\𝑍௢ି = {0, −1, −2, … }, 𝜋 ∈ ℂ, where |𝓏| < 1, ℛ𝑒(𝜋) > 1, 𝓏 ∈ 𝜕𝑈°) 

By making use of the following normalized function, we have: 𝐺గ,ఘ(𝓏) = (1 + 𝜌)గൣ𝜁గ,ఘ(𝓏) − 𝜌ିగ൧ = 𝓏 + ∑ ቀଵାఘ𝔫ାఘቁగ   , 𝓏 ∈ 𝑈°ஶ𝔫ୀଶ . 

If 𝑓, 𝑔 ∈ 𝑀, where 𝑓 given by (1) and 𝑔 is defined by 

𝑔(𝓏) = 𝓏 + ෍ 𝑏𝔫𝓏𝔫ஶ
𝔫ୀଶ  , 𝓏 ∈ U°, 

then 

(𝑓 ∗ 𝑔)(𝓏) = 𝓏 + ෍ 𝑎𝔫𝑏𝔫ஶ
𝔫ୀଶ 𝓏𝔫 = (𝑔 ∗ 𝑓)(𝓏). 

Using the convolution defined above, a new operator is next introduced as the 
original part of the present paper. 

  

), Γπ,ρ,β+1,µ f (
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Well-known notations and definitions used for obtaining the original results are next 
presented. 𝒦(U°) denotes the family of analytic functions in U°that have the form: 𝒦[a, 𝔫] = {𝑓 ∈ 𝒦(U°): 𝑓(𝓏) = 𝑎 + 𝑎𝔫𝓏𝔫 + 𝑎𝔫ାଵ𝓏𝔫ାଵ + ⋯ }, 𝑎 ∈ ℂ, 𝔫 ∈ 𝑁 = {1,2, … }, 

and let ℧𝔫 be the collection of the form: ℧𝔫 = {𝑓 ∈ 𝒦(𝑈°): 𝑓(𝓏) = 𝓏 + 𝑎𝔫ାଵ𝓏𝔫ାଵ + ⋯ }, 
where ℧ଵ = ℧, the subclass of normalized analytic functions in U°. Further, indicate by M 
the subfamily of 𝒦(U°) of the form: 

𝑓(𝓏) = 𝓏 + ෍ 𝑎𝔫𝓏𝔫 , 𝓏 ∈ U°ஶ
𝔫ୀଶ , (1)

which are univalent in U°. For analytic functions 𝑓 and 𝐹, the function 𝑓 is said to be 
subordinate to 𝐹, if 𝑓(𝓏) = 𝐹൫Θ(𝓏)൯, (𝓏 ∈ 𝑈°), 

where Θ(𝓏) is analytic and  Θ(0) = 0, |Θ(𝓏)| < 1. This subordination is indicated by 𝑓(𝓏) ≺ 𝐹(𝓏). 
Cho and Kim [20] proposed the multiplier transformation as a linear operator. Let 𝔫 

be any integer; the multiplier transformation ℒఓఉ: 𝑀 → 𝑀  is given by ℒఓఉ𝑓(𝓏) = 𝓏 +∑ ቀ𝔫ାఓଵାఓቁఉ 𝑎𝔫𝓏𝔫 , 𝜇 ≥ 0, 𝛽 ∈ ℤ = {⋯ , −1,0,1, ⋯ }ஶ𝔫ୀଶ . 
 
The Hurwitz–Lerch Zeta function [21] is 

𝜁గ,ఘ(𝓏) = 1𝜌గ + ෍ 𝓏𝔫(𝔫 + 𝜌)గஶ
𝔫ୀଵ , 

(𝜌 ∈ ℂ\𝑍௢ି = {0, −1, −2, … }, 𝜋 ∈ ℂ, where |𝓏| < 1, ℛ𝑒(𝜋) > 1, 𝓏 ∈ 𝜕𝑈°) 

By making use of the following normalized function, we have: 𝐺గ,ఘ(𝓏) = (1 + 𝜌)గൣ𝜁గ,ఘ(𝓏) − 𝜌ିగ൧ = 𝓏 + ∑ ቀଵାఘ𝔫ାఘቁగ   , 𝓏 ∈ 𝑈°ஶ𝔫ୀଶ . 

If 𝑓, 𝑔 ∈ 𝑀, where 𝑓 given by (1) and 𝑔 is defined by 

𝑔(𝓏) = 𝓏 + ෍ 𝑏𝔫𝓏𝔫ஶ
𝔫ୀଶ  , 𝓏 ∈ U°, 

then 

(𝑓 ∗ 𝑔)(𝓏) = 𝓏 + ෍ 𝑎𝔫𝑏𝔫ஶ
𝔫ୀଶ 𝓏𝔫 = (𝑔 ∗ 𝑓)(𝓏). 

Using the convolution defined above, a new operator is next introduced as the 
original part of the present paper. 

  

), Γπ,ρ,β+2,µ f (
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Well-known notations and definitions used for obtaining the original results are next 
presented. 𝒦(U°) denotes the family of analytic functions in U°that have the form: 𝒦[a, 𝔫] = {𝑓 ∈ 𝒦(U°): 𝑓(𝓏) = 𝑎 + 𝑎𝔫𝓏𝔫 + 𝑎𝔫ାଵ𝓏𝔫ାଵ + ⋯ }, 𝑎 ∈ ℂ, 𝔫 ∈ 𝑁 = {1,2, … }, 

and let ℧𝔫 be the collection of the form: ℧𝔫 = {𝑓 ∈ 𝒦(𝑈°): 𝑓(𝓏) = 𝓏 + 𝑎𝔫ାଵ𝓏𝔫ାଵ + ⋯ }, 
where ℧ଵ = ℧, the subclass of normalized analytic functions in U°. Further, indicate by M 
the subfamily of 𝒦(U°) of the form: 

𝑓(𝓏) = 𝓏 + ෍ 𝑎𝔫𝓏𝔫 , 𝓏 ∈ U°ஶ
𝔫ୀଶ , (1)

which are univalent in U°. For analytic functions 𝑓 and 𝐹, the function 𝑓 is said to be 
subordinate to 𝐹, if 𝑓(𝓏) = 𝐹൫Θ(𝓏)൯, (𝓏 ∈ 𝑈°), 

where Θ(𝓏) is analytic and  Θ(0) = 0, |Θ(𝓏)| < 1. This subordination is indicated by 𝑓(𝓏) ≺ 𝐹(𝓏). 
Cho and Kim [20] proposed the multiplier transformation as a linear operator. Let 𝔫 

be any integer; the multiplier transformation ℒఓఉ: 𝑀 → 𝑀  is given by ℒఓఉ𝑓(𝓏) = 𝓏 +∑ ቀ𝔫ାఓଵାఓቁఉ 𝑎𝔫𝓏𝔫 , 𝜇 ≥ 0, 𝛽 ∈ ℤ = {⋯ , −1,0,1, ⋯ }ஶ𝔫ୀଶ . 
 
The Hurwitz–Lerch Zeta function [21] is 

𝜁గ,ఘ(𝓏) = 1𝜌గ + ෍ 𝓏𝔫(𝔫 + 𝜌)గஶ
𝔫ୀଵ , 

(𝜌 ∈ ℂ\𝑍௢ି = {0, −1, −2, … }, 𝜋 ∈ ℂ, where |𝓏| < 1, ℛ𝑒(𝜋) > 1, 𝓏 ∈ 𝜕𝑈°) 

By making use of the following normalized function, we have: 𝐺గ,ఘ(𝓏) = (1 + 𝜌)గൣ𝜁గ,ఘ(𝓏) − 𝜌ିగ൧ = 𝓏 + ∑ ቀଵାఘ𝔫ାఘቁగ   , 𝓏 ∈ 𝑈°ஶ𝔫ୀଶ . 

If 𝑓, 𝑔 ∈ 𝑀, where 𝑓 given by (1) and 𝑔 is defined by 

𝑔(𝓏) = 𝓏 + ෍ 𝑏𝔫𝓏𝔫ஶ
𝔫ୀଶ  , 𝓏 ∈ U°, 

then 

(𝑓 ∗ 𝑔)(𝓏) = 𝓏 + ෍ 𝑎𝔫𝑏𝔫ஶ
𝔫ୀଶ 𝓏𝔫 = (𝑔 ∗ 𝑓)(𝓏). 

Using the convolution defined above, a new operator is next introduced as the 
original part of the present paper. 

  

), Γπ,ρ,β+3,µ f (
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Well-known notations and definitions used for obtaining the original results are next 
presented. 𝒦(U°) denotes the family of analytic functions in U°that have the form: 𝒦[a, 𝔫] = {𝑓 ∈ 𝒦(U°): 𝑓(𝓏) = 𝑎 + 𝑎𝔫𝓏𝔫 + 𝑎𝔫ାଵ𝓏𝔫ାଵ + ⋯ }, 𝑎 ∈ ℂ, 𝔫 ∈ 𝑁 = {1,2, … }, 

and let ℧𝔫 be the collection of the form: ℧𝔫 = {𝑓 ∈ 𝒦(𝑈°): 𝑓(𝓏) = 𝓏 + 𝑎𝔫ାଵ𝓏𝔫ାଵ + ⋯ }, 
where ℧ଵ = ℧, the subclass of normalized analytic functions in U°. Further, indicate by M 
the subfamily of 𝒦(U°) of the form: 

𝑓(𝓏) = 𝓏 + ෍ 𝑎𝔫𝓏𝔫 , 𝓏 ∈ U°ஶ
𝔫ୀଶ , (1)

which are univalent in U°. For analytic functions 𝑓 and 𝐹, the function 𝑓 is said to be 
subordinate to 𝐹, if 𝑓(𝓏) = 𝐹൫Θ(𝓏)൯, (𝓏 ∈ 𝑈°), 

where Θ(𝓏) is analytic and  Θ(0) = 0, |Θ(𝓏)| < 1. This subordination is indicated by 𝑓(𝓏) ≺ 𝐹(𝓏). 
Cho and Kim [20] proposed the multiplier transformation as a linear operator. Let 𝔫 

be any integer; the multiplier transformation ℒఓఉ: 𝑀 → 𝑀  is given by ℒఓఉ𝑓(𝓏) = 𝓏 +∑ ቀ𝔫ାఓଵାఓቁఉ 𝑎𝔫𝓏𝔫 , 𝜇 ≥ 0, 𝛽 ∈ ℤ = {⋯ , −1,0,1, ⋯ }ஶ𝔫ୀଶ . 
 
The Hurwitz–Lerch Zeta function [21] is 

𝜁గ,ఘ(𝓏) = 1𝜌గ + ෍ 𝓏𝔫(𝔫 + 𝜌)గஶ
𝔫ୀଵ , 

(𝜌 ∈ ℂ\𝑍௢ି = {0, −1, −2, … }, 𝜋 ∈ ℂ, where |𝓏| < 1, ℛ𝑒(𝜋) > 1, 𝓏 ∈ 𝜕𝑈°) 

By making use of the following normalized function, we have: 𝐺గ,ఘ(𝓏) = (1 + 𝜌)గൣ𝜁గ,ఘ(𝓏) − 𝜌ିగ൧ = 𝓏 + ∑ ቀଵାఘ𝔫ାఘቁగ   , 𝓏 ∈ 𝑈°ஶ𝔫ୀଶ . 

If 𝑓, 𝑔 ∈ 𝑀, where 𝑓 given by (1) and 𝑔 is defined by 

𝑔(𝓏) = 𝓏 + ෍ 𝑏𝔫𝓏𝔫ஶ
𝔫ୀଶ  , 𝓏 ∈ U°, 

then 

(𝑓 ∗ 𝑔)(𝓏) = 𝓏 + ෍ 𝑎𝔫𝑏𝔫ஶ
𝔫ୀଶ 𝓏𝔫 = (𝑔 ∗ 𝑓)(𝓏). 

Using the convolution defined above, a new operator is next introduced as the 
original part of the present paper. 

  

), Γπ,ρ,β+4,µ f (
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Well-known notations and definitions used for obtaining the original results are next 
presented. 𝒦(U°) denotes the family of analytic functions in U°that have the form: 𝒦[a, 𝔫] = {𝑓 ∈ 𝒦(U°): 𝑓(𝓏) = 𝑎 + 𝑎𝔫𝓏𝔫 + 𝑎𝔫ାଵ𝓏𝔫ାଵ + ⋯ }, 𝑎 ∈ ℂ, 𝔫 ∈ 𝑁 = {1,2, … }, 

and let ℧𝔫 be the collection of the form: ℧𝔫 = {𝑓 ∈ 𝒦(𝑈°): 𝑓(𝓏) = 𝓏 + 𝑎𝔫ାଵ𝓏𝔫ାଵ + ⋯ }, 
where ℧ଵ = ℧, the subclass of normalized analytic functions in U°. Further, indicate by M 
the subfamily of 𝒦(U°) of the form: 

𝑓(𝓏) = 𝓏 + ෍ 𝑎𝔫𝓏𝔫 , 𝓏 ∈ U°ஶ
𝔫ୀଶ , (1)

which are univalent in U°. For analytic functions 𝑓 and 𝐹, the function 𝑓 is said to be 
subordinate to 𝐹, if 𝑓(𝓏) = 𝐹൫Θ(𝓏)൯, (𝓏 ∈ 𝑈°), 

where Θ(𝓏) is analytic and  Θ(0) = 0, |Θ(𝓏)| < 1. This subordination is indicated by 𝑓(𝓏) ≺ 𝐹(𝓏). 
Cho and Kim [20] proposed the multiplier transformation as a linear operator. Let 𝔫 

be any integer; the multiplier transformation ℒఓఉ: 𝑀 → 𝑀  is given by ℒఓఉ𝑓(𝓏) = 𝓏 +∑ ቀ𝔫ାఓଵାఓቁఉ 𝑎𝔫𝓏𝔫 , 𝜇 ≥ 0, 𝛽 ∈ ℤ = {⋯ , −1,0,1, ⋯ }ஶ𝔫ୀଶ . 
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is univalent in 𝑈°, and the two conditions (7) and (22) are satisfied as 𝓀ଵ(𝓏) ≺ {𝛶൫𝛤గ,ఘ,ఉ,ఓ𝑓(𝓏), 𝛤గ,ఘ,ఉାଵ,ఓ𝑓(𝓏), 𝛤గ,ఘ,ఉାଶ,ఓ𝑓(𝓏), 𝛤గ,ఘ,ఉାଷ,ఓ𝑓(𝓏), 𝛤గ,ఘ,ఉାସ,ఓ𝑓(𝓏); 𝓏 ∈ 𝑈°)} ≺  𝓀ଶ(𝓏), 
then 𝕢ଵ(𝓏) ≺ 𝛤గ,ఘ,ఉ,ఓ𝑓(𝓏) ≺ 𝕢ଶ(𝓏) 

6. Conclusions 
A new differential operator is introduced in the present paper in Definition 1. Using 

the concepts of fourth-order differential subordination and superordination, the classes 
of admissible functions are defined related to each of the two concepts, and using those 
definitions, several theorems are proved involving the newly defined operator regarding 
fourth-order subordinations in Section 3 and regarding fourth-order superordination in 
Section 4. By applying a well-known technique, a sandwich-type theorem is stated in 
Section 5 of the paper combining the subordination and superordination results obtained 
before. The results presented here could inspire future work involving other operators 
for obtaining fourth-order differential subordinations and superordinations. Certain 
special classes of univalent functions could be introduced using the operator defined in 
this paper, and studies for obtaining properties of those classes could be done invoking 
the notions of fourth-order differential subordination and superordination using the 
admissibility conditions given here in Definition 7., Definition 8. and Definition 9. and 
the best dominant obtained in Theorem 5. 
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∈ U
◦
.

Now, the next theorem gives the best dominant of the differential subordination (18).

Theorem 5. Suppose Y : C5 ×U
◦ → C ; also assume the function
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is univalent in 𝑈°, and the two conditions (7) and (22) are satisfied as 𝓀ଵ(𝓏) ≺ {𝛶൫𝛤గ,ఘ,ఉ,ఓ𝑓(𝓏), 𝛤గ,ఘ,ఉାଵ,ఓ𝑓(𝓏), 𝛤గ,ఘ,ఉାଶ,ఓ𝑓(𝓏), 𝛤గ,ఘ,ఉାଷ,ఓ𝑓(𝓏), 𝛤గ,ఘ,ఉାସ,ఓ𝑓(𝓏); 𝓏 ∈ 𝑈°)} ≺  𝓀ଶ(𝓏), 
then 𝕢ଵ(𝓏) ≺ 𝛤గ,ఘ,ఉ,ఓ𝑓(𝓏) ≺ 𝕢ଶ(𝓏) 

6. Conclusions 
A new differential operator is introduced in the present paper in Definition 1. Using 

the concepts of fourth-order differential subordination and superordination, the classes 
of admissible functions are defined related to each of the two concepts, and using those 
definitions, several theorems are proved involving the newly defined operator regarding 
fourth-order subordinations in Section 3 and regarding fourth-order superordination in 
Section 4. By applying a well-known technique, a sandwich-type theorem is stated in 
Section 5 of the paper combining the subordination and superordination results obtained 
before. The results presented here could inspire future work involving other operators 
for obtaining fourth-order differential subordinations and superordinations. Certain 
special classes of univalent functions could be introduced using the operator defined in 
this paper, and studies for obtaining properties of those classes could be done invoking 
the notions of fourth-order differential subordination and superordination using the 
admissibility conditions given here in Definition 7., Definition 8. and Definition 9. and 
the best dominant obtained in Theorem 5. 
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where Θ(𝓏) is analytic and  Θ(0) = 0, |Θ(𝓏)| < 1. This subordination is indicated by 𝑓(𝓏) ≺ 𝐹(𝓏). 
Cho and Kim [20] proposed the multiplier transformation as a linear operator. Let 𝔫 

be any integer; the multiplier transformation ℒఓఉ: 𝑀 → 𝑀  is given by ℒఓఉ𝑓(𝓏) = 𝓏 +∑ ቀ𝔫ାఓଵାఓቁఉ 𝑎𝔫𝓏𝔫 , 𝜇 ≥ 0, 𝛽 ∈ ℤ = {⋯ , −1,0,1, ⋯ }ஶ𝔫ୀଶ . 
 
The Hurwitz–Lerch Zeta function [21] is 

𝜁గ,ఘ(𝓏) = 1𝜌గ + ෍ 𝓏𝔫(𝔫 + 𝜌)గஶ
𝔫ୀଵ , 

(𝜌 ∈ ℂ\𝑍௢ି = {0, −1, −2, … }, 𝜋 ∈ ℂ, where |𝓏| < 1, ℛ𝑒(𝜋) > 1, 𝓏 ∈ 𝜕𝑈°) 

By making use of the following normalized function, we have: 𝐺గ,ఘ(𝓏) = (1 + 𝜌)గൣ𝜁గ,ఘ(𝓏) − 𝜌ିగ൧ = 𝓏 + ∑ ቀଵାఘ𝔫ାఘቁగ   , 𝓏 ∈ 𝑈°ஶ𝔫ୀଶ . 

If 𝑓, 𝑔 ∈ 𝑀, where 𝑓 given by (1) and 𝑔 is defined by 

𝑔(𝓏) = 𝓏 + ෍ 𝑏𝔫𝓏𝔫ஶ
𝔫ୀଶ  , 𝓏 ∈ U°, 

then 

(𝑓 ∗ 𝑔)(𝓏) = 𝓏 + ෍ 𝑎𝔫𝑏𝔫ஶ
𝔫ୀଶ 𝓏𝔫 = (𝑔 ∗ 𝑓)(𝓏). 

Using the convolution defined above, a new operator is next introduced as the 
original part of the present paper. 
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the subfamily of 𝒦(U°) of the form: 

𝑓(𝓏) = 𝓏 + ෍ 𝑎𝔫𝓏𝔫 , 𝓏 ∈ U°ஶ
𝔫ୀଶ , (1)

which are univalent in U°. For analytic functions 𝑓 and 𝐹, the function 𝑓 is said to be 
subordinate to 𝐹, if 𝑓(𝓏) = 𝐹൫Θ(𝓏)൯, (𝓏 ∈ 𝑈°), 

where Θ(𝓏) is analytic and  Θ(0) = 0, |Θ(𝓏)| < 1. This subordination is indicated by 𝑓(𝓏) ≺ 𝐹(𝓏). 
Cho and Kim [20] proposed the multiplier transformation as a linear operator. Let 𝔫 

be any integer; the multiplier transformation ℒఓఉ: 𝑀 → 𝑀  is given by ℒఓఉ𝑓(𝓏) = 𝓏 +∑ ቀ𝔫ାఓଵାఓቁఉ 𝑎𝔫𝓏𝔫 , 𝜇 ≥ 0, 𝛽 ∈ ℤ = {⋯ , −1,0,1, ⋯ }ஶ𝔫ୀଶ . 
 
The Hurwitz–Lerch Zeta function [21] is 

𝜁గ,ఘ(𝓏) = 1𝜌గ + ෍ 𝓏𝔫(𝔫 + 𝜌)గஶ
𝔫ୀଵ , 

(𝜌 ∈ ℂ\𝑍௢ି = {0, −1, −2, … }, 𝜋 ∈ ℂ, where |𝓏| < 1, ℛ𝑒(𝜋) > 1, 𝓏 ∈ 𝜕𝑈°) 

By making use of the following normalized function, we have: 𝐺గ,ఘ(𝓏) = (1 + 𝜌)గൣ𝜁గ,ఘ(𝓏) − 𝜌ିగ൧ = 𝓏 + ∑ ቀଵାఘ𝔫ାఘቁగ   , 𝓏 ∈ 𝑈°ஶ𝔫ୀଶ . 

If 𝑓, 𝑔 ∈ 𝑀, where 𝑓 given by (1) and 𝑔 is defined by 

𝑔(𝓏) = 𝓏 + ෍ 𝑏𝔫𝓏𝔫ஶ
𝔫ୀଶ  , 𝓏 ∈ U°, 

then 

(𝑓 ∗ 𝑔)(𝓏) = 𝓏 + ෍ 𝑎𝔫𝑏𝔫ஶ
𝔫ୀଶ 𝓏𝔫 = (𝑔 ∗ 𝑓)(𝓏). 

Using the convolution defined above, a new operator is next introduced as the 
original part of the present paper. 
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Well-known notations and definitions used for obtaining the original results are next 
presented. 𝒦(U°) denotes the family of analytic functions in U°that have the form: 𝒦[a, 𝔫] = {𝑓 ∈ 𝒦(U°): 𝑓(𝓏) = 𝑎 + 𝑎𝔫𝓏𝔫 + 𝑎𝔫ାଵ𝓏𝔫ାଵ + ⋯ }, 𝑎 ∈ ℂ, 𝔫 ∈ 𝑁 = {1,2, … }, 

and let ℧𝔫 be the collection of the form: ℧𝔫 = {𝑓 ∈ 𝒦(𝑈°): 𝑓(𝓏) = 𝓏 + 𝑎𝔫ାଵ𝓏𝔫ାଵ + ⋯ }, 
where ℧ଵ = ℧, the subclass of normalized analytic functions in U°. Further, indicate by M 
the subfamily of 𝒦(U°) of the form: 

𝑓(𝓏) = 𝓏 + ෍ 𝑎𝔫𝓏𝔫 , 𝓏 ∈ U°ஶ
𝔫ୀଶ , (1)

which are univalent in U°. For analytic functions 𝑓 and 𝐹, the function 𝑓 is said to be 
subordinate to 𝐹, if 𝑓(𝓏) = 𝐹൫Θ(𝓏)൯, (𝓏 ∈ 𝑈°), 

where Θ(𝓏) is analytic and  Θ(0) = 0, |Θ(𝓏)| < 1. This subordination is indicated by 𝑓(𝓏) ≺ 𝐹(𝓏). 
Cho and Kim [20] proposed the multiplier transformation as a linear operator. Let 𝔫 

be any integer; the multiplier transformation ℒఓఉ: 𝑀 → 𝑀  is given by ℒఓఉ𝑓(𝓏) = 𝓏 +∑ ቀ𝔫ାఓଵାఓቁఉ 𝑎𝔫𝓏𝔫 , 𝜇 ≥ 0, 𝛽 ∈ ℤ = {⋯ , −1,0,1, ⋯ }ஶ𝔫ୀଶ . 
 
The Hurwitz–Lerch Zeta function [21] is 

𝜁గ,ఘ(𝓏) = 1𝜌గ + ෍ 𝓏𝔫(𝔫 + 𝜌)గஶ
𝔫ୀଵ , 

(𝜌 ∈ ℂ\𝑍௢ି = {0, −1, −2, … }, 𝜋 ∈ ℂ, where |𝓏| < 1, ℛ𝑒(𝜋) > 1, 𝓏 ∈ 𝜕𝑈°) 

By making use of the following normalized function, we have: 𝐺గ,ఘ(𝓏) = (1 + 𝜌)గൣ𝜁గ,ఘ(𝓏) − 𝜌ିగ൧ = 𝓏 + ∑ ቀଵାఘ𝔫ାఘቁగ   , 𝓏 ∈ 𝑈°ஶ𝔫ୀଶ . 

If 𝑓, 𝑔 ∈ 𝑀, where 𝑓 given by (1) and 𝑔 is defined by 

𝑔(𝓏) = 𝓏 + ෍ 𝑏𝔫𝓏𝔫ஶ
𝔫ୀଶ  , 𝓏 ∈ U°, 

then 

(𝑓 ∗ 𝑔)(𝓏) = 𝓏 + ෍ 𝑎𝔫𝑏𝔫ஶ
𝔫ୀଶ 𝓏𝔫 = (𝑔 ∗ 𝑓)(𝓏). 

Using the convolution defined above, a new operator is next introduced as the 
original part of the present paper. 
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Well-known notations and definitions used for obtaining the original results are next 
presented. 𝒦(U°) denotes the family of analytic functions in U°that have the form: 𝒦[a, 𝔫] = {𝑓 ∈ 𝒦(U°): 𝑓(𝓏) = 𝑎 + 𝑎𝔫𝓏𝔫 + 𝑎𝔫ାଵ𝓏𝔫ାଵ + ⋯ }, 𝑎 ∈ ℂ, 𝔫 ∈ 𝑁 = {1,2, … }, 

and let ℧𝔫 be the collection of the form: ℧𝔫 = {𝑓 ∈ 𝒦(𝑈°): 𝑓(𝓏) = 𝓏 + 𝑎𝔫ାଵ𝓏𝔫ାଵ + ⋯ }, 
where ℧ଵ = ℧, the subclass of normalized analytic functions in U°. Further, indicate by M 
the subfamily of 𝒦(U°) of the form: 

𝑓(𝓏) = 𝓏 + ෍ 𝑎𝔫𝓏𝔫 , 𝓏 ∈ U°ஶ
𝔫ୀଶ , (1)

which are univalent in U°. For analytic functions 𝑓 and 𝐹, the function 𝑓 is said to be 
subordinate to 𝐹, if 𝑓(𝓏) = 𝐹൫Θ(𝓏)൯, (𝓏 ∈ 𝑈°), 

where Θ(𝓏) is analytic and  Θ(0) = 0, |Θ(𝓏)| < 1. This subordination is indicated by 𝑓(𝓏) ≺ 𝐹(𝓏). 
Cho and Kim [20] proposed the multiplier transformation as a linear operator. Let 𝔫 

be any integer; the multiplier transformation ℒఓఉ: 𝑀 → 𝑀  is given by ℒఓఉ𝑓(𝓏) = 𝓏 +∑ ቀ𝔫ାఓଵାఓቁఉ 𝑎𝔫𝓏𝔫 , 𝜇 ≥ 0, 𝛽 ∈ ℤ = {⋯ , −1,0,1, ⋯ }ஶ𝔫ୀଶ . 
 
The Hurwitz–Lerch Zeta function [21] is 

𝜁గ,ఘ(𝓏) = 1𝜌గ + ෍ 𝓏𝔫(𝔫 + 𝜌)గஶ
𝔫ୀଵ , 

(𝜌 ∈ ℂ\𝑍௢ି = {0, −1, −2, … }, 𝜋 ∈ ℂ, where |𝓏| < 1, ℛ𝑒(𝜋) > 1, 𝓏 ∈ 𝜕𝑈°) 

By making use of the following normalized function, we have: 𝐺గ,ఘ(𝓏) = (1 + 𝜌)గൣ𝜁గ,ఘ(𝓏) − 𝜌ିగ൧ = 𝓏 + ∑ ቀଵାఘ𝔫ାఘቁగ   , 𝓏 ∈ 𝑈°ஶ𝔫ୀଶ . 

If 𝑓, 𝑔 ∈ 𝑀, where 𝑓 given by (1) and 𝑔 is defined by 

𝑔(𝓏) = 𝓏 + ෍ 𝑏𝔫𝓏𝔫ஶ
𝔫ୀଶ  , 𝓏 ∈ U°, 

then 

(𝑓 ∗ 𝑔)(𝓏) = 𝓏 + ෍ 𝑎𝔫𝑏𝔫ஶ
𝔫ୀଶ 𝓏𝔫 = (𝑔 ∗ 𝑓)(𝓏). 

Using the convolution defined above, a new operator is next introduced as the 
original part of the present paper. 
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Well-known notations and definitions used for obtaining the original results are next 
presented. 𝒦(U°) denotes the family of analytic functions in U°that have the form: 𝒦[a, 𝔫] = {𝑓 ∈ 𝒦(U°): 𝑓(𝓏) = 𝑎 + 𝑎𝔫𝓏𝔫 + 𝑎𝔫ାଵ𝓏𝔫ାଵ + ⋯ }, 𝑎 ∈ ℂ, 𝔫 ∈ 𝑁 = {1,2, … }, 

and let ℧𝔫 be the collection of the form: ℧𝔫 = {𝑓 ∈ 𝒦(𝑈°): 𝑓(𝓏) = 𝓏 + 𝑎𝔫ାଵ𝓏𝔫ାଵ + ⋯ }, 
where ℧ଵ = ℧, the subclass of normalized analytic functions in U°. Further, indicate by M 
the subfamily of 𝒦(U°) of the form: 

𝑓(𝓏) = 𝓏 + ෍ 𝑎𝔫𝓏𝔫 , 𝓏 ∈ U°ஶ
𝔫ୀଶ , (1)

which are univalent in U°. For analytic functions 𝑓 and 𝐹, the function 𝑓 is said to be 
subordinate to 𝐹, if 𝑓(𝓏) = 𝐹൫Θ(𝓏)൯, (𝓏 ∈ 𝑈°), 

where Θ(𝓏) is analytic and  Θ(0) = 0, |Θ(𝓏)| < 1. This subordination is indicated by 𝑓(𝓏) ≺ 𝐹(𝓏). 
Cho and Kim [20] proposed the multiplier transformation as a linear operator. Let 𝔫 

be any integer; the multiplier transformation ℒఓఉ: 𝑀 → 𝑀  is given by ℒఓఉ𝑓(𝓏) = 𝓏 +∑ ቀ𝔫ାఓଵାఓቁఉ 𝑎𝔫𝓏𝔫 , 𝜇 ≥ 0, 𝛽 ∈ ℤ = {⋯ , −1,0,1, ⋯ }ஶ𝔫ୀଶ . 
 
The Hurwitz–Lerch Zeta function [21] is 

𝜁గ,ఘ(𝓏) = 1𝜌గ + ෍ 𝓏𝔫(𝔫 + 𝜌)గஶ
𝔫ୀଵ , 

(𝜌 ∈ ℂ\𝑍௢ି = {0, −1, −2, … }, 𝜋 ∈ ℂ, where |𝓏| < 1, ℛ𝑒(𝜋) > 1, 𝓏 ∈ 𝜕𝑈°) 

By making use of the following normalized function, we have: 𝐺గ,ఘ(𝓏) = (1 + 𝜌)గൣ𝜁గ,ఘ(𝓏) − 𝜌ିగ൧ = 𝓏 + ∑ ቀଵାఘ𝔫ାఘቁగ   , 𝓏 ∈ 𝑈°ஶ𝔫ୀଶ . 

If 𝑓, 𝑔 ∈ 𝑀, where 𝑓 given by (1) and 𝑔 is defined by 

𝑔(𝓏) = 𝓏 + ෍ 𝑏𝔫𝓏𝔫ஶ
𝔫ୀଶ  , 𝓏 ∈ U°, 

then 

(𝑓 ∗ 𝑔)(𝓏) = 𝓏 + ෍ 𝑎𝔫𝑏𝔫ஶ
𝔫ୀଶ 𝓏𝔫 = (𝑔 ∗ 𝑓)(𝓏). 

Using the convolution defined above, a new operator is next introduced as the 
original part of the present paper. 
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Well-known notations and definitions used for obtaining the original results are next 
presented. 𝒦(U°) denotes the family of analytic functions in U°that have the form: 𝒦[a, 𝔫] = {𝑓 ∈ 𝒦(U°): 𝑓(𝓏) = 𝑎 + 𝑎𝔫𝓏𝔫 + 𝑎𝔫ାଵ𝓏𝔫ାଵ + ⋯ }, 𝑎 ∈ ℂ, 𝔫 ∈ 𝑁 = {1,2, … }, 

and let ℧𝔫 be the collection of the form: ℧𝔫 = {𝑓 ∈ 𝒦(𝑈°): 𝑓(𝓏) = 𝓏 + 𝑎𝔫ାଵ𝓏𝔫ାଵ + ⋯ }, 
where ℧ଵ = ℧, the subclass of normalized analytic functions in U°. Further, indicate by M 
the subfamily of 𝒦(U°) of the form: 

𝑓(𝓏) = 𝓏 + ෍ 𝑎𝔫𝓏𝔫 , 𝓏 ∈ U°ஶ
𝔫ୀଶ , (1)

which are univalent in U°. For analytic functions 𝑓 and 𝐹, the function 𝑓 is said to be 
subordinate to 𝐹, if 𝑓(𝓏) = 𝐹൫Θ(𝓏)൯, (𝓏 ∈ 𝑈°), 

where Θ(𝓏) is analytic and  Θ(0) = 0, |Θ(𝓏)| < 1. This subordination is indicated by 𝑓(𝓏) ≺ 𝐹(𝓏). 
Cho and Kim [20] proposed the multiplier transformation as a linear operator. Let 𝔫 

be any integer; the multiplier transformation ℒఓఉ: 𝑀 → 𝑀  is given by ℒఓఉ𝑓(𝓏) = 𝓏 +∑ ቀ𝔫ାఓଵାఓቁఉ 𝑎𝔫𝓏𝔫 , 𝜇 ≥ 0, 𝛽 ∈ ℤ = {⋯ , −1,0,1, ⋯ }ஶ𝔫ୀଶ . 
 
The Hurwitz–Lerch Zeta function [21] is 

𝜁గ,ఘ(𝓏) = 1𝜌గ + ෍ 𝓏𝔫(𝔫 + 𝜌)గஶ
𝔫ୀଵ , 

(𝜌 ∈ ℂ\𝑍௢ି = {0, −1, −2, … }, 𝜋 ∈ ℂ, where |𝓏| < 1, ℛ𝑒(𝜋) > 1, 𝓏 ∈ 𝜕𝑈°) 

By making use of the following normalized function, we have: 𝐺గ,ఘ(𝓏) = (1 + 𝜌)గൣ𝜁గ,ఘ(𝓏) − 𝜌ିగ൧ = 𝓏 + ∑ ቀଵାఘ𝔫ାఘቁగ   , 𝓏 ∈ 𝑈°ஶ𝔫ୀଶ . 

If 𝑓, 𝑔 ∈ 𝑀, where 𝑓 given by (1) and 𝑔 is defined by 

𝑔(𝓏) = 𝓏 + ෍ 𝑏𝔫𝓏𝔫ஶ
𝔫ୀଶ  , 𝓏 ∈ U°, 

then 

(𝑓 ∗ 𝑔)(𝓏) = 𝓏 + ෍ 𝑎𝔫𝑏𝔫ஶ
𝔫ୀଶ 𝓏𝔫 = (𝑔 ∗ 𝑓)(𝓏). 

Using the convolution defined above, a new operator is next introduced as the 
original part of the present paper. 
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Well-known notations and definitions used for obtaining the original results are next 
presented. 𝒦(U°) denotes the family of analytic functions in U°that have the form: 𝒦[a, 𝔫] = {𝑓 ∈ 𝒦(U°): 𝑓(𝓏) = 𝑎 + 𝑎𝔫𝓏𝔫 + 𝑎𝔫ାଵ𝓏𝔫ାଵ + ⋯ }, 𝑎 ∈ ℂ, 𝔫 ∈ 𝑁 = {1,2, … }, 

and let ℧𝔫 be the collection of the form: ℧𝔫 = {𝑓 ∈ 𝒦(𝑈°): 𝑓(𝓏) = 𝓏 + 𝑎𝔫ାଵ𝓏𝔫ାଵ + ⋯ }, 
where ℧ଵ = ℧, the subclass of normalized analytic functions in U°. Further, indicate by M 
the subfamily of 𝒦(U°) of the form: 

𝑓(𝓏) = 𝓏 + ෍ 𝑎𝔫𝓏𝔫 , 𝓏 ∈ U°ஶ
𝔫ୀଶ , (1)

which are univalent in U°. For analytic functions 𝑓 and 𝐹, the function 𝑓 is said to be 
subordinate to 𝐹, if 𝑓(𝓏) = 𝐹൫Θ(𝓏)൯, (𝓏 ∈ 𝑈°), 

where Θ(𝓏) is analytic and  Θ(0) = 0, |Θ(𝓏)| < 1. This subordination is indicated by 𝑓(𝓏) ≺ 𝐹(𝓏). 
Cho and Kim [20] proposed the multiplier transformation as a linear operator. Let 𝔫 

be any integer; the multiplier transformation ℒఓఉ: 𝑀 → 𝑀  is given by ℒఓఉ𝑓(𝓏) = 𝓏 +∑ ቀ𝔫ାఓଵାఓቁఉ 𝑎𝔫𝓏𝔫 , 𝜇 ≥ 0, 𝛽 ∈ ℤ = {⋯ , −1,0,1, ⋯ }ஶ𝔫ୀଶ . 
 
The Hurwitz–Lerch Zeta function [21] is 

𝜁గ,ఘ(𝓏) = 1𝜌గ + ෍ 𝓏𝔫(𝔫 + 𝜌)గஶ
𝔫ୀଵ , 

(𝜌 ∈ ℂ\𝑍௢ି = {0, −1, −2, … }, 𝜋 ∈ ℂ, where |𝓏| < 1, ℛ𝑒(𝜋) > 1, 𝓏 ∈ 𝜕𝑈°) 

By making use of the following normalized function, we have: 𝐺గ,ఘ(𝓏) = (1 + 𝜌)గൣ𝜁గ,ఘ(𝓏) − 𝜌ିగ൧ = 𝓏 + ∑ ቀଵାఘ𝔫ାఘቁగ   , 𝓏 ∈ 𝑈°ஶ𝔫ୀଶ . 

If 𝑓, 𝑔 ∈ 𝑀, where 𝑓 given by (1) and 𝑔 is defined by 

𝑔(𝓏) = 𝓏 + ෍ 𝑏𝔫𝓏𝔫ஶ
𝔫ୀଶ  , 𝓏 ∈ U°, 

then 

(𝑓 ∗ 𝑔)(𝓏) = 𝓏 + ෍ 𝑎𝔫𝑏𝔫ஶ
𝔫ୀଶ 𝓏𝔫 = (𝑔 ∗ 𝑓)(𝓏). 

Using the convolution defined above, a new operator is next introduced as the 
original part of the present paper. 
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Well-known notations and definitions used for obtaining the original results are next 
presented. 𝒦(U°) denotes the family of analytic functions in U°that have the form: 𝒦[a, 𝔫] = {𝑓 ∈ 𝒦(U°): 𝑓(𝓏) = 𝑎 + 𝑎𝔫𝓏𝔫 + 𝑎𝔫ାଵ𝓏𝔫ାଵ + ⋯ }, 𝑎 ∈ ℂ, 𝔫 ∈ 𝑁 = {1,2, … }, 

and let ℧𝔫 be the collection of the form: ℧𝔫 = {𝑓 ∈ 𝒦(𝑈°): 𝑓(𝓏) = 𝓏 + 𝑎𝔫ାଵ𝓏𝔫ାଵ + ⋯ }, 
where ℧ଵ = ℧, the subclass of normalized analytic functions in U°. Further, indicate by M 
the subfamily of 𝒦(U°) of the form: 

𝑓(𝓏) = 𝓏 + ෍ 𝑎𝔫𝓏𝔫 , 𝓏 ∈ U°ஶ
𝔫ୀଶ , (1)

which are univalent in U°. For analytic functions 𝑓 and 𝐹, the function 𝑓 is said to be 
subordinate to 𝐹, if 𝑓(𝓏) = 𝐹൫Θ(𝓏)൯, (𝓏 ∈ 𝑈°), 

where Θ(𝓏) is analytic and  Θ(0) = 0, |Θ(𝓏)| < 1. This subordination is indicated by 𝑓(𝓏) ≺ 𝐹(𝓏). 
Cho and Kim [20] proposed the multiplier transformation as a linear operator. Let 𝔫 

be any integer; the multiplier transformation ℒఓఉ: 𝑀 → 𝑀  is given by ℒఓఉ𝑓(𝓏) = 𝓏 +∑ ቀ𝔫ାఓଵାఓቁఉ 𝑎𝔫𝓏𝔫 , 𝜇 ≥ 0, 𝛽 ∈ ℤ = {⋯ , −1,0,1, ⋯ }ஶ𝔫ୀଶ . 
 
The Hurwitz–Lerch Zeta function [21] is 

𝜁గ,ఘ(𝓏) = 1𝜌గ + ෍ 𝓏𝔫(𝔫 + 𝜌)గஶ
𝔫ୀଵ , 

(𝜌 ∈ ℂ\𝑍௢ି = {0, −1, −2, … }, 𝜋 ∈ ℂ, where |𝓏| < 1, ℛ𝑒(𝜋) > 1, 𝓏 ∈ 𝜕𝑈°) 

By making use of the following normalized function, we have: 𝐺గ,ఘ(𝓏) = (1 + 𝜌)గൣ𝜁గ,ఘ(𝓏) − 𝜌ିగ൧ = 𝓏 + ∑ ቀଵାఘ𝔫ାఘቁగ   , 𝓏 ∈ 𝑈°ஶ𝔫ୀଶ . 

If 𝑓, 𝑔 ∈ 𝑀, where 𝑓 given by (1) and 𝑔 is defined by 

𝑔(𝓏) = 𝓏 + ෍ 𝑏𝔫𝓏𝔫ஶ
𝔫ୀଶ  , 𝓏 ∈ U°, 

then 

(𝑓 ∗ 𝑔)(𝓏) = 𝓏 + ෍ 𝑎𝔫𝑏𝔫ஶ
𝔫ୀଶ 𝓏𝔫 = (𝑔 ∗ 𝑓)(𝓏). 

Using the convolution defined above, a new operator is next introduced as the 
original part of the present paper. 
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Well-known notations and definitions used for obtaining the original results are next 
presented. 𝒦(U°) denotes the family of analytic functions in U°that have the form: 𝒦[a, 𝔫] = {𝑓 ∈ 𝒦(U°): 𝑓(𝓏) = 𝑎 + 𝑎𝔫𝓏𝔫 + 𝑎𝔫ାଵ𝓏𝔫ାଵ + ⋯ }, 𝑎 ∈ ℂ, 𝔫 ∈ 𝑁 = {1,2, … }, 

and let ℧𝔫 be the collection of the form: ℧𝔫 = {𝑓 ∈ 𝒦(𝑈°): 𝑓(𝓏) = 𝓏 + 𝑎𝔫ାଵ𝓏𝔫ାଵ + ⋯ }, 
where ℧ଵ = ℧, the subclass of normalized analytic functions in U°. Further, indicate by M 
the subfamily of 𝒦(U°) of the form: 

𝑓(𝓏) = 𝓏 + ෍ 𝑎𝔫𝓏𝔫 , 𝓏 ∈ U°ஶ
𝔫ୀଶ , (1)

which are univalent in U°. For analytic functions 𝑓 and 𝐹, the function 𝑓 is said to be 
subordinate to 𝐹, if 𝑓(𝓏) = 𝐹൫Θ(𝓏)൯, (𝓏 ∈ 𝑈°), 

where Θ(𝓏) is analytic and  Θ(0) = 0, |Θ(𝓏)| < 1. This subordination is indicated by 𝑓(𝓏) ≺ 𝐹(𝓏). 
Cho and Kim [20] proposed the multiplier transformation as a linear operator. Let 𝔫 

be any integer; the multiplier transformation ℒఓఉ: 𝑀 → 𝑀  is given by ℒఓఉ𝑓(𝓏) = 𝓏 +∑ ቀ𝔫ାఓଵାఓቁఉ 𝑎𝔫𝓏𝔫 , 𝜇 ≥ 0, 𝛽 ∈ ℤ = {⋯ , −1,0,1, ⋯ }ஶ𝔫ୀଶ . 
 
The Hurwitz–Lerch Zeta function [21] is 

𝜁గ,ఘ(𝓏) = 1𝜌గ + ෍ 𝓏𝔫(𝔫 + 𝜌)గஶ
𝔫ୀଵ , 

(𝜌 ∈ ℂ\𝑍௢ି = {0, −1, −2, … }, 𝜋 ∈ ℂ, where |𝓏| < 1, ℛ𝑒(𝜋) > 1, 𝓏 ∈ 𝜕𝑈°) 

By making use of the following normalized function, we have: 𝐺గ,ఘ(𝓏) = (1 + 𝜌)గൣ𝜁గ,ఘ(𝓏) − 𝜌ିగ൧ = 𝓏 + ∑ ቀଵାఘ𝔫ାఘቁగ   , 𝓏 ∈ 𝑈°ஶ𝔫ୀଶ . 

If 𝑓, 𝑔 ∈ 𝑀, where 𝑓 given by (1) and 𝑔 is defined by 

𝑔(𝓏) = 𝓏 + ෍ 𝑏𝔫𝓏𝔫ஶ
𝔫ୀଶ  , 𝓏 ∈ U°, 

then 

(𝑓 ∗ 𝑔)(𝓏) = 𝓏 + ෍ 𝑎𝔫𝑏𝔫ஶ
𝔫ୀଶ 𝓏𝔫 = (𝑔 ∗ 𝑓)(𝓏). 

Using the convolution defined above, a new operator is next introduced as the 
original part of the present paper. 
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Well-known notations and definitions used for obtaining the original results are next 
presented. 𝒦(U°) denotes the family of analytic functions in U°that have the form: 𝒦[a, 𝔫] = {𝑓 ∈ 𝒦(U°): 𝑓(𝓏) = 𝑎 + 𝑎𝔫𝓏𝔫 + 𝑎𝔫ାଵ𝓏𝔫ାଵ + ⋯ }, 𝑎 ∈ ℂ, 𝔫 ∈ 𝑁 = {1,2, … }, 

and let ℧𝔫 be the collection of the form: ℧𝔫 = {𝑓 ∈ 𝒦(𝑈°): 𝑓(𝓏) = 𝓏 + 𝑎𝔫ାଵ𝓏𝔫ାଵ + ⋯ }, 
where ℧ଵ = ℧, the subclass of normalized analytic functions in U°. Further, indicate by M 
the subfamily of 𝒦(U°) of the form: 

𝑓(𝓏) = 𝓏 + ෍ 𝑎𝔫𝓏𝔫 , 𝓏 ∈ U°ஶ
𝔫ୀଶ , (1)

which are univalent in U°. For analytic functions 𝑓 and 𝐹, the function 𝑓 is said to be 
subordinate to 𝐹, if 𝑓(𝓏) = 𝐹൫Θ(𝓏)൯, (𝓏 ∈ 𝑈°), 

where Θ(𝓏) is analytic and  Θ(0) = 0, |Θ(𝓏)| < 1. This subordination is indicated by 𝑓(𝓏) ≺ 𝐹(𝓏). 
Cho and Kim [20] proposed the multiplier transformation as a linear operator. Let 𝔫 

be any integer; the multiplier transformation ℒఓఉ: 𝑀 → 𝑀  is given by ℒఓఉ𝑓(𝓏) = 𝓏 +∑ ቀ𝔫ାఓଵାఓቁఉ 𝑎𝔫𝓏𝔫 , 𝜇 ≥ 0, 𝛽 ∈ ℤ = {⋯ , −1,0,1, ⋯ }ஶ𝔫ୀଶ . 
 
The Hurwitz–Lerch Zeta function [21] is 

𝜁గ,ఘ(𝓏) = 1𝜌గ + ෍ 𝓏𝔫(𝔫 + 𝜌)గஶ
𝔫ୀଵ , 

(𝜌 ∈ ℂ\𝑍௢ି = {0, −1, −2, … }, 𝜋 ∈ ℂ, where |𝓏| < 1, ℛ𝑒(𝜋) > 1, 𝓏 ∈ 𝜕𝑈°) 

By making use of the following normalized function, we have: 𝐺గ,ఘ(𝓏) = (1 + 𝜌)గൣ𝜁గ,ఘ(𝓏) − 𝜌ିగ൧ = 𝓏 + ∑ ቀଵାఘ𝔫ାఘቁగ   , 𝓏 ∈ 𝑈°ஶ𝔫ୀଶ . 

If 𝑓, 𝑔 ∈ 𝑀, where 𝑓 given by (1) and 𝑔 is defined by 

𝑔(𝓏) = 𝓏 + ෍ 𝑏𝔫𝓏𝔫ஶ
𝔫ୀଶ  , 𝓏 ∈ U°, 

then 

(𝑓 ∗ 𝑔)(𝓏) = 𝓏 + ෍ 𝑎𝔫𝑏𝔫ஶ
𝔫ୀଶ 𝓏𝔫 = (𝑔 ∗ 𝑓)(𝓏). 

Using the convolution defined above, a new operator is next introduced as the 
original part of the present paper. 
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Well-known notations and definitions used for obtaining the original results are next 
presented. 𝒦(U°) denotes the family of analytic functions in U°that have the form: 𝒦[a, 𝔫] = {𝑓 ∈ 𝒦(U°): 𝑓(𝓏) = 𝑎 + 𝑎𝔫𝓏𝔫 + 𝑎𝔫ାଵ𝓏𝔫ାଵ + ⋯ }, 𝑎 ∈ ℂ, 𝔫 ∈ 𝑁 = {1,2, … }, 

and let ℧𝔫 be the collection of the form: ℧𝔫 = {𝑓 ∈ 𝒦(𝑈°): 𝑓(𝓏) = 𝓏 + 𝑎𝔫ାଵ𝓏𝔫ାଵ + ⋯ }, 
where ℧ଵ = ℧, the subclass of normalized analytic functions in U°. Further, indicate by M 
the subfamily of 𝒦(U°) of the form: 

𝑓(𝓏) = 𝓏 + ෍ 𝑎𝔫𝓏𝔫 , 𝓏 ∈ U°ஶ
𝔫ୀଶ , (1)

which are univalent in U°. For analytic functions 𝑓 and 𝐹, the function 𝑓 is said to be 
subordinate to 𝐹, if 𝑓(𝓏) = 𝐹൫Θ(𝓏)൯, (𝓏 ∈ 𝑈°), 

where Θ(𝓏) is analytic and  Θ(0) = 0, |Θ(𝓏)| < 1. This subordination is indicated by 𝑓(𝓏) ≺ 𝐹(𝓏). 
Cho and Kim [20] proposed the multiplier transformation as a linear operator. Let 𝔫 

be any integer; the multiplier transformation ℒఓఉ: 𝑀 → 𝑀  is given by ℒఓఉ𝑓(𝓏) = 𝓏 +∑ ቀ𝔫ାఓଵାఓቁఉ 𝑎𝔫𝓏𝔫 , 𝜇 ≥ 0, 𝛽 ∈ ℤ = {⋯ , −1,0,1, ⋯ }ஶ𝔫ୀଶ . 
 
The Hurwitz–Lerch Zeta function [21] is 

𝜁గ,ఘ(𝓏) = 1𝜌గ + ෍ 𝓏𝔫(𝔫 + 𝜌)గஶ
𝔫ୀଵ , 

(𝜌 ∈ ℂ\𝑍௢ି = {0, −1, −2, … }, 𝜋 ∈ ℂ, where |𝓏| < 1, ℛ𝑒(𝜋) > 1, 𝓏 ∈ 𝜕𝑈°) 

By making use of the following normalized function, we have: 𝐺గ,ఘ(𝓏) = (1 + 𝜌)గൣ𝜁గ,ఘ(𝓏) − 𝜌ିగ൧ = 𝓏 + ∑ ቀଵାఘ𝔫ାఘቁగ   , 𝓏 ∈ 𝑈°ஶ𝔫ୀଶ . 

If 𝑓, 𝑔 ∈ 𝑀, where 𝑓 given by (1) and 𝑔 is defined by 

𝑔(𝓏) = 𝓏 + ෍ 𝑏𝔫𝓏𝔫ஶ
𝔫ୀଶ  , 𝓏 ∈ U°, 

then 

(𝑓 ∗ 𝑔)(𝓏) = 𝓏 + ෍ 𝑎𝔫𝑏𝔫ஶ
𝔫ୀଶ 𝓏𝔫 = (𝑔 ∗ 𝑓)(𝓏). 

Using the convolution defined above, a new operator is next introduced as the 
original part of the present paper. 
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Well-known notations and definitions used for obtaining the original results are next 
presented. 𝒦(U°) denotes the family of analytic functions in U°that have the form: 𝒦[a, 𝔫] = {𝑓 ∈ 𝒦(U°): 𝑓(𝓏) = 𝑎 + 𝑎𝔫𝓏𝔫 + 𝑎𝔫ାଵ𝓏𝔫ାଵ + ⋯ }, 𝑎 ∈ ℂ, 𝔫 ∈ 𝑁 = {1,2, … }, 

and let ℧𝔫 be the collection of the form: ℧𝔫 = {𝑓 ∈ 𝒦(𝑈°): 𝑓(𝓏) = 𝓏 + 𝑎𝔫ାଵ𝓏𝔫ାଵ + ⋯ }, 
where ℧ଵ = ℧, the subclass of normalized analytic functions in U°. Further, indicate by M 
the subfamily of 𝒦(U°) of the form: 

𝑓(𝓏) = 𝓏 + ෍ 𝑎𝔫𝓏𝔫 , 𝓏 ∈ U°ஶ
𝔫ୀଶ , (1)

which are univalent in U°. For analytic functions 𝑓 and 𝐹, the function 𝑓 is said to be 
subordinate to 𝐹, if 𝑓(𝓏) = 𝐹൫Θ(𝓏)൯, (𝓏 ∈ 𝑈°), 

where Θ(𝓏) is analytic and  Θ(0) = 0, |Θ(𝓏)| < 1. This subordination is indicated by 𝑓(𝓏) ≺ 𝐹(𝓏). 
Cho and Kim [20] proposed the multiplier transformation as a linear operator. Let 𝔫 

be any integer; the multiplier transformation ℒఓఉ: 𝑀 → 𝑀  is given by ℒఓఉ𝑓(𝓏) = 𝓏 +∑ ቀ𝔫ାఓଵାఓቁఉ 𝑎𝔫𝓏𝔫 , 𝜇 ≥ 0, 𝛽 ∈ ℤ = {⋯ , −1,0,1, ⋯ }ஶ𝔫ୀଶ . 
 
The Hurwitz–Lerch Zeta function [21] is 

𝜁గ,ఘ(𝓏) = 1𝜌గ + ෍ 𝓏𝔫(𝔫 + 𝜌)గஶ
𝔫ୀଵ , 

(𝜌 ∈ ℂ\𝑍௢ି = {0, −1, −2, … }, 𝜋 ∈ ℂ, where |𝓏| < 1, ℛ𝑒(𝜋) > 1, 𝓏 ∈ 𝜕𝑈°) 

By making use of the following normalized function, we have: 𝐺గ,ఘ(𝓏) = (1 + 𝜌)గൣ𝜁గ,ఘ(𝓏) − 𝜌ିగ൧ = 𝓏 + ∑ ቀଵାఘ𝔫ାఘቁగ   , 𝓏 ∈ 𝑈°ஶ𝔫ୀଶ . 

If 𝑓, 𝑔 ∈ 𝑀, where 𝑓 given by (1) and 𝑔 is defined by 

𝑔(𝓏) = 𝓏 + ෍ 𝑏𝔫𝓏𝔫ஶ
𝔫ୀଶ  , 𝓏 ∈ U°, 

then 

(𝑓 ∗ 𝑔)(𝓏) = 𝓏 + ෍ 𝑎𝔫𝑏𝔫ஶ
𝔫ୀଶ 𝓏𝔫 = (𝑔 ∗ 𝑓)(𝓏). 

Using the convolution defined above, a new operator is next introduced as the 
original part of the present paper. 
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Well-known notations and definitions used for obtaining the original results are next 
presented. 𝒦(U°) denotes the family of analytic functions in U°that have the form: 𝒦[a, 𝔫] = {𝑓 ∈ 𝒦(U°): 𝑓(𝓏) = 𝑎 + 𝑎𝔫𝓏𝔫 + 𝑎𝔫ାଵ𝓏𝔫ାଵ + ⋯ }, 𝑎 ∈ ℂ, 𝔫 ∈ 𝑁 = {1,2, … }, 

and let ℧𝔫 be the collection of the form: ℧𝔫 = {𝑓 ∈ 𝒦(𝑈°): 𝑓(𝓏) = 𝓏 + 𝑎𝔫ାଵ𝓏𝔫ାଵ + ⋯ }, 
where ℧ଵ = ℧, the subclass of normalized analytic functions in U°. Further, indicate by M 
the subfamily of 𝒦(U°) of the form: 

𝑓(𝓏) = 𝓏 + ෍ 𝑎𝔫𝓏𝔫 , 𝓏 ∈ U°ஶ
𝔫ୀଶ , (1)

which are univalent in U°. For analytic functions 𝑓 and 𝐹, the function 𝑓 is said to be 
subordinate to 𝐹, if 𝑓(𝓏) = 𝐹൫Θ(𝓏)൯, (𝓏 ∈ 𝑈°), 

where Θ(𝓏) is analytic and  Θ(0) = 0, |Θ(𝓏)| < 1. This subordination is indicated by 𝑓(𝓏) ≺ 𝐹(𝓏). 
Cho and Kim [20] proposed the multiplier transformation as a linear operator. Let 𝔫 

be any integer; the multiplier transformation ℒఓఉ: 𝑀 → 𝑀  is given by ℒఓఉ𝑓(𝓏) = 𝓏 +∑ ቀ𝔫ାఓଵାఓቁఉ 𝑎𝔫𝓏𝔫 , 𝜇 ≥ 0, 𝛽 ∈ ℤ = {⋯ , −1,0,1, ⋯ }ஶ𝔫ୀଶ . 
 
The Hurwitz–Lerch Zeta function [21] is 

𝜁గ,ఘ(𝓏) = 1𝜌గ + ෍ 𝓏𝔫(𝔫 + 𝜌)గஶ
𝔫ୀଵ , 

(𝜌 ∈ ℂ\𝑍௢ି = {0, −1, −2, … }, 𝜋 ∈ ℂ, where |𝓏| < 1, ℛ𝑒(𝜋) > 1, 𝓏 ∈ 𝜕𝑈°) 

By making use of the following normalized function, we have: 𝐺గ,ఘ(𝓏) = (1 + 𝜌)గൣ𝜁గ,ఘ(𝓏) − 𝜌ିగ൧ = 𝓏 + ∑ ቀଵାఘ𝔫ାఘቁగ   , 𝓏 ∈ 𝑈°ஶ𝔫ୀଶ . 

If 𝑓, 𝑔 ∈ 𝑀, where 𝑓 given by (1) and 𝑔 is defined by 

𝑔(𝓏) = 𝓏 + ෍ 𝑏𝔫𝓏𝔫ஶ
𝔫ୀଶ  , 𝓏 ∈ U°, 

then 

(𝑓 ∗ 𝑔)(𝓏) = 𝓏 + ෍ 𝑎𝔫𝑏𝔫ஶ
𝔫ୀଶ 𝓏𝔫 = (𝑔 ∗ 𝑓)(𝓏). 

Using the convolution defined above, a new operator is next introduced as the 
original part of the present paper. 
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Well-known notations and definitions used for obtaining the original results are next 
presented. 𝒦(U°) denotes the family of analytic functions in U°that have the form: 𝒦[a, 𝔫] = {𝑓 ∈ 𝒦(U°): 𝑓(𝓏) = 𝑎 + 𝑎𝔫𝓏𝔫 + 𝑎𝔫ାଵ𝓏𝔫ାଵ + ⋯ }, 𝑎 ∈ ℂ, 𝔫 ∈ 𝑁 = {1,2, … }, 

and let ℧𝔫 be the collection of the form: ℧𝔫 = {𝑓 ∈ 𝒦(𝑈°): 𝑓(𝓏) = 𝓏 + 𝑎𝔫ାଵ𝓏𝔫ାଵ + ⋯ }, 
where ℧ଵ = ℧, the subclass of normalized analytic functions in U°. Further, indicate by M 
the subfamily of 𝒦(U°) of the form: 

𝑓(𝓏) = 𝓏 + ෍ 𝑎𝔫𝓏𝔫 , 𝓏 ∈ U°ஶ
𝔫ୀଶ , (1)

which are univalent in U°. For analytic functions 𝑓 and 𝐹, the function 𝑓 is said to be 
subordinate to 𝐹, if 𝑓(𝓏) = 𝐹൫Θ(𝓏)൯, (𝓏 ∈ 𝑈°), 

where Θ(𝓏) is analytic and  Θ(0) = 0, |Θ(𝓏)| < 1. This subordination is indicated by 𝑓(𝓏) ≺ 𝐹(𝓏). 
Cho and Kim [20] proposed the multiplier transformation as a linear operator. Let 𝔫 

be any integer; the multiplier transformation ℒఓఉ: 𝑀 → 𝑀  is given by ℒఓఉ𝑓(𝓏) = 𝓏 +∑ ቀ𝔫ାఓଵାఓቁఉ 𝑎𝔫𝓏𝔫 , 𝜇 ≥ 0, 𝛽 ∈ ℤ = {⋯ , −1,0,1, ⋯ }ஶ𝔫ୀଶ . 
 
The Hurwitz–Lerch Zeta function [21] is 

𝜁గ,ఘ(𝓏) = 1𝜌గ + ෍ 𝓏𝔫(𝔫 + 𝜌)గஶ
𝔫ୀଵ , 

(𝜌 ∈ ℂ\𝑍௢ି = {0, −1, −2, … }, 𝜋 ∈ ℂ, where |𝓏| < 1, ℛ𝑒(𝜋) > 1, 𝓏 ∈ 𝜕𝑈°) 

By making use of the following normalized function, we have: 𝐺గ,ఘ(𝓏) = (1 + 𝜌)గൣ𝜁గ,ఘ(𝓏) − 𝜌ିగ൧ = 𝓏 + ∑ ቀଵାఘ𝔫ାఘቁగ   , 𝓏 ∈ 𝑈°ஶ𝔫ୀଶ . 

If 𝑓, 𝑔 ∈ 𝑀, where 𝑓 given by (1) and 𝑔 is defined by 

𝑔(𝓏) = 𝓏 + ෍ 𝑏𝔫𝓏𝔫ஶ
𝔫ୀଶ  , 𝓏 ∈ U°, 

then 

(𝑓 ∗ 𝑔)(𝓏) = 𝓏 + ෍ 𝑎𝔫𝑏𝔫ஶ
𝔫ୀଶ 𝓏𝔫 = (𝑔 ∗ 𝑓)(𝓏). 

Using the convolution defined above, a new operator is next introduced as the 
original part of the present paper. 
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Well-known notations and definitions used for obtaining the original results are next 
presented. 𝒦(U°) denotes the family of analytic functions in U°that have the form: 𝒦[a, 𝔫] = {𝑓 ∈ 𝒦(U°): 𝑓(𝓏) = 𝑎 + 𝑎𝔫𝓏𝔫 + 𝑎𝔫ାଵ𝓏𝔫ାଵ + ⋯ }, 𝑎 ∈ ℂ, 𝔫 ∈ 𝑁 = {1,2, … }, 

and let ℧𝔫 be the collection of the form: ℧𝔫 = {𝑓 ∈ 𝒦(𝑈°): 𝑓(𝓏) = 𝓏 + 𝑎𝔫ାଵ𝓏𝔫ାଵ + ⋯ }, 
where ℧ଵ = ℧, the subclass of normalized analytic functions in U°. Further, indicate by M 
the subfamily of 𝒦(U°) of the form: 

𝑓(𝓏) = 𝓏 + ෍ 𝑎𝔫𝓏𝔫 , 𝓏 ∈ U°ஶ
𝔫ୀଶ , (1)

which are univalent in U°. For analytic functions 𝑓 and 𝐹, the function 𝑓 is said to be 
subordinate to 𝐹, if 𝑓(𝓏) = 𝐹൫Θ(𝓏)൯, (𝓏 ∈ 𝑈°), 

where Θ(𝓏) is analytic and  Θ(0) = 0, |Θ(𝓏)| < 1. This subordination is indicated by 𝑓(𝓏) ≺ 𝐹(𝓏). 
Cho and Kim [20] proposed the multiplier transformation as a linear operator. Let 𝔫 

be any integer; the multiplier transformation ℒఓఉ: 𝑀 → 𝑀  is given by ℒఓఉ𝑓(𝓏) = 𝓏 +∑ ቀ𝔫ାఓଵାఓቁఉ 𝑎𝔫𝓏𝔫 , 𝜇 ≥ 0, 𝛽 ∈ ℤ = {⋯ , −1,0,1, ⋯ }ஶ𝔫ୀଶ . 
 
The Hurwitz–Lerch Zeta function [21] is 

𝜁గ,ఘ(𝓏) = 1𝜌గ + ෍ 𝓏𝔫(𝔫 + 𝜌)గஶ
𝔫ୀଵ , 

(𝜌 ∈ ℂ\𝑍௢ି = {0, −1, −2, … }, 𝜋 ∈ ℂ, where |𝓏| < 1, ℛ𝑒(𝜋) > 1, 𝓏 ∈ 𝜕𝑈°) 

By making use of the following normalized function, we have: 𝐺గ,ఘ(𝓏) = (1 + 𝜌)గൣ𝜁గ,ఘ(𝓏) − 𝜌ିగ൧ = 𝓏 + ∑ ቀଵାఘ𝔫ାఘቁగ   , 𝓏 ∈ 𝑈°ஶ𝔫ୀଶ . 

If 𝑓, 𝑔 ∈ 𝑀, where 𝑓 given by (1) and 𝑔 is defined by 

𝑔(𝓏) = 𝓏 + ෍ 𝑏𝔫𝓏𝔫ஶ
𝔫ୀଶ  , 𝓏 ∈ U°, 

then 

(𝑓 ∗ 𝑔)(𝓏) = 𝓏 + ෍ 𝑎𝔫𝑏𝔫ஶ
𝔫ୀଶ 𝓏𝔫 = (𝑔 ∗ 𝑓)(𝓏). 

Using the convolution defined above, a new operator is next introduced as the 
original part of the present paper. 
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Well-known notations and definitions used for obtaining the original results are next 
presented. 𝒦(U°) denotes the family of analytic functions in U°that have the form: 𝒦[a, 𝔫] = {𝑓 ∈ 𝒦(U°): 𝑓(𝓏) = 𝑎 + 𝑎𝔫𝓏𝔫 + 𝑎𝔫ାଵ𝓏𝔫ାଵ + ⋯ }, 𝑎 ∈ ℂ, 𝔫 ∈ 𝑁 = {1,2, … }, 

and let ℧𝔫 be the collection of the form: ℧𝔫 = {𝑓 ∈ 𝒦(𝑈°): 𝑓(𝓏) = 𝓏 + 𝑎𝔫ାଵ𝓏𝔫ାଵ + ⋯ }, 
where ℧ଵ = ℧, the subclass of normalized analytic functions in U°. Further, indicate by M 
the subfamily of 𝒦(U°) of the form: 

𝑓(𝓏) = 𝓏 + ෍ 𝑎𝔫𝓏𝔫 , 𝓏 ∈ U°ஶ
𝔫ୀଶ , (1)

which are univalent in U°. For analytic functions 𝑓 and 𝐹, the function 𝑓 is said to be 
subordinate to 𝐹, if 𝑓(𝓏) = 𝐹൫Θ(𝓏)൯, (𝓏 ∈ 𝑈°), 

where Θ(𝓏) is analytic and  Θ(0) = 0, |Θ(𝓏)| < 1. This subordination is indicated by 𝑓(𝓏) ≺ 𝐹(𝓏). 
Cho and Kim [20] proposed the multiplier transformation as a linear operator. Let 𝔫 

be any integer; the multiplier transformation ℒఓఉ: 𝑀 → 𝑀  is given by ℒఓఉ𝑓(𝓏) = 𝓏 +∑ ቀ𝔫ାఓଵାఓቁఉ 𝑎𝔫𝓏𝔫 , 𝜇 ≥ 0, 𝛽 ∈ ℤ = {⋯ , −1,0,1, ⋯ }ஶ𝔫ୀଶ . 
 
The Hurwitz–Lerch Zeta function [21] is 

𝜁గ,ఘ(𝓏) = 1𝜌గ + ෍ 𝓏𝔫(𝔫 + 𝜌)గஶ
𝔫ୀଵ , 

(𝜌 ∈ ℂ\𝑍௢ି = {0, −1, −2, … }, 𝜋 ∈ ℂ, where |𝓏| < 1, ℛ𝑒(𝜋) > 1, 𝓏 ∈ 𝜕𝑈°) 

By making use of the following normalized function, we have: 𝐺గ,ఘ(𝓏) = (1 + 𝜌)గൣ𝜁గ,ఘ(𝓏) − 𝜌ିగ൧ = 𝓏 + ∑ ቀଵାఘ𝔫ାఘቁగ   , 𝓏 ∈ 𝑈°ஶ𝔫ୀଶ . 

If 𝑓, 𝑔 ∈ 𝑀, where 𝑓 given by (1) and 𝑔 is defined by 

𝑔(𝓏) = 𝓏 + ෍ 𝑏𝔫𝓏𝔫ஶ
𝔫ୀଶ  , 𝓏 ∈ U°, 

then 

(𝑓 ∗ 𝑔)(𝓏) = 𝓏 + ෍ 𝑎𝔫𝑏𝔫ஶ
𝔫ୀଶ 𝓏𝔫 = (𝑔 ∗ 𝑓)(𝓏). 

Using the convolution defined above, a new operator is next introduced as the 
original part of the present paper. 
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Well-known notations and definitions used for obtaining the original results are next 
presented. 𝒦(U°) denotes the family of analytic functions in U°that have the form: 𝒦[a, 𝔫] = {𝑓 ∈ 𝒦(U°): 𝑓(𝓏) = 𝑎 + 𝑎𝔫𝓏𝔫 + 𝑎𝔫ାଵ𝓏𝔫ାଵ + ⋯ }, 𝑎 ∈ ℂ, 𝔫 ∈ 𝑁 = {1,2, … }, 

and let ℧𝔫 be the collection of the form: ℧𝔫 = {𝑓 ∈ 𝒦(𝑈°): 𝑓(𝓏) = 𝓏 + 𝑎𝔫ାଵ𝓏𝔫ାଵ + ⋯ }, 
where ℧ଵ = ℧, the subclass of normalized analytic functions in U°. Further, indicate by M 
the subfamily of 𝒦(U°) of the form: 

𝑓(𝓏) = 𝓏 + ෍ 𝑎𝔫𝓏𝔫 , 𝓏 ∈ U°ஶ
𝔫ୀଶ , (1)

which are univalent in U°. For analytic functions 𝑓 and 𝐹, the function 𝑓 is said to be 
subordinate to 𝐹, if 𝑓(𝓏) = 𝐹൫Θ(𝓏)൯, (𝓏 ∈ 𝑈°), 

where Θ(𝓏) is analytic and  Θ(0) = 0, |Θ(𝓏)| < 1. This subordination is indicated by 𝑓(𝓏) ≺ 𝐹(𝓏). 
Cho and Kim [20] proposed the multiplier transformation as a linear operator. Let 𝔫 

be any integer; the multiplier transformation ℒఓఉ: 𝑀 → 𝑀  is given by ℒఓఉ𝑓(𝓏) = 𝓏 +∑ ቀ𝔫ାఓଵାఓቁఉ 𝑎𝔫𝓏𝔫 , 𝜇 ≥ 0, 𝛽 ∈ ℤ = {⋯ , −1,0,1, ⋯ }ஶ𝔫ୀଶ . 
 
The Hurwitz–Lerch Zeta function [21] is 

𝜁గ,ఘ(𝓏) = 1𝜌గ + ෍ 𝓏𝔫(𝔫 + 𝜌)గஶ
𝔫ୀଵ , 

(𝜌 ∈ ℂ\𝑍௢ି = {0, −1, −2, … }, 𝜋 ∈ ℂ, where |𝓏| < 1, ℛ𝑒(𝜋) > 1, 𝓏 ∈ 𝜕𝑈°) 

By making use of the following normalized function, we have: 𝐺గ,ఘ(𝓏) = (1 + 𝜌)గൣ𝜁గ,ఘ(𝓏) − 𝜌ିగ൧ = 𝓏 + ∑ ቀଵାఘ𝔫ାఘቁగ   , 𝓏 ∈ 𝑈°ஶ𝔫ୀଶ . 

If 𝑓, 𝑔 ∈ 𝑀, where 𝑓 given by (1) and 𝑔 is defined by 

𝑔(𝓏) = 𝓏 + ෍ 𝑏𝔫𝓏𝔫ஶ
𝔫ୀଶ  , 𝓏 ∈ U°, 

then 

(𝑓 ∗ 𝑔)(𝓏) = 𝓏 + ෍ 𝑎𝔫𝑏𝔫ஶ
𝔫ୀଶ 𝓏𝔫 = (𝑔 ∗ 𝑓)(𝓏). 

Using the convolution defined above, a new operator is next introduced as the 
original part of the present paper. 
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Well-known notations and definitions used for obtaining the original results are next 
presented. 𝒦(U°) denotes the family of analytic functions in U°that have the form: 𝒦[a, 𝔫] = {𝑓 ∈ 𝒦(U°): 𝑓(𝓏) = 𝑎 + 𝑎𝔫𝓏𝔫 + 𝑎𝔫ାଵ𝓏𝔫ାଵ + ⋯ }, 𝑎 ∈ ℂ, 𝔫 ∈ 𝑁 = {1,2, … }, 

and let ℧𝔫 be the collection of the form: ℧𝔫 = {𝑓 ∈ 𝒦(𝑈°): 𝑓(𝓏) = 𝓏 + 𝑎𝔫ାଵ𝓏𝔫ାଵ + ⋯ }, 
where ℧ଵ = ℧, the subclass of normalized analytic functions in U°. Further, indicate by M 
the subfamily of 𝒦(U°) of the form: 

𝑓(𝓏) = 𝓏 + ෍ 𝑎𝔫𝓏𝔫 , 𝓏 ∈ U°ஶ
𝔫ୀଶ , (1)

which are univalent in U°. For analytic functions 𝑓 and 𝐹, the function 𝑓 is said to be 
subordinate to 𝐹, if 𝑓(𝓏) = 𝐹൫Θ(𝓏)൯, (𝓏 ∈ 𝑈°), 

where Θ(𝓏) is analytic and  Θ(0) = 0, |Θ(𝓏)| < 1. This subordination is indicated by 𝑓(𝓏) ≺ 𝐹(𝓏). 
Cho and Kim [20] proposed the multiplier transformation as a linear operator. Let 𝔫 

be any integer; the multiplier transformation ℒఓఉ: 𝑀 → 𝑀  is given by ℒఓఉ𝑓(𝓏) = 𝓏 +∑ ቀ𝔫ାఓଵାఓቁఉ 𝑎𝔫𝓏𝔫 , 𝜇 ≥ 0, 𝛽 ∈ ℤ = {⋯ , −1,0,1, ⋯ }ஶ𝔫ୀଶ . 
 
The Hurwitz–Lerch Zeta function [21] is 

𝜁గ,ఘ(𝓏) = 1𝜌గ + ෍ 𝓏𝔫(𝔫 + 𝜌)గஶ
𝔫ୀଵ , 

(𝜌 ∈ ℂ\𝑍௢ି = {0, −1, −2, … }, 𝜋 ∈ ℂ, where |𝓏| < 1, ℛ𝑒(𝜋) > 1, 𝓏 ∈ 𝜕𝑈°) 

By making use of the following normalized function, we have: 𝐺గ,ఘ(𝓏) = (1 + 𝜌)గൣ𝜁గ,ఘ(𝓏) − 𝜌ିగ൧ = 𝓏 + ∑ ቀଵାఘ𝔫ାఘቁగ   , 𝓏 ∈ 𝑈°ஶ𝔫ୀଶ . 

If 𝑓, 𝑔 ∈ 𝑀, where 𝑓 given by (1) and 𝑔 is defined by 

𝑔(𝓏) = 𝓏 + ෍ 𝑏𝔫𝓏𝔫ஶ
𝔫ୀଶ  , 𝓏 ∈ U°, 

then 

(𝑓 ∗ 𝑔)(𝓏) = 𝓏 + ෍ 𝑎𝔫𝑏𝔫ஶ
𝔫ୀଶ 𝓏𝔫 = (𝑔 ∗ 𝑓)(𝓏). 

Using the convolution defined above, a new operator is next introduced as the 
original part of the present paper. 
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Well-known notations and definitions used for obtaining the original results are next 
presented. 𝒦(U°) denotes the family of analytic functions in U°that have the form: 𝒦[a, 𝔫] = {𝑓 ∈ 𝒦(U°): 𝑓(𝓏) = 𝑎 + 𝑎𝔫𝓏𝔫 + 𝑎𝔫ାଵ𝓏𝔫ାଵ + ⋯ }, 𝑎 ∈ ℂ, 𝔫 ∈ 𝑁 = {1,2, … }, 

and let ℧𝔫 be the collection of the form: ℧𝔫 = {𝑓 ∈ 𝒦(𝑈°): 𝑓(𝓏) = 𝓏 + 𝑎𝔫ାଵ𝓏𝔫ାଵ + ⋯ }, 
where ℧ଵ = ℧, the subclass of normalized analytic functions in U°. Further, indicate by M 
the subfamily of 𝒦(U°) of the form: 

𝑓(𝓏) = 𝓏 + ෍ 𝑎𝔫𝓏𝔫 , 𝓏 ∈ U°ஶ
𝔫ୀଶ , (1)

which are univalent in U°. For analytic functions 𝑓 and 𝐹, the function 𝑓 is said to be 
subordinate to 𝐹, if 𝑓(𝓏) = 𝐹൫Θ(𝓏)൯, (𝓏 ∈ 𝑈°), 

where Θ(𝓏) is analytic and  Θ(0) = 0, |Θ(𝓏)| < 1. This subordination is indicated by 𝑓(𝓏) ≺ 𝐹(𝓏). 
Cho and Kim [20] proposed the multiplier transformation as a linear operator. Let 𝔫 

be any integer; the multiplier transformation ℒఓఉ: 𝑀 → 𝑀  is given by ℒఓఉ𝑓(𝓏) = 𝓏 +∑ ቀ𝔫ାఓଵାఓቁఉ 𝑎𝔫𝓏𝔫 , 𝜇 ≥ 0, 𝛽 ∈ ℤ = {⋯ , −1,0,1, ⋯ }ஶ𝔫ୀଶ . 
 
The Hurwitz–Lerch Zeta function [21] is 

𝜁గ,ఘ(𝓏) = 1𝜌గ + ෍ 𝓏𝔫(𝔫 + 𝜌)గஶ
𝔫ୀଵ , 

(𝜌 ∈ ℂ\𝑍௢ି = {0, −1, −2, … }, 𝜋 ∈ ℂ, where |𝓏| < 1, ℛ𝑒(𝜋) > 1, 𝓏 ∈ 𝜕𝑈°) 

By making use of the following normalized function, we have: 𝐺గ,ఘ(𝓏) = (1 + 𝜌)గൣ𝜁గ,ఘ(𝓏) − 𝜌ିగ൧ = 𝓏 + ∑ ቀଵାఘ𝔫ାఘቁగ   , 𝓏 ∈ 𝑈°ஶ𝔫ୀଶ . 

If 𝑓, 𝑔 ∈ 𝑀, where 𝑓 given by (1) and 𝑔 is defined by 

𝑔(𝓏) = 𝓏 + ෍ 𝑏𝔫𝓏𝔫ஶ
𝔫ୀଶ  , 𝓏 ∈ U°, 

then 

(𝑓 ∗ 𝑔)(𝓏) = 𝓏 + ෍ 𝑎𝔫𝑏𝔫ஶ
𝔫ୀଶ 𝓏𝔫 = (𝑔 ∗ 𝑓)(𝓏). 

Using the convolution defined above, a new operator is next introduced as the 
original part of the present paper. 
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Well-known notations and definitions used for obtaining the original results are next 
presented. 𝒦(U°) denotes the family of analytic functions in U°that have the form: 𝒦[a, 𝔫] = {𝑓 ∈ 𝒦(U°): 𝑓(𝓏) = 𝑎 + 𝑎𝔫𝓏𝔫 + 𝑎𝔫ାଵ𝓏𝔫ାଵ + ⋯ }, 𝑎 ∈ ℂ, 𝔫 ∈ 𝑁 = {1,2, … }, 

and let ℧𝔫 be the collection of the form: ℧𝔫 = {𝑓 ∈ 𝒦(𝑈°): 𝑓(𝓏) = 𝓏 + 𝑎𝔫ାଵ𝓏𝔫ାଵ + ⋯ }, 
where ℧ଵ = ℧, the subclass of normalized analytic functions in U°. Further, indicate by M 
the subfamily of 𝒦(U°) of the form: 

𝑓(𝓏) = 𝓏 + ෍ 𝑎𝔫𝓏𝔫 , 𝓏 ∈ U°ஶ
𝔫ୀଶ , (1)

which are univalent in U°. For analytic functions 𝑓 and 𝐹, the function 𝑓 is said to be 
subordinate to 𝐹, if 𝑓(𝓏) = 𝐹൫Θ(𝓏)൯, (𝓏 ∈ 𝑈°), 

where Θ(𝓏) is analytic and  Θ(0) = 0, |Θ(𝓏)| < 1. This subordination is indicated by 𝑓(𝓏) ≺ 𝐹(𝓏). 
Cho and Kim [20] proposed the multiplier transformation as a linear operator. Let 𝔫 

be any integer; the multiplier transformation ℒఓఉ: 𝑀 → 𝑀  is given by ℒఓఉ𝑓(𝓏) = 𝓏 +∑ ቀ𝔫ାఓଵାఓቁఉ 𝑎𝔫𝓏𝔫 , 𝜇 ≥ 0, 𝛽 ∈ ℤ = {⋯ , −1,0,1, ⋯ }ஶ𝔫ୀଶ . 
 
The Hurwitz–Lerch Zeta function [21] is 

𝜁గ,ఘ(𝓏) = 1𝜌గ + ෍ 𝓏𝔫(𝔫 + 𝜌)గஶ
𝔫ୀଵ , 

(𝜌 ∈ ℂ\𝑍௢ି = {0, −1, −2, … }, 𝜋 ∈ ℂ, where |𝓏| < 1, ℛ𝑒(𝜋) > 1, 𝓏 ∈ 𝜕𝑈°) 

By making use of the following normalized function, we have: 𝐺గ,ఘ(𝓏) = (1 + 𝜌)గൣ𝜁గ,ఘ(𝓏) − 𝜌ିగ൧ = 𝓏 + ∑ ቀଵାఘ𝔫ାఘቁగ   , 𝓏 ∈ 𝑈°ஶ𝔫ୀଶ . 

If 𝑓, 𝑔 ∈ 𝑀, where 𝑓 given by (1) and 𝑔 is defined by 

𝑔(𝓏) = 𝓏 + ෍ 𝑏𝔫𝓏𝔫ஶ
𝔫ୀଶ  , 𝓏 ∈ U°, 

then 

(𝑓 ∗ 𝑔)(𝓏) = 𝓏 + ෍ 𝑎𝔫𝑏𝔫ஶ
𝔫ୀଶ 𝓏𝔫 = (𝑔 ∗ 𝑓)(𝓏). 

Using the convolution defined above, a new operator is next introduced as the 
original part of the present paper. 
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Well-known notations and definitions used for obtaining the original results are next 
presented. 𝒦(U°) denotes the family of analytic functions in U°that have the form: 𝒦[a, 𝔫] = {𝑓 ∈ 𝒦(U°): 𝑓(𝓏) = 𝑎 + 𝑎𝔫𝓏𝔫 + 𝑎𝔫ାଵ𝓏𝔫ାଵ + ⋯ }, 𝑎 ∈ ℂ, 𝔫 ∈ 𝑁 = {1,2, … }, 

and let ℧𝔫 be the collection of the form: ℧𝔫 = {𝑓 ∈ 𝒦(𝑈°): 𝑓(𝓏) = 𝓏 + 𝑎𝔫ାଵ𝓏𝔫ାଵ + ⋯ }, 
where ℧ଵ = ℧, the subclass of normalized analytic functions in U°. Further, indicate by M 
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original part of the present paper. 
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has a solution 𝕢(𝓏) ∈ Ҩଵ. If 𝛤గ,ఘ,ఉ,ఓ𝑓(𝓏) ∈ Ҩଵ, 𝕢 ∈ 𝒦ଵ, 𝕢ᇱ(𝓏) ് 0 and 𝑓 ∈ 𝑀 satisfy the con-
ditions (7) and (22), ൛𝛶൫𝛤గ,ఘ,ఉ,ఓ𝑓(𝓏), 𝛤గ,ఘ,ఉାଵ,ఓ𝑓(𝓏), 𝛤గ,ఘ,ఉାଶ,ఓ𝑓(𝓏), 𝛤గ,ఘ,ఉାଷ,ఓ𝑓(𝓏), 𝛤గ,ఘ,ఉାସ,ఓ𝑓(𝓏)ቁ : 𝓏 ∈ 𝑈°ቅ 
is univalent in 𝑈°, and 𝓀(𝓏) ⊂ {Υ൫Γగ,ఘ,ఉ,ఓ𝑓(𝓏), Γగ,ఘ,ఉାଵ,ఓ𝑓(𝓏), Γగ,ఘ,ఉାଶ,ఓ𝑓(𝓏), Γగ,ఘ,ఉାଷ,ఓ𝑓(𝓏), 𝛤గ,ఘ,ఉାସ,ఓ𝑓(𝓏); 𝓏 ∈ 𝑈°)}, 
then 𝕢(𝓏) ≺ 𝛤గ,ఘ,ఉ,ఋ𝑓(𝓏), and 𝕢(𝓏) is the best subordinate of (24). 

Proof. The proof of theorem is similar to that of Theorem 5 and is omitted here. □ 

5. Sandwich-Type Results 
Now, by using Theorems 5 and 9, we have the sandwich-type result. 

Theorem 11. Consider two analytic functions  𝓀ଵ(𝓏) 𝑎𝑛𝑑 𝕢ଵ(𝓏)  in 𝑈° , and  𝕢ଶ(𝓏) ∈ Ҩଵ 
with  𝕢ଵ(0) = 𝕢ଶ(0) =1. In addition let the function  𝓀ଶ(𝓏) be univalent in  𝑈°  and  𝛶 ∈𝜃௰[ 𝓀ଶ, 𝕢ଶ] ∩ 𝜃௰ᇱ [𝓀ଵ, 𝕢ଵ]. If 𝛤గ,ఘ,ఉ,ఓ𝑓(𝓏) ∈ Ҩଵ ∩ 𝒦, 𝑓 ∈ 𝑀, ൛𝛶൫𝛤గ,ఘ,ఉ,ఓ𝑓(𝓏), 𝛤గ,ఘ,ఉାଵ,ఓ𝑓(𝓏), 𝛤గ,ఘ,ఉାଶ,ఓ𝑓(𝓏), 𝛤గ,ఘ,ఉାଷ,ఓ𝑓(𝓏), 𝛤గ,ఘ,ఉାସ,ఓ𝑓(𝓏)ቁ : 𝓏 ∈ 𝑈°ቅ 

is univalent in 𝑈°, and the two conditions (7) and (22) are satisfied as 𝓀ଵ(𝓏) ≺ {𝛶൫𝛤గ,ఘ,ఉ,ఓ𝑓(𝓏), 𝛤గ,ఘ,ఉାଵ,ఓ𝑓(𝓏), 𝛤గ,ఘ,ఉାଶ,ఓ𝑓(𝓏), 𝛤గ,ఘ,ఉାଷ,ఓ𝑓(𝓏), 𝛤గ,ఘ,ఉାସ,ఓ𝑓(𝓏); 𝓏 ∈ 𝑈°)} ≺  𝓀ଶ(𝓏), 
then 𝕢ଵ(𝓏) ≺ 𝛤గ,ఘ,ఉ,ఓ𝑓(𝓏) ≺ 𝕢ଶ(𝓏) 

6. Conclusions 
A new differential operator is introduced in the present paper in Definition 1. Using 

the concepts of fourth-order differential subordination and superordination, the classes 
of admissible functions are defined related to each of the two concepts, and using those 
definitions, several theorems are proved involving the newly defined operator regarding 
fourth-order subordinations in Section 3 and regarding fourth-order superordination in 
Section 4. By applying a well-known technique, a sandwich-type theorem is stated in 
Section 5 of the paper combining the subordination and superordination results obtained 
before. The results presented here could inspire future work involving other operators 
for obtaining fourth-order differential subordinations and superordinations. Certain 
special classes of univalent functions could be introduced using the operator defined in 
this paper, and studies for obtaining properties of those classes could be done invoking 
the notions of fourth-order differential subordination and superordination using the 
admissibility conditions given here in Definition 7., Definition 8. and Definition 9. and 
the best dominant obtained in Theorem 5. 
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and let ℧𝔫 be the collection of the form: ℧𝔫 = {𝑓 ∈ 𝒦(𝑈°): 𝑓(𝓏) = 𝓏 + 𝑎𝔫ାଵ𝓏𝔫ାଵ + ⋯ }, 
where ℧ଵ = ℧, the subclass of normalized analytic functions in U°. Further, indicate by M 
the subfamily of 𝒦(U°) of the form: 

𝑓(𝓏) = 𝓏 + ෍ 𝑎𝔫𝓏𝔫 , 𝓏 ∈ U°ஶ
𝔫ୀଶ , (1)

which are univalent in U°. For analytic functions 𝑓 and 𝐹, the function 𝑓 is said to be 
subordinate to 𝐹, if 𝑓(𝓏) = 𝐹൫Θ(𝓏)൯, (𝓏 ∈ 𝑈°), 

where Θ(𝓏) is analytic and  Θ(0) = 0, |Θ(𝓏)| < 1. This subordination is indicated by 𝑓(𝓏) ≺ 𝐹(𝓏). 
Cho and Kim [20] proposed the multiplier transformation as a linear operator. Let 𝔫 

be any integer; the multiplier transformation ℒఓఉ: 𝑀 → 𝑀  is given by ℒఓఉ𝑓(𝓏) = 𝓏 +∑ ቀ𝔫ାఓଵାఓቁఉ 𝑎𝔫𝓏𝔫 , 𝜇 ≥ 0, 𝛽 ∈ ℤ = {⋯ , −1,0,1, ⋯ }ஶ𝔫ୀଶ . 
 
The Hurwitz–Lerch Zeta function [21] is 

𝜁గ,ఘ(𝓏) = 1𝜌గ + ෍ 𝓏𝔫(𝔫 + 𝜌)గஶ
𝔫ୀଵ , 

(𝜌 ∈ ℂ\𝑍௢ି = {0, −1, −2, … }, 𝜋 ∈ ℂ, where |𝓏| < 1, ℛ𝑒(𝜋) > 1, 𝓏 ∈ 𝜕𝑈°) 

By making use of the following normalized function, we have: 𝐺గ,ఘ(𝓏) = (1 + 𝜌)గൣ𝜁గ,ఘ(𝓏) − 𝜌ିగ൧ = 𝓏 + ∑ ቀଵାఘ𝔫ାఘቁగ   , 𝓏 ∈ 𝑈°ஶ𝔫ୀଶ . 

If 𝑓, 𝑔 ∈ 𝑀, where 𝑓 given by (1) and 𝑔 is defined by 

𝑔(𝓏) = 𝓏 + ෍ 𝑏𝔫𝓏𝔫ஶ
𝔫ୀଶ  , 𝓏 ∈ U°, 

then 

(𝑓 ∗ 𝑔)(𝓏) = 𝓏 + ෍ 𝑎𝔫𝑏𝔫ஶ
𝔫ୀଶ 𝓏𝔫 = (𝑔 ∗ 𝑓)(𝓏). 

Using the convolution defined above, a new operator is next introduced as the 
original part of the present paper. 

  

) verifies Equation (7). If the function f ∈ M satisfies
condition (18) and

Y
(

Γπ,ρ,β,µ f (

Symmetry 2022, 14, x FOR PEER REVIEW 2 of 12 
 

 

Well-known notations and definitions used for obtaining the original results are next 
presented. 𝒦(U°) denotes the family of analytic functions in U°that have the form: 𝒦[a, 𝔫] = {𝑓 ∈ 𝒦(U°): 𝑓(𝓏) = 𝑎 + 𝑎𝔫𝓏𝔫 + 𝑎𝔫ାଵ𝓏𝔫ାଵ + ⋯ }, 𝑎 ∈ ℂ, 𝔫 ∈ 𝑁 = {1,2, … }, 

and let ℧𝔫 be the collection of the form: ℧𝔫 = {𝑓 ∈ 𝒦(𝑈°): 𝑓(𝓏) = 𝓏 + 𝑎𝔫ାଵ𝓏𝔫ାଵ + ⋯ }, 
where ℧ଵ = ℧, the subclass of normalized analytic functions in U°. Further, indicate by M 
the subfamily of 𝒦(U°) of the form: 

𝑓(𝓏) = 𝓏 + ෍ 𝑎𝔫𝓏𝔫 , 𝓏 ∈ U°ஶ
𝔫ୀଶ , (1)

which are univalent in U°. For analytic functions 𝑓 and 𝐹, the function 𝑓 is said to be 
subordinate to 𝐹, if 𝑓(𝓏) = 𝐹൫Θ(𝓏)൯, (𝓏 ∈ 𝑈°), 

where Θ(𝓏) is analytic and  Θ(0) = 0, |Θ(𝓏)| < 1. This subordination is indicated by 𝑓(𝓏) ≺ 𝐹(𝓏). 
Cho and Kim [20] proposed the multiplier transformation as a linear operator. Let 𝔫 

be any integer; the multiplier transformation ℒఓఉ: 𝑀 → 𝑀  is given by ℒఓఉ𝑓(𝓏) = 𝓏 +∑ ቀ𝔫ାఓଵାఓቁఉ 𝑎𝔫𝓏𝔫 , 𝜇 ≥ 0, 𝛽 ∈ ℤ = {⋯ , −1,0,1, ⋯ }ஶ𝔫ୀଶ . 
 
The Hurwitz–Lerch Zeta function [21] is 

𝜁గ,ఘ(𝓏) = 1𝜌గ + ෍ 𝓏𝔫(𝔫 + 𝜌)గஶ
𝔫ୀଵ , 

(𝜌 ∈ ℂ\𝑍௢ି = {0, −1, −2, … }, 𝜋 ∈ ℂ, where |𝓏| < 1, ℛ𝑒(𝜋) > 1, 𝓏 ∈ 𝜕𝑈°) 

By making use of the following normalized function, we have: 𝐺గ,ఘ(𝓏) = (1 + 𝜌)గൣ𝜁గ,ఘ(𝓏) − 𝜌ିగ൧ = 𝓏 + ∑ ቀଵାఘ𝔫ାఘቁగ   , 𝓏 ∈ 𝑈°ஶ𝔫ୀଶ . 

If 𝑓, 𝑔 ∈ 𝑀, where 𝑓 given by (1) and 𝑔 is defined by 

𝑔(𝓏) = 𝓏 + ෍ 𝑏𝔫𝓏𝔫ஶ
𝔫ୀଶ  , 𝓏 ∈ U°, 

then 

(𝑓 ∗ 𝑔)(𝓏) = 𝓏 + ෍ 𝑎𝔫𝑏𝔫ஶ
𝔫ୀଶ 𝓏𝔫 = (𝑔 ∗ 𝑓)(𝓏). 

Using the convolution defined above, a new operator is next introduced as the 
original part of the present paper. 

  

), Γπ,ρ,β+1,µ f (
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Well-known notations and definitions used for obtaining the original results are next 
presented. 𝒦(U°) denotes the family of analytic functions in U°that have the form: 𝒦[a, 𝔫] = {𝑓 ∈ 𝒦(U°): 𝑓(𝓏) = 𝑎 + 𝑎𝔫𝓏𝔫 + 𝑎𝔫ାଵ𝓏𝔫ାଵ + ⋯ }, 𝑎 ∈ ℂ, 𝔫 ∈ 𝑁 = {1,2, … }, 

and let ℧𝔫 be the collection of the form: ℧𝔫 = {𝑓 ∈ 𝒦(𝑈°): 𝑓(𝓏) = 𝓏 + 𝑎𝔫ାଵ𝓏𝔫ାଵ + ⋯ }, 
where ℧ଵ = ℧, the subclass of normalized analytic functions in U°. Further, indicate by M 
the subfamily of 𝒦(U°) of the form: 

𝑓(𝓏) = 𝓏 + ෍ 𝑎𝔫𝓏𝔫 , 𝓏 ∈ U°ஶ
𝔫ୀଶ , (1)

which are univalent in U°. For analytic functions 𝑓 and 𝐹, the function 𝑓 is said to be 
subordinate to 𝐹, if 𝑓(𝓏) = 𝐹൫Θ(𝓏)൯, (𝓏 ∈ 𝑈°), 

where Θ(𝓏) is analytic and  Θ(0) = 0, |Θ(𝓏)| < 1. This subordination is indicated by 𝑓(𝓏) ≺ 𝐹(𝓏). 
Cho and Kim [20] proposed the multiplier transformation as a linear operator. Let 𝔫 

be any integer; the multiplier transformation ℒఓఉ: 𝑀 → 𝑀  is given by ℒఓఉ𝑓(𝓏) = 𝓏 +∑ ቀ𝔫ାఓଵାఓቁఉ 𝑎𝔫𝓏𝔫 , 𝜇 ≥ 0, 𝛽 ∈ ℤ = {⋯ , −1,0,1, ⋯ }ஶ𝔫ୀଶ . 
 
The Hurwitz–Lerch Zeta function [21] is 

𝜁గ,ఘ(𝓏) = 1𝜌గ + ෍ 𝓏𝔫(𝔫 + 𝜌)గஶ
𝔫ୀଵ , 

(𝜌 ∈ ℂ\𝑍௢ି = {0, −1, −2, … }, 𝜋 ∈ ℂ, where |𝓏| < 1, ℛ𝑒(𝜋) > 1, 𝓏 ∈ 𝜕𝑈°) 

By making use of the following normalized function, we have: 𝐺గ,ఘ(𝓏) = (1 + 𝜌)గൣ𝜁గ,ఘ(𝓏) − 𝜌ିగ൧ = 𝓏 + ∑ ቀଵାఘ𝔫ାఘቁగ   , 𝓏 ∈ 𝑈°ஶ𝔫ୀଶ . 

If 𝑓, 𝑔 ∈ 𝑀, where 𝑓 given by (1) and 𝑔 is defined by 

𝑔(𝓏) = 𝓏 + ෍ 𝑏𝔫𝓏𝔫ஶ
𝔫ୀଶ  , 𝓏 ∈ U°, 

then 

(𝑓 ∗ 𝑔)(𝓏) = 𝓏 + ෍ 𝑎𝔫𝑏𝔫ஶ
𝔫ୀଶ 𝓏𝔫 = (𝑔 ∗ 𝑓)(𝓏). 

Using the convolution defined above, a new operator is next introduced as the 
original part of the present paper. 

  

), Γπ,ρ,β+2,µ f (
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Well-known notations and definitions used for obtaining the original results are next 
presented. 𝒦(U°) denotes the family of analytic functions in U°that have the form: 𝒦[a, 𝔫] = {𝑓 ∈ 𝒦(U°): 𝑓(𝓏) = 𝑎 + 𝑎𝔫𝓏𝔫 + 𝑎𝔫ାଵ𝓏𝔫ାଵ + ⋯ }, 𝑎 ∈ ℂ, 𝔫 ∈ 𝑁 = {1,2, … }, 

and let ℧𝔫 be the collection of the form: ℧𝔫 = {𝑓 ∈ 𝒦(𝑈°): 𝑓(𝓏) = 𝓏 + 𝑎𝔫ାଵ𝓏𝔫ାଵ + ⋯ }, 
where ℧ଵ = ℧, the subclass of normalized analytic functions in U°. Further, indicate by M 
the subfamily of 𝒦(U°) of the form: 

𝑓(𝓏) = 𝓏 + ෍ 𝑎𝔫𝓏𝔫 , 𝓏 ∈ U°ஶ
𝔫ୀଶ , (1)

which are univalent in U°. For analytic functions 𝑓 and 𝐹, the function 𝑓 is said to be 
subordinate to 𝐹, if 𝑓(𝓏) = 𝐹൫Θ(𝓏)൯, (𝓏 ∈ 𝑈°), 

where Θ(𝓏) is analytic and  Θ(0) = 0, |Θ(𝓏)| < 1. This subordination is indicated by 𝑓(𝓏) ≺ 𝐹(𝓏). 
Cho and Kim [20] proposed the multiplier transformation as a linear operator. Let 𝔫 

be any integer; the multiplier transformation ℒఓఉ: 𝑀 → 𝑀  is given by ℒఓఉ𝑓(𝓏) = 𝓏 +∑ ቀ𝔫ାఓଵାఓቁఉ 𝑎𝔫𝓏𝔫 , 𝜇 ≥ 0, 𝛽 ∈ ℤ = {⋯ , −1,0,1, ⋯ }ஶ𝔫ୀଶ . 
 
The Hurwitz–Lerch Zeta function [21] is 

𝜁గ,ఘ(𝓏) = 1𝜌గ + ෍ 𝓏𝔫(𝔫 + 𝜌)గஶ
𝔫ୀଵ , 

(𝜌 ∈ ℂ\𝑍௢ି = {0, −1, −2, … }, 𝜋 ∈ ℂ, where |𝓏| < 1, ℛ𝑒(𝜋) > 1, 𝓏 ∈ 𝜕𝑈°) 

By making use of the following normalized function, we have: 𝐺గ,ఘ(𝓏) = (1 + 𝜌)గൣ𝜁గ,ఘ(𝓏) − 𝜌ିగ൧ = 𝓏 + ∑ ቀଵାఘ𝔫ାఘቁగ   , 𝓏 ∈ 𝑈°ஶ𝔫ୀଶ . 

If 𝑓, 𝑔 ∈ 𝑀, where 𝑓 given by (1) and 𝑔 is defined by 

𝑔(𝓏) = 𝓏 + ෍ 𝑏𝔫𝓏𝔫ஶ
𝔫ୀଶ  , 𝓏 ∈ U°, 

then 

(𝑓 ∗ 𝑔)(𝓏) = 𝓏 + ෍ 𝑎𝔫𝑏𝔫ஶ
𝔫ୀଶ 𝓏𝔫 = (𝑔 ∗ 𝑓)(𝓏). 

Using the convolution defined above, a new operator is next introduced as the 
original part of the present paper. 

  

), Γπ,ρ,β+3,µ f (
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Well-known notations and definitions used for obtaining the original results are next 
presented. 𝒦(U°) denotes the family of analytic functions in U°that have the form: 𝒦[a, 𝔫] = {𝑓 ∈ 𝒦(U°): 𝑓(𝓏) = 𝑎 + 𝑎𝔫𝓏𝔫 + 𝑎𝔫ାଵ𝓏𝔫ାଵ + ⋯ }, 𝑎 ∈ ℂ, 𝔫 ∈ 𝑁 = {1,2, … }, 

and let ℧𝔫 be the collection of the form: ℧𝔫 = {𝑓 ∈ 𝒦(𝑈°): 𝑓(𝓏) = 𝓏 + 𝑎𝔫ାଵ𝓏𝔫ାଵ + ⋯ }, 
where ℧ଵ = ℧, the subclass of normalized analytic functions in U°. Further, indicate by M 
the subfamily of 𝒦(U°) of the form: 

𝑓(𝓏) = 𝓏 + ෍ 𝑎𝔫𝓏𝔫 , 𝓏 ∈ U°ஶ
𝔫ୀଶ , (1)

which are univalent in U°. For analytic functions 𝑓 and 𝐹, the function 𝑓 is said to be 
subordinate to 𝐹, if 𝑓(𝓏) = 𝐹൫Θ(𝓏)൯, (𝓏 ∈ 𝑈°), 

where Θ(𝓏) is analytic and  Θ(0) = 0, |Θ(𝓏)| < 1. This subordination is indicated by 𝑓(𝓏) ≺ 𝐹(𝓏). 
Cho and Kim [20] proposed the multiplier transformation as a linear operator. Let 𝔫 

be any integer; the multiplier transformation ℒఓఉ: 𝑀 → 𝑀  is given by ℒఓఉ𝑓(𝓏) = 𝓏 +∑ ቀ𝔫ାఓଵାఓቁఉ 𝑎𝔫𝓏𝔫 , 𝜇 ≥ 0, 𝛽 ∈ ℤ = {⋯ , −1,0,1, ⋯ }ஶ𝔫ୀଶ . 
 
The Hurwitz–Lerch Zeta function [21] is 

𝜁గ,ఘ(𝓏) = 1𝜌గ + ෍ 𝓏𝔫(𝔫 + 𝜌)గஶ
𝔫ୀଵ , 

(𝜌 ∈ ℂ\𝑍௢ି = {0, −1, −2, … }, 𝜋 ∈ ℂ, where |𝓏| < 1, ℛ𝑒(𝜋) > 1, 𝓏 ∈ 𝜕𝑈°) 

By making use of the following normalized function, we have: 𝐺గ,ఘ(𝓏) = (1 + 𝜌)గൣ𝜁గ,ఘ(𝓏) − 𝜌ିగ൧ = 𝓏 + ∑ ቀଵାఘ𝔫ାఘቁగ   , 𝓏 ∈ 𝑈°ஶ𝔫ୀଶ . 

If 𝑓, 𝑔 ∈ 𝑀, where 𝑓 given by (1) and 𝑔 is defined by 

𝑔(𝓏) = 𝓏 + ෍ 𝑏𝔫𝓏𝔫ஶ
𝔫ୀଶ  , 𝓏 ∈ U°, 

then 

(𝑓 ∗ 𝑔)(𝓏) = 𝓏 + ෍ 𝑎𝔫𝑏𝔫ஶ
𝔫ୀଶ 𝓏𝔫 = (𝑔 ∗ 𝑓)(𝓏). 

Using the convolution defined above, a new operator is next introduced as the 
original part of the present paper. 

  

), Γπ,ρ,β+4,µ f (
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Well-known notations and definitions used for obtaining the original results are next 
presented. 𝒦(U°) denotes the family of analytic functions in U°that have the form: 𝒦[a, 𝔫] = {𝑓 ∈ 𝒦(U°): 𝑓(𝓏) = 𝑎 + 𝑎𝔫𝓏𝔫 + 𝑎𝔫ାଵ𝓏𝔫ାଵ + ⋯ }, 𝑎 ∈ ℂ, 𝔫 ∈ 𝑁 = {1,2, … }, 

and let ℧𝔫 be the collection of the form: ℧𝔫 = {𝑓 ∈ 𝒦(𝑈°): 𝑓(𝓏) = 𝓏 + 𝑎𝔫ାଵ𝓏𝔫ାଵ + ⋯ }, 
where ℧ଵ = ℧, the subclass of normalized analytic functions in U°. Further, indicate by M 
the subfamily of 𝒦(U°) of the form: 

𝑓(𝓏) = 𝓏 + ෍ 𝑎𝔫𝓏𝔫 , 𝓏 ∈ U°ஶ
𝔫ୀଶ , (1)

which are univalent in U°. For analytic functions 𝑓 and 𝐹, the function 𝑓 is said to be 
subordinate to 𝐹, if 𝑓(𝓏) = 𝐹൫Θ(𝓏)൯, (𝓏 ∈ 𝑈°), 

where Θ(𝓏) is analytic and  Θ(0) = 0, |Θ(𝓏)| < 1. This subordination is indicated by 𝑓(𝓏) ≺ 𝐹(𝓏). 
Cho and Kim [20] proposed the multiplier transformation as a linear operator. Let 𝔫 

be any integer; the multiplier transformation ℒఓఉ: 𝑀 → 𝑀  is given by ℒఓఉ𝑓(𝓏) = 𝓏 +∑ ቀ𝔫ାఓଵାఓቁఉ 𝑎𝔫𝓏𝔫 , 𝜇 ≥ 0, 𝛽 ∈ ℤ = {⋯ , −1,0,1, ⋯ }ஶ𝔫ୀଶ . 
 
The Hurwitz–Lerch Zeta function [21] is 

𝜁గ,ఘ(𝓏) = 1𝜌గ + ෍ 𝓏𝔫(𝔫 + 𝜌)గஶ
𝔫ୀଵ , 

(𝜌 ∈ ℂ\𝑍௢ି = {0, −1, −2, … }, 𝜋 ∈ ℂ, where |𝓏| < 1, ℛ𝑒(𝜋) > 1, 𝓏 ∈ 𝜕𝑈°) 

By making use of the following normalized function, we have: 𝐺గ,ఘ(𝓏) = (1 + 𝜌)గൣ𝜁గ,ఘ(𝓏) − 𝜌ିగ൧ = 𝓏 + ∑ ቀଵାఘ𝔫ାఘቁగ   , 𝓏 ∈ 𝑈°ஶ𝔫ୀଶ . 

If 𝑓, 𝑔 ∈ 𝑀, where 𝑓 given by (1) and 𝑔 is defined by 

𝑔(𝓏) = 𝓏 + ෍ 𝑏𝔫𝓏𝔫ஶ
𝔫ୀଶ  , 𝓏 ∈ U°, 

then 

(𝑓 ∗ 𝑔)(𝓏) = 𝓏 + ෍ 𝑎𝔫𝑏𝔫ஶ
𝔫ୀଶ 𝓏𝔫 = (𝑔 ∗ 𝑓)(𝓏). 

Using the convolution defined above, a new operator is next introduced as the 
original part of the present paper. 

  

);

Symmetry 2022, 14, x FOR PEER REVIEW 2 of 12 
 

 

Well-known notations and definitions used for obtaining the original results are next 
presented. 𝒦(U°) denotes the family of analytic functions in U°that have the form: 𝒦[a, 𝔫] = {𝑓 ∈ 𝒦(U°): 𝑓(𝓏) = 𝑎 + 𝑎𝔫𝓏𝔫 + 𝑎𝔫ାଵ𝓏𝔫ାଵ + ⋯ }, 𝑎 ∈ ℂ, 𝔫 ∈ 𝑁 = {1,2, … }, 

and let ℧𝔫 be the collection of the form: ℧𝔫 = {𝑓 ∈ 𝒦(𝑈°): 𝑓(𝓏) = 𝓏 + 𝑎𝔫ାଵ𝓏𝔫ାଵ + ⋯ }, 
where ℧ଵ = ℧, the subclass of normalized analytic functions in U°. Further, indicate by M 
the subfamily of 𝒦(U°) of the form: 

𝑓(𝓏) = 𝓏 + ෍ 𝑎𝔫𝓏𝔫 , 𝓏 ∈ U°ஶ
𝔫ୀଶ , (1)

which are univalent in U°. For analytic functions 𝑓 and 𝐹, the function 𝑓 is said to be 
subordinate to 𝐹, if 𝑓(𝓏) = 𝐹൫Θ(𝓏)൯, (𝓏 ∈ 𝑈°), 

where Θ(𝓏) is analytic and  Θ(0) = 0, |Θ(𝓏)| < 1. This subordination is indicated by 𝑓(𝓏) ≺ 𝐹(𝓏). 
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Proof. By applying Theorem 3, it can be shown that q(
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, M > 0, and using Definition 7, the class of admissible
functions θΓ[Ω,q], denoted by θΓ[Ω,M], is given below.

Definition 8. Assume that M > 0 and that Ω is a set in C. The class of admissible functions
θΓ[Ω,M] consists of those functions Y : C5 ×U

◦ → C that satisfy the admissibility condition:

Y
(
Meiϑ , k+µ

1+µ Meiϑ,
L+[(2µ+1)k+µ2]Meiϑ

(1+µ)2 ,
N+(3µ+3)L+[3µ2+3µ+1)k+µ3

(1+µ)3 ,

A+(4µ+6)N+(4µ2+12µ+7)L+[(4µ3+4µ2+4µ+1)k+µ4]Meiϑ

(1+µ)4 ;
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)
/∈ Ω,

(20)

such that 1 > −µ ,
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𝑔(𝓏) = 𝓏 + ෍ 𝑏𝔫𝓏𝔫ஶ
𝔫ୀଶ  , 𝓏 ∈ U°, 

then 

(𝑓 ∗ 𝑔)(𝓏) = 𝓏 + ෍ 𝑎𝔫𝑏𝔫ஶ
𝔫ୀଶ 𝓏𝔫 = (𝑔 ∗ 𝑓)(𝓏). 

Using the convolution defined above, a new operator is next introduced as the 
original part of the present paper. 

  

∈ U
◦
, Re

(
Le−iϑ) ≥ (k− 1)kM, Re

(
Ne−iϑ) ≥ 0 andRe

(
Ae−iϑ) ≥ 0

for all ϑ ∈ R and k ≥ 3.

Theorem 6. Assume that Y ∈ θΓ[Ω,M]. If f ∈ M fulfills the conditions:
∣∣Γπ,ρ,β+2,µ f (
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Well-known notations and definitions used for obtaining the original results are next 
presented. 𝒦(U°) denotes the family of analytic functions in U°that have the form: 𝒦[a, 𝔫] = {𝑓 ∈ 𝒦(U°): 𝑓(𝓏) = 𝑎 + 𝑎𝔫𝓏𝔫 + 𝑎𝔫ାଵ𝓏𝔫ାଵ + ⋯ }, 𝑎 ∈ ℂ, 𝔫 ∈ 𝑁 = {1,2, … }, 

and let ℧𝔫 be the collection of the form: ℧𝔫 = {𝑓 ∈ 𝒦(𝑈°): 𝑓(𝓏) = 𝓏 + 𝑎𝔫ାଵ𝓏𝔫ାଵ + ⋯ }, 
where ℧ଵ = ℧, the subclass of normalized analytic functions in U°. Further, indicate by M 
the subfamily of 𝒦(U°) of the form: 

𝑓(𝓏) = 𝓏 + ෍ 𝑎𝔫𝓏𝔫 , 𝓏 ∈ U°ஶ
𝔫ୀଶ , (1)

which are univalent in U°. For analytic functions 𝑓 and 𝐹, the function 𝑓 is said to be 
subordinate to 𝐹, if 𝑓(𝓏) = 𝐹൫Θ(𝓏)൯, (𝓏 ∈ 𝑈°), 

where Θ(𝓏) is analytic and  Θ(0) = 0, |Θ(𝓏)| < 1. This subordination is indicated by 𝑓(𝓏) ≺ 𝐹(𝓏). 
Cho and Kim [20] proposed the multiplier transformation as a linear operator. Let 𝔫 

be any integer; the multiplier transformation ℒఓఉ: 𝑀 → 𝑀  is given by ℒఓఉ𝑓(𝓏) = 𝓏 +∑ ቀ𝔫ାఓଵାఓቁఉ 𝑎𝔫𝓏𝔫 , 𝜇 ≥ 0, 𝛽 ∈ ℤ = {⋯ , −1,0,1, ⋯ }ஶ𝔫ୀଶ . 
 
The Hurwitz–Lerch Zeta function [21] is 

𝜁గ,ఘ(𝓏) = 1𝜌గ + ෍ 𝓏𝔫(𝔫 + 𝜌)గஶ
𝔫ୀଵ , 

(𝜌 ∈ ℂ\𝑍௢ି = {0, −1, −2, … }, 𝜋 ∈ ℂ, where |𝓏| < 1, ℛ𝑒(𝜋) > 1, 𝓏 ∈ 𝜕𝑈°) 

By making use of the following normalized function, we have: 𝐺గ,ఘ(𝓏) = (1 + 𝜌)గൣ𝜁గ,ఘ(𝓏) − 𝜌ିగ൧ = 𝓏 + ∑ ቀଵାఘ𝔫ାఘቁగ   , 𝓏 ∈ 𝑈°ஶ𝔫ୀଶ . 

If 𝑓, 𝑔 ∈ 𝑀, where 𝑓 given by (1) and 𝑔 is defined by 

𝑔(𝓏) = 𝓏 + ෍ 𝑏𝔫𝓏𝔫ஶ
𝔫ୀଶ  , 𝓏 ∈ U°, 

then 

(𝑓 ∗ 𝑔)(𝓏) = 𝓏 + ෍ 𝑎𝔫𝑏𝔫ஶ
𝔫ୀଶ 𝓏𝔫 = (𝑔 ∗ 𝑓)(𝓏). 

Using the convolution defined above, a new operator is next introduced as the 
original part of the present paper. 

  

)
∣∣ ≤

k2 M , k ≥ 3 , M > 0, and

Y
(

Γπ,ρ,β,µ f (
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Well-known notations and definitions used for obtaining the original results are next 
presented. 𝒦(U°) denotes the family of analytic functions in U°that have the form: 𝒦[a, 𝔫] = {𝑓 ∈ 𝒦(U°): 𝑓(𝓏) = 𝑎 + 𝑎𝔫𝓏𝔫 + 𝑎𝔫ାଵ𝓏𝔫ାଵ + ⋯ }, 𝑎 ∈ ℂ, 𝔫 ∈ 𝑁 = {1,2, … }, 

and let ℧𝔫 be the collection of the form: ℧𝔫 = {𝑓 ∈ 𝒦(𝑈°): 𝑓(𝓏) = 𝓏 + 𝑎𝔫ାଵ𝓏𝔫ାଵ + ⋯ }, 
where ℧ଵ = ℧, the subclass of normalized analytic functions in U°. Further, indicate by M 
the subfamily of 𝒦(U°) of the form: 

𝑓(𝓏) = 𝓏 + ෍ 𝑎𝔫𝓏𝔫 , 𝓏 ∈ U°ஶ
𝔫ୀଶ , (1)

which are univalent in U°. For analytic functions 𝑓 and 𝐹, the function 𝑓 is said to be 
subordinate to 𝐹, if 𝑓(𝓏) = 𝐹൫Θ(𝓏)൯, (𝓏 ∈ 𝑈°), 

where Θ(𝓏) is analytic and  Θ(0) = 0, |Θ(𝓏)| < 1. This subordination is indicated by 𝑓(𝓏) ≺ 𝐹(𝓏). 
Cho and Kim [20] proposed the multiplier transformation as a linear operator. Let 𝔫 

be any integer; the multiplier transformation ℒఓఉ: 𝑀 → 𝑀  is given by ℒఓఉ𝑓(𝓏) = 𝓏 +∑ ቀ𝔫ାఓଵାఓቁఉ 𝑎𝔫𝓏𝔫 , 𝜇 ≥ 0, 𝛽 ∈ ℤ = {⋯ , −1,0,1, ⋯ }ஶ𝔫ୀଶ . 
 
The Hurwitz–Lerch Zeta function [21] is 

𝜁గ,ఘ(𝓏) = 1𝜌గ + ෍ 𝓏𝔫(𝔫 + 𝜌)గஶ
𝔫ୀଵ , 

(𝜌 ∈ ℂ\𝑍௢ି = {0, −1, −2, … }, 𝜋 ∈ ℂ, where |𝓏| < 1, ℛ𝑒(𝜋) > 1, 𝓏 ∈ 𝜕𝑈°) 

By making use of the following normalized function, we have: 𝐺గ,ఘ(𝓏) = (1 + 𝜌)గൣ𝜁గ,ఘ(𝓏) − 𝜌ିగ൧ = 𝓏 + ∑ ቀଵାఘ𝔫ାఘቁగ   , 𝓏 ∈ 𝑈°ஶ𝔫ୀଶ . 

If 𝑓, 𝑔 ∈ 𝑀, where 𝑓 given by (1) and 𝑔 is defined by 

𝑔(𝓏) = 𝓏 + ෍ 𝑏𝔫𝓏𝔫ஶ
𝔫ୀଶ  , 𝓏 ∈ U°, 

then 

(𝑓 ∗ 𝑔)(𝓏) = 𝓏 + ෍ 𝑎𝔫𝑏𝔫ஶ
𝔫ୀଶ 𝓏𝔫 = (𝑔 ∗ 𝑓)(𝓏). 

Using the convolution defined above, a new operator is next introduced as the 
original part of the present paper. 

  

), Γπ,ρ,β+1,µ f (
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Well-known notations and definitions used for obtaining the original results are next 
presented. 𝒦(U°) denotes the family of analytic functions in U°that have the form: 𝒦[a, 𝔫] = {𝑓 ∈ 𝒦(U°): 𝑓(𝓏) = 𝑎 + 𝑎𝔫𝓏𝔫 + 𝑎𝔫ାଵ𝓏𝔫ାଵ + ⋯ }, 𝑎 ∈ ℂ, 𝔫 ∈ 𝑁 = {1,2, … }, 

and let ℧𝔫 be the collection of the form: ℧𝔫 = {𝑓 ∈ 𝒦(𝑈°): 𝑓(𝓏) = 𝓏 + 𝑎𝔫ାଵ𝓏𝔫ାଵ + ⋯ }, 
where ℧ଵ = ℧, the subclass of normalized analytic functions in U°. Further, indicate by M 
the subfamily of 𝒦(U°) of the form: 

𝑓(𝓏) = 𝓏 + ෍ 𝑎𝔫𝓏𝔫 , 𝓏 ∈ U°ஶ
𝔫ୀଶ , (1)

which are univalent in U°. For analytic functions 𝑓 and 𝐹, the function 𝑓 is said to be 
subordinate to 𝐹, if 𝑓(𝓏) = 𝐹൫Θ(𝓏)൯, (𝓏 ∈ 𝑈°), 

where Θ(𝓏) is analytic and  Θ(0) = 0, |Θ(𝓏)| < 1. This subordination is indicated by 𝑓(𝓏) ≺ 𝐹(𝓏). 
Cho and Kim [20] proposed the multiplier transformation as a linear operator. Let 𝔫 

be any integer; the multiplier transformation ℒఓఉ: 𝑀 → 𝑀  is given by ℒఓఉ𝑓(𝓏) = 𝓏 +∑ ቀ𝔫ାఓଵାఓቁఉ 𝑎𝔫𝓏𝔫 , 𝜇 ≥ 0, 𝛽 ∈ ℤ = {⋯ , −1,0,1, ⋯ }ஶ𝔫ୀଶ . 
 
The Hurwitz–Lerch Zeta function [21] is 

𝜁గ,ఘ(𝓏) = 1𝜌గ + ෍ 𝓏𝔫(𝔫 + 𝜌)గஶ
𝔫ୀଵ , 

(𝜌 ∈ ℂ\𝑍௢ି = {0, −1, −2, … }, 𝜋 ∈ ℂ, where |𝓏| < 1, ℛ𝑒(𝜋) > 1, 𝓏 ∈ 𝜕𝑈°) 

By making use of the following normalized function, we have: 𝐺గ,ఘ(𝓏) = (1 + 𝜌)గൣ𝜁గ,ఘ(𝓏) − 𝜌ିగ൧ = 𝓏 + ∑ ቀଵାఘ𝔫ାఘቁగ   , 𝓏 ∈ 𝑈°ஶ𝔫ୀଶ . 

If 𝑓, 𝑔 ∈ 𝑀, where 𝑓 given by (1) and 𝑔 is defined by 

𝑔(𝓏) = 𝓏 + ෍ 𝑏𝔫𝓏𝔫ஶ
𝔫ୀଶ  , 𝓏 ∈ U°, 

then 

(𝑓 ∗ 𝑔)(𝓏) = 𝓏 + ෍ 𝑎𝔫𝑏𝔫ஶ
𝔫ୀଶ 𝓏𝔫 = (𝑔 ∗ 𝑓)(𝓏). 

Using the convolution defined above, a new operator is next introduced as the 
original part of the present paper. 

  

), Γπ,ρ,β+2,µ f (
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Well-known notations and definitions used for obtaining the original results are next 
presented. 𝒦(U°) denotes the family of analytic functions in U°that have the form: 𝒦[a, 𝔫] = {𝑓 ∈ 𝒦(U°): 𝑓(𝓏) = 𝑎 + 𝑎𝔫𝓏𝔫 + 𝑎𝔫ାଵ𝓏𝔫ାଵ + ⋯ }, 𝑎 ∈ ℂ, 𝔫 ∈ 𝑁 = {1,2, … }, 

and let ℧𝔫 be the collection of the form: ℧𝔫 = {𝑓 ∈ 𝒦(𝑈°): 𝑓(𝓏) = 𝓏 + 𝑎𝔫ାଵ𝓏𝔫ାଵ + ⋯ }, 
where ℧ଵ = ℧, the subclass of normalized analytic functions in U°. Further, indicate by M 
the subfamily of 𝒦(U°) of the form: 

𝑓(𝓏) = 𝓏 + ෍ 𝑎𝔫𝓏𝔫 , 𝓏 ∈ U°ஶ
𝔫ୀଶ , (1)

which are univalent in U°. For analytic functions 𝑓 and 𝐹, the function 𝑓 is said to be 
subordinate to 𝐹, if 𝑓(𝓏) = 𝐹൫Θ(𝓏)൯, (𝓏 ∈ 𝑈°), 

where Θ(𝓏) is analytic and  Θ(0) = 0, |Θ(𝓏)| < 1. This subordination is indicated by 𝑓(𝓏) ≺ 𝐹(𝓏). 
Cho and Kim [20] proposed the multiplier transformation as a linear operator. Let 𝔫 

be any integer; the multiplier transformation ℒఓఉ: 𝑀 → 𝑀  is given by ℒఓఉ𝑓(𝓏) = 𝓏 +∑ ቀ𝔫ାఓଵାఓቁఉ 𝑎𝔫𝓏𝔫 , 𝜇 ≥ 0, 𝛽 ∈ ℤ = {⋯ , −1,0,1, ⋯ }ஶ𝔫ୀଶ . 
 
The Hurwitz–Lerch Zeta function [21] is 

𝜁గ,ఘ(𝓏) = 1𝜌గ + ෍ 𝓏𝔫(𝔫 + 𝜌)గஶ
𝔫ୀଵ , 

(𝜌 ∈ ℂ\𝑍௢ି = {0, −1, −2, … }, 𝜋 ∈ ℂ, where |𝓏| < 1, ℛ𝑒(𝜋) > 1, 𝓏 ∈ 𝜕𝑈°) 

By making use of the following normalized function, we have: 𝐺గ,ఘ(𝓏) = (1 + 𝜌)గൣ𝜁గ,ఘ(𝓏) − 𝜌ିగ൧ = 𝓏 + ∑ ቀଵାఘ𝔫ାఘቁగ   , 𝓏 ∈ 𝑈°ஶ𝔫ୀଶ . 

If 𝑓, 𝑔 ∈ 𝑀, where 𝑓 given by (1) and 𝑔 is defined by 

𝑔(𝓏) = 𝓏 + ෍ 𝑏𝔫𝓏𝔫ஶ
𝔫ୀଶ  , 𝓏 ∈ U°, 

then 

(𝑓 ∗ 𝑔)(𝓏) = 𝓏 + ෍ 𝑎𝔫𝑏𝔫ஶ
𝔫ୀଶ 𝓏𝔫 = (𝑔 ∗ 𝑓)(𝓏). 

Using the convolution defined above, a new operator is next introduced as the 
original part of the present paper. 

  

), Γπ,ρ,β+3,µ f (
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Well-known notations and definitions used for obtaining the original results are next 
presented. 𝒦(U°) denotes the family of analytic functions in U°that have the form: 𝒦[a, 𝔫] = {𝑓 ∈ 𝒦(U°): 𝑓(𝓏) = 𝑎 + 𝑎𝔫𝓏𝔫 + 𝑎𝔫ାଵ𝓏𝔫ାଵ + ⋯ }, 𝑎 ∈ ℂ, 𝔫 ∈ 𝑁 = {1,2, … }, 

and let ℧𝔫 be the collection of the form: ℧𝔫 = {𝑓 ∈ 𝒦(𝑈°): 𝑓(𝓏) = 𝓏 + 𝑎𝔫ାଵ𝓏𝔫ାଵ + ⋯ }, 
where ℧ଵ = ℧, the subclass of normalized analytic functions in U°. Further, indicate by M 
the subfamily of 𝒦(U°) of the form: 

𝑓(𝓏) = 𝓏 + ෍ 𝑎𝔫𝓏𝔫 , 𝓏 ∈ U°ஶ
𝔫ୀଶ , (1)

which are univalent in U°. For analytic functions 𝑓 and 𝐹, the function 𝑓 is said to be 
subordinate to 𝐹, if 𝑓(𝓏) = 𝐹൫Θ(𝓏)൯, (𝓏 ∈ 𝑈°), 

where Θ(𝓏) is analytic and  Θ(0) = 0, |Θ(𝓏)| < 1. This subordination is indicated by 𝑓(𝓏) ≺ 𝐹(𝓏). 
Cho and Kim [20] proposed the multiplier transformation as a linear operator. Let 𝔫 

be any integer; the multiplier transformation ℒఓఉ: 𝑀 → 𝑀  is given by ℒఓఉ𝑓(𝓏) = 𝓏 +∑ ቀ𝔫ାఓଵାఓቁఉ 𝑎𝔫𝓏𝔫 , 𝜇 ≥ 0, 𝛽 ∈ ℤ = {⋯ , −1,0,1, ⋯ }ஶ𝔫ୀଶ . 
 
The Hurwitz–Lerch Zeta function [21] is 

𝜁గ,ఘ(𝓏) = 1𝜌గ + ෍ 𝓏𝔫(𝔫 + 𝜌)గஶ
𝔫ୀଵ , 

(𝜌 ∈ ℂ\𝑍௢ି = {0, −1, −2, … }, 𝜋 ∈ ℂ, where |𝓏| < 1, ℛ𝑒(𝜋) > 1, 𝓏 ∈ 𝜕𝑈°) 

By making use of the following normalized function, we have: 𝐺గ,ఘ(𝓏) = (1 + 𝜌)గൣ𝜁గ,ఘ(𝓏) − 𝜌ିగ൧ = 𝓏 + ∑ ቀଵାఘ𝔫ାఘቁగ   , 𝓏 ∈ 𝑈°ஶ𝔫ୀଶ . 

If 𝑓, 𝑔 ∈ 𝑀, where 𝑓 given by (1) and 𝑔 is defined by 

𝑔(𝓏) = 𝓏 + ෍ 𝑏𝔫𝓏𝔫ஶ
𝔫ୀଶ  , 𝓏 ∈ U°, 

then 

(𝑓 ∗ 𝑔)(𝓏) = 𝓏 + ෍ 𝑎𝔫𝑏𝔫ஶ
𝔫ୀଶ 𝓏𝔫 = (𝑔 ∗ 𝑓)(𝓏). 

Using the convolution defined above, a new operator is next introduced as the 
original part of the present paper. 

  

), Γπ,ρ,β+4,µ f (
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Well-known notations and definitions used for obtaining the original results are next 
presented. 𝒦(U°) denotes the family of analytic functions in U°that have the form: 𝒦[a, 𝔫] = {𝑓 ∈ 𝒦(U°): 𝑓(𝓏) = 𝑎 + 𝑎𝔫𝓏𝔫 + 𝑎𝔫ାଵ𝓏𝔫ାଵ + ⋯ }, 𝑎 ∈ ℂ, 𝔫 ∈ 𝑁 = {1,2, … }, 

and let ℧𝔫 be the collection of the form: ℧𝔫 = {𝑓 ∈ 𝒦(𝑈°): 𝑓(𝓏) = 𝓏 + 𝑎𝔫ାଵ𝓏𝔫ାଵ + ⋯ }, 
where ℧ଵ = ℧, the subclass of normalized analytic functions in U°. Further, indicate by M 
the subfamily of 𝒦(U°) of the form: 

𝑓(𝓏) = 𝓏 + ෍ 𝑎𝔫𝓏𝔫 , 𝓏 ∈ U°ஶ
𝔫ୀଶ , (1)

which are univalent in U°. For analytic functions 𝑓 and 𝐹, the function 𝑓 is said to be 
subordinate to 𝐹, if 𝑓(𝓏) = 𝐹൫Θ(𝓏)൯, (𝓏 ∈ 𝑈°), 

where Θ(𝓏) is analytic and  Θ(0) = 0, |Θ(𝓏)| < 1. This subordination is indicated by 𝑓(𝓏) ≺ 𝐹(𝓏). 
Cho and Kim [20] proposed the multiplier transformation as a linear operator. Let 𝔫 

be any integer; the multiplier transformation ℒఓఉ: 𝑀 → 𝑀  is given by ℒఓఉ𝑓(𝓏) = 𝓏 +∑ ቀ𝔫ାఓଵାఓቁఉ 𝑎𝔫𝓏𝔫 , 𝜇 ≥ 0, 𝛽 ∈ ℤ = {⋯ , −1,0,1, ⋯ }ஶ𝔫ୀଶ . 
 
The Hurwitz–Lerch Zeta function [21] is 

𝜁గ,ఘ(𝓏) = 1𝜌గ + ෍ 𝓏𝔫(𝔫 + 𝜌)గஶ
𝔫ୀଵ , 

(𝜌 ∈ ℂ\𝑍௢ି = {0, −1, −2, … }, 𝜋 ∈ ℂ, where |𝓏| < 1, ℛ𝑒(𝜋) > 1, 𝓏 ∈ 𝜕𝑈°) 

By making use of the following normalized function, we have: 𝐺గ,ఘ(𝓏) = (1 + 𝜌)గൣ𝜁గ,ఘ(𝓏) − 𝜌ିగ൧ = 𝓏 + ∑ ቀଵାఘ𝔫ାఘቁగ   , 𝓏 ∈ 𝑈°ஶ𝔫ୀଶ . 

If 𝑓, 𝑔 ∈ 𝑀, where 𝑓 given by (1) and 𝑔 is defined by 

𝑔(𝓏) = 𝓏 + ෍ 𝑏𝔫𝓏𝔫ஶ
𝔫ୀଶ  , 𝓏 ∈ U°, 

then 

(𝑓 ∗ 𝑔)(𝓏) = 𝓏 + ෍ 𝑎𝔫𝑏𝔫ஶ
𝔫ୀଶ 𝓏𝔫 = (𝑔 ∗ 𝑓)(𝓏). 

Using the convolution defined above, a new operator is next introduced as the 
original part of the present paper. 

  

);
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subordinate to 𝐹, if 𝑓(𝓏) = 𝐹൫Θ(𝓏)൯, (𝓏 ∈ 𝑈°), 

where Θ(𝓏) is analytic and  Θ(0) = 0, |Θ(𝓏)| < 1. This subordination is indicated by 𝑓(𝓏) ≺ 𝐹(𝓏). 
Cho and Kim [20] proposed the multiplier transformation as a linear operator. Let 𝔫 
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Using the convolution defined above, a new operator is next introduced as the 
original part of the present paper. 

  

) ∈ Ω,

then
∣∣Γπ,ρ,β,µ f (
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)
∣∣ < M.

Now, taking Ω = q
(
U
◦)

= {
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Υ൫𝕄𝑒௜ణ , 𝕜 + 𝜇1 + 𝜇 𝕄𝑒௜ణ, 𝕃 + [(2𝜇 + 1)𝕜 + 𝜇ଶ]𝕄𝑒௜ణ(1 + 𝜇)ଶ  , ℕ + (3𝜇 + 3)𝕃 + [3𝜇ଶ + 3𝜇 + 1)𝕜 + 𝜇ଷ(1 + 𝜇)ଷ , 
𝔸ା(ସఓା଺)ℕା൫ସఓమାଵଶఓା଻൯𝕃ା[൫ସఓయାସఓమାସఓାଵ൯𝕜ାఓర]𝕄௘೔ഛ(ଵାఓ)ర ; 𝓏൰ ∉ 𝛺, 

(21)

such that 1 > −𝜇 , 𝓏 ∈ 𝑈°, ℛℯ൫𝕃𝑒ି௜ణ൯ ≥ (𝕜 − 1)𝕜𝕄, ℛℯ൫ℕ𝑒ି௜ణ൯ ≥ 0 and ℛℯ(𝔸𝑒ି௜ణ) ≥ 0 for 
all 𝜗 ∈ 𝑅 𝑎𝑛𝑑 𝕜 ≥ 3. 
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then ห𝛤గ,ఘ,ఉ,ఓ𝑓(𝓏)ห < 𝕄. 

Now, taking 𝛺 = 𝕢(𝑈°) = {𝓌: |𝓌| < 𝑀}, the class 𝜃௰[𝛺, 𝕄] is simply denoted by 𝜃௰[𝕄]. 
Theorem 7. Assume 𝕜 ≥ 3 , 𝕄 > 0, 𝜇 > −1 . If 𝑓 ∈ 𝑀  satisfies the conditions ห𝛤గ,ఘ,ఉାଶ,ఓ𝑓(𝓏)ห ≤ 𝕜ଶ 𝕄, and ห(1 + 𝜇)ସ𝛤గ,ఘ,ఉାସ,ఓ𝑓(𝓏) − 𝜇(1 + 𝜇)ଷ𝛤గ,ఘ,ఉାଷ,ఓ𝑓(𝓏)ห < (|1 + 3𝜇 +𝛿𝜇ଶ + 𝜇ଷ| + 2|7 + 9𝜇 + 𝜇ଶ|)3𝕄 , then ห𝛤గ,ఘ,ఉ,ఓ𝑓(𝓏)ห < 𝕄. 

Proof: Assume that Υ(𝕣, 𝕤, 𝕩, 𝕪, 𝕘, 𝓏) = (1 + 𝜇)ସ𝕘 − 𝜇(1 + 𝜇)ଷ𝕪 , Ω = 𝓀(𝑈°), such that 𝓀(𝓏) =  (|1 + 3𝜇 + 𝜇ଶ + 𝜇ଷ| + 2|7 + 9𝜇 + 𝛿𝜇ଶ|)3𝕄𝓏 , 𝕄 > 0. 
Now, by applying Theorem 6, we show that Υ ∈ 𝜃୻,ଵ[Ω, 𝕄]. Because ቤΥ൫𝕄𝑒௜ణ , 𝕜 + 𝜇1 + 𝜇 𝕄𝑒௜ణ, 𝕃 + [(2𝜇 + 1)𝕜 + 𝜇ଶ]𝕄𝑒௜ణ(1 + 𝜇)ଶ  , ℕ + (3 + 3𝜇)𝕃 + [1 + 3𝜇 + 3𝜇ଶ)𝕜 + 𝜇ଷ(1 + 𝜇)ଷ , 𝔸 + (6 + 4μ)ℕ + (7 + 12μ + 4μଶ)𝕃 + [(1 + 4μ + 4μଶ + 4𝜇ଷ)𝕜 + μସ]𝕄e୧஬(1 + μ)ସ ; 𝓏)ቤ = ห𝔸 + (6 + 3𝜇)ℕ + (7 + 9𝜇 + 𝜇ଶ)𝕃 + (1 + 3𝜇 + 𝜇ଶ + 𝜇ଷ)𝕜𝕄𝑒௜ణห = ห𝔸𝑒ି௜ణ + (6 + 3𝜇)ℕ𝑒ି௜ణ + (7 + 9𝜇 + 𝜇ଶ)𝕃𝑒ି௜ణ + (1 + 3𝜇 + 𝜇ଷ)𝕜𝕄ห   ≥ ℛℯ൫𝔸𝑒ି௜ణ൯ + |(6 + 3𝜇)|ℛℯ൫ℕ𝑒ି௜ణ൯ + |(7 + 9𝜇 + 𝜇ଶ)|𝕃𝑒ି௜ణ + |(1 + 3𝜇 + 𝜇ଶ + 𝜇ଷ)|𝕜𝕄,  ≥ |(1 + 3𝜇 + 𝜇ଶ+𝜇ଷ)|𝕜𝕄 + 2|(7 + 9𝜇 + 𝜇ଶ)|𝕜(𝕜 − 1)𝕄  ≥ (|(1 + 3𝜇 + 𝜇ଶ + 𝜇ଷ)| + 2|(7 + 9𝜇 + 𝜇ଶ)|)3𝕄 , 

such that ℛℯ൫𝔸𝑒ି௜ణ൯ ≥ 0, ℛℯ൫ℕ𝑒ି௜ణ൯ ≥ 0 𝑎𝑛𝑑 ℛℯ൫𝕃𝑒ି௜ణ൯ ≥ (𝕜 − 1)𝕜𝕄𝑎    𝑓𝑜𝑟 𝑎𝑙𝑙  𝜗 ∈ 𝑅 , 𝓏 ∈ 𝑈°𝑎𝑛𝑑 𝕜 ≥ 3. 
The proof is complete. □ 

4. Fourth-Order Differential Superordination Results Using the Operator 𝚪𝝅,𝝆,𝜷,𝝁𝒇(𝔃): 
In this section, we introduce fourth-order differential superordination by using Γగ,ఘ,ఉ,ఓ𝑓(𝓏) defined by (2). For this main aim, the class of admissible functions is given by 

the definition below: 

Definition 9. Assume 𝕢ᇱ(𝓏) ് 0, 𝕢 ∈ 𝒦ଵ 𝑎𝑛𝑑 𝑙𝑒𝑡 𝛺 𝑏𝑒 𝑎 𝑠𝑒𝑡 𝑖𝑛 ℂ . The admissible class 𝛶௰ᇱ[𝛺, 𝕢 ] consists of those functions 𝛶: ℂହ × 𝑈° → ℂ that satisfy the admissibility condition 𝛶(𝕣, 𝕤, 𝕩, 𝕪, 𝕘; 𝒥) ∈ 𝛺, 
where 𝕣 = 𝕢(𝓏)  , 𝕤 = 𝓏𝒥𝕢ᇲ(𝓏)ା𝔪𝕢(𝓏)(ଵାఓ)𝔪 ,  

: |
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| < M}, the class θΓ[Ω,M] is simply denoted
by θΓ[M].

Theorem 7. Assume k ≥ 3 , M > 0, µ > −1. If f ∈ M satisfies the conditions
∣∣Γπ,ρ,β+2,µ f (
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Cho and Kim [20] proposed the multiplier transformation as a linear operator. Let 𝔫 

be any integer; the multiplier transformation ℒఓఉ: 𝑀 → 𝑀  is given by ℒఓఉ𝑓(𝓏) = 𝓏 +∑ ቀ𝔫ାఓଵାఓቁఉ 𝑎𝔫𝓏𝔫 , 𝜇 ≥ 0, 𝛽 ∈ ℤ = {⋯ , −1,0,1, ⋯ }ஶ𝔫ୀଶ . 
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(𝑓 ∗ 𝑔)(𝓏) = 𝓏 + ෍ 𝑎𝔫𝑏𝔫ஶ
𝔫ୀଶ 𝓏𝔫 = (𝑔 ∗ 𝑓)(𝓏). 

Using the convolution defined above, a new operator is next introduced as the 
original part of the present paper. 

  

)
∣∣ ≤

k2 M, and
∣∣∣(1 + µ)4Γπ,ρ,β+4,µ f (
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where Θ(𝓏) is analytic and  Θ(0) = 0, |Θ(𝓏)| < 1. This subordination is indicated by 𝑓(𝓏) ≺ 𝐹(𝓏). 
Cho and Kim [20] proposed the multiplier transformation as a linear operator. Let 𝔫 

be any integer; the multiplier transformation ℒఓఉ: 𝑀 → 𝑀  is given by ℒఓఉ𝑓(𝓏) = 𝓏 +∑ ቀ𝔫ାఓଵାఓቁఉ 𝑎𝔫𝓏𝔫 , 𝜇 ≥ 0, 𝛽 ∈ ℤ = {⋯ , −1,0,1, ⋯ }ஶ𝔫ୀଶ . 
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𝔫ୀଶ  , 𝓏 ∈ U°, 

then 

(𝑓 ∗ 𝑔)(𝓏) = 𝓏 + ෍ 𝑎𝔫𝑏𝔫ஶ
𝔫ୀଶ 𝓏𝔫 = (𝑔 ∗ 𝑓)(𝓏). 

Using the convolution defined above, a new operator is next introduced as the 
original part of the present paper. 

  

)− µ(1 + µ)3Γπ,ρ,β+3,µ f (
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where Θ(𝓏) is analytic and  Θ(0) = 0, |Θ(𝓏)| < 1. This subordination is indicated by 𝑓(𝓏) ≺ 𝐹(𝓏). 
Cho and Kim [20] proposed the multiplier transformation as a linear operator. Let 𝔫 

be any integer; the multiplier transformation ℒఓఉ: 𝑀 → 𝑀  is given by ℒఓఉ𝑓(𝓏) = 𝓏 +∑ ቀ𝔫ାఓଵାఓቁఉ 𝑎𝔫𝓏𝔫 , 𝜇 ≥ 0, 𝛽 ∈ ℤ = {⋯ , −1,0,1, ⋯ }ஶ𝔫ୀଶ . 
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(𝑓 ∗ 𝑔)(𝓏) = 𝓏 + ෍ 𝑎𝔫𝑏𝔫ஶ
𝔫ୀଶ 𝓏𝔫 = (𝑔 ∗ 𝑓)(𝓏). 

Using the convolution defined above, a new operator is next introduced as the 
original part of the present paper. 

  

)
∣∣∣ < (

∣∣1 + 3µ + δµ2 + µ3
∣∣+ 2|7+

9µ + µ2|)3M , then
∣∣Γπ,ρ,β,µ f (
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original part of the present paper. 

  

)
∣∣ < M.

Proof. Assume that Y(r, s,x,y,g,
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then 
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original part of the present paper. 

  

) = (1 + µ)4
g− µ(1 + µ)3

y , Ω =
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{𝜓(𝑝(𝓏), 𝓏𝑝ᇱ(𝓏), 𝓏ଶ𝑝ᇱᇱ(𝓏), 𝓏ଷ𝑝ᇱᇱᇱ(𝓏), 𝓏ସ𝑝ᇱᇱᇱᇱ(𝓏); 𝓏 ∈ 𝑈°)} = 𝓀(𝓏),  (25)

has a solution 𝕢(𝓏) ∈ Ҩଵ. If 𝛤గ,ఘ,ఉ,ఓ𝑓(𝓏) ∈ Ҩଵ, 𝕢 ∈ 𝒦ଵ, 𝕢ᇱ(𝓏) ് 0 and 𝑓 ∈ 𝑀 satisfy the con-
ditions (7) and (22), ൛𝛶൫𝛤గ,ఘ,ఉ,ఓ𝑓(𝓏), 𝛤గ,ఘ,ఉାଵ,ఓ𝑓(𝓏), 𝛤గ,ఘ,ఉାଶ,ఓ𝑓(𝓏), 𝛤గ,ఘ,ఉାଷ,ఓ𝑓(𝓏), 𝛤గ,ఘ,ఉାସ,ఓ𝑓(𝓏)ቁ : 𝓏 ∈ 𝑈°ቅ 
is univalent in 𝑈°, and 𝓀(𝓏) ⊂ {Υ൫Γగ,ఘ,ఉ,ఓ𝑓(𝓏), Γగ,ఘ,ఉାଵ,ఓ𝑓(𝓏), Γగ,ఘ,ఉାଶ,ఓ𝑓(𝓏), Γగ,ఘ,ఉାଷ,ఓ𝑓(𝓏), 𝛤గ,ఘ,ఉାସ,ఓ𝑓(𝓏); 𝓏 ∈ 𝑈°)}, 
then 𝕢(𝓏) ≺ 𝛤గ,ఘ,ఉ,ఋ𝑓(𝓏), and 𝕢(𝓏) is the best subordinate of (24). 

Proof. The proof of theorem is similar to that of Theorem 5 and is omitted here. □ 

5. Sandwich-Type Results 
Now, by using Theorems 5 and 9, we have the sandwich-type result. 

Theorem 11. Consider two analytic functions  𝓀ଵ(𝓏) 𝑎𝑛𝑑 𝕢ଵ(𝓏)  in 𝑈° , and  𝕢ଶ(𝓏) ∈ Ҩଵ 
with  𝕢ଵ(0) = 𝕢ଶ(0) =1. In addition let the function  𝓀ଶ(𝓏) be univalent in  𝑈°  and  𝛶 ∈𝜃௰[ 𝓀ଶ, 𝕢ଶ] ∩ 𝜃௰ᇱ [𝓀ଵ, 𝕢ଵ]. If 𝛤గ,ఘ,ఉ,ఓ𝑓(𝓏) ∈ Ҩଵ ∩ 𝒦, 𝑓 ∈ 𝑀, ൛𝛶൫𝛤గ,ఘ,ఉ,ఓ𝑓(𝓏), 𝛤గ,ఘ,ఉାଵ,ఓ𝑓(𝓏), 𝛤గ,ఘ,ఉାଶ,ఓ𝑓(𝓏), 𝛤గ,ఘ,ఉାଷ,ఓ𝑓(𝓏), 𝛤గ,ఘ,ఉାସ,ఓ𝑓(𝓏)ቁ : 𝓏 ∈ 𝑈°ቅ 

is univalent in 𝑈°, and the two conditions (7) and (22) are satisfied as 𝓀ଵ(𝓏) ≺ {𝛶൫𝛤గ,ఘ,ఉ,ఓ𝑓(𝓏), 𝛤గ,ఘ,ఉାଵ,ఓ𝑓(𝓏), 𝛤గ,ఘ,ఉାଶ,ఓ𝑓(𝓏), 𝛤గ,ఘ,ఉାଷ,ఓ𝑓(𝓏), 𝛤గ,ఘ,ఉାସ,ఓ𝑓(𝓏); 𝓏 ∈ 𝑈°)} ≺  𝓀ଶ(𝓏), 
then 𝕢ଵ(𝓏) ≺ 𝛤గ,ఘ,ఉ,ఓ𝑓(𝓏) ≺ 𝕢ଶ(𝓏) 

6. Conclusions 
A new differential operator is introduced in the present paper in Definition 1. Using 

the concepts of fourth-order differential subordination and superordination, the classes 
of admissible functions are defined related to each of the two concepts, and using those 
definitions, several theorems are proved involving the newly defined operator regarding 
fourth-order subordinations in Section 3 and regarding fourth-order superordination in 
Section 4. By applying a well-known technique, a sandwich-type theorem is stated in 
Section 5 of the paper combining the subordination and superordination results obtained 
before. The results presented here could inspire future work involving other operators 
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the notions of fourth-order differential subordination and superordination using the 
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Cho and Kim [20] proposed the multiplier transformation as a linear operator. Let 𝔫 
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𝔫ୀଵ , 

(𝜌 ∈ ℂ\𝑍௢ି = {0, −1, −2, … }, 𝜋 ∈ ℂ, where |𝓏| < 1, ℛ𝑒(𝜋) > 1, 𝓏 ∈ 𝜕𝑈°) 

By making use of the following normalized function, we have: 𝐺గ,ఘ(𝓏) = (1 + 𝜌)గൣ𝜁గ,ఘ(𝓏) − 𝜌ିగ൧ = 𝓏 + ∑ ቀଵାఘ𝔫ାఘቁగ   , 𝓏 ∈ 𝑈°ஶ𝔫ୀଶ . 
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𝔫ୀଶ 𝓏𝔫 = (𝑔 ∗ 𝑓)(𝓏). 

Using the convolution defined above, a new operator is next introduced as the 
original part of the present paper. 

  

) =
(∣∣∣1 + 3µ + µ2 + µ3

∣∣∣+ 2
∣∣∣7 + 9µ + δµ2

∣∣∣)3M
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, M > 0.

Now, by applying Theorem 6, we show that Y ∈ θΓ,1[Ω,M]. Because

|Y
(
Meiϑ , k+µ

1+µ Meiϑ,
L+[(2µ+1)k+µ2]Meiϑ

(1+µ)2 ,
N+(3+3µ)L+[1+3µ+3µ2)k+µ3

(1+µ)3 ,

A+(6+4µ)N+(7+12µ+4µ2)L+[(1+4µ+4µ2+4µ3)k+µ4]Meiϑ

(1+µ)4 ;
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)|

=
∣∣A+ (6 + 3µ)N+

(
7 + 9µ + µ2)L+

(
1 + 3µ + µ2 + µ3)kMeiϑ

∣∣
=
∣∣Ae−iϑ + (6 + 3µ)Ne−iϑ +

(
7 + 9µ + µ2)Le−iϑ +

(
1 + 3µ + µ3)kM∣∣

≥ Re
(
Ae−iϑ)+ |(6 + 3µ)|Re

(
Ne−iϑ)+ ∣∣(7 + 9µ + µ2)∣∣Le−iϑ +

∣∣(1 + 3µ + µ2 + µ3)∣∣kM,

≥
∣∣(1 + 3µ + µ2 + µ3)∣∣kM+ 2

∣∣(7 + 9µ + µ2)∣∣k(k− 1)M

≥
(∣∣(1 + 3µ + µ2 + µ3)∣∣+ 2

∣∣(7 + 9µ + µ2)∣∣)3M ,

such that

Re
(
Ae−iϑ) ≥ 0, Re

(
Ne−iϑ) ≥ 0 and Re

(
Le−iϑ) ≥ (k− 1)kMa

f or all ϑ ∈ R ,
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◦
and k ≥ 3.

The proof is complete. �



Symmetry 2022, 14, 324 9 of 12

4. Fourth-Order Differential Superordination Results Using the Operator Γπ,ρ,β,µf(
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In this section, we introduce fourth-order differential superordination by using Γπ,ρ,β,µ f (
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defined by (2). For this main aim, the class of admissible functions is given by the defini-
tion below:

Definition 9. Assume q′(
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) 6= 0, q ∈ K1 and let Ω be a set in C. The admissible class
Y′Γ[Ω,q ] consists of those functions Y : C5 ×U

◦
→ C that satisfy the admissibility condition

Y(r, s,x,y,g;J ) ∈ Ω,

where

r = q(
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(1+µ)m
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{

(1+µ)2x−µ2r

(1+µ)s−µr
− 2µ

}
≥ 1
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)

}
,

and

Re
{

(1+µ)[(1+µ)3g−(1+µ)2(6+4µ)y+(1+µ)(11+18µ+8µ2)x
(1+µ)s+µr

−(6+22µ+18µ2+8µ3)s]+(6µ+11µ2+6µ3+3µ4)r
(1+µ)s+µr

}
≥ 1

m3Re
{
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◦
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◦
, µ ∈ C\Z−O , Z−O = {0,−1,−2, . . .} and m ≥ 3.

Theorem 8. Assume that Y ∈ θ′Γ[Ω,q]. If f ∈ M and Γπ,ρ,β,µ f (
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Definition 1. Assume  𝑓 ∈ 𝑀, 𝓏 ∈ 𝜕𝑈°, 𝜌 ∈ ℂ\𝑍௢ି = {0, −1, −2, … }, 𝑤ℎ𝑒𝑟𝑒 |𝓏| < 1, ℛ𝑒(𝜋) >1, 𝜇 ≥ 0, 𝛽 ∈ ℤ, 𝜋 ∈ ℂ; we define new operator 𝛤గ,ఘ,ఉ,ఓ𝑓(𝓏): 𝑀 → 𝑀, where 

Γగ,ఘ,ఉ,ఓ𝑓(𝓏) = 𝐺గ,ఘ(𝓏) ∗ ℒఓఉ𝑓(𝓏) = 𝓏 + ෍ ൬1 + 𝜌𝔫 + 𝜌൰గ ൬𝔫 + 𝜇1 + 𝜇൰ఉ 𝑎𝔫𝓏𝔫ஶ
𝔫ୀଶ . (2)

After a simple computation, we obtain the relation: 𝓏 ቀΓగ,ఘ,ఉ,ఓ𝑓(𝓏)ቁᇱ = (1 + 𝜇)Γగ,ఘ,ఉାଵ,ఓ𝑓(𝓏) − 𝜇 Γగ,ఘ,ఉ,ఓ𝑓(𝓏). (3)

2. Problem Formulation 
The subcollection of various analytic and univalent functions, which are connected 

to differential subordination and superordination in the open unit disk U°, has been ini-
tiated in recent times from a variety of intriguing outcomes and perspectives (cf. 
[22,23,24,25,7,26,27,28]). Additionally, several authors obtained good results on second- 
and third-order differential subordination; e.g., [29,30,31–34,35]. 

In order to demonstrate the original results, we will need the basic concepts of 
fourth-order theory previously introduced, which we present below showing the papers 
where they first appeared. 

Definition 2. Ref. [4]: Assume that Ҩ is called the set of functions 𝕢 that are univalent and 
analytic on the set 𝑈°\𝐸(𝕢) , where 𝐸(𝕢) = {𝒥: 𝒥 ∈ 𝜕𝑈° 𝑎𝑛𝑑 𝑙𝑖𝑚𝓏→𝒥 𝕢(𝓏) = ∞}  are such that 𝑚𝑖𝑛|𝕢ᇱ(𝒥)| = 𝛾 > 0 𝑓𝑜𝑟 𝒥 ∈ 𝜕𝑈°\𝐸(𝕢). In addition, indicate by Ҩ(𝑎) the subclass of function 𝕢 for which 𝕢(0) = 𝑎. Note that  Ҩଵ = Ҩ(1) = {𝕢(𝓏) ∈ Ҩ: 𝕢(0) = 1}. 

Definition 3. See [6,7]: Assume that 𝓀 is univalent in 𝑈°and 𝜓: ℂହ × 𝑈° → ℂ. If the analytic 
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1 satisfy the conditions

Re
(
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Well-known notations and definitions used for obtaining the original results are next 
presented. 𝒦(U°) denotes the family of analytic functions in U°that have the form: 𝒦[a, 𝔫] = {𝑓 ∈ 𝒦(U°): 𝑓(𝓏) = 𝑎 + 𝑎𝔫𝓏𝔫 + 𝑎𝔫ାଵ𝓏𝔫ାଵ + ⋯ }, 𝑎 ∈ ℂ, 𝔫 ∈ 𝑁 = {1,2, … }, 

and let ℧𝔫 be the collection of the form: ℧𝔫 = {𝑓 ∈ 𝒦(𝑈°): 𝑓(𝓏) = 𝓏 + 𝑎𝔫ାଵ𝓏𝔫ାଵ + ⋯ }, 
where ℧ଵ = ℧, the subclass of normalized analytic functions in U°. Further, indicate by M 
the subfamily of 𝒦(U°) of the form: 

𝑓(𝓏) = 𝓏 + ෍ 𝑎𝔫𝓏𝔫 , 𝓏 ∈ U°ஶ
𝔫ୀଶ , (1)

which are univalent in U°. For analytic functions 𝑓 and 𝐹, the function 𝑓 is said to be 
subordinate to 𝐹, if 𝑓(𝓏) = 𝐹൫Θ(𝓏)൯, (𝓏 ∈ 𝑈°), 

where Θ(𝓏) is analytic and  Θ(0) = 0, |Θ(𝓏)| < 1. This subordination is indicated by 𝑓(𝓏) ≺ 𝐹(𝓏). 
Cho and Kim [20] proposed the multiplier transformation as a linear operator. Let 𝔫 

be any integer; the multiplier transformation ℒఓఉ: 𝑀 → 𝑀  is given by ℒఓఉ𝑓(𝓏) = 𝓏 +∑ ቀ𝔫ାఓଵାఓቁఉ 𝑎𝔫𝓏𝔫 , 𝜇 ≥ 0, 𝛽 ∈ ℤ = {⋯ , −1,0,1, ⋯ }ஶ𝔫ୀଶ . 
 
The Hurwitz–Lerch Zeta function [21] is 

𝜁గ,ఘ(𝓏) = 1𝜌గ + ෍ 𝓏𝔫(𝔫 + 𝜌)గஶ
𝔫ୀଵ , 

(𝜌 ∈ ℂ\𝑍௢ି = {0, −1, −2, … }, 𝜋 ∈ ℂ, where |𝓏| < 1, ℛ𝑒(𝜋) > 1, 𝓏 ∈ 𝜕𝑈°) 

By making use of the following normalized function, we have: 𝐺గ,ఘ(𝓏) = (1 + 𝜌)గൣ𝜁గ,ఘ(𝓏) − 𝜌ିగ൧ = 𝓏 + ∑ ቀଵାఘ𝔫ାఘቁగ   , 𝓏 ∈ 𝑈°ஶ𝔫ୀଶ . 

If 𝑓, 𝑔 ∈ 𝑀, where 𝑓 given by (1) and 𝑔 is defined by 

𝑔(𝓏) = 𝓏 + ෍ 𝑏𝔫𝓏𝔫ஶ
𝔫ୀଶ  , 𝓏 ∈ U°, 

then 

(𝑓 ∗ 𝑔)(𝓏) = 𝓏 + ෍ 𝑎𝔫𝑏𝔫ஶ
𝔫ୀଶ 𝓏𝔫 = (𝑔 ∗ 𝑓)(𝓏). 

Using the convolution defined above, a new operator is next introduced as the 
original part of the present paper. 

  

2q′′′ (
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(𝜌 ∈ ℂ\𝑍௢ି = {0, −1, −2, … }, 𝜋 ∈ ℂ, where |𝓏| < 1, ℛ𝑒(𝜋) > 1, 𝓏 ∈ 𝜕𝑈°) 

By making use of the following normalized function, we have: 𝐺గ,ఘ(𝓏) = (1 + 𝜌)గൣ𝜁గ,ఘ(𝓏) − 𝜌ିగ൧ = 𝓏 + ∑ ቀଵାఘ𝔫ାఘቁగ   , 𝓏 ∈ 𝑈°ஶ𝔫ୀଶ . 

If 𝑓, 𝑔 ∈ 𝑀, where 𝑓 given by (1) and 𝑔 is defined by 

𝑔(𝓏) = 𝓏 + ෍ 𝑏𝔫𝓏𝔫ஶ
𝔫ୀଶ  , 𝓏 ∈ U°, 

then 

(𝑓 ∗ 𝑔)(𝓏) = 𝓏 + ෍ 𝑎𝔫𝑏𝔫ஶ
𝔫ୀଶ 𝓏𝔫 = (𝑔 ∗ 𝑓)(𝓏). 

Using the convolution defined above, a new operator is next introduced as the 
original part of the present paper. 

  

), Γπ,ρ,β+1,µ f (
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Well-known notations and definitions used for obtaining the original results are next 
presented. 𝒦(U°) denotes the family of analytic functions in U°that have the form: 𝒦[a, 𝔫] = {𝑓 ∈ 𝒦(U°): 𝑓(𝓏) = 𝑎 + 𝑎𝔫𝓏𝔫 + 𝑎𝔫ାଵ𝓏𝔫ାଵ + ⋯ }, 𝑎 ∈ ℂ, 𝔫 ∈ 𝑁 = {1,2, … }, 

and let ℧𝔫 be the collection of the form: ℧𝔫 = {𝑓 ∈ 𝒦(𝑈°): 𝑓(𝓏) = 𝓏 + 𝑎𝔫ାଵ𝓏𝔫ାଵ + ⋯ }, 
where ℧ଵ = ℧, the subclass of normalized analytic functions in U°. Further, indicate by M 
the subfamily of 𝒦(U°) of the form: 

𝑓(𝓏) = 𝓏 + ෍ 𝑎𝔫𝓏𝔫 , 𝓏 ∈ U°ஶ
𝔫ୀଶ , (1)

which are univalent in U°. For analytic functions 𝑓 and 𝐹, the function 𝑓 is said to be 
subordinate to 𝐹, if 𝑓(𝓏) = 𝐹൫Θ(𝓏)൯, (𝓏 ∈ 𝑈°), 

where Θ(𝓏) is analytic and  Θ(0) = 0, |Θ(𝓏)| < 1. This subordination is indicated by 𝑓(𝓏) ≺ 𝐹(𝓏). 
Cho and Kim [20] proposed the multiplier transformation as a linear operator. Let 𝔫 

be any integer; the multiplier transformation ℒఓఉ: 𝑀 → 𝑀  is given by ℒఓఉ𝑓(𝓏) = 𝓏 +∑ ቀ𝔫ାఓଵାఓቁఉ 𝑎𝔫𝓏𝔫 , 𝜇 ≥ 0, 𝛽 ∈ ℤ = {⋯ , −1,0,1, ⋯ }ஶ𝔫ୀଶ . 
 
The Hurwitz–Lerch Zeta function [21] is 

𝜁గ,ఘ(𝓏) = 1𝜌గ + ෍ 𝓏𝔫(𝔫 + 𝜌)గஶ
𝔫ୀଵ , 

(𝜌 ∈ ℂ\𝑍௢ି = {0, −1, −2, … }, 𝜋 ∈ ℂ, where |𝓏| < 1, ℛ𝑒(𝜋) > 1, 𝓏 ∈ 𝜕𝑈°) 

By making use of the following normalized function, we have: 𝐺గ,ఘ(𝓏) = (1 + 𝜌)గൣ𝜁గ,ఘ(𝓏) − 𝜌ିగ൧ = 𝓏 + ∑ ቀଵାఘ𝔫ାఘቁగ   , 𝓏 ∈ 𝑈°ஶ𝔫ୀଶ . 

If 𝑓, 𝑔 ∈ 𝑀, where 𝑓 given by (1) and 𝑔 is defined by 

𝑔(𝓏) = 𝓏 + ෍ 𝑏𝔫𝓏𝔫ஶ
𝔫ୀଶ  , 𝓏 ∈ U°, 

then 

(𝑓 ∗ 𝑔)(𝓏) = 𝓏 + ෍ 𝑎𝔫𝑏𝔫ஶ
𝔫ୀଶ 𝓏𝔫 = (𝑔 ∗ 𝑓)(𝓏). 

Using the convolution defined above, a new operator is next introduced as the 
original part of the present paper. 

  

), Γπ,ρ,β+2,µ f (
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Well-known notations and definitions used for obtaining the original results are next 
presented. 𝒦(U°) denotes the family of analytic functions in U°that have the form: 𝒦[a, 𝔫] = {𝑓 ∈ 𝒦(U°): 𝑓(𝓏) = 𝑎 + 𝑎𝔫𝓏𝔫 + 𝑎𝔫ାଵ𝓏𝔫ାଵ + ⋯ }, 𝑎 ∈ ℂ, 𝔫 ∈ 𝑁 = {1,2, … }, 

and let ℧𝔫 be the collection of the form: ℧𝔫 = {𝑓 ∈ 𝒦(𝑈°): 𝑓(𝓏) = 𝓏 + 𝑎𝔫ାଵ𝓏𝔫ାଵ + ⋯ }, 
where ℧ଵ = ℧, the subclass of normalized analytic functions in U°. Further, indicate by M 
the subfamily of 𝒦(U°) of the form: 

𝑓(𝓏) = 𝓏 + ෍ 𝑎𝔫𝓏𝔫 , 𝓏 ∈ U°ஶ
𝔫ୀଶ , (1)

which are univalent in U°. For analytic functions 𝑓 and 𝐹, the function 𝑓 is said to be 
subordinate to 𝐹, if 𝑓(𝓏) = 𝐹൫Θ(𝓏)൯, (𝓏 ∈ 𝑈°), 

where Θ(𝓏) is analytic and  Θ(0) = 0, |Θ(𝓏)| < 1. This subordination is indicated by 𝑓(𝓏) ≺ 𝐹(𝓏). 
Cho and Kim [20] proposed the multiplier transformation as a linear operator. Let 𝔫 

be any integer; the multiplier transformation ℒఓఉ: 𝑀 → 𝑀  is given by ℒఓఉ𝑓(𝓏) = 𝓏 +∑ ቀ𝔫ାఓଵାఓቁఉ 𝑎𝔫𝓏𝔫 , 𝜇 ≥ 0, 𝛽 ∈ ℤ = {⋯ , −1,0,1, ⋯ }ஶ𝔫ୀଶ . 
 
The Hurwitz–Lerch Zeta function [21] is 

𝜁గ,ఘ(𝓏) = 1𝜌గ + ෍ 𝓏𝔫(𝔫 + 𝜌)గஶ
𝔫ୀଵ , 

(𝜌 ∈ ℂ\𝑍௢ି = {0, −1, −2, … }, 𝜋 ∈ ℂ, where |𝓏| < 1, ℛ𝑒(𝜋) > 1, 𝓏 ∈ 𝜕𝑈°) 

By making use of the following normalized function, we have: 𝐺గ,ఘ(𝓏) = (1 + 𝜌)గൣ𝜁గ,ఘ(𝓏) − 𝜌ିగ൧ = 𝓏 + ∑ ቀଵାఘ𝔫ାఘቁగ   , 𝓏 ∈ 𝑈°ஶ𝔫ୀଶ . 

If 𝑓, 𝑔 ∈ 𝑀, where 𝑓 given by (1) and 𝑔 is defined by 

𝑔(𝓏) = 𝓏 + ෍ 𝑏𝔫𝓏𝔫ஶ
𝔫ୀଶ  , 𝓏 ∈ U°, 

then 

(𝑓 ∗ 𝑔)(𝓏) = 𝓏 + ෍ 𝑎𝔫𝑏𝔫ஶ
𝔫ୀଶ 𝓏𝔫 = (𝑔 ∗ 𝑓)(𝓏). 

Using the convolution defined above, a new operator is next introduced as the 
original part of the present paper. 

  

), Γπ,ρ,β+3,µ f (
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Well-known notations and definitions used for obtaining the original results are next 
presented. 𝒦(U°) denotes the family of analytic functions in U°that have the form: 𝒦[a, 𝔫] = {𝑓 ∈ 𝒦(U°): 𝑓(𝓏) = 𝑎 + 𝑎𝔫𝓏𝔫 + 𝑎𝔫ାଵ𝓏𝔫ାଵ + ⋯ }, 𝑎 ∈ ℂ, 𝔫 ∈ 𝑁 = {1,2, … }, 

and let ℧𝔫 be the collection of the form: ℧𝔫 = {𝑓 ∈ 𝒦(𝑈°): 𝑓(𝓏) = 𝓏 + 𝑎𝔫ାଵ𝓏𝔫ାଵ + ⋯ }, 
where ℧ଵ = ℧, the subclass of normalized analytic functions in U°. Further, indicate by M 
the subfamily of 𝒦(U°) of the form: 

𝑓(𝓏) = 𝓏 + ෍ 𝑎𝔫𝓏𝔫 , 𝓏 ∈ U°ஶ
𝔫ୀଶ , (1)

which are univalent in U°. For analytic functions 𝑓 and 𝐹, the function 𝑓 is said to be 
subordinate to 𝐹, if 𝑓(𝓏) = 𝐹൫Θ(𝓏)൯, (𝓏 ∈ 𝑈°), 

where Θ(𝓏) is analytic and  Θ(0) = 0, |Θ(𝓏)| < 1. This subordination is indicated by 𝑓(𝓏) ≺ 𝐹(𝓏). 
Cho and Kim [20] proposed the multiplier transformation as a linear operator. Let 𝔫 

be any integer; the multiplier transformation ℒఓఉ: 𝑀 → 𝑀  is given by ℒఓఉ𝑓(𝓏) = 𝓏 +∑ ቀ𝔫ାఓଵାఓቁఉ 𝑎𝔫𝓏𝔫 , 𝜇 ≥ 0, 𝛽 ∈ ℤ = {⋯ , −1,0,1, ⋯ }ஶ𝔫ୀଶ . 
 
The Hurwitz–Lerch Zeta function [21] is 

𝜁గ,ఘ(𝓏) = 1𝜌గ + ෍ 𝓏𝔫(𝔫 + 𝜌)గஶ
𝔫ୀଵ , 

(𝜌 ∈ ℂ\𝑍௢ି = {0, −1, −2, … }, 𝜋 ∈ ℂ, where |𝓏| < 1, ℛ𝑒(𝜋) > 1, 𝓏 ∈ 𝜕𝑈°) 

By making use of the following normalized function, we have: 𝐺గ,ఘ(𝓏) = (1 + 𝜌)గൣ𝜁గ,ఘ(𝓏) − 𝜌ିగ൧ = 𝓏 + ∑ ቀଵାఘ𝔫ାఘቁగ   , 𝓏 ∈ 𝑈°ஶ𝔫ୀଶ . 

If 𝑓, 𝑔 ∈ 𝑀, where 𝑓 given by (1) and 𝑔 is defined by 

𝑔(𝓏) = 𝓏 + ෍ 𝑏𝔫𝓏𝔫ஶ
𝔫ୀଶ  , 𝓏 ∈ U°, 

then 

(𝑓 ∗ 𝑔)(𝓏) = 𝓏 + ෍ 𝑎𝔫𝑏𝔫ஶ
𝔫ୀଶ 𝓏𝔫 = (𝑔 ∗ 𝑓)(𝓏). 

Using the convolution defined above, a new operator is next introduced as the 
original part of the present paper. 

  

), Γπ,ρ,β+4,µ f (

Symmetry 2022, 14, x FOR PEER REVIEW 2 of 12 
 

 

Well-known notations and definitions used for obtaining the original results are next 
presented. 𝒦(U°) denotes the family of analytic functions in U°that have the form: 𝒦[a, 𝔫] = {𝑓 ∈ 𝒦(U°): 𝑓(𝓏) = 𝑎 + 𝑎𝔫𝓏𝔫 + 𝑎𝔫ାଵ𝓏𝔫ାଵ + ⋯ }, 𝑎 ∈ ℂ, 𝔫 ∈ 𝑁 = {1,2, … }, 

and let ℧𝔫 be the collection of the form: ℧𝔫 = {𝑓 ∈ 𝒦(𝑈°): 𝑓(𝓏) = 𝓏 + 𝑎𝔫ାଵ𝓏𝔫ାଵ + ⋯ }, 
where ℧ଵ = ℧, the subclass of normalized analytic functions in U°. Further, indicate by M 
the subfamily of 𝒦(U°) of the form: 

𝑓(𝓏) = 𝓏 + ෍ 𝑎𝔫𝓏𝔫 , 𝓏 ∈ U°ஶ
𝔫ୀଶ , (1)

which are univalent in U°. For analytic functions 𝑓 and 𝐹, the function 𝑓 is said to be 
subordinate to 𝐹, if 𝑓(𝓏) = 𝐹൫Θ(𝓏)൯, (𝓏 ∈ 𝑈°), 

where Θ(𝓏) is analytic and  Θ(0) = 0, |Θ(𝓏)| < 1. This subordination is indicated by 𝑓(𝓏) ≺ 𝐹(𝓏). 
Cho and Kim [20] proposed the multiplier transformation as a linear operator. Let 𝔫 

be any integer; the multiplier transformation ℒఓఉ: 𝑀 → 𝑀  is given by ℒఓఉ𝑓(𝓏) = 𝓏 +∑ ቀ𝔫ାఓଵାఓቁఉ 𝑎𝔫𝓏𝔫 , 𝜇 ≥ 0, 𝛽 ∈ ℤ = {⋯ , −1,0,1, ⋯ }ஶ𝔫ୀଶ . 
 
The Hurwitz–Lerch Zeta function [21] is 

𝜁గ,ఘ(𝓏) = 1𝜌గ + ෍ 𝓏𝔫(𝔫 + 𝜌)గஶ
𝔫ୀଵ , 

(𝜌 ∈ ℂ\𝑍௢ି = {0, −1, −2, … }, 𝜋 ∈ ℂ, where |𝓏| < 1, ℛ𝑒(𝜋) > 1, 𝓏 ∈ 𝜕𝑈°) 

By making use of the following normalized function, we have: 𝐺గ,ఘ(𝓏) = (1 + 𝜌)గൣ𝜁గ,ఘ(𝓏) − 𝜌ିగ൧ = 𝓏 + ∑ ቀଵାఘ𝔫ାఘቁగ   , 𝓏 ∈ 𝑈°ஶ𝔫ୀଶ . 

If 𝑓, 𝑔 ∈ 𝑀, where 𝑓 given by (1) and 𝑔 is defined by 

𝑔(𝓏) = 𝓏 + ෍ 𝑏𝔫𝓏𝔫ஶ
𝔫ୀଶ  , 𝓏 ∈ U°, 

then 

(𝑓 ∗ 𝑔)(𝓏) = 𝓏 + ෍ 𝑎𝔫𝑏𝔫ஶ
𝔫ୀଶ 𝓏𝔫 = (𝑔 ∗ 𝑓)(𝓏). 

Using the convolution defined above, a new operator is next introduced as the 
original part of the present paper. 

  

)
)

:
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Well-known notations and definitions used for obtaining the original results are next 
presented. 𝒦(U°) denotes the family of analytic functions in U°that have the form: 𝒦[a, 𝔫] = {𝑓 ∈ 𝒦(U°): 𝑓(𝓏) = 𝑎 + 𝑎𝔫𝓏𝔫 + 𝑎𝔫ାଵ𝓏𝔫ାଵ + ⋯ }, 𝑎 ∈ ℂ, 𝔫 ∈ 𝑁 = {1,2, … }, 

and let ℧𝔫 be the collection of the form: ℧𝔫 = {𝑓 ∈ 𝒦(𝑈°): 𝑓(𝓏) = 𝓏 + 𝑎𝔫ାଵ𝓏𝔫ାଵ + ⋯ }, 
where ℧ଵ = ℧, the subclass of normalized analytic functions in U°. Further, indicate by M 
the subfamily of 𝒦(U°) of the form: 

𝑓(𝓏) = 𝓏 + ෍ 𝑎𝔫𝓏𝔫 , 𝓏 ∈ U°ஶ
𝔫ୀଶ , (1)

which are univalent in U°. For analytic functions 𝑓 and 𝐹, the function 𝑓 is said to be 
subordinate to 𝐹, if 𝑓(𝓏) = 𝐹൫Θ(𝓏)൯, (𝓏 ∈ 𝑈°), 

where Θ(𝓏) is analytic and  Θ(0) = 0, |Θ(𝓏)| < 1. This subordination is indicated by 𝑓(𝓏) ≺ 𝐹(𝓏). 
Cho and Kim [20] proposed the multiplier transformation as a linear operator. Let 𝔫 

be any integer; the multiplier transformation ℒఓఉ: 𝑀 → 𝑀  is given by ℒఓఉ𝑓(𝓏) = 𝓏 +∑ ቀ𝔫ାఓଵାఓቁఉ 𝑎𝔫𝓏𝔫 , 𝜇 ≥ 0, 𝛽 ∈ ℤ = {⋯ , −1,0,1, ⋯ }ஶ𝔫ୀଶ . 
 
The Hurwitz–Lerch Zeta function [21] is 

𝜁గ,ఘ(𝓏) = 1𝜌గ + ෍ 𝓏𝔫(𝔫 + 𝜌)గஶ
𝔫ୀଵ , 

(𝜌 ∈ ℂ\𝑍௢ି = {0, −1, −2, … }, 𝜋 ∈ ℂ, where |𝓏| < 1, ℛ𝑒(𝜋) > 1, 𝓏 ∈ 𝜕𝑈°) 

By making use of the following normalized function, we have: 𝐺గ,ఘ(𝓏) = (1 + 𝜌)గൣ𝜁గ,ఘ(𝓏) − 𝜌ିగ൧ = 𝓏 + ∑ ቀଵାఘ𝔫ାఘቁగ   , 𝓏 ∈ 𝑈°ஶ𝔫ୀଶ . 

If 𝑓, 𝑔 ∈ 𝑀, where 𝑓 given by (1) and 𝑔 is defined by 

𝑔(𝓏) = 𝓏 + ෍ 𝑏𝔫𝓏𝔫ஶ
𝔫ୀଶ  , 𝓏 ∈ U°, 

then 

(𝑓 ∗ 𝑔)(𝓏) = 𝓏 + ෍ 𝑎𝔫𝑏𝔫ஶ
𝔫ୀଶ 𝓏𝔫 = (𝑔 ∗ 𝑓)(𝓏). 

Using the convolution defined above, a new operator is next introduced as the 
original part of the present paper. 
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Well-known notations and definitions used for obtaining the original results are next 
presented. 𝒦(U°) denotes the family of analytic functions in U°that have the form: 𝒦[a, 𝔫] = {𝑓 ∈ 𝒦(U°): 𝑓(𝓏) = 𝑎 + 𝑎𝔫𝓏𝔫 + 𝑎𝔫ାଵ𝓏𝔫ାଵ + ⋯ }, 𝑎 ∈ ℂ, 𝔫 ∈ 𝑁 = {1,2, … }, 

and let ℧𝔫 be the collection of the form: ℧𝔫 = {𝑓 ∈ 𝒦(𝑈°): 𝑓(𝓏) = 𝓏 + 𝑎𝔫ାଵ𝓏𝔫ାଵ + ⋯ }, 
where ℧ଵ = ℧, the subclass of normalized analytic functions in U°. Further, indicate by M 
the subfamily of 𝒦(U°) of the form: 

𝑓(𝓏) = 𝓏 + ෍ 𝑎𝔫𝓏𝔫 , 𝓏 ∈ U°ஶ
𝔫ୀଶ , (1)

which are univalent in U°. For analytic functions 𝑓 and 𝐹, the function 𝑓 is said to be 
subordinate to 𝐹, if 𝑓(𝓏) = 𝐹൫Θ(𝓏)൯, (𝓏 ∈ 𝑈°), 

where Θ(𝓏) is analytic and  Θ(0) = 0, |Θ(𝓏)| < 1. This subordination is indicated by 𝑓(𝓏) ≺ 𝐹(𝓏). 
Cho and Kim [20] proposed the multiplier transformation as a linear operator. Let 𝔫 

be any integer; the multiplier transformation ℒఓఉ: 𝑀 → 𝑀  is given by ℒఓఉ𝑓(𝓏) = 𝓏 +∑ ቀ𝔫ାఓଵାఓቁఉ 𝑎𝔫𝓏𝔫 , 𝜇 ≥ 0, 𝛽 ∈ ℤ = {⋯ , −1,0,1, ⋯ }ஶ𝔫ୀଶ . 
 
The Hurwitz–Lerch Zeta function [21] is 

𝜁గ,ఘ(𝓏) = 1𝜌గ + ෍ 𝓏𝔫(𝔫 + 𝜌)గஶ
𝔫ୀଵ , 

(𝜌 ∈ ℂ\𝑍௢ି = {0, −1, −2, … }, 𝜋 ∈ ℂ, where |𝓏| < 1, ℛ𝑒(𝜋) > 1, 𝓏 ∈ 𝜕𝑈°) 

By making use of the following normalized function, we have: 𝐺గ,ఘ(𝓏) = (1 + 𝜌)గൣ𝜁గ,ఘ(𝓏) − 𝜌ିగ൧ = 𝓏 + ∑ ቀଵାఘ𝔫ାఘቁగ   , 𝓏 ∈ 𝑈°ஶ𝔫ୀଶ . 

If 𝑓, 𝑔 ∈ 𝑀, where 𝑓 given by (1) and 𝑔 is defined by 

𝑔(𝓏) = 𝓏 + ෍ 𝑏𝔫𝓏𝔫ஶ
𝔫ୀଶ  , 𝓏 ∈ U°, 

then 

(𝑓 ∗ 𝑔)(𝓏) = 𝓏 + ෍ 𝑎𝔫𝑏𝔫ஶ
𝔫ୀଶ 𝓏𝔫 = (𝑔 ∗ 𝑓)(𝓏). 

Using the convolution defined above, a new operator is next introduced as the 
original part of the present paper. 

  

), Γπ,ρ,β+1,µ f (
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Well-known notations and definitions used for obtaining the original results are next 
presented. 𝒦(U°) denotes the family of analytic functions in U°that have the form: 𝒦[a, 𝔫] = {𝑓 ∈ 𝒦(U°): 𝑓(𝓏) = 𝑎 + 𝑎𝔫𝓏𝔫 + 𝑎𝔫ାଵ𝓏𝔫ାଵ + ⋯ }, 𝑎 ∈ ℂ, 𝔫 ∈ 𝑁 = {1,2, … }, 

and let ℧𝔫 be the collection of the form: ℧𝔫 = {𝑓 ∈ 𝒦(𝑈°): 𝑓(𝓏) = 𝓏 + 𝑎𝔫ାଵ𝓏𝔫ାଵ + ⋯ }, 
where ℧ଵ = ℧, the subclass of normalized analytic functions in U°. Further, indicate by M 
the subfamily of 𝒦(U°) of the form: 

𝑓(𝓏) = 𝓏 + ෍ 𝑎𝔫𝓏𝔫 , 𝓏 ∈ U°ஶ
𝔫ୀଶ , (1)

which are univalent in U°. For analytic functions 𝑓 and 𝐹, the function 𝑓 is said to be 
subordinate to 𝐹, if 𝑓(𝓏) = 𝐹൫Θ(𝓏)൯, (𝓏 ∈ 𝑈°), 

where Θ(𝓏) is analytic and  Θ(0) = 0, |Θ(𝓏)| < 1. This subordination is indicated by 𝑓(𝓏) ≺ 𝐹(𝓏). 
Cho and Kim [20] proposed the multiplier transformation as a linear operator. Let 𝔫 

be any integer; the multiplier transformation ℒఓఉ: 𝑀 → 𝑀  is given by ℒఓఉ𝑓(𝓏) = 𝓏 +∑ ቀ𝔫ାఓଵାఓቁఉ 𝑎𝔫𝓏𝔫 , 𝜇 ≥ 0, 𝛽 ∈ ℤ = {⋯ , −1,0,1, ⋯ }ஶ𝔫ୀଶ . 
 
The Hurwitz–Lerch Zeta function [21] is 

𝜁గ,ఘ(𝓏) = 1𝜌గ + ෍ 𝓏𝔫(𝔫 + 𝜌)గஶ
𝔫ୀଵ , 

(𝜌 ∈ ℂ\𝑍௢ି = {0, −1, −2, … }, 𝜋 ∈ ℂ, where |𝓏| < 1, ℛ𝑒(𝜋) > 1, 𝓏 ∈ 𝜕𝑈°) 

By making use of the following normalized function, we have: 𝐺గ,ఘ(𝓏) = (1 + 𝜌)గൣ𝜁గ,ఘ(𝓏) − 𝜌ିగ൧ = 𝓏 + ∑ ቀଵାఘ𝔫ାఘቁగ   , 𝓏 ∈ 𝑈°ஶ𝔫ୀଶ . 

If 𝑓, 𝑔 ∈ 𝑀, where 𝑓 given by (1) and 𝑔 is defined by 

𝑔(𝓏) = 𝓏 + ෍ 𝑏𝔫𝓏𝔫ஶ
𝔫ୀଶ  , 𝓏 ∈ U°, 

then 

(𝑓 ∗ 𝑔)(𝓏) = 𝓏 + ෍ 𝑎𝔫𝑏𝔫ஶ
𝔫ୀଶ 𝓏𝔫 = (𝑔 ∗ 𝑓)(𝓏). 

Using the convolution defined above, a new operator is next introduced as the 
original part of the present paper. 

  

), Γπ,ρ,β+2,µ f (
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Well-known notations and definitions used for obtaining the original results are next 
presented. 𝒦(U°) denotes the family of analytic functions in U°that have the form: 𝒦[a, 𝔫] = {𝑓 ∈ 𝒦(U°): 𝑓(𝓏) = 𝑎 + 𝑎𝔫𝓏𝔫 + 𝑎𝔫ାଵ𝓏𝔫ାଵ + ⋯ }, 𝑎 ∈ ℂ, 𝔫 ∈ 𝑁 = {1,2, … }, 

and let ℧𝔫 be the collection of the form: ℧𝔫 = {𝑓 ∈ 𝒦(𝑈°): 𝑓(𝓏) = 𝓏 + 𝑎𝔫ାଵ𝓏𝔫ାଵ + ⋯ }, 
where ℧ଵ = ℧, the subclass of normalized analytic functions in U°. Further, indicate by M 
the subfamily of 𝒦(U°) of the form: 

𝑓(𝓏) = 𝓏 + ෍ 𝑎𝔫𝓏𝔫 , 𝓏 ∈ U°ஶ
𝔫ୀଶ , (1)

which are univalent in U°. For analytic functions 𝑓 and 𝐹, the function 𝑓 is said to be 
subordinate to 𝐹, if 𝑓(𝓏) = 𝐹൫Θ(𝓏)൯, (𝓏 ∈ 𝑈°), 

where Θ(𝓏) is analytic and  Θ(0) = 0, |Θ(𝓏)| < 1. This subordination is indicated by 𝑓(𝓏) ≺ 𝐹(𝓏). 
Cho and Kim [20] proposed the multiplier transformation as a linear operator. Let 𝔫 

be any integer; the multiplier transformation ℒఓఉ: 𝑀 → 𝑀  is given by ℒఓఉ𝑓(𝓏) = 𝓏 +∑ ቀ𝔫ାఓଵାఓቁఉ 𝑎𝔫𝓏𝔫 , 𝜇 ≥ 0, 𝛽 ∈ ℤ = {⋯ , −1,0,1, ⋯ }ஶ𝔫ୀଶ . 
 
The Hurwitz–Lerch Zeta function [21] is 

𝜁గ,ఘ(𝓏) = 1𝜌గ + ෍ 𝓏𝔫(𝔫 + 𝜌)గஶ
𝔫ୀଵ , 

(𝜌 ∈ ℂ\𝑍௢ି = {0, −1, −2, … }, 𝜋 ∈ ℂ, where |𝓏| < 1, ℛ𝑒(𝜋) > 1, 𝓏 ∈ 𝜕𝑈°) 

By making use of the following normalized function, we have: 𝐺గ,ఘ(𝓏) = (1 + 𝜌)గൣ𝜁గ,ఘ(𝓏) − 𝜌ିగ൧ = 𝓏 + ∑ ቀଵାఘ𝔫ାఘቁగ   , 𝓏 ∈ 𝑈°ஶ𝔫ୀଶ . 

If 𝑓, 𝑔 ∈ 𝑀, where 𝑓 given by (1) and 𝑔 is defined by 

𝑔(𝓏) = 𝓏 + ෍ 𝑏𝔫𝓏𝔫ஶ
𝔫ୀଶ  , 𝓏 ∈ U°, 

then 

(𝑓 ∗ 𝑔)(𝓏) = 𝓏 + ෍ 𝑎𝔫𝑏𝔫ஶ
𝔫ୀଶ 𝓏𝔫 = (𝑔 ∗ 𝑓)(𝓏). 

Using the convolution defined above, a new operator is next introduced as the 
original part of the present paper. 

  

), Γπ,ρ,β+3,µ f (
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Well-known notations and definitions used for obtaining the original results are next 
presented. 𝒦(U°) denotes the family of analytic functions in U°that have the form: 𝒦[a, 𝔫] = {𝑓 ∈ 𝒦(U°): 𝑓(𝓏) = 𝑎 + 𝑎𝔫𝓏𝔫 + 𝑎𝔫ାଵ𝓏𝔫ାଵ + ⋯ }, 𝑎 ∈ ℂ, 𝔫 ∈ 𝑁 = {1,2, … }, 

and let ℧𝔫 be the collection of the form: ℧𝔫 = {𝑓 ∈ 𝒦(𝑈°): 𝑓(𝓏) = 𝓏 + 𝑎𝔫ାଵ𝓏𝔫ାଵ + ⋯ }, 
where ℧ଵ = ℧, the subclass of normalized analytic functions in U°. Further, indicate by M 
the subfamily of 𝒦(U°) of the form: 

𝑓(𝓏) = 𝓏 + ෍ 𝑎𝔫𝓏𝔫 , 𝓏 ∈ U°ஶ
𝔫ୀଶ , (1)

which are univalent in U°. For analytic functions 𝑓 and 𝐹, the function 𝑓 is said to be 
subordinate to 𝐹, if 𝑓(𝓏) = 𝐹൫Θ(𝓏)൯, (𝓏 ∈ 𝑈°), 

where Θ(𝓏) is analytic and  Θ(0) = 0, |Θ(𝓏)| < 1. This subordination is indicated by 𝑓(𝓏) ≺ 𝐹(𝓏). 
Cho and Kim [20] proposed the multiplier transformation as a linear operator. Let 𝔫 

be any integer; the multiplier transformation ℒఓఉ: 𝑀 → 𝑀  is given by ℒఓఉ𝑓(𝓏) = 𝓏 +∑ ቀ𝔫ାఓଵାఓቁఉ 𝑎𝔫𝓏𝔫 , 𝜇 ≥ 0, 𝛽 ∈ ℤ = {⋯ , −1,0,1, ⋯ }ஶ𝔫ୀଶ . 
 
The Hurwitz–Lerch Zeta function [21] is 

𝜁గ,ఘ(𝓏) = 1𝜌గ + ෍ 𝓏𝔫(𝔫 + 𝜌)గஶ
𝔫ୀଵ , 

(𝜌 ∈ ℂ\𝑍௢ି = {0, −1, −2, … }, 𝜋 ∈ ℂ, where |𝓏| < 1, ℛ𝑒(𝜋) > 1, 𝓏 ∈ 𝜕𝑈°) 

By making use of the following normalized function, we have: 𝐺గ,ఘ(𝓏) = (1 + 𝜌)గൣ𝜁గ,ఘ(𝓏) − 𝜌ିగ൧ = 𝓏 + ∑ ቀଵାఘ𝔫ାఘቁగ   , 𝓏 ∈ 𝑈°ஶ𝔫ୀଶ . 

If 𝑓, 𝑔 ∈ 𝑀, where 𝑓 given by (1) and 𝑔 is defined by 

𝑔(𝓏) = 𝓏 + ෍ 𝑏𝔫𝓏𝔫ஶ
𝔫ୀଶ  , 𝓏 ∈ U°, 

then 

(𝑓 ∗ 𝑔)(𝓏) = 𝓏 + ෍ 𝑎𝔫𝑏𝔫ஶ
𝔫ୀଶ 𝓏𝔫 = (𝑔 ∗ 𝑓)(𝓏). 

Using the convolution defined above, a new operator is next introduced as the 
original part of the present paper. 

  

), Γπ,ρ,β+4,µ f (
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Well-known notations and definitions used for obtaining the original results are next 
presented. 𝒦(U°) denotes the family of analytic functions in U°that have the form: 𝒦[a, 𝔫] = {𝑓 ∈ 𝒦(U°): 𝑓(𝓏) = 𝑎 + 𝑎𝔫𝓏𝔫 + 𝑎𝔫ାଵ𝓏𝔫ାଵ + ⋯ }, 𝑎 ∈ ℂ, 𝔫 ∈ 𝑁 = {1,2, … }, 

and let ℧𝔫 be the collection of the form: ℧𝔫 = {𝑓 ∈ 𝒦(𝑈°): 𝑓(𝓏) = 𝓏 + 𝑎𝔫ାଵ𝓏𝔫ାଵ + ⋯ }, 
where ℧ଵ = ℧, the subclass of normalized analytic functions in U°. Further, indicate by M 
the subfamily of 𝒦(U°) of the form: 

𝑓(𝓏) = 𝓏 + ෍ 𝑎𝔫𝓏𝔫 , 𝓏 ∈ U°ஶ
𝔫ୀଶ , (1)

which are univalent in U°. For analytic functions 𝑓 and 𝐹, the function 𝑓 is said to be 
subordinate to 𝐹, if 𝑓(𝓏) = 𝐹൫Θ(𝓏)൯, (𝓏 ∈ 𝑈°), 

where Θ(𝓏) is analytic and  Θ(0) = 0, |Θ(𝓏)| < 1. This subordination is indicated by 𝑓(𝓏) ≺ 𝐹(𝓏). 
Cho and Kim [20] proposed the multiplier transformation as a linear operator. Let 𝔫 

be any integer; the multiplier transformation ℒఓఉ: 𝑀 → 𝑀  is given by ℒఓఉ𝑓(𝓏) = 𝓏 +∑ ቀ𝔫ାఓଵାఓቁఉ 𝑎𝔫𝓏𝔫 , 𝜇 ≥ 0, 𝛽 ∈ ℤ = {⋯ , −1,0,1, ⋯ }ஶ𝔫ୀଶ . 
 
The Hurwitz–Lerch Zeta function [21] is 

𝜁గ,ఘ(𝓏) = 1𝜌గ + ෍ 𝓏𝔫(𝔫 + 𝜌)గஶ
𝔫ୀଵ , 

(𝜌 ∈ ℂ\𝑍௢ି = {0, −1, −2, … }, 𝜋 ∈ ℂ, where |𝓏| < 1, ℛ𝑒(𝜋) > 1, 𝓏 ∈ 𝜕𝑈°) 

By making use of the following normalized function, we have: 𝐺గ,ఘ(𝓏) = (1 + 𝜌)గൣ𝜁గ,ఘ(𝓏) − 𝜌ିగ൧ = 𝓏 + ∑ ቀଵାఘ𝔫ାఘቁగ   , 𝓏 ∈ 𝑈°ஶ𝔫ୀଶ . 

If 𝑓, 𝑔 ∈ 𝑀, where 𝑓 given by (1) and 𝑔 is defined by 

𝑔(𝓏) = 𝓏 + ෍ 𝑏𝔫𝓏𝔫ஶ
𝔫ୀଶ  , 𝓏 ∈ U°, 

then 

(𝑓 ∗ 𝑔)(𝓏) = 𝓏 + ෍ 𝑎𝔫𝑏𝔫ஶ
𝔫ୀଶ 𝓏𝔫 = (𝑔 ∗ 𝑓)(𝓏). 

Using the convolution defined above, a new operator is next introduced as the 
original part of the present paper. 

  

);
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Well-known notations and definitions used for obtaining the original results are next 
presented. 𝒦(U°) denotes the family of analytic functions in U°that have the form: 𝒦[a, 𝔫] = {𝑓 ∈ 𝒦(U°): 𝑓(𝓏) = 𝑎 + 𝑎𝔫𝓏𝔫 + 𝑎𝔫ାଵ𝓏𝔫ାଵ + ⋯ }, 𝑎 ∈ ℂ, 𝔫 ∈ 𝑁 = {1,2, … }, 

and let ℧𝔫 be the collection of the form: ℧𝔫 = {𝑓 ∈ 𝒦(𝑈°): 𝑓(𝓏) = 𝓏 + 𝑎𝔫ାଵ𝓏𝔫ାଵ + ⋯ }, 
where ℧ଵ = ℧, the subclass of normalized analytic functions in U°. Further, indicate by M 
the subfamily of 𝒦(U°) of the form: 

𝑓(𝓏) = 𝓏 + ෍ 𝑎𝔫𝓏𝔫 , 𝓏 ∈ U°ஶ
𝔫ୀଶ , (1)

which are univalent in U°. For analytic functions 𝑓 and 𝐹, the function 𝑓 is said to be 
subordinate to 𝐹, if 𝑓(𝓏) = 𝐹൫Θ(𝓏)൯, (𝓏 ∈ 𝑈°), 

where Θ(𝓏) is analytic and  Θ(0) = 0, |Θ(𝓏)| < 1. This subordination is indicated by 𝑓(𝓏) ≺ 𝐹(𝓏). 
Cho and Kim [20] proposed the multiplier transformation as a linear operator. Let 𝔫 

be any integer; the multiplier transformation ℒఓఉ: 𝑀 → 𝑀  is given by ℒఓఉ𝑓(𝓏) = 𝓏 +∑ ቀ𝔫ାఓଵାఓቁఉ 𝑎𝔫𝓏𝔫 , 𝜇 ≥ 0, 𝛽 ∈ ℤ = {⋯ , −1,0,1, ⋯ }ஶ𝔫ୀଶ . 
 
The Hurwitz–Lerch Zeta function [21] is 

𝜁గ,ఘ(𝓏) = 1𝜌గ + ෍ 𝓏𝔫(𝔫 + 𝜌)గஶ
𝔫ୀଵ , 

(𝜌 ∈ ℂ\𝑍௢ି = {0, −1, −2, … }, 𝜋 ∈ ℂ, where |𝓏| < 1, ℛ𝑒(𝜋) > 1, 𝓏 ∈ 𝜕𝑈°) 

By making use of the following normalized function, we have: 𝐺గ,ఘ(𝓏) = (1 + 𝜌)గൣ𝜁గ,ఘ(𝓏) − 𝜌ିగ൧ = 𝓏 + ∑ ቀଵାఘ𝔫ାఘቁగ   , 𝓏 ∈ 𝑈°ஶ𝔫ୀଶ . 

If 𝑓, 𝑔 ∈ 𝑀, where 𝑓 given by (1) and 𝑔 is defined by 

𝑔(𝓏) = 𝓏 + ෍ 𝑏𝔫𝓏𝔫ஶ
𝔫ୀଶ  , 𝓏 ∈ U°, 

then 

(𝑓 ∗ 𝑔)(𝓏) = 𝓏 + ෍ 𝑎𝔫𝑏𝔫ஶ
𝔫ୀଶ 𝓏𝔫 = (𝑔 ∗ 𝑓)(𝓏). 

Using the convolution defined above, a new operator is next introduced as the 
original part of the present paper. 

  

∈ U
◦
)
}

, (22)

then q(
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Well-known notations and definitions used for obtaining the original results are next 
presented. 𝒦(U°) denotes the family of analytic functions in U°that have the form: 𝒦[a, 𝔫] = {𝑓 ∈ 𝒦(U°): 𝑓(𝓏) = 𝑎 + 𝑎𝔫𝓏𝔫 + 𝑎𝔫ାଵ𝓏𝔫ାଵ + ⋯ }, 𝑎 ∈ ℂ, 𝔫 ∈ 𝑁 = {1,2, … }, 

and let ℧𝔫 be the collection of the form: ℧𝔫 = {𝑓 ∈ 𝒦(𝑈°): 𝑓(𝓏) = 𝓏 + 𝑎𝔫ାଵ𝓏𝔫ାଵ + ⋯ }, 
where ℧ଵ = ℧, the subclass of normalized analytic functions in U°. Further, indicate by M 
the subfamily of 𝒦(U°) of the form: 

𝑓(𝓏) = 𝓏 + ෍ 𝑎𝔫𝓏𝔫 , 𝓏 ∈ U°ஶ
𝔫ୀଶ , (1)

which are univalent in U°. For analytic functions 𝑓 and 𝐹, the function 𝑓 is said to be 
subordinate to 𝐹, if 𝑓(𝓏) = 𝐹൫Θ(𝓏)൯, (𝓏 ∈ 𝑈°), 

where Θ(𝓏) is analytic and  Θ(0) = 0, |Θ(𝓏)| < 1. This subordination is indicated by 𝑓(𝓏) ≺ 𝐹(𝓏). 
Cho and Kim [20] proposed the multiplier transformation as a linear operator. Let 𝔫 

be any integer; the multiplier transformation ℒఓఉ: 𝑀 → 𝑀  is given by ℒఓఉ𝑓(𝓏) = 𝓏 +∑ ቀ𝔫ାఓଵାఓቁఉ 𝑎𝔫𝓏𝔫 , 𝜇 ≥ 0, 𝛽 ∈ ℤ = {⋯ , −1,0,1, ⋯ }ஶ𝔫ୀଶ . 
 
The Hurwitz–Lerch Zeta function [21] is 

𝜁గ,ఘ(𝓏) = 1𝜌గ + ෍ 𝓏𝔫(𝔫 + 𝜌)గஶ
𝔫ୀଵ , 

(𝜌 ∈ ℂ\𝑍௢ି = {0, −1, −2, … }, 𝜋 ∈ ℂ, where |𝓏| < 1, ℛ𝑒(𝜋) > 1, 𝓏 ∈ 𝜕𝑈°) 

By making use of the following normalized function, we have: 𝐺గ,ఘ(𝓏) = (1 + 𝜌)గൣ𝜁గ,ఘ(𝓏) − 𝜌ିగ൧ = 𝓏 + ∑ ቀଵାఘ𝔫ାఘቁగ   , 𝓏 ∈ 𝑈°ஶ𝔫ୀଶ . 

If 𝑓, 𝑔 ∈ 𝑀, where 𝑓 given by (1) and 𝑔 is defined by 

𝑔(𝓏) = 𝓏 + ෍ 𝑏𝔫𝓏𝔫ஶ
𝔫ୀଶ  , 𝓏 ∈ U°, 

then 

(𝑓 ∗ 𝑔)(𝓏) = 𝓏 + ෍ 𝑎𝔫𝑏𝔫ஶ
𝔫ୀଶ 𝓏𝔫 = (𝑔 ∗ 𝑓)(𝓏). 

Using the convolution defined above, a new operator is next introduced as the 
original part of the present paper. 

  

) ≺ Γπ,ρ,β,µ f (
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Well-known notations and definitions used for obtaining the original results are next 
presented. 𝒦(U°) denotes the family of analytic functions in U°that have the form: 𝒦[a, 𝔫] = {𝑓 ∈ 𝒦(U°): 𝑓(𝓏) = 𝑎 + 𝑎𝔫𝓏𝔫 + 𝑎𝔫ାଵ𝓏𝔫ାଵ + ⋯ }, 𝑎 ∈ ℂ, 𝔫 ∈ 𝑁 = {1,2, … }, 

and let ℧𝔫 be the collection of the form: ℧𝔫 = {𝑓 ∈ 𝒦(𝑈°): 𝑓(𝓏) = 𝓏 + 𝑎𝔫ାଵ𝓏𝔫ାଵ + ⋯ }, 
where ℧ଵ = ℧, the subclass of normalized analytic functions in U°. Further, indicate by M 
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Now, from Equation (14), note that the admissibility condition for Y ∈ θ′Γ[Ω,q ] in
Definition 9 is the admissiblity condition for ψ as defined in Definition 6 with n = 3.

Therefore, by applying (7) and Theorem 2 and knowing ψ ∈ θ′Γ[Ω,q ], we obtain
q(
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ditions (7) and (22), ൛𝛶൫𝛤గ,ఘ,ఉ,ఓ𝑓(𝓏), 𝛤గ,ఘ,ఉାଵ,ఓ𝑓(𝓏), 𝛤గ,ఘ,ఉାଶ,ఓ𝑓(𝓏), 𝛤గ,ఘ,ఉାଷ,ఓ𝑓(𝓏), 𝛤గ,ఘ,ఉାସ,ఓ𝑓(𝓏)ቁ : 𝓏 ∈ 𝑈°ቅ 
is univalent in 𝑈°, and 𝓀(𝓏) ⊂ {Υ൫Γగ,ఘ,ఉ,ఓ𝑓(𝓏), Γగ,ఘ,ఉାଵ,ఓ𝑓(𝓏), Γగ,ఘ,ఉାଶ,ఓ𝑓(𝓏), Γగ,ఘ,ఉାଷ,ఓ𝑓(𝓏), 𝛤గ,ఘ,ఉାସ,ఓ𝑓(𝓏); 𝓏 ∈ 𝑈°)}, 
then 𝕢(𝓏) ≺ 𝛤గ,ఘ,ఉ,ఋ𝑓(𝓏), and 𝕢(𝓏) is the best subordinate of (24). 

Proof. The proof of theorem is similar to that of Theorem 5 and is omitted here. □ 

5. Sandwich-Type Results 
Now, by using Theorems 5 and 9, we have the sandwich-type result. 

Theorem 11. Consider two analytic functions  𝓀ଵ(𝓏) 𝑎𝑛𝑑 𝕢ଵ(𝓏)  in 𝑈° , and  𝕢ଶ(𝓏) ∈ Ҩଵ 
with  𝕢ଵ(0) = 𝕢ଶ(0) =1. In addition let the function  𝓀ଶ(𝓏) be univalent in  𝑈°  and  𝛶 ∈𝜃௰[ 𝓀ଶ, 𝕢ଶ] ∩ 𝜃௰ᇱ [𝓀ଵ, 𝕢ଵ]. If 𝛤గ,ఘ,ఉ,ఓ𝑓(𝓏) ∈ Ҩଵ ∩ 𝒦, 𝑓 ∈ 𝑀, ൛𝛶൫𝛤గ,ఘ,ఉ,ఓ𝑓(𝓏), 𝛤గ,ఘ,ఉାଵ,ఓ𝑓(𝓏), 𝛤గ,ఘ,ఉାଶ,ఓ𝑓(𝓏), 𝛤గ,ఘ,ఉାଷ,ఓ𝑓(𝓏), 𝛤గ,ఘ,ఉାସ,ఓ𝑓(𝓏)ቁ : 𝓏 ∈ 𝑈°ቅ 

is univalent in 𝑈°, and the two conditions (7) and (22) are satisfied as 𝓀ଵ(𝓏) ≺ {𝛶൫𝛤గ,ఘ,ఉ,ఓ𝑓(𝓏), 𝛤గ,ఘ,ఉାଵ,ఓ𝑓(𝓏), 𝛤గ,ఘ,ఉାଶ,ఓ𝑓(𝓏), 𝛤గ,ఘ,ఉାଷ,ఓ𝑓(𝓏), 𝛤గ,ఘ,ఉାସ,ఓ𝑓(𝓏); 𝓏 ∈ 𝑈°)} ≺  𝓀ଶ(𝓏), 
then 𝕢ଵ(𝓏) ≺ 𝛤గ,ఘ,ఉ,ఓ𝑓(𝓏) ≺ 𝕢ଶ(𝓏) 

6. Conclusions 
A new differential operator is introduced in the present paper in Definition 1. Using 

the concepts of fourth-order differential subordination and superordination, the classes 
of admissible functions are defined related to each of the two concepts, and using those 
definitions, several theorems are proved involving the newly defined operator regarding 
fourth-order subordinations in Section 3 and regarding fourth-order superordination in 
Section 4. By applying a well-known technique, a sandwich-type theorem is stated in 
Section 5 of the paper combining the subordination and superordination results obtained 
before. The results presented here could inspire future work involving other operators 
for obtaining fourth-order differential subordinations and superordinations. Certain 
special classes of univalent functions could be introduced using the operator defined in 
this paper, and studies for obtaining properties of those classes could be done invoking 
the notions of fourth-order differential subordination and superordination using the 
admissibility conditions given here in Definition 7., Definition 8. and Definition 9. and 
the best dominant obtained in Theorem 5. 
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) of U
◦

onto Ω and if Ω 6= C is a

simply connected domain then the class θ′Γ
[
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6. Conclusions 
A new differential operator is introduced in the present paper in Definition 1. Using 

the concepts of fourth-order differential subordination and superordination, the classes 
of admissible functions are defined related to each of the two concepts, and using those 
definitions, several theorems are proved involving the newly defined operator regarding 
fourth-order subordinations in Section 3 and regarding fourth-order superordination in 
Section 4. By applying a well-known technique, a sandwich-type theorem is stated in 
Section 5 of the paper combining the subordination and superordination results obtained 
before. The results presented here could inspire future work involving other operators 
for obtaining fourth-order differential subordinations and superordinations. Certain 
special classes of univalent functions could be introduced using the operator defined in 
this paper, and studies for obtaining properties of those classes could be done invoking 
the notions of fourth-order differential subordination and superordination using the 
admissibility conditions given here in Definition 7., Definition 8. and Definition 9. and 
the best dominant obtained in Theorem 5. 
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6. Conclusions 
A new differential operator is introduced in the present paper in Definition 1. Using 

the concepts of fourth-order differential subordination and superordination, the classes 
of admissible functions are defined related to each of the two concepts, and using those 
definitions, several theorems are proved involving the newly defined operator regarding 
fourth-order subordinations in Section 3 and regarding fourth-order superordination in 
Section 4. By applying a well-known technique, a sandwich-type theorem is stated in 
Section 5 of the paper combining the subordination and superordination results obtained 
before. The results presented here could inspire future work involving other operators 
for obtaining fourth-order differential subordinations and superordinations. Certain 
special classes of univalent functions could be introduced using the operator defined in 
this paper, and studies for obtaining properties of those classes could be done invoking 
the notions of fourth-order differential subordination and superordination using the 
admissibility conditions given here in Definition 7., Definition 8. and Definition 9. and 
the best dominant obtained in Theorem 5. 
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Well-known notations and definitions used for obtaining the original results are next 
presented. 𝒦(U°) denotes the family of analytic functions in U°that have the form: 𝒦[a, 𝔫] = {𝑓 ∈ 𝒦(U°): 𝑓(𝓏) = 𝑎 + 𝑎𝔫𝓏𝔫 + 𝑎𝔫ାଵ𝓏𝔫ାଵ + ⋯ }, 𝑎 ∈ ℂ, 𝔫 ∈ 𝑁 = {1,2, … }, 

and let ℧𝔫 be the collection of the form: ℧𝔫 = {𝑓 ∈ 𝒦(𝑈°): 𝑓(𝓏) = 𝓏 + 𝑎𝔫ାଵ𝓏𝔫ାଵ + ⋯ }, 
where ℧ଵ = ℧, the subclass of normalized analytic functions in U°. Further, indicate by M 
the subfamily of 𝒦(U°) of the form: 

𝑓(𝓏) = 𝓏 + ෍ 𝑎𝔫𝓏𝔫 , 𝓏 ∈ U°ஶ
𝔫ୀଶ , (1)

which are univalent in U°. For analytic functions 𝑓 and 𝐹, the function 𝑓 is said to be 
subordinate to 𝐹, if 𝑓(𝓏) = 𝐹൫Θ(𝓏)൯, (𝓏 ∈ 𝑈°), 

where Θ(𝓏) is analytic and  Θ(0) = 0, |Θ(𝓏)| < 1. This subordination is indicated by 𝑓(𝓏) ≺ 𝐹(𝓏). 
Cho and Kim [20] proposed the multiplier transformation as a linear operator. Let 𝔫 

be any integer; the multiplier transformation ℒఓఉ: 𝑀 → 𝑀  is given by ℒఓఉ𝑓(𝓏) = 𝓏 +∑ ቀ𝔫ାఓଵାఓቁఉ 𝑎𝔫𝓏𝔫 , 𝜇 ≥ 0, 𝛽 ∈ ℤ = {⋯ , −1,0,1, ⋯ }ஶ𝔫ୀଶ . 
 
The Hurwitz–Lerch Zeta function [21] is 

𝜁గ,ఘ(𝓏) = 1𝜌గ + ෍ 𝓏𝔫(𝔫 + 𝜌)గஶ
𝔫ୀଵ , 

(𝜌 ∈ ℂ\𝑍௢ି = {0, −1, −2, … }, 𝜋 ∈ ℂ, where |𝓏| < 1, ℛ𝑒(𝜋) > 1, 𝓏 ∈ 𝜕𝑈°) 

By making use of the following normalized function, we have: 𝐺గ,ఘ(𝓏) = (1 + 𝜌)గൣ𝜁గ,ఘ(𝓏) − 𝜌ିగ൧ = 𝓏 + ∑ ቀଵାఘ𝔫ାఘቁగ   , 𝓏 ∈ 𝑈°ஶ𝔫ୀଶ . 

If 𝑓, 𝑔 ∈ 𝑀, where 𝑓 given by (1) and 𝑔 is defined by 

𝑔(𝓏) = 𝓏 + ෍ 𝑏𝔫𝓏𝔫ஶ
𝔫ୀଶ  , 𝓏 ∈ U°, 

then 

(𝑓 ∗ 𝑔)(𝓏) = 𝓏 + ෍ 𝑎𝔫𝑏𝔫ஶ
𝔫ୀଶ 𝓏𝔫 = (𝑔 ∗ 𝑓)(𝓏). 

Using the convolution defined above, a new operator is next introduced as the 
original part of the present paper. 

  

) ∈

Symmetry 2022, 14, x FOR PEER REVIEW 3 of 12 
 

 

Definition 1. Assume  𝑓 ∈ 𝑀, 𝓏 ∈ 𝜕𝑈°, 𝜌 ∈ ℂ\𝑍௢ି = {0, −1, −2, … }, 𝑤ℎ𝑒𝑟𝑒 |𝓏| < 1, ℛ𝑒(𝜋) >1, 𝜇 ≥ 0, 𝛽 ∈ ℤ, 𝜋 ∈ ℂ; we define new operator 𝛤గ,ఘ,ఉ,ఓ𝑓(𝓏): 𝑀 → 𝑀, where 

Γగ,ఘ,ఉ,ఓ𝑓(𝓏) = 𝐺గ,ఘ(𝓏) ∗ ℒఓఉ𝑓(𝓏) = 𝓏 + ෍ ൬1 + 𝜌𝔫 + 𝜌൰గ ൬𝔫 + 𝜇1 + 𝜇൰ఉ 𝑎𝔫𝓏𝔫ஶ
𝔫ୀଶ . (2)

After a simple computation, we obtain the relation: 𝓏 ቀΓగ,ఘ,ఉ,ఓ𝑓(𝓏)ቁᇱ = (1 + 𝜇)Γగ,ఘ,ఉାଵ,ఓ𝑓(𝓏) − 𝜇 Γగ,ఘ,ఉ,ఓ𝑓(𝓏). (3)

2. Problem Formulation 
The subcollection of various analytic and univalent functions, which are connected 

to differential subordination and superordination in the open unit disk U°, has been ini-
tiated in recent times from a variety of intriguing outcomes and perspectives (cf. 
[22,23,24,25,7,26,27,28]). Additionally, several authors obtained good results on second- 
and third-order differential subordination; e.g., [29,30,31–34,35]. 

In order to demonstrate the original results, we will need the basic concepts of 
fourth-order theory previously introduced, which we present below showing the papers 
where they first appeared. 

Definition 2. Ref. [4]: Assume that Ҩ is called the set of functions 𝕢 that are univalent and 
analytic on the set 𝑈°\𝐸(𝕢) , where 𝐸(𝕢) = {𝒥: 𝒥 ∈ 𝜕𝑈° 𝑎𝑛𝑑 𝑙𝑖𝑚𝓏→𝒥 𝕢(𝓏) = ∞}  are such that 𝑚𝑖𝑛|𝕢ᇱ(𝒥)| = 𝛾 > 0 𝑓𝑜𝑟 𝒥 ∈ 𝜕𝑈°\𝐸(𝕢). In addition, indicate by Ҩ(𝑎) the subclass of function 𝕢 for which 𝕢(0) = 𝑎. Note that  Ҩଵ = Ҩ(1) = {𝕢(𝓏) ∈ Ҩ: 𝕢(0) = 1}. 

Definition 3. See [6,7]: Assume that 𝓀 is univalent in 𝑈°and 𝜓: ℂହ × 𝑈° → ℂ. If the analytic 
function 𝑝 fulfills the fourth-order differential subordination 𝜓(𝑝(𝓏), 𝓏𝑝ᇱ(𝓏), 𝓏ଶ𝑝ᇱᇱ(𝓏), 𝓏ଷ𝑝ᇱᇱᇱ(𝓏), 𝓏ସ𝑝ᇱᇱᇱᇱ(𝓏); 𝓏) ≺ 𝓀(𝓏), (4)

then the function 𝑝 is named a solution of the differential subordination (4). A univalent func-
tion 𝕢 is named a dominant of the solutions of the differential subordination if 𝑝 ≺ 𝕢 for all 𝑝 
satisfying (4). A dominant 𝕢෥(𝓏) that fulfills 𝕢෥ ≺ 𝕢 for all dominants 𝕢 of (4) is named the best 
dominant. 

Definition 4. See [6,7]: Assume that 𝕢 ∈ Ҩ and 𝛺 is a set in ℂ. The admissible functions class 𝛷𝓃[𝛺, 𝕢], (𝔫 ∈ 𝑁\{2}) consists of those functions 𝜓: ℂହ × 𝑈° → ℂ that fulfill the following ad-
missibility condition: 

ψ(𝔯, 𝔰, 𝔱, 𝔲, 𝑏; 𝓏) ∉ Ω, 
wherever 𝔯 = 𝕢(𝜏)  , 𝔰 = 𝔪𝜏𝕢ᇱ(𝜏) ,    ℛℯ ൬ 𝔱𝔰 + 1൰ ≥ 𝔪ℛℯ ቆ1 + 𝜏𝕢ᇱᇱ(𝜏)𝕢ᇱ(𝜏) ቇ, 

ℯℛ ቀ𝔲𝔰ቁ ≥ 𝔪ଶℛℯ ቀఛమ𝕢ᇲᇲᇲ(ఛ)𝕢ᇲ(ఛ) ቁ ,ℯℛ ቀ௕௦ቁ ≥ 𝔪ଷℛℯ ቀఛయ𝕢ᇲᇲᇲᇲ(ఛ)𝕢ᇲ(ఛ) ቁ, ( 𝓏 ∈ 𝑈°, 𝜏 ∈ 𝜕𝑈°\E(𝕢)  𝑎𝑛𝑑   𝔪 ≥ 𝔫). 
 

Theorem 1. See [7]: Let 𝑝 ∈ 𝒦[𝑎, 𝔫], ( 𝔫 ∈ 𝑁\{2}). In addition, let 𝕢 ∈ Ҩ and fulfill the condi-
tions: 

1 and q ∈ K1 satisfies the condition (21),

{
Y
(
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Well-known notations and definitions used for obtaining the original results are next 
presented. 𝒦(U°) denotes the family of analytic functions in U°that have the form: 𝒦[a, 𝔫] = {𝑓 ∈ 𝒦(U°): 𝑓(𝓏) = 𝑎 + 𝑎𝔫𝓏𝔫 + 𝑎𝔫ାଵ𝓏𝔫ାଵ + ⋯ }, 𝑎 ∈ ℂ, 𝔫 ∈ 𝑁 = {1,2, … }, 

and let ℧𝔫 be the collection of the form: ℧𝔫 = {𝑓 ∈ 𝒦(𝑈°): 𝑓(𝓏) = 𝓏 + 𝑎𝔫ାଵ𝓏𝔫ାଵ + ⋯ }, 
where ℧ଵ = ℧, the subclass of normalized analytic functions in U°. Further, indicate by M 
the subfamily of 𝒦(U°) of the form: 

𝑓(𝓏) = 𝓏 + ෍ 𝑎𝔫𝓏𝔫 , 𝓏 ∈ U°ஶ
𝔫ୀଶ , (1)

which are univalent in U°. For analytic functions 𝑓 and 𝐹, the function 𝑓 is said to be 
subordinate to 𝐹, if 𝑓(𝓏) = 𝐹൫Θ(𝓏)൯, (𝓏 ∈ 𝑈°), 

where Θ(𝓏) is analytic and  Θ(0) = 0, |Θ(𝓏)| < 1. This subordination is indicated by 𝑓(𝓏) ≺ 𝐹(𝓏). 
Cho and Kim [20] proposed the multiplier transformation as a linear operator. Let 𝔫 

be any integer; the multiplier transformation ℒఓఉ: 𝑀 → 𝑀  is given by ℒఓఉ𝑓(𝓏) = 𝓏 +∑ ቀ𝔫ାఓଵାఓቁఉ 𝑎𝔫𝓏𝔫 , 𝜇 ≥ 0, 𝛽 ∈ ℤ = {⋯ , −1,0,1, ⋯ }ஶ𝔫ୀଶ . 
 
The Hurwitz–Lerch Zeta function [21] is 

𝜁గ,ఘ(𝓏) = 1𝜌గ + ෍ 𝓏𝔫(𝔫 + 𝜌)గஶ
𝔫ୀଵ , 

(𝜌 ∈ ℂ\𝑍௢ି = {0, −1, −2, … }, 𝜋 ∈ ℂ, where |𝓏| < 1, ℛ𝑒(𝜋) > 1, 𝓏 ∈ 𝜕𝑈°) 

By making use of the following normalized function, we have: 𝐺గ,ఘ(𝓏) = (1 + 𝜌)గൣ𝜁గ,ఘ(𝓏) − 𝜌ିగ൧ = 𝓏 + ∑ ቀଵାఘ𝔫ାఘቁగ   , 𝓏 ∈ 𝑈°ஶ𝔫ୀଶ . 

If 𝑓, 𝑔 ∈ 𝑀, where 𝑓 given by (1) and 𝑔 is defined by 

𝑔(𝓏) = 𝓏 + ෍ 𝑏𝔫𝓏𝔫ஶ
𝔫ୀଶ  , 𝓏 ∈ U°, 

then 

(𝑓 ∗ 𝑔)(𝓏) = 𝓏 + ෍ 𝑎𝔫𝑏𝔫ஶ
𝔫ୀଶ 𝓏𝔫 = (𝑔 ∗ 𝑓)(𝓏). 

Using the convolution defined above, a new operator is next introduced as the 
original part of the present paper. 

  

), Γπ,ρ,β+1,µ f (
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Well-known notations and definitions used for obtaining the original results are next 
presented. 𝒦(U°) denotes the family of analytic functions in U°that have the form: 𝒦[a, 𝔫] = {𝑓 ∈ 𝒦(U°): 𝑓(𝓏) = 𝑎 + 𝑎𝔫𝓏𝔫 + 𝑎𝔫ାଵ𝓏𝔫ାଵ + ⋯ }, 𝑎 ∈ ℂ, 𝔫 ∈ 𝑁 = {1,2, … }, 

and let ℧𝔫 be the collection of the form: ℧𝔫 = {𝑓 ∈ 𝒦(𝑈°): 𝑓(𝓏) = 𝓏 + 𝑎𝔫ାଵ𝓏𝔫ାଵ + ⋯ }, 
where ℧ଵ = ℧, the subclass of normalized analytic functions in U°. Further, indicate by M 
the subfamily of 𝒦(U°) of the form: 

𝑓(𝓏) = 𝓏 + ෍ 𝑎𝔫𝓏𝔫 , 𝓏 ∈ U°ஶ
𝔫ୀଶ , (1)

which are univalent in U°. For analytic functions 𝑓 and 𝐹, the function 𝑓 is said to be 
subordinate to 𝐹, if 𝑓(𝓏) = 𝐹൫Θ(𝓏)൯, (𝓏 ∈ 𝑈°), 

where Θ(𝓏) is analytic and  Θ(0) = 0, |Θ(𝓏)| < 1. This subordination is indicated by 𝑓(𝓏) ≺ 𝐹(𝓏). 
Cho and Kim [20] proposed the multiplier transformation as a linear operator. Let 𝔫 

be any integer; the multiplier transformation ℒఓఉ: 𝑀 → 𝑀  is given by ℒఓఉ𝑓(𝓏) = 𝓏 +∑ ቀ𝔫ାఓଵାఓቁఉ 𝑎𝔫𝓏𝔫 , 𝜇 ≥ 0, 𝛽 ∈ ℤ = {⋯ , −1,0,1, ⋯ }ஶ𝔫ୀଶ . 
 
The Hurwitz–Lerch Zeta function [21] is 

𝜁గ,ఘ(𝓏) = 1𝜌గ + ෍ 𝓏𝔫(𝔫 + 𝜌)గஶ
𝔫ୀଵ , 

(𝜌 ∈ ℂ\𝑍௢ି = {0, −1, −2, … }, 𝜋 ∈ ℂ, where |𝓏| < 1, ℛ𝑒(𝜋) > 1, 𝓏 ∈ 𝜕𝑈°) 

By making use of the following normalized function, we have: 𝐺గ,ఘ(𝓏) = (1 + 𝜌)గൣ𝜁గ,ఘ(𝓏) − 𝜌ିగ൧ = 𝓏 + ∑ ቀଵାఘ𝔫ାఘቁగ   , 𝓏 ∈ 𝑈°ஶ𝔫ୀଶ . 

If 𝑓, 𝑔 ∈ 𝑀, where 𝑓 given by (1) and 𝑔 is defined by 

𝑔(𝓏) = 𝓏 + ෍ 𝑏𝔫𝓏𝔫ஶ
𝔫ୀଶ  , 𝓏 ∈ U°, 

then 

(𝑓 ∗ 𝑔)(𝓏) = 𝓏 + ෍ 𝑎𝔫𝑏𝔫ஶ
𝔫ୀଶ 𝓏𝔫 = (𝑔 ∗ 𝑓)(𝓏). 

Using the convolution defined above, a new operator is next introduced as the 
original part of the present paper. 

  

), Γπ,ρ,β+2,µ f (
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Well-known notations and definitions used for obtaining the original results are next 
presented. 𝒦(U°) denotes the family of analytic functions in U°that have the form: 𝒦[a, 𝔫] = {𝑓 ∈ 𝒦(U°): 𝑓(𝓏) = 𝑎 + 𝑎𝔫𝓏𝔫 + 𝑎𝔫ାଵ𝓏𝔫ାଵ + ⋯ }, 𝑎 ∈ ℂ, 𝔫 ∈ 𝑁 = {1,2, … }, 

and let ℧𝔫 be the collection of the form: ℧𝔫 = {𝑓 ∈ 𝒦(𝑈°): 𝑓(𝓏) = 𝓏 + 𝑎𝔫ାଵ𝓏𝔫ାଵ + ⋯ }, 
where ℧ଵ = ℧, the subclass of normalized analytic functions in U°. Further, indicate by M 
the subfamily of 𝒦(U°) of the form: 

𝑓(𝓏) = 𝓏 + ෍ 𝑎𝔫𝓏𝔫 , 𝓏 ∈ U°ஶ
𝔫ୀଶ , (1)

which are univalent in U°. For analytic functions 𝑓 and 𝐹, the function 𝑓 is said to be 
subordinate to 𝐹, if 𝑓(𝓏) = 𝐹൫Θ(𝓏)൯, (𝓏 ∈ 𝑈°), 

where Θ(𝓏) is analytic and  Θ(0) = 0, |Θ(𝓏)| < 1. This subordination is indicated by 𝑓(𝓏) ≺ 𝐹(𝓏). 
Cho and Kim [20] proposed the multiplier transformation as a linear operator. Let 𝔫 

be any integer; the multiplier transformation ℒఓఉ: 𝑀 → 𝑀  is given by ℒఓఉ𝑓(𝓏) = 𝓏 +∑ ቀ𝔫ାఓଵାఓቁఉ 𝑎𝔫𝓏𝔫 , 𝜇 ≥ 0, 𝛽 ∈ ℤ = {⋯ , −1,0,1, ⋯ }ஶ𝔫ୀଶ . 
 
The Hurwitz–Lerch Zeta function [21] is 

𝜁గ,ఘ(𝓏) = 1𝜌గ + ෍ 𝓏𝔫(𝔫 + 𝜌)గஶ
𝔫ୀଵ , 

(𝜌 ∈ ℂ\𝑍௢ି = {0, −1, −2, … }, 𝜋 ∈ ℂ, where |𝓏| < 1, ℛ𝑒(𝜋) > 1, 𝓏 ∈ 𝜕𝑈°) 

By making use of the following normalized function, we have: 𝐺గ,ఘ(𝓏) = (1 + 𝜌)గൣ𝜁గ,ఘ(𝓏) − 𝜌ିగ൧ = 𝓏 + ∑ ቀଵାఘ𝔫ାఘቁగ   , 𝓏 ∈ 𝑈°ஶ𝔫ୀଶ . 

If 𝑓, 𝑔 ∈ 𝑀, where 𝑓 given by (1) and 𝑔 is defined by 

𝑔(𝓏) = 𝓏 + ෍ 𝑏𝔫𝓏𝔫ஶ
𝔫ୀଶ  , 𝓏 ∈ U°, 

then 

(𝑓 ∗ 𝑔)(𝓏) = 𝓏 + ෍ 𝑎𝔫𝑏𝔫ஶ
𝔫ୀଶ 𝓏𝔫 = (𝑔 ∗ 𝑓)(𝓏). 

Using the convolution defined above, a new operator is next introduced as the 
original part of the present paper. 

  

), Γπ,ρ,β+3,µ f (
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Well-known notations and definitions used for obtaining the original results are next 
presented. 𝒦(U°) denotes the family of analytic functions in U°that have the form: 𝒦[a, 𝔫] = {𝑓 ∈ 𝒦(U°): 𝑓(𝓏) = 𝑎 + 𝑎𝔫𝓏𝔫 + 𝑎𝔫ାଵ𝓏𝔫ାଵ + ⋯ }, 𝑎 ∈ ℂ, 𝔫 ∈ 𝑁 = {1,2, … }, 

and let ℧𝔫 be the collection of the form: ℧𝔫 = {𝑓 ∈ 𝒦(𝑈°): 𝑓(𝓏) = 𝓏 + 𝑎𝔫ାଵ𝓏𝔫ାଵ + ⋯ }, 
where ℧ଵ = ℧, the subclass of normalized analytic functions in U°. Further, indicate by M 
the subfamily of 𝒦(U°) of the form: 

𝑓(𝓏) = 𝓏 + ෍ 𝑎𝔫𝓏𝔫 , 𝓏 ∈ U°ஶ
𝔫ୀଶ , (1)

which are univalent in U°. For analytic functions 𝑓 and 𝐹, the function 𝑓 is said to be 
subordinate to 𝐹, if 𝑓(𝓏) = 𝐹൫Θ(𝓏)൯, (𝓏 ∈ 𝑈°), 

where Θ(𝓏) is analytic and  Θ(0) = 0, |Θ(𝓏)| < 1. This subordination is indicated by 𝑓(𝓏) ≺ 𝐹(𝓏). 
Cho and Kim [20] proposed the multiplier transformation as a linear operator. Let 𝔫 

be any integer; the multiplier transformation ℒఓఉ: 𝑀 → 𝑀  is given by ℒఓఉ𝑓(𝓏) = 𝓏 +∑ ቀ𝔫ାఓଵାఓቁఉ 𝑎𝔫𝓏𝔫 , 𝜇 ≥ 0, 𝛽 ∈ ℤ = {⋯ , −1,0,1, ⋯ }ஶ𝔫ୀଶ . 
 
The Hurwitz–Lerch Zeta function [21] is 

𝜁గ,ఘ(𝓏) = 1𝜌గ + ෍ 𝓏𝔫(𝔫 + 𝜌)గஶ
𝔫ୀଵ , 

(𝜌 ∈ ℂ\𝑍௢ି = {0, −1, −2, … }, 𝜋 ∈ ℂ, where |𝓏| < 1, ℛ𝑒(𝜋) > 1, 𝓏 ∈ 𝜕𝑈°) 

By making use of the following normalized function, we have: 𝐺గ,ఘ(𝓏) = (1 + 𝜌)గൣ𝜁గ,ఘ(𝓏) − 𝜌ିగ൧ = 𝓏 + ∑ ቀଵାఘ𝔫ାఘቁగ   , 𝓏 ∈ 𝑈°ஶ𝔫ୀଶ . 

If 𝑓, 𝑔 ∈ 𝑀, where 𝑓 given by (1) and 𝑔 is defined by 

𝑔(𝓏) = 𝓏 + ෍ 𝑏𝔫𝓏𝔫ஶ
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then 

(𝑓 ∗ 𝑔)(𝓏) = 𝓏 + ෍ 𝑎𝔫𝑏𝔫ஶ
𝔫ୀଶ 𝓏𝔫 = (𝑔 ∗ 𝑓)(𝓏). 

Using the convolution defined above, a new operator is next introduced as the 
original part of the present paper. 
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)
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{𝜓(𝑝(𝓏), 𝓏𝑝ᇱ(𝓏), 𝓏ଶ𝑝ᇱᇱ(𝓏), 𝓏ଷ𝑝ᇱᇱᇱ(𝓏), 𝓏ସ𝑝ᇱᇱᇱᇱ(𝓏); 𝓏 ∈ 𝑈°)} = 𝓀(𝓏),  (25)

has a solution 𝕢(𝓏) ∈ Ҩଵ. If 𝛤గ,ఘ,ఉ,ఓ𝑓(𝓏) ∈ Ҩଵ, 𝕢 ∈ 𝒦ଵ, 𝕢ᇱ(𝓏) ് 0 and 𝑓 ∈ 𝑀 satisfy the con-
ditions (7) and (22), ൛𝛶൫𝛤గ,ఘ,ఉ,ఓ𝑓(𝓏), 𝛤గ,ఘ,ఉାଵ,ఓ𝑓(𝓏), 𝛤గ,ఘ,ఉାଶ,ఓ𝑓(𝓏), 𝛤గ,ఘ,ఉାଷ,ఓ𝑓(𝓏), 𝛤గ,ఘ,ఉାସ,ఓ𝑓(𝓏)ቁ : 𝓏 ∈ 𝑈°ቅ 
is univalent in 𝑈°, and 𝓀(𝓏) ⊂ {Υ൫Γగ,ఘ,ఉ,ఓ𝑓(𝓏), Γగ,ఘ,ఉାଵ,ఓ𝑓(𝓏), Γగ,ఘ,ఉାଶ,ఓ𝑓(𝓏), Γగ,ఘ,ఉାଷ,ఓ𝑓(𝓏), 𝛤గ,ఘ,ఉାସ,ఓ𝑓(𝓏); 𝓏 ∈ 𝑈°)}, 
then 𝕢(𝓏) ≺ 𝛤గ,ఘ,ఉ,ఋ𝑓(𝓏), and 𝕢(𝓏) is the best subordinate of (24). 

Proof. The proof of theorem is similar to that of Theorem 5 and is omitted here. □ 

5. Sandwich-Type Results 
Now, by using Theorems 5 and 9, we have the sandwich-type result. 

Theorem 11. Consider two analytic functions  𝓀ଵ(𝓏) 𝑎𝑛𝑑 𝕢ଵ(𝓏)  in 𝑈° , and  𝕢ଶ(𝓏) ∈ Ҩଵ 
with  𝕢ଵ(0) = 𝕢ଶ(0) =1. In addition let the function  𝓀ଶ(𝓏) be univalent in  𝑈°  and  𝛶 ∈𝜃௰[ 𝓀ଶ, 𝕢ଶ] ∩ 𝜃௰ᇱ [𝓀ଵ, 𝕢ଵ]. If 𝛤గ,ఘ,ఉ,ఓ𝑓(𝓏) ∈ Ҩଵ ∩ 𝒦, 𝑓 ∈ 𝑀, ൛𝛶൫𝛤గ,ఘ,ఉ,ఓ𝑓(𝓏), 𝛤గ,ఘ,ఉାଵ,ఓ𝑓(𝓏), 𝛤గ,ఘ,ఉାଶ,ఓ𝑓(𝓏), 𝛤గ,ఘ,ఉାଷ,ఓ𝑓(𝓏), 𝛤గ,ఘ,ఉାସ,ఓ𝑓(𝓏)ቁ : 𝓏 ∈ 𝑈°ቅ 

is univalent in 𝑈°, and the two conditions (7) and (22) are satisfied as 𝓀ଵ(𝓏) ≺ {𝛶൫𝛤గ,ఘ,ఉ,ఓ𝑓(𝓏), 𝛤గ,ఘ,ఉାଵ,ఓ𝑓(𝓏), 𝛤గ,ఘ,ఉାଶ,ఓ𝑓(𝓏), 𝛤గ,ఘ,ఉାଷ,ఓ𝑓(𝓏), 𝛤గ,ఘ,ఉାସ,ఓ𝑓(𝓏); 𝓏 ∈ 𝑈°)} ≺  𝓀ଶ(𝓏), 
then 𝕢ଵ(𝓏) ≺ 𝛤గ,ఘ,ఉ,ఓ𝑓(𝓏) ≺ 𝕢ଶ(𝓏) 

6. Conclusions 
A new differential operator is introduced in the present paper in Definition 1. Using 

the concepts of fourth-order differential subordination and superordination, the classes 
of admissible functions are defined related to each of the two concepts, and using those 
definitions, several theorems are proved involving the newly defined operator regarding 
fourth-order subordinations in Section 3 and regarding fourth-order superordination in 
Section 4. By applying a well-known technique, a sandwich-type theorem is stated in 
Section 5 of the paper combining the subordination and superordination results obtained 
before. The results presented here could inspire future work involving other operators 
for obtaining fourth-order differential subordinations and superordinations. Certain 
special classes of univalent functions could be introduced using the operator defined in 
this paper, and studies for obtaining properties of those classes could be done invoking 
the notions of fourth-order differential subordination and superordination using the 
admissibility conditions given here in Definition 7., Definition 8. and Definition 9. and 
the best dominant obtained in Theorem 5. 
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Y
(
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the subfamily of 𝒦(U°) of the form: 

𝑓(𝓏) = 𝓏 + ෍ 𝑎𝔫𝓏𝔫 , 𝓏 ∈ U°ஶ
𝔫ୀଶ , (1)

which are univalent in U°. For analytic functions 𝑓 and 𝐹, the function 𝑓 is said to be 
subordinate to 𝐹, if 𝑓(𝓏) = 𝐹൫Θ(𝓏)൯, (𝓏 ∈ 𝑈°), 

where Θ(𝓏) is analytic and  Θ(0) = 0, |Θ(𝓏)| < 1. This subordination is indicated by 𝑓(𝓏) ≺ 𝐹(𝓏). 
Cho and Kim [20] proposed the multiplier transformation as a linear operator. Let 𝔫 

be any integer; the multiplier transformation ℒఓఉ: 𝑀 → 𝑀  is given by ℒఓఉ𝑓(𝓏) = 𝓏 +∑ ቀ𝔫ାఓଵାఓቁఉ 𝑎𝔫𝓏𝔫 , 𝜇 ≥ 0, 𝛽 ∈ ℤ = {⋯ , −1,0,1, ⋯ }ஶ𝔫ୀଶ . 
 
The Hurwitz–Lerch Zeta function [21] is 

𝜁గ,ఘ(𝓏) = 1𝜌గ + ෍ 𝓏𝔫(𝔫 + 𝜌)గஶ
𝔫ୀଵ , 

(𝜌 ∈ ℂ\𝑍௢ି = {0, −1, −2, … }, 𝜋 ∈ ℂ, where |𝓏| < 1, ℛ𝑒(𝜋) > 1, 𝓏 ∈ 𝜕𝑈°) 

By making use of the following normalized function, we have: 𝐺గ,ఘ(𝓏) = (1 + 𝜌)గൣ𝜁గ,ఘ(𝓏) − 𝜌ିగ൧ = 𝓏 + ∑ ቀଵାఘ𝔫ାఘቁగ   , 𝓏 ∈ 𝑈°ஶ𝔫ୀଶ . 

If 𝑓, 𝑔 ∈ 𝑀, where 𝑓 given by (1) and 𝑔 is defined by 

𝑔(𝓏) = 𝓏 + ෍ 𝑏𝔫𝓏𝔫ஶ
𝔫ୀଶ  , 𝓏 ∈ U°, 

then 

(𝑓 ∗ 𝑔)(𝓏) = 𝓏 + ෍ 𝑎𝔫𝑏𝔫ஶ
𝔫ୀଶ 𝓏𝔫 = (𝑔 ∗ 𝑓)(𝓏). 

Using the convolution defined above, a new operator is next introduced as the 
original part of the present paper. 

  

), Γπ,ρ,β+2,µ f (
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Well-known notations and definitions used for obtaining the original results are next 
presented. 𝒦(U°) denotes the family of analytic functions in U°that have the form: 𝒦[a, 𝔫] = {𝑓 ∈ 𝒦(U°): 𝑓(𝓏) = 𝑎 + 𝑎𝔫𝓏𝔫 + 𝑎𝔫ାଵ𝓏𝔫ାଵ + ⋯ }, 𝑎 ∈ ℂ, 𝔫 ∈ 𝑁 = {1,2, … }, 

and let ℧𝔫 be the collection of the form: ℧𝔫 = {𝑓 ∈ 𝒦(𝑈°): 𝑓(𝓏) = 𝓏 + 𝑎𝔫ାଵ𝓏𝔫ାଵ + ⋯ }, 
where ℧ଵ = ℧, the subclass of normalized analytic functions in U°. Further, indicate by M 
the subfamily of 𝒦(U°) of the form: 

𝑓(𝓏) = 𝓏 + ෍ 𝑎𝔫𝓏𝔫 , 𝓏 ∈ U°ஶ
𝔫ୀଶ , (1)

which are univalent in U°. For analytic functions 𝑓 and 𝐹, the function 𝑓 is said to be 
subordinate to 𝐹, if 𝑓(𝓏) = 𝐹൫Θ(𝓏)൯, (𝓏 ∈ 𝑈°), 

where Θ(𝓏) is analytic and  Θ(0) = 0, |Θ(𝓏)| < 1. This subordination is indicated by 𝑓(𝓏) ≺ 𝐹(𝓏). 
Cho and Kim [20] proposed the multiplier transformation as a linear operator. Let 𝔫 

be any integer; the multiplier transformation ℒఓఉ: 𝑀 → 𝑀  is given by ℒఓఉ𝑓(𝓏) = 𝓏 +∑ ቀ𝔫ାఓଵାఓቁఉ 𝑎𝔫𝓏𝔫 , 𝜇 ≥ 0, 𝛽 ∈ ℤ = {⋯ , −1,0,1, ⋯ }ஶ𝔫ୀଶ . 
 
The Hurwitz–Lerch Zeta function [21] is 

𝜁గ,ఘ(𝓏) = 1𝜌గ + ෍ 𝓏𝔫(𝔫 + 𝜌)గஶ
𝔫ୀଵ , 

(𝜌 ∈ ℂ\𝑍௢ି = {0, −1, −2, … }, 𝜋 ∈ ℂ, where |𝓏| < 1, ℛ𝑒(𝜋) > 1, 𝓏 ∈ 𝜕𝑈°) 

By making use of the following normalized function, we have: 𝐺గ,ఘ(𝓏) = (1 + 𝜌)గൣ𝜁గ,ఘ(𝓏) − 𝜌ିగ൧ = 𝓏 + ∑ ቀଵାఘ𝔫ାఘቁగ   , 𝓏 ∈ 𝑈°ஶ𝔫ୀଶ . 

If 𝑓, 𝑔 ∈ 𝑀, where 𝑓 given by (1) and 𝑔 is defined by 

𝑔(𝓏) = 𝓏 + ෍ 𝑏𝔫𝓏𝔫ஶ
𝔫ୀଶ  , 𝓏 ∈ U°, 

then 

(𝑓 ∗ 𝑔)(𝓏) = 𝓏 + ෍ 𝑎𝔫𝑏𝔫ஶ
𝔫ୀଶ 𝓏𝔫 = (𝑔 ∗ 𝑓)(𝓏). 

Using the convolution defined above, a new operator is next introduced as the 
original part of the present paper. 

  

), Γπ,ρ,β+3,µ f (
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Well-known notations and definitions used for obtaining the original results are next 
presented. 𝒦(U°) denotes the family of analytic functions in U°that have the form: 𝒦[a, 𝔫] = {𝑓 ∈ 𝒦(U°): 𝑓(𝓏) = 𝑎 + 𝑎𝔫𝓏𝔫 + 𝑎𝔫ାଵ𝓏𝔫ାଵ + ⋯ }, 𝑎 ∈ ℂ, 𝔫 ∈ 𝑁 = {1,2, … }, 

and let ℧𝔫 be the collection of the form: ℧𝔫 = {𝑓 ∈ 𝒦(𝑈°): 𝑓(𝓏) = 𝓏 + 𝑎𝔫ାଵ𝓏𝔫ାଵ + ⋯ }, 
where ℧ଵ = ℧, the subclass of normalized analytic functions in U°. Further, indicate by M 
the subfamily of 𝒦(U°) of the form: 

𝑓(𝓏) = 𝓏 + ෍ 𝑎𝔫𝓏𝔫 , 𝓏 ∈ U°ஶ
𝔫ୀଶ , (1)

which are univalent in U°. For analytic functions 𝑓 and 𝐹, the function 𝑓 is said to be 
subordinate to 𝐹, if 𝑓(𝓏) = 𝐹൫Θ(𝓏)൯, (𝓏 ∈ 𝑈°), 

where Θ(𝓏) is analytic and  Θ(0) = 0, |Θ(𝓏)| < 1. This subordination is indicated by 𝑓(𝓏) ≺ 𝐹(𝓏). 
Cho and Kim [20] proposed the multiplier transformation as a linear operator. Let 𝔫 

be any integer; the multiplier transformation ℒఓఉ: 𝑀 → 𝑀  is given by ℒఓఉ𝑓(𝓏) = 𝓏 +∑ ቀ𝔫ାఓଵାఓቁఉ 𝑎𝔫𝓏𝔫 , 𝜇 ≥ 0, 𝛽 ∈ ℤ = {⋯ , −1,0,1, ⋯ }ஶ𝔫ୀଶ . 
 
The Hurwitz–Lerch Zeta function [21] is 

𝜁గ,ఘ(𝓏) = 1𝜌గ + ෍ 𝓏𝔫(𝔫 + 𝜌)గஶ
𝔫ୀଵ , 

(𝜌 ∈ ℂ\𝑍௢ି = {0, −1, −2, … }, 𝜋 ∈ ℂ, where |𝓏| < 1, ℛ𝑒(𝜋) > 1, 𝓏 ∈ 𝜕𝑈°) 

By making use of the following normalized function, we have: 𝐺గ,ఘ(𝓏) = (1 + 𝜌)గൣ𝜁గ,ఘ(𝓏) − 𝜌ିగ൧ = 𝓏 + ∑ ቀଵାఘ𝔫ାఘቁగ   , 𝓏 ∈ 𝑈°ஶ𝔫ୀଶ . 

If 𝑓, 𝑔 ∈ 𝑀, where 𝑓 given by (1) and 𝑔 is defined by 

𝑔(𝓏) = 𝓏 + ෍ 𝑏𝔫𝓏𝔫ஶ
𝔫ୀଶ  , 𝓏 ∈ U°, 

then 

(𝑓 ∗ 𝑔)(𝓏) = 𝓏 + ෍ 𝑎𝔫𝑏𝔫ஶ
𝔫ୀଶ 𝓏𝔫 = (𝑔 ∗ 𝑓)(𝓏). 

Using the convolution defined above, a new operator is next introduced as the 
original part of the present paper. 

  

), Γπ,ρ,β+4,µ f (
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Well-known notations and definitions used for obtaining the original results are next 
presented. 𝒦(U°) denotes the family of analytic functions in U°that have the form: 𝒦[a, 𝔫] = {𝑓 ∈ 𝒦(U°): 𝑓(𝓏) = 𝑎 + 𝑎𝔫𝓏𝔫 + 𝑎𝔫ାଵ𝓏𝔫ାଵ + ⋯ }, 𝑎 ∈ ℂ, 𝔫 ∈ 𝑁 = {1,2, … }, 

and let ℧𝔫 be the collection of the form: ℧𝔫 = {𝑓 ∈ 𝒦(𝑈°): 𝑓(𝓏) = 𝓏 + 𝑎𝔫ାଵ𝓏𝔫ାଵ + ⋯ }, 
where ℧ଵ = ℧, the subclass of normalized analytic functions in U°. Further, indicate by M 
the subfamily of 𝒦(U°) of the form: 

𝑓(𝓏) = 𝓏 + ෍ 𝑎𝔫𝓏𝔫 , 𝓏 ∈ U°ஶ
𝔫ୀଶ , (1)

which are univalent in U°. For analytic functions 𝑓 and 𝐹, the function 𝑓 is said to be 
subordinate to 𝐹, if 𝑓(𝓏) = 𝐹൫Θ(𝓏)൯, (𝓏 ∈ 𝑈°), 

where Θ(𝓏) is analytic and  Θ(0) = 0, |Θ(𝓏)| < 1. This subordination is indicated by 𝑓(𝓏) ≺ 𝐹(𝓏). 
Cho and Kim [20] proposed the multiplier transformation as a linear operator. Let 𝔫 

be any integer; the multiplier transformation ℒఓఉ: 𝑀 → 𝑀  is given by ℒఓఉ𝑓(𝓏) = 𝓏 +∑ ቀ𝔫ାఓଵାఓቁఉ 𝑎𝔫𝓏𝔫 , 𝜇 ≥ 0, 𝛽 ∈ ℤ = {⋯ , −1,0,1, ⋯ }ஶ𝔫ୀଶ . 
 
The Hurwitz–Lerch Zeta function [21] is 

𝜁గ,ఘ(𝓏) = 1𝜌గ + ෍ 𝓏𝔫(𝔫 + 𝜌)గஶ
𝔫ୀଵ , 

(𝜌 ∈ ℂ\𝑍௢ି = {0, −1, −2, … }, 𝜋 ∈ ℂ, where |𝓏| < 1, ℛ𝑒(𝜋) > 1, 𝓏 ∈ 𝜕𝑈°) 

By making use of the following normalized function, we have: 𝐺గ,ఘ(𝓏) = (1 + 𝜌)గൣ𝜁గ,ఘ(𝓏) − 𝜌ିగ൧ = 𝓏 + ∑ ቀଵାఘ𝔫ାఘቁగ   , 𝓏 ∈ 𝑈°ஶ𝔫ୀଶ . 

If 𝑓, 𝑔 ∈ 𝑀, where 𝑓 given by (1) and 𝑔 is defined by 

𝑔(𝓏) = 𝓏 + ෍ 𝑏𝔫𝓏𝔫ஶ
𝔫ୀଶ  , 𝓏 ∈ U°, 

then 

(𝑓 ∗ 𝑔)(𝓏) = 𝓏 + ෍ 𝑎𝔫𝑏𝔫ஶ
𝔫ୀଶ 𝓏𝔫 = (𝑔 ∗ 𝑓)(𝓏). 

Using the convolution defined above, a new operator is next introduced as the 
original part of the present paper. 

  

);
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Well-known notations and definitions used for obtaining the original results are next 
presented. 𝒦(U°) denotes the family of analytic functions in U°that have the form: 𝒦[a, 𝔫] = {𝑓 ∈ 𝒦(U°): 𝑓(𝓏) = 𝑎 + 𝑎𝔫𝓏𝔫 + 𝑎𝔫ାଵ𝓏𝔫ାଵ + ⋯ }, 𝑎 ∈ ℂ, 𝔫 ∈ 𝑁 = {1,2, … }, 

and let ℧𝔫 be the collection of the form: ℧𝔫 = {𝑓 ∈ 𝒦(𝑈°): 𝑓(𝓏) = 𝓏 + 𝑎𝔫ାଵ𝓏𝔫ାଵ + ⋯ }, 
where ℧ଵ = ℧, the subclass of normalized analytic functions in U°. Further, indicate by M 
the subfamily of 𝒦(U°) of the form: 

𝑓(𝓏) = 𝓏 + ෍ 𝑎𝔫𝓏𝔫 , 𝓏 ∈ U°ஶ
𝔫ୀଶ , (1)

which are univalent in U°. For analytic functions 𝑓 and 𝐹, the function 𝑓 is said to be 
subordinate to 𝐹, if 𝑓(𝓏) = 𝐹൫Θ(𝓏)൯, (𝓏 ∈ 𝑈°), 

where Θ(𝓏) is analytic and  Θ(0) = 0, |Θ(𝓏)| < 1. This subordination is indicated by 𝑓(𝓏) ≺ 𝐹(𝓏). 
Cho and Kim [20] proposed the multiplier transformation as a linear operator. Let 𝔫 

be any integer; the multiplier transformation ℒఓఉ: 𝑀 → 𝑀  is given by ℒఓఉ𝑓(𝓏) = 𝓏 +∑ ቀ𝔫ାఓଵାఓቁఉ 𝑎𝔫𝓏𝔫 , 𝜇 ≥ 0, 𝛽 ∈ ℤ = {⋯ , −1,0,1, ⋯ }ஶ𝔫ୀଶ . 
 
The Hurwitz–Lerch Zeta function [21] is 

𝜁గ,ఘ(𝓏) = 1𝜌గ + ෍ 𝓏𝔫(𝔫 + 𝜌)గஶ
𝔫ୀଵ , 

(𝜌 ∈ ℂ\𝑍௢ି = {0, −1, −2, … }, 𝜋 ∈ ℂ, where |𝓏| < 1, ℛ𝑒(𝜋) > 1, 𝓏 ∈ 𝜕𝑈°) 

By making use of the following normalized function, we have: 𝐺గ,ఘ(𝓏) = (1 + 𝜌)గൣ𝜁గ,ఘ(𝓏) − 𝜌ିగ൧ = 𝓏 + ∑ ቀଵାఘ𝔫ାఘቁగ   , 𝓏 ∈ 𝑈°ஶ𝔫ୀଶ . 

If 𝑓, 𝑔 ∈ 𝑀, where 𝑓 given by (1) and 𝑔 is defined by 

𝑔(𝓏) = 𝓏 + ෍ 𝑏𝔫𝓏𝔫ஶ
𝔫ୀଶ  , 𝓏 ∈ U°, 

then 

(𝑓 ∗ 𝑔)(𝓏) = 𝓏 + ෍ 𝑎𝔫𝑏𝔫ஶ
𝔫ୀଶ 𝓏𝔫 = (𝑔 ∗ 𝑓)(𝓏). 

Using the convolution defined above, a new operator is next introduced as the 
original part of the present paper. 

  

∈ U
◦
)
}

, (23)

then q(
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Well-known notations and definitions used for obtaining the original results are next 
presented. 𝒦(U°) denotes the family of analytic functions in U°that have the form: 𝒦[a, 𝔫] = {𝑓 ∈ 𝒦(U°): 𝑓(𝓏) = 𝑎 + 𝑎𝔫𝓏𝔫 + 𝑎𝔫ାଵ𝓏𝔫ାଵ + ⋯ }, 𝑎 ∈ ℂ, 𝔫 ∈ 𝑁 = {1,2, … }, 

and let ℧𝔫 be the collection of the form: ℧𝔫 = {𝑓 ∈ 𝒦(𝑈°): 𝑓(𝓏) = 𝓏 + 𝑎𝔫ାଵ𝓏𝔫ାଵ + ⋯ }, 
where ℧ଵ = ℧, the subclass of normalized analytic functions in U°. Further, indicate by M 
the subfamily of 𝒦(U°) of the form: 

𝑓(𝓏) = 𝓏 + ෍ 𝑎𝔫𝓏𝔫 , 𝓏 ∈ U°ஶ
𝔫ୀଶ , (1)

which are univalent in U°. For analytic functions 𝑓 and 𝐹, the function 𝑓 is said to be 
subordinate to 𝐹, if 𝑓(𝓏) = 𝐹൫Θ(𝓏)൯, (𝓏 ∈ 𝑈°), 

where Θ(𝓏) is analytic and  Θ(0) = 0, |Θ(𝓏)| < 1. This subordination is indicated by 𝑓(𝓏) ≺ 𝐹(𝓏). 
Cho and Kim [20] proposed the multiplier transformation as a linear operator. Let 𝔫 

be any integer; the multiplier transformation ℒఓఉ: 𝑀 → 𝑀  is given by ℒఓఉ𝑓(𝓏) = 𝓏 +∑ ቀ𝔫ାఓଵାఓቁఉ 𝑎𝔫𝓏𝔫 , 𝜇 ≥ 0, 𝛽 ∈ ℤ = {⋯ , −1,0,1, ⋯ }ஶ𝔫ୀଶ . 
 
The Hurwitz–Lerch Zeta function [21] is 

𝜁గ,ఘ(𝓏) = 1𝜌గ + ෍ 𝓏𝔫(𝔫 + 𝜌)గஶ
𝔫ୀଵ , 

(𝜌 ∈ ℂ\𝑍௢ି = {0, −1, −2, … }, 𝜋 ∈ ℂ, where |𝓏| < 1, ℛ𝑒(𝜋) > 1, 𝓏 ∈ 𝜕𝑈°) 

By making use of the following normalized function, we have: 𝐺గ,ఘ(𝓏) = (1 + 𝜌)గൣ𝜁గ,ఘ(𝓏) − 𝜌ିగ൧ = 𝓏 + ∑ ቀଵାఘ𝔫ାఘቁగ   , 𝓏 ∈ 𝑈°ஶ𝔫ୀଶ . 

If 𝑓, 𝑔 ∈ 𝑀, where 𝑓 given by (1) and 𝑔 is defined by 

𝑔(𝓏) = 𝓏 + ෍ 𝑏𝔫𝓏𝔫ஶ
𝔫ୀଶ  , 𝓏 ∈ U°, 

then 

(𝑓 ∗ 𝑔)(𝓏) = 𝓏 + ෍ 𝑎𝔫𝑏𝔫ஶ
𝔫ୀଶ 𝓏𝔫 = (𝑔 ∗ 𝑓)(𝓏). 

Using the convolution defined above, a new operator is next introduced as the 
original part of the present paper. 

  

) ≺ Γπ,ρ,β,µ f (
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Well-known notations and definitions used for obtaining the original results are next 
presented. 𝒦(U°) denotes the family of analytic functions in U°that have the form: 𝒦[a, 𝔫] = {𝑓 ∈ 𝒦(U°): 𝑓(𝓏) = 𝑎 + 𝑎𝔫𝓏𝔫 + 𝑎𝔫ାଵ𝓏𝔫ାଵ + ⋯ }, 𝑎 ∈ ℂ, 𝔫 ∈ 𝑁 = {1,2, … }, 

and let ℧𝔫 be the collection of the form: ℧𝔫 = {𝑓 ∈ 𝒦(𝑈°): 𝑓(𝓏) = 𝓏 + 𝑎𝔫ାଵ𝓏𝔫ାଵ + ⋯ }, 
where ℧ଵ = ℧, the subclass of normalized analytic functions in U°. Further, indicate by M 
the subfamily of 𝒦(U°) of the form: 

𝑓(𝓏) = 𝓏 + ෍ 𝑎𝔫𝓏𝔫 , 𝓏 ∈ U°ஶ
𝔫ୀଶ , (1)

which are univalent in U°. For analytic functions 𝑓 and 𝐹, the function 𝑓 is said to be 
subordinate to 𝐹, if 𝑓(𝓏) = 𝐹൫Θ(𝓏)൯, (𝓏 ∈ 𝑈°), 

where Θ(𝓏) is analytic and  Θ(0) = 0, |Θ(𝓏)| < 1. This subordination is indicated by 𝑓(𝓏) ≺ 𝐹(𝓏). 
Cho and Kim [20] proposed the multiplier transformation as a linear operator. Let 𝔫 

be any integer; the multiplier transformation ℒఓఉ: 𝑀 → 𝑀  is given by ℒఓఉ𝑓(𝓏) = 𝓏 +∑ ቀ𝔫ାఓଵାఓቁఉ 𝑎𝔫𝓏𝔫 , 𝜇 ≥ 0, 𝛽 ∈ ℤ = {⋯ , −1,0,1, ⋯ }ஶ𝔫ୀଶ . 
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).

Proof. The proof of theorem is similar to that of Theorem 3 and is omitted here. �

Theorem 10. Assume that Y : C5 ×U
◦
→ C , the function
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then 𝕢ଵ(𝓏) ≺ 𝛤గ,ఘ,ఉ,ఓ𝑓(𝓏) ≺ 𝕢ଶ(𝓏) 

6. Conclusions 
A new differential operator is introduced in the present paper in Definition 1. Using 

the concepts of fourth-order differential subordination and superordination, the classes 
of admissible functions are defined related to each of the two concepts, and using those 
definitions, several theorems are proved involving the newly defined operator regarding 
fourth-order subordinations in Section 3 and regarding fourth-order superordination in 
Section 4. By applying a well-known technique, a sandwich-type theorem is stated in 
Section 5 of the paper combining the subordination and superordination results obtained 
before. The results presented here could inspire future work involving other operators 
for obtaining fourth-order differential subordinations and superordinations. Certain 
special classes of univalent functions could be introduced using the operator defined in 
this paper, and studies for obtaining properties of those classes could be done invoking 
the notions of fourth-order differential subordination and superordination using the 
admissibility conditions given here in Definition 7., Definition 8. and Definition 9. and 
the best dominant obtained in Theorem 5. 
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Well-known notations and definitions used for obtaining the original results are next 
presented. 𝒦(U°) denotes the family of analytic functions in U°that have the form: 𝒦[a, 𝔫] = {𝑓 ∈ 𝒦(U°): 𝑓(𝓏) = 𝑎 + 𝑎𝔫𝓏𝔫 + 𝑎𝔫ାଵ𝓏𝔫ାଵ + ⋯ }, 𝑎 ∈ ℂ, 𝔫 ∈ 𝑁 = {1,2, … }, 

and let ℧𝔫 be the collection of the form: ℧𝔫 = {𝑓 ∈ 𝒦(𝑈°): 𝑓(𝓏) = 𝓏 + 𝑎𝔫ାଵ𝓏𝔫ାଵ + ⋯ }, 
where ℧ଵ = ℧, the subclass of normalized analytic functions in U°. Further, indicate by M 
the subfamily of 𝒦(U°) of the form: 

𝑓(𝓏) = 𝓏 + ෍ 𝑎𝔫𝓏𝔫 , 𝓏 ∈ U°ஶ
𝔫ୀଶ , (1)

which are univalent in U°. For analytic functions 𝑓 and 𝐹, the function 𝑓 is said to be 
subordinate to 𝐹, if 𝑓(𝓏) = 𝐹൫Θ(𝓏)൯, (𝓏 ∈ 𝑈°), 

where Θ(𝓏) is analytic and  Θ(0) = 0, |Θ(𝓏)| < 1. This subordination is indicated by 𝑓(𝓏) ≺ 𝐹(𝓏). 
Cho and Kim [20] proposed the multiplier transformation as a linear operator. Let 𝔫 

be any integer; the multiplier transformation ℒఓఉ: 𝑀 → 𝑀  is given by ℒఓఉ𝑓(𝓏) = 𝓏 +∑ ቀ𝔫ାఓଵାఓቁఉ 𝑎𝔫𝓏𝔫 , 𝜇 ≥ 0, 𝛽 ∈ ℤ = {⋯ , −1,0,1, ⋯ }ஶ𝔫ୀଶ . 
 
The Hurwitz–Lerch Zeta function [21] is 

𝜁గ,ఘ(𝓏) = 1𝜌గ + ෍ 𝓏𝔫(𝔫 + 𝜌)గஶ
𝔫ୀଵ , 

(𝜌 ∈ ℂ\𝑍௢ି = {0, −1, −2, … }, 𝜋 ∈ ℂ, where |𝓏| < 1, ℛ𝑒(𝜋) > 1, 𝓏 ∈ 𝜕𝑈°) 

By making use of the following normalized function, we have: 𝐺గ,ఘ(𝓏) = (1 + 𝜌)గൣ𝜁గ,ఘ(𝓏) − 𝜌ିగ൧ = 𝓏 + ∑ ቀଵାఘ𝔫ାఘቁగ   , 𝓏 ∈ 𝑈°ஶ𝔫ୀଶ . 

If 𝑓, 𝑔 ∈ 𝑀, where 𝑓 given by (1) and 𝑔 is defined by 

𝑔(𝓏) = 𝓏 + ෍ 𝑏𝔫𝓏𝔫ஶ
𝔫ୀଶ  , 𝓏 ∈ U°, 

then 

(𝑓 ∗ 𝑔)(𝓏) = 𝓏 + ෍ 𝑎𝔫𝑏𝔫ஶ
𝔫ୀଶ 𝓏𝔫 = (𝑔 ∗ 𝑓)(𝓏). 

Using the convolution defined above, a new operator is next introduced as the 
original part of the present paper. 

  

) is analytic in U
◦
, and ψ is

defined by (15). Assume that the differential equation{
ψ
(

p(
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original part of the present paper. 

  

∈ U
◦
)}

=
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has a solution 𝕢(𝓏) ∈ Ҩଵ. If 𝛤గ,ఘ,ఉ,ఓ𝑓(𝓏) ∈ Ҩଵ, 𝕢 ∈ 𝒦ଵ, 𝕢ᇱ(𝓏) ് 0 and 𝑓 ∈ 𝑀 satisfy the con-
ditions (7) and (22), ൛𝛶൫𝛤గ,ఘ,ఉ,ఓ𝑓(𝓏), 𝛤గ,ఘ,ఉାଵ,ఓ𝑓(𝓏), 𝛤గ,ఘ,ఉାଶ,ఓ𝑓(𝓏), 𝛤గ,ఘ,ఉାଷ,ఓ𝑓(𝓏), 𝛤గ,ఘ,ఉାସ,ఓ𝑓(𝓏)ቁ : 𝓏 ∈ 𝑈°ቅ 
is univalent in 𝑈°, and 𝓀(𝓏) ⊂ {Υ൫Γగ,ఘ,ఉ,ఓ𝑓(𝓏), Γగ,ఘ,ఉାଵ,ఓ𝑓(𝓏), Γగ,ఘ,ఉାଶ,ఓ𝑓(𝓏), Γగ,ఘ,ఉାଷ,ఓ𝑓(𝓏), 𝛤గ,ఘ,ఉାସ,ఓ𝑓(𝓏); 𝓏 ∈ 𝑈°)}, 
then 𝕢(𝓏) ≺ 𝛤గ,ఘ,ఉ,ఋ𝑓(𝓏), and 𝕢(𝓏) is the best subordinate of (24). 

Proof. The proof of theorem is similar to that of Theorem 5 and is omitted here. □ 

5. Sandwich-Type Results 
Now, by using Theorems 5 and 9, we have the sandwich-type result. 

Theorem 11. Consider two analytic functions  𝓀ଵ(𝓏) 𝑎𝑛𝑑 𝕢ଵ(𝓏)  in 𝑈° , and  𝕢ଶ(𝓏) ∈ Ҩଵ 
with  𝕢ଵ(0) = 𝕢ଶ(0) =1. In addition let the function  𝓀ଶ(𝓏) be univalent in  𝑈°  and  𝛶 ∈𝜃௰[ 𝓀ଶ, 𝕢ଶ] ∩ 𝜃௰ᇱ [𝓀ଵ, 𝕢ଵ]. If 𝛤గ,ఘ,ఉ,ఓ𝑓(𝓏) ∈ Ҩଵ ∩ 𝒦, 𝑓 ∈ 𝑀, ൛𝛶൫𝛤గ,ఘ,ఉ,ఓ𝑓(𝓏), 𝛤గ,ఘ,ఉାଵ,ఓ𝑓(𝓏), 𝛤గ,ఘ,ఉାଶ,ఓ𝑓(𝓏), 𝛤గ,ఘ,ఉାଷ,ఓ𝑓(𝓏), 𝛤గ,ఘ,ఉାସ,ఓ𝑓(𝓏)ቁ : 𝓏 ∈ 𝑈°ቅ 

is univalent in 𝑈°, and the two conditions (7) and (22) are satisfied as 𝓀ଵ(𝓏) ≺ {𝛶൫𝛤గ,ఘ,ఉ,ఓ𝑓(𝓏), 𝛤గ,ఘ,ఉାଵ,ఓ𝑓(𝓏), 𝛤గ,ఘ,ఉାଶ,ఓ𝑓(𝓏), 𝛤గ,ఘ,ఉାଷ,ఓ𝑓(𝓏), 𝛤గ,ఘ,ఉାସ,ఓ𝑓(𝓏); 𝓏 ∈ 𝑈°)} ≺  𝓀ଶ(𝓏), 
then 𝕢ଵ(𝓏) ≺ 𝛤గ,ఘ,ఉ,ఓ𝑓(𝓏) ≺ 𝕢ଶ(𝓏) 

6. Conclusions 
A new differential operator is introduced in the present paper in Definition 1. Using 

the concepts of fourth-order differential subordination and superordination, the classes 
of admissible functions are defined related to each of the two concepts, and using those 
definitions, several theorems are proved involving the newly defined operator regarding 
fourth-order subordinations in Section 3 and regarding fourth-order superordination in 
Section 4. By applying a well-known technique, a sandwich-type theorem is stated in 
Section 5 of the paper combining the subordination and superordination results obtained 
before. The results presented here could inspire future work involving other operators 
for obtaining fourth-order differential subordinations and superordinations. Certain 
special classes of univalent functions could be introduced using the operator defined in 
this paper, and studies for obtaining properties of those classes could be done invoking 
the notions of fourth-order differential subordination and superordination using the 
admissibility conditions given here in Definition 7., Definition 8. and Definition 9. and 
the best dominant obtained in Theorem 5. 
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Well-known notations and definitions used for obtaining the original results are next 
presented. 𝒦(U°) denotes the family of analytic functions in U°that have the form: 𝒦[a, 𝔫] = {𝑓 ∈ 𝒦(U°): 𝑓(𝓏) = 𝑎 + 𝑎𝔫𝓏𝔫 + 𝑎𝔫ାଵ𝓏𝔫ାଵ + ⋯ }, 𝑎 ∈ ℂ, 𝔫 ∈ 𝑁 = {1,2, … }, 

and let ℧𝔫 be the collection of the form: ℧𝔫 = {𝑓 ∈ 𝒦(𝑈°): 𝑓(𝓏) = 𝓏 + 𝑎𝔫ାଵ𝓏𝔫ାଵ + ⋯ }, 
where ℧ଵ = ℧, the subclass of normalized analytic functions in U°. Further, indicate by M 
the subfamily of 𝒦(U°) of the form: 

𝑓(𝓏) = 𝓏 + ෍ 𝑎𝔫𝓏𝔫 , 𝓏 ∈ U°ஶ
𝔫ୀଶ , (1)

which are univalent in U°. For analytic functions 𝑓 and 𝐹, the function 𝑓 is said to be 
subordinate to 𝐹, if 𝑓(𝓏) = 𝐹൫Θ(𝓏)൯, (𝓏 ∈ 𝑈°), 

where Θ(𝓏) is analytic and  Θ(0) = 0, |Θ(𝓏)| < 1. This subordination is indicated by 𝑓(𝓏) ≺ 𝐹(𝓏). 
Cho and Kim [20] proposed the multiplier transformation as a linear operator. Let 𝔫 

be any integer; the multiplier transformation ℒఓఉ: 𝑀 → 𝑀  is given by ℒఓఉ𝑓(𝓏) = 𝓏 +∑ ቀ𝔫ାఓଵାఓቁఉ 𝑎𝔫𝓏𝔫 , 𝜇 ≥ 0, 𝛽 ∈ ℤ = {⋯ , −1,0,1, ⋯ }ஶ𝔫ୀଶ . 
 
The Hurwitz–Lerch Zeta function [21] is 

𝜁గ,ఘ(𝓏) = 1𝜌గ + ෍ 𝓏𝔫(𝔫 + 𝜌)గஶ
𝔫ୀଵ , 

(𝜌 ∈ ℂ\𝑍௢ି = {0, −1, −2, … }, 𝜋 ∈ ℂ, where |𝓏| < 1, ℛ𝑒(𝜋) > 1, 𝓏 ∈ 𝜕𝑈°) 

By making use of the following normalized function, we have: 𝐺గ,ఘ(𝓏) = (1 + 𝜌)గൣ𝜁గ,ఘ(𝓏) − 𝜌ିగ൧ = 𝓏 + ∑ ቀଵାఘ𝔫ାఘቁగ   , 𝓏 ∈ 𝑈°ஶ𝔫ୀଶ . 

If 𝑓, 𝑔 ∈ 𝑀, where 𝑓 given by (1) and 𝑔 is defined by 

𝑔(𝓏) = 𝓏 + ෍ 𝑏𝔫𝓏𝔫ஶ
𝔫ୀଶ  , 𝓏 ∈ U°, 

then 

(𝑓 ∗ 𝑔)(𝓏) = 𝓏 + ෍ 𝑎𝔫𝑏𝔫ஶ
𝔫ୀଶ 𝓏𝔫 = (𝑔 ∗ 𝑓)(𝓏). 

Using the convolution defined above, a new operator is next introduced as the 
original part of the present paper. 

  

), (24)

has a solution q(
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Definition 1. Assume  𝑓 ∈ 𝑀, 𝓏 ∈ 𝜕𝑈°, 𝜌 ∈ ℂ\𝑍௢ି = {0, −1, −2, … }, 𝑤ℎ𝑒𝑟𝑒 |𝓏| < 1, ℛ𝑒(𝜋) >1, 𝜇 ≥ 0, 𝛽 ∈ ℤ, 𝜋 ∈ ℂ; we define new operator 𝛤గ,ఘ,ఉ,ఓ𝑓(𝓏): 𝑀 → 𝑀, where 

Γగ,ఘ,ఉ,ఓ𝑓(𝓏) = 𝐺గ,ఘ(𝓏) ∗ ℒఓఉ𝑓(𝓏) = 𝓏 + ෍ ൬1 + 𝜌𝔫 + 𝜌൰గ ൬𝔫 + 𝜇1 + 𝜇൰ఉ 𝑎𝔫𝓏𝔫ஶ
𝔫ୀଶ . (2)

After a simple computation, we obtain the relation: 𝓏 ቀΓగ,ఘ,ఉ,ఓ𝑓(𝓏)ቁᇱ = (1 + 𝜇)Γగ,ఘ,ఉାଵ,ఓ𝑓(𝓏) − 𝜇 Γగ,ఘ,ఉ,ఓ𝑓(𝓏). (3)

2. Problem Formulation 
The subcollection of various analytic and univalent functions, which are connected 

to differential subordination and superordination in the open unit disk U°, has been ini-
tiated in recent times from a variety of intriguing outcomes and perspectives (cf. 
[22,23,24,25,7,26,27,28]). Additionally, several authors obtained good results on second- 
and third-order differential subordination; e.g., [29,30,31–34,35]. 

In order to demonstrate the original results, we will need the basic concepts of 
fourth-order theory previously introduced, which we present below showing the papers 
where they first appeared. 

Definition 2. Ref. [4]: Assume that Ҩ is called the set of functions 𝕢 that are univalent and 
analytic on the set 𝑈°\𝐸(𝕢) , where 𝐸(𝕢) = {𝒥: 𝒥 ∈ 𝜕𝑈° 𝑎𝑛𝑑 𝑙𝑖𝑚𝓏→𝒥 𝕢(𝓏) = ∞}  are such that 𝑚𝑖𝑛|𝕢ᇱ(𝒥)| = 𝛾 > 0 𝑓𝑜𝑟 𝒥 ∈ 𝜕𝑈°\𝐸(𝕢). In addition, indicate by Ҩ(𝑎) the subclass of function 𝕢 for which 𝕢(0) = 𝑎. Note that  Ҩଵ = Ҩ(1) = {𝕢(𝓏) ∈ Ҩ: 𝕢(0) = 1}. 

Definition 3. See [6,7]: Assume that 𝓀 is univalent in 𝑈°and 𝜓: ℂହ × 𝑈° → ℂ. If the analytic 
function 𝑝 fulfills the fourth-order differential subordination 𝜓(𝑝(𝓏), 𝓏𝑝ᇱ(𝓏), 𝓏ଶ𝑝ᇱᇱ(𝓏), 𝓏ଷ𝑝ᇱᇱᇱ(𝓏), 𝓏ସ𝑝ᇱᇱᇱᇱ(𝓏); 𝓏) ≺ 𝓀(𝓏), (4)

then the function 𝑝 is named a solution of the differential subordination (4). A univalent func-
tion 𝕢 is named a dominant of the solutions of the differential subordination if 𝑝 ≺ 𝕢 for all 𝑝 
satisfying (4). A dominant 𝕢෥(𝓏) that fulfills 𝕢෥ ≺ 𝕢 for all dominants 𝕢 of (4) is named the best 
dominant. 

Definition 4. See [6,7]: Assume that 𝕢 ∈ Ҩ and 𝛺 is a set in ℂ. The admissible functions class 𝛷𝓃[𝛺, 𝕢], (𝔫 ∈ 𝑁\{2}) consists of those functions 𝜓: ℂହ × 𝑈° → ℂ that fulfill the following ad-
missibility condition: 

ψ(𝔯, 𝔰, 𝔱, 𝔲, 𝑏; 𝓏) ∉ Ω, 
wherever 𝔯 = 𝕢(𝜏)  , 𝔰 = 𝔪𝜏𝕢ᇱ(𝜏) ,    ℛℯ ൬ 𝔱𝔰 + 1൰ ≥ 𝔪ℛℯ ቆ1 + 𝜏𝕢ᇱᇱ(𝜏)𝕢ᇱ(𝜏) ቇ, 

ℯℛ ቀ𝔲𝔰ቁ ≥ 𝔪ଶℛℯ ቀఛమ𝕢ᇲᇲᇲ(ఛ)𝕢ᇲ(ఛ) ቁ ,ℯℛ ቀ௕௦ቁ ≥ 𝔪ଷℛℯ ቀఛయ𝕢ᇲᇲᇲᇲ(ఛ)𝕢ᇲ(ఛ) ቁ, ( 𝓏 ∈ 𝑈°, 𝜏 ∈ 𝜕𝑈°\E(𝕢)  𝑎𝑛𝑑   𝔪 ≥ 𝔫). 
 

Theorem 1. See [7]: Let 𝑝 ∈ 𝒦[𝑎, 𝔫], ( 𝔫 ∈ 𝑁\{2}). In addition, let 𝕢 ∈ Ҩ and fulfill the condi-
tions: 

1. If Γπ,ρ,β,µ f (
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Γగ,ఘ,ఉ,ఓ𝑓(𝓏) = 𝐺గ,ఘ(𝓏) ∗ ℒఓఉ𝑓(𝓏) = 𝓏 + ෍ ൬1 + 𝜌𝔫 + 𝜌൰గ ൬𝔫 + 𝜇1 + 𝜇൰ఉ 𝑎𝔫𝓏𝔫ஶ
𝔫ୀଶ . (2)

After a simple computation, we obtain the relation: 𝓏 ቀΓగ,ఘ,ఉ,ఓ𝑓(𝓏)ቁᇱ = (1 + 𝜇)Γగ,ఘ,ఉାଵ,ఓ𝑓(𝓏) − 𝜇 Γగ,ఘ,ఉ,ఓ𝑓(𝓏). (3)

2. Problem Formulation 
The subcollection of various analytic and univalent functions, which are connected 

to differential subordination and superordination in the open unit disk U°, has been ini-
tiated in recent times from a variety of intriguing outcomes and perspectives (cf. 
[22,23,24,25,7,26,27,28]). Additionally, several authors obtained good results on second- 
and third-order differential subordination; e.g., [29,30,31–34,35]. 

In order to demonstrate the original results, we will need the basic concepts of 
fourth-order theory previously introduced, which we present below showing the papers 
where they first appeared. 

Definition 2. Ref. [4]: Assume that Ҩ is called the set of functions 𝕢 that are univalent and 
analytic on the set 𝑈°\𝐸(𝕢) , where 𝐸(𝕢) = {𝒥: 𝒥 ∈ 𝜕𝑈° 𝑎𝑛𝑑 𝑙𝑖𝑚𝓏→𝒥 𝕢(𝓏) = ∞}  are such that 𝑚𝑖𝑛|𝕢ᇱ(𝒥)| = 𝛾 > 0 𝑓𝑜𝑟 𝒥 ∈ 𝜕𝑈°\𝐸(𝕢). In addition, indicate by Ҩ(𝑎) the subclass of function 𝕢 for which 𝕢(0) = 𝑎. Note that  Ҩଵ = Ҩ(1) = {𝕢(𝓏) ∈ Ҩ: 𝕢(0) = 1}. 

Definition 3. See [6,7]: Assume that 𝓀 is univalent in 𝑈°and 𝜓: ℂହ × 𝑈° → ℂ. If the analytic 
function 𝑝 fulfills the fourth-order differential subordination 𝜓(𝑝(𝓏), 𝓏𝑝ᇱ(𝓏), 𝓏ଶ𝑝ᇱᇱ(𝓏), 𝓏ଷ𝑝ᇱᇱᇱ(𝓏), 𝓏ସ𝑝ᇱᇱᇱᇱ(𝓏); 𝓏) ≺ 𝓀(𝓏), (4)

then the function 𝑝 is named a solution of the differential subordination (4). A univalent func-
tion 𝕢 is named a dominant of the solutions of the differential subordination if 𝑝 ≺ 𝕢 for all 𝑝 
satisfying (4). A dominant 𝕢෥(𝓏) that fulfills 𝕢෥ ≺ 𝕢 for all dominants 𝕢 of (4) is named the best 
dominant. 

Definition 4. See [6,7]: Assume that 𝕢 ∈ Ҩ and 𝛺 is a set in ℂ. The admissible functions class 𝛷𝓃[𝛺, 𝕢], (𝔫 ∈ 𝑁\{2}) consists of those functions 𝜓: ℂହ × 𝑈° → ℂ that fulfill the following ad-
missibility condition: 

ψ(𝔯, 𝔰, 𝔱, 𝔲, 𝑏; 𝓏) ∉ Ω, 
wherever 𝔯 = 𝕢(𝜏)  , 𝔰 = 𝔪𝜏𝕢ᇱ(𝜏) ,    ℛℯ ൬ 𝔱𝔰 + 1൰ ≥ 𝔪ℛℯ ቆ1 + 𝜏𝕢ᇱᇱ(𝜏)𝕢ᇱ(𝜏) ቇ, 

ℯℛ ቀ𝔲𝔰ቁ ≥ 𝔪ଶℛℯ ቀఛమ𝕢ᇲᇲᇲ(ఛ)𝕢ᇲ(ఛ) ቁ ,ℯℛ ቀ௕௦ቁ ≥ 𝔪ଷℛℯ ቀఛయ𝕢ᇲᇲᇲᇲ(ఛ)𝕢ᇲ(ఛ) ቁ, ( 𝓏 ∈ 𝑈°, 𝜏 ∈ 𝜕𝑈°\E(𝕢)  𝑎𝑛𝑑   𝔪 ≥ 𝔫). 
 

Theorem 1. See [7]: Let 𝑝 ∈ 𝒦[𝑎, 𝔫], ( 𝔫 ∈ 𝑁\{2}). In addition, let 𝕢 ∈ Ҩ and fulfill the condi-
tions: 

1, q ∈ K1, q′(
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Well-known notations and definitions used for obtaining the original results are next 
presented. 𝒦(U°) denotes the family of analytic functions in U°that have the form: 𝒦[a, 𝔫] = {𝑓 ∈ 𝒦(U°): 𝑓(𝓏) = 𝑎 + 𝑎𝔫𝓏𝔫 + 𝑎𝔫ାଵ𝓏𝔫ାଵ + ⋯ }, 𝑎 ∈ ℂ, 𝔫 ∈ 𝑁 = {1,2, … }, 

and let ℧𝔫 be the collection of the form: ℧𝔫 = {𝑓 ∈ 𝒦(𝑈°): 𝑓(𝓏) = 𝓏 + 𝑎𝔫ାଵ𝓏𝔫ାଵ + ⋯ }, 
where ℧ଵ = ℧, the subclass of normalized analytic functions in U°. Further, indicate by M 
the subfamily of 𝒦(U°) of the form: 

𝑓(𝓏) = 𝓏 + ෍ 𝑎𝔫𝓏𝔫 , 𝓏 ∈ U°ஶ
𝔫ୀଶ , (1)

which are univalent in U°. For analytic functions 𝑓 and 𝐹, the function 𝑓 is said to be 
subordinate to 𝐹, if 𝑓(𝓏) = 𝐹൫Θ(𝓏)൯, (𝓏 ∈ 𝑈°), 

where Θ(𝓏) is analytic and  Θ(0) = 0, |Θ(𝓏)| < 1. This subordination is indicated by 𝑓(𝓏) ≺ 𝐹(𝓏). 
Cho and Kim [20] proposed the multiplier transformation as a linear operator. Let 𝔫 

be any integer; the multiplier transformation ℒఓఉ: 𝑀 → 𝑀  is given by ℒఓఉ𝑓(𝓏) = 𝓏 +∑ ቀ𝔫ାఓଵାఓቁఉ 𝑎𝔫𝓏𝔫 , 𝜇 ≥ 0, 𝛽 ∈ ℤ = {⋯ , −1,0,1, ⋯ }ஶ𝔫ୀଶ . 
 
The Hurwitz–Lerch Zeta function [21] is 

𝜁గ,ఘ(𝓏) = 1𝜌గ + ෍ 𝓏𝔫(𝔫 + 𝜌)గஶ
𝔫ୀଵ , 

(𝜌 ∈ ℂ\𝑍௢ି = {0, −1, −2, … }, 𝜋 ∈ ℂ, where |𝓏| < 1, ℛ𝑒(𝜋) > 1, 𝓏 ∈ 𝜕𝑈°) 

By making use of the following normalized function, we have: 𝐺గ,ఘ(𝓏) = (1 + 𝜌)గൣ𝜁గ,ఘ(𝓏) − 𝜌ିగ൧ = 𝓏 + ∑ ቀଵାఘ𝔫ାఘቁగ   , 𝓏 ∈ 𝑈°ஶ𝔫ୀଶ . 

If 𝑓, 𝑔 ∈ 𝑀, where 𝑓 given by (1) and 𝑔 is defined by 

𝑔(𝓏) = 𝓏 + ෍ 𝑏𝔫𝓏𝔫ஶ
𝔫ୀଶ  , 𝓏 ∈ U°, 

then 

(𝑓 ∗ 𝑔)(𝓏) = 𝓏 + ෍ 𝑎𝔫𝑏𝔫ஶ
𝔫ୀଶ 𝓏𝔫 = (𝑔 ∗ 𝑓)(𝓏). 

Using the convolution defined above, a new operator is next introduced as the 
original part of the present paper. 

  

) 6= 0 and f ∈ M satisfy the
conditions (7) and (21),{

Y
(

Γπ,ρ,β,µ f (
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Well-known notations and definitions used for obtaining the original results are next 
presented. 𝒦(U°) denotes the family of analytic functions in U°that have the form: 𝒦[a, 𝔫] = {𝑓 ∈ 𝒦(U°): 𝑓(𝓏) = 𝑎 + 𝑎𝔫𝓏𝔫 + 𝑎𝔫ାଵ𝓏𝔫ାଵ + ⋯ }, 𝑎 ∈ ℂ, 𝔫 ∈ 𝑁 = {1,2, … }, 

and let ℧𝔫 be the collection of the form: ℧𝔫 = {𝑓 ∈ 𝒦(𝑈°): 𝑓(𝓏) = 𝓏 + 𝑎𝔫ାଵ𝓏𝔫ାଵ + ⋯ }, 
where ℧ଵ = ℧, the subclass of normalized analytic functions in U°. Further, indicate by M 
the subfamily of 𝒦(U°) of the form: 

𝑓(𝓏) = 𝓏 + ෍ 𝑎𝔫𝓏𝔫 , 𝓏 ∈ U°ஶ
𝔫ୀଶ , (1)

which are univalent in U°. For analytic functions 𝑓 and 𝐹, the function 𝑓 is said to be 
subordinate to 𝐹, if 𝑓(𝓏) = 𝐹൫Θ(𝓏)൯, (𝓏 ∈ 𝑈°), 

where Θ(𝓏) is analytic and  Θ(0) = 0, |Θ(𝓏)| < 1. This subordination is indicated by 𝑓(𝓏) ≺ 𝐹(𝓏). 
Cho and Kim [20] proposed the multiplier transformation as a linear operator. Let 𝔫 

be any integer; the multiplier transformation ℒఓఉ: 𝑀 → 𝑀  is given by ℒఓఉ𝑓(𝓏) = 𝓏 +∑ ቀ𝔫ାఓଵାఓቁఉ 𝑎𝔫𝓏𝔫 , 𝜇 ≥ 0, 𝛽 ∈ ℤ = {⋯ , −1,0,1, ⋯ }ஶ𝔫ୀଶ . 
 
The Hurwitz–Lerch Zeta function [21] is 

𝜁గ,ఘ(𝓏) = 1𝜌గ + ෍ 𝓏𝔫(𝔫 + 𝜌)గஶ
𝔫ୀଵ , 

(𝜌 ∈ ℂ\𝑍௢ି = {0, −1, −2, … }, 𝜋 ∈ ℂ, where |𝓏| < 1, ℛ𝑒(𝜋) > 1, 𝓏 ∈ 𝜕𝑈°) 

By making use of the following normalized function, we have: 𝐺గ,ఘ(𝓏) = (1 + 𝜌)గൣ𝜁గ,ఘ(𝓏) − 𝜌ିగ൧ = 𝓏 + ∑ ቀଵାఘ𝔫ାఘቁగ   , 𝓏 ∈ 𝑈°ஶ𝔫ୀଶ . 

If 𝑓, 𝑔 ∈ 𝑀, where 𝑓 given by (1) and 𝑔 is defined by 

𝑔(𝓏) = 𝓏 + ෍ 𝑏𝔫𝓏𝔫ஶ
𝔫ୀଶ  , 𝓏 ∈ U°, 

then 

(𝑓 ∗ 𝑔)(𝓏) = 𝓏 + ෍ 𝑎𝔫𝑏𝔫ஶ
𝔫ୀଶ 𝓏𝔫 = (𝑔 ∗ 𝑓)(𝓏). 

Using the convolution defined above, a new operator is next introduced as the 
original part of the present paper. 

  

), Γπ,ρ,β+1,µ f (
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Well-known notations and definitions used for obtaining the original results are next 
presented. 𝒦(U°) denotes the family of analytic functions in U°that have the form: 𝒦[a, 𝔫] = {𝑓 ∈ 𝒦(U°): 𝑓(𝓏) = 𝑎 + 𝑎𝔫𝓏𝔫 + 𝑎𝔫ାଵ𝓏𝔫ାଵ + ⋯ }, 𝑎 ∈ ℂ, 𝔫 ∈ 𝑁 = {1,2, … }, 

and let ℧𝔫 be the collection of the form: ℧𝔫 = {𝑓 ∈ 𝒦(𝑈°): 𝑓(𝓏) = 𝓏 + 𝑎𝔫ାଵ𝓏𝔫ାଵ + ⋯ }, 
where ℧ଵ = ℧, the subclass of normalized analytic functions in U°. Further, indicate by M 
the subfamily of 𝒦(U°) of the form: 

𝑓(𝓏) = 𝓏 + ෍ 𝑎𝔫𝓏𝔫 , 𝓏 ∈ U°ஶ
𝔫ୀଶ , (1)

which are univalent in U°. For analytic functions 𝑓 and 𝐹, the function 𝑓 is said to be 
subordinate to 𝐹, if 𝑓(𝓏) = 𝐹൫Θ(𝓏)൯, (𝓏 ∈ 𝑈°), 

where Θ(𝓏) is analytic and  Θ(0) = 0, |Θ(𝓏)| < 1. This subordination is indicated by 𝑓(𝓏) ≺ 𝐹(𝓏). 
Cho and Kim [20] proposed the multiplier transformation as a linear operator. Let 𝔫 

be any integer; the multiplier transformation ℒఓఉ: 𝑀 → 𝑀  is given by ℒఓఉ𝑓(𝓏) = 𝓏 +∑ ቀ𝔫ାఓଵାఓቁఉ 𝑎𝔫𝓏𝔫 , 𝜇 ≥ 0, 𝛽 ∈ ℤ = {⋯ , −1,0,1, ⋯ }ஶ𝔫ୀଶ . 
 
The Hurwitz–Lerch Zeta function [21] is 

𝜁గ,ఘ(𝓏) = 1𝜌గ + ෍ 𝓏𝔫(𝔫 + 𝜌)గஶ
𝔫ୀଵ , 

(𝜌 ∈ ℂ\𝑍௢ି = {0, −1, −2, … }, 𝜋 ∈ ℂ, where |𝓏| < 1, ℛ𝑒(𝜋) > 1, 𝓏 ∈ 𝜕𝑈°) 

By making use of the following normalized function, we have: 𝐺గ,ఘ(𝓏) = (1 + 𝜌)గൣ𝜁గ,ఘ(𝓏) − 𝜌ିగ൧ = 𝓏 + ∑ ቀଵାఘ𝔫ାఘቁగ   , 𝓏 ∈ 𝑈°ஶ𝔫ୀଶ . 

If 𝑓, 𝑔 ∈ 𝑀, where 𝑓 given by (1) and 𝑔 is defined by 

𝑔(𝓏) = 𝓏 + ෍ 𝑏𝔫𝓏𝔫ஶ
𝔫ୀଶ  , 𝓏 ∈ U°, 

then 

(𝑓 ∗ 𝑔)(𝓏) = 𝓏 + ෍ 𝑎𝔫𝑏𝔫ஶ
𝔫ୀଶ 𝓏𝔫 = (𝑔 ∗ 𝑓)(𝓏). 

Using the convolution defined above, a new operator is next introduced as the 
original part of the present paper. 

  

), Γπ,ρ,β+2,µ f (
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Well-known notations and definitions used for obtaining the original results are next 
presented. 𝒦(U°) denotes the family of analytic functions in U°that have the form: 𝒦[a, 𝔫] = {𝑓 ∈ 𝒦(U°): 𝑓(𝓏) = 𝑎 + 𝑎𝔫𝓏𝔫 + 𝑎𝔫ାଵ𝓏𝔫ାଵ + ⋯ }, 𝑎 ∈ ℂ, 𝔫 ∈ 𝑁 = {1,2, … }, 

and let ℧𝔫 be the collection of the form: ℧𝔫 = {𝑓 ∈ 𝒦(𝑈°): 𝑓(𝓏) = 𝓏 + 𝑎𝔫ାଵ𝓏𝔫ାଵ + ⋯ }, 
where ℧ଵ = ℧, the subclass of normalized analytic functions in U°. Further, indicate by M 
the subfamily of 𝒦(U°) of the form: 

𝑓(𝓏) = 𝓏 + ෍ 𝑎𝔫𝓏𝔫 , 𝓏 ∈ U°ஶ
𝔫ୀଶ , (1)

which are univalent in U°. For analytic functions 𝑓 and 𝐹, the function 𝑓 is said to be 
subordinate to 𝐹, if 𝑓(𝓏) = 𝐹൫Θ(𝓏)൯, (𝓏 ∈ 𝑈°), 

where Θ(𝓏) is analytic and  Θ(0) = 0, |Θ(𝓏)| < 1. This subordination is indicated by 𝑓(𝓏) ≺ 𝐹(𝓏). 
Cho and Kim [20] proposed the multiplier transformation as a linear operator. Let 𝔫 

be any integer; the multiplier transformation ℒఓఉ: 𝑀 → 𝑀  is given by ℒఓఉ𝑓(𝓏) = 𝓏 +∑ ቀ𝔫ାఓଵାఓቁఉ 𝑎𝔫𝓏𝔫 , 𝜇 ≥ 0, 𝛽 ∈ ℤ = {⋯ , −1,0,1, ⋯ }ஶ𝔫ୀଶ . 
 
The Hurwitz–Lerch Zeta function [21] is 

𝜁గ,ఘ(𝓏) = 1𝜌గ + ෍ 𝓏𝔫(𝔫 + 𝜌)గஶ
𝔫ୀଵ , 

(𝜌 ∈ ℂ\𝑍௢ି = {0, −1, −2, … }, 𝜋 ∈ ℂ, where |𝓏| < 1, ℛ𝑒(𝜋) > 1, 𝓏 ∈ 𝜕𝑈°) 

By making use of the following normalized function, we have: 𝐺గ,ఘ(𝓏) = (1 + 𝜌)గൣ𝜁గ,ఘ(𝓏) − 𝜌ିగ൧ = 𝓏 + ∑ ቀଵାఘ𝔫ାఘቁగ   , 𝓏 ∈ 𝑈°ஶ𝔫ୀଶ . 

If 𝑓, 𝑔 ∈ 𝑀, where 𝑓 given by (1) and 𝑔 is defined by 

𝑔(𝓏) = 𝓏 + ෍ 𝑏𝔫𝓏𝔫ஶ
𝔫ୀଶ  , 𝓏 ∈ U°, 

then 

(𝑓 ∗ 𝑔)(𝓏) = 𝓏 + ෍ 𝑎𝔫𝑏𝔫ஶ
𝔫ୀଶ 𝓏𝔫 = (𝑔 ∗ 𝑓)(𝓏). 

Using the convolution defined above, a new operator is next introduced as the 
original part of the present paper. 

  

), Γπ,ρ,β+3,µ f (
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Well-known notations and definitions used for obtaining the original results are next 
presented. 𝒦(U°) denotes the family of analytic functions in U°that have the form: 𝒦[a, 𝔫] = {𝑓 ∈ 𝒦(U°): 𝑓(𝓏) = 𝑎 + 𝑎𝔫𝓏𝔫 + 𝑎𝔫ାଵ𝓏𝔫ାଵ + ⋯ }, 𝑎 ∈ ℂ, 𝔫 ∈ 𝑁 = {1,2, … }, 

and let ℧𝔫 be the collection of the form: ℧𝔫 = {𝑓 ∈ 𝒦(𝑈°): 𝑓(𝓏) = 𝓏 + 𝑎𝔫ାଵ𝓏𝔫ାଵ + ⋯ }, 
where ℧ଵ = ℧, the subclass of normalized analytic functions in U°. Further, indicate by M 
the subfamily of 𝒦(U°) of the form: 

𝑓(𝓏) = 𝓏 + ෍ 𝑎𝔫𝓏𝔫 , 𝓏 ∈ U°ஶ
𝔫ୀଶ , (1)

which are univalent in U°. For analytic functions 𝑓 and 𝐹, the function 𝑓 is said to be 
subordinate to 𝐹, if 𝑓(𝓏) = 𝐹൫Θ(𝓏)൯, (𝓏 ∈ 𝑈°), 

where Θ(𝓏) is analytic and  Θ(0) = 0, |Θ(𝓏)| < 1. This subordination is indicated by 𝑓(𝓏) ≺ 𝐹(𝓏). 
Cho and Kim [20] proposed the multiplier transformation as a linear operator. Let 𝔫 

be any integer; the multiplier transformation ℒఓఉ: 𝑀 → 𝑀  is given by ℒఓఉ𝑓(𝓏) = 𝓏 +∑ ቀ𝔫ାఓଵାఓቁఉ 𝑎𝔫𝓏𝔫 , 𝜇 ≥ 0, 𝛽 ∈ ℤ = {⋯ , −1,0,1, ⋯ }ஶ𝔫ୀଶ . 
 
The Hurwitz–Lerch Zeta function [21] is 

𝜁గ,ఘ(𝓏) = 1𝜌గ + ෍ 𝓏𝔫(𝔫 + 𝜌)గஶ
𝔫ୀଵ , 

(𝜌 ∈ ℂ\𝑍௢ି = {0, −1, −2, … }, 𝜋 ∈ ℂ, where |𝓏| < 1, ℛ𝑒(𝜋) > 1, 𝓏 ∈ 𝜕𝑈°) 

By making use of the following normalized function, we have: 𝐺గ,ఘ(𝓏) = (1 + 𝜌)గൣ𝜁గ,ఘ(𝓏) − 𝜌ିగ൧ = 𝓏 + ∑ ቀଵାఘ𝔫ାఘቁగ   , 𝓏 ∈ 𝑈°ஶ𝔫ୀଶ . 

If 𝑓, 𝑔 ∈ 𝑀, where 𝑓 given by (1) and 𝑔 is defined by 

𝑔(𝓏) = 𝓏 + ෍ 𝑏𝔫𝓏𝔫ஶ
𝔫ୀଶ  , 𝓏 ∈ U°, 

then 

(𝑓 ∗ 𝑔)(𝓏) = 𝓏 + ෍ 𝑎𝔫𝑏𝔫ஶ
𝔫ୀଶ 𝓏𝔫 = (𝑔 ∗ 𝑓)(𝓏). 

Using the convolution defined above, a new operator is next introduced as the 
original part of the present paper. 

  

), Γπ,ρ,β+4,µ f (
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has a solution 𝕢(𝓏) ∈ Ҩଵ. If 𝛤గ,ఘ,ఉ,ఓ𝑓(𝓏) ∈ Ҩଵ, 𝕢 ∈ 𝒦ଵ, 𝕢ᇱ(𝓏) ് 0 and 𝑓 ∈ 𝑀 satisfy the con-
ditions (7) and (22), ൛𝛶൫𝛤గ,ఘ,ఉ,ఓ𝑓(𝓏), 𝛤గ,ఘ,ఉାଵ,ఓ𝑓(𝓏), 𝛤గ,ఘ,ఉାଶ,ఓ𝑓(𝓏), 𝛤గ,ఘ,ఉାଷ,ఓ𝑓(𝓏), 𝛤గ,ఘ,ఉାସ,ఓ𝑓(𝓏)ቁ : 𝓏 ∈ 𝑈°ቅ 
is univalent in 𝑈°, and 𝓀(𝓏) ⊂ {Υ൫Γగ,ఘ,ఉ,ఓ𝑓(𝓏), Γగ,ఘ,ఉାଵ,ఓ𝑓(𝓏), Γగ,ఘ,ఉାଶ,ఓ𝑓(𝓏), Γగ,ఘ,ఉାଷ,ఓ𝑓(𝓏), 𝛤గ,ఘ,ఉାସ,ఓ𝑓(𝓏); 𝓏 ∈ 𝑈°)}, 
then 𝕢(𝓏) ≺ 𝛤గ,ఘ,ఉ,ఋ𝑓(𝓏), and 𝕢(𝓏) is the best subordinate of (24). 

Proof. The proof of theorem is similar to that of Theorem 5 and is omitted here. □ 

5. Sandwich-Type Results 
Now, by using Theorems 5 and 9, we have the sandwich-type result. 

Theorem 11. Consider two analytic functions  𝓀ଵ(𝓏) 𝑎𝑛𝑑 𝕢ଵ(𝓏)  in 𝑈° , and  𝕢ଶ(𝓏) ∈ Ҩଵ 
with  𝕢ଵ(0) = 𝕢ଶ(0) =1. In addition let the function  𝓀ଶ(𝓏) be univalent in  𝑈°  and  𝛶 ∈𝜃௰[ 𝓀ଶ, 𝕢ଶ] ∩ 𝜃௰ᇱ [𝓀ଵ, 𝕢ଵ]. If 𝛤గ,ఘ,ఉ,ఓ𝑓(𝓏) ∈ Ҩଵ ∩ 𝒦, 𝑓 ∈ 𝑀, ൛𝛶൫𝛤గ,ఘ,ఉ,ఓ𝑓(𝓏), 𝛤గ,ఘ,ఉାଵ,ఓ𝑓(𝓏), 𝛤గ,ఘ,ఉାଶ,ఓ𝑓(𝓏), 𝛤గ,ఘ,ఉାଷ,ఓ𝑓(𝓏), 𝛤గ,ఘ,ఉାସ,ఓ𝑓(𝓏)ቁ : 𝓏 ∈ 𝑈°ቅ 

is univalent in 𝑈°, and the two conditions (7) and (22) are satisfied as 𝓀ଵ(𝓏) ≺ {𝛶൫𝛤గ,ఘ,ఉ,ఓ𝑓(𝓏), 𝛤గ,ఘ,ఉାଵ,ఓ𝑓(𝓏), 𝛤గ,ఘ,ఉାଶ,ఓ𝑓(𝓏), 𝛤గ,ఘ,ఉାଷ,ఓ𝑓(𝓏), 𝛤గ,ఘ,ఉାସ,ఓ𝑓(𝓏); 𝓏 ∈ 𝑈°)} ≺  𝓀ଶ(𝓏), 
then 𝕢ଵ(𝓏) ≺ 𝛤గ,ఘ,ఉ,ఓ𝑓(𝓏) ≺ 𝕢ଶ(𝓏) 

6. Conclusions 
A new differential operator is introduced in the present paper in Definition 1. Using 

the concepts of fourth-order differential subordination and superordination, the classes 
of admissible functions are defined related to each of the two concepts, and using those 
definitions, several theorems are proved involving the newly defined operator regarding 
fourth-order subordinations in Section 3 and regarding fourth-order superordination in 
Section 4. By applying a well-known technique, a sandwich-type theorem is stated in 
Section 5 of the paper combining the subordination and superordination results obtained 
before. The results presented here could inspire future work involving other operators 
for obtaining fourth-order differential subordinations and superordinations. Certain 
special classes of univalent functions could be introduced using the operator defined in 
this paper, and studies for obtaining properties of those classes could be done invoking 
the notions of fourth-order differential subordination and superordination using the 
admissibility conditions given here in Definition 7., Definition 8. and Definition 9. and 
the best dominant obtained in Theorem 5. 
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If 𝑓, 𝑔 ∈ 𝑀, where 𝑓 given by (1) and 𝑔 is defined by 

𝑔(𝓏) = 𝓏 + ෍ 𝑏𝔫𝓏𝔫ஶ
𝔫ୀଶ  , 𝓏 ∈ U°, 

then 

(𝑓 ∗ 𝑔)(𝓏) = 𝓏 + ෍ 𝑎𝔫𝑏𝔫ஶ
𝔫ୀଶ 𝓏𝔫 = (𝑔 ∗ 𝑓)(𝓏). 

Using the convolution defined above, a new operator is next introduced as the 
original part of the present paper. 

  

), Γπ,ρ,β+2,µ f (
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Well-known notations and definitions used for obtaining the original results are next 
presented. 𝒦(U°) denotes the family of analytic functions in U°that have the form: 𝒦[a, 𝔫] = {𝑓 ∈ 𝒦(U°): 𝑓(𝓏) = 𝑎 + 𝑎𝔫𝓏𝔫 + 𝑎𝔫ାଵ𝓏𝔫ାଵ + ⋯ }, 𝑎 ∈ ℂ, 𝔫 ∈ 𝑁 = {1,2, … }, 

and let ℧𝔫 be the collection of the form: ℧𝔫 = {𝑓 ∈ 𝒦(𝑈°): 𝑓(𝓏) = 𝓏 + 𝑎𝔫ାଵ𝓏𝔫ାଵ + ⋯ }, 
where ℧ଵ = ℧, the subclass of normalized analytic functions in U°. Further, indicate by M 
the subfamily of 𝒦(U°) of the form: 

𝑓(𝓏) = 𝓏 + ෍ 𝑎𝔫𝓏𝔫 , 𝓏 ∈ U°ஶ
𝔫ୀଶ , (1)

which are univalent in U°. For analytic functions 𝑓 and 𝐹, the function 𝑓 is said to be 
subordinate to 𝐹, if 𝑓(𝓏) = 𝐹൫Θ(𝓏)൯, (𝓏 ∈ 𝑈°), 

where Θ(𝓏) is analytic and  Θ(0) = 0, |Θ(𝓏)| < 1. This subordination is indicated by 𝑓(𝓏) ≺ 𝐹(𝓏). 
Cho and Kim [20] proposed the multiplier transformation as a linear operator. Let 𝔫 

be any integer; the multiplier transformation ℒఓఉ: 𝑀 → 𝑀  is given by ℒఓఉ𝑓(𝓏) = 𝓏 +∑ ቀ𝔫ାఓଵାఓቁఉ 𝑎𝔫𝓏𝔫 , 𝜇 ≥ 0, 𝛽 ∈ ℤ = {⋯ , −1,0,1, ⋯ }ஶ𝔫ୀଶ . 
 
The Hurwitz–Lerch Zeta function [21] is 

𝜁గ,ఘ(𝓏) = 1𝜌గ + ෍ 𝓏𝔫(𝔫 + 𝜌)గஶ
𝔫ୀଵ , 

(𝜌 ∈ ℂ\𝑍௢ି = {0, −1, −2, … }, 𝜋 ∈ ℂ, where |𝓏| < 1, ℛ𝑒(𝜋) > 1, 𝓏 ∈ 𝜕𝑈°) 

By making use of the following normalized function, we have: 𝐺గ,ఘ(𝓏) = (1 + 𝜌)గൣ𝜁గ,ఘ(𝓏) − 𝜌ିగ൧ = 𝓏 + ∑ ቀଵାఘ𝔫ାఘቁగ   , 𝓏 ∈ 𝑈°ஶ𝔫ୀଶ . 

If 𝑓, 𝑔 ∈ 𝑀, where 𝑓 given by (1) and 𝑔 is defined by 

𝑔(𝓏) = 𝓏 + ෍ 𝑏𝔫𝓏𝔫ஶ
𝔫ୀଶ  , 𝓏 ∈ U°, 

then 

(𝑓 ∗ 𝑔)(𝓏) = 𝓏 + ෍ 𝑎𝔫𝑏𝔫ஶ
𝔫ୀଶ 𝓏𝔫 = (𝑔 ∗ 𝑓)(𝓏). 

Using the convolution defined above, a new operator is next introduced as the 
original part of the present paper. 

  

), Γπ,ρ,β+3,µ f (
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Well-known notations and definitions used for obtaining the original results are next 
presented. 𝒦(U°) denotes the family of analytic functions in U°that have the form: 𝒦[a, 𝔫] = {𝑓 ∈ 𝒦(U°): 𝑓(𝓏) = 𝑎 + 𝑎𝔫𝓏𝔫 + 𝑎𝔫ାଵ𝓏𝔫ାଵ + ⋯ }, 𝑎 ∈ ℂ, 𝔫 ∈ 𝑁 = {1,2, … }, 

and let ℧𝔫 be the collection of the form: ℧𝔫 = {𝑓 ∈ 𝒦(𝑈°): 𝑓(𝓏) = 𝓏 + 𝑎𝔫ାଵ𝓏𝔫ାଵ + ⋯ }, 
where ℧ଵ = ℧, the subclass of normalized analytic functions in U°. Further, indicate by M 
the subfamily of 𝒦(U°) of the form: 

𝑓(𝓏) = 𝓏 + ෍ 𝑎𝔫𝓏𝔫 , 𝓏 ∈ U°ஶ
𝔫ୀଶ , (1)

which are univalent in U°. For analytic functions 𝑓 and 𝐹, the function 𝑓 is said to be 
subordinate to 𝐹, if 𝑓(𝓏) = 𝐹൫Θ(𝓏)൯, (𝓏 ∈ 𝑈°), 

where Θ(𝓏) is analytic and  Θ(0) = 0, |Θ(𝓏)| < 1. This subordination is indicated by 𝑓(𝓏) ≺ 𝐹(𝓏). 
Cho and Kim [20] proposed the multiplier transformation as a linear operator. Let 𝔫 

be any integer; the multiplier transformation ℒఓఉ: 𝑀 → 𝑀  is given by ℒఓఉ𝑓(𝓏) = 𝓏 +∑ ቀ𝔫ାఓଵାఓቁఉ 𝑎𝔫𝓏𝔫 , 𝜇 ≥ 0, 𝛽 ∈ ℤ = {⋯ , −1,0,1, ⋯ }ஶ𝔫ୀଶ . 
 
The Hurwitz–Lerch Zeta function [21] is 

𝜁గ,ఘ(𝓏) = 1𝜌గ + ෍ 𝓏𝔫(𝔫 + 𝜌)గஶ
𝔫ୀଵ , 

(𝜌 ∈ ℂ\𝑍௢ି = {0, −1, −2, … }, 𝜋 ∈ ℂ, where |𝓏| < 1, ℛ𝑒(𝜋) > 1, 𝓏 ∈ 𝜕𝑈°) 

By making use of the following normalized function, we have: 𝐺గ,ఘ(𝓏) = (1 + 𝜌)గൣ𝜁గ,ఘ(𝓏) − 𝜌ିగ൧ = 𝓏 + ∑ ቀଵାఘ𝔫ାఘቁగ   , 𝓏 ∈ 𝑈°ஶ𝔫ୀଶ . 

If 𝑓, 𝑔 ∈ 𝑀, where 𝑓 given by (1) and 𝑔 is defined by 

𝑔(𝓏) = 𝓏 + ෍ 𝑏𝔫𝓏𝔫ஶ
𝔫ୀଶ  , 𝓏 ∈ U°, 

then 

(𝑓 ∗ 𝑔)(𝓏) = 𝓏 + ෍ 𝑎𝔫𝑏𝔫ஶ
𝔫ୀଶ 𝓏𝔫 = (𝑔 ∗ 𝑓)(𝓏). 

Using the convolution defined above, a new operator is next introduced as the 
original part of the present paper. 

  

), Γπ,ρ,β+4,µ f (
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Well-known notations and definitions used for obtaining the original results are next 
presented. 𝒦(U°) denotes the family of analytic functions in U°that have the form: 𝒦[a, 𝔫] = {𝑓 ∈ 𝒦(U°): 𝑓(𝓏) = 𝑎 + 𝑎𝔫𝓏𝔫 + 𝑎𝔫ାଵ𝓏𝔫ାଵ + ⋯ }, 𝑎 ∈ ℂ, 𝔫 ∈ 𝑁 = {1,2, … }, 

and let ℧𝔫 be the collection of the form: ℧𝔫 = {𝑓 ∈ 𝒦(𝑈°): 𝑓(𝓏) = 𝓏 + 𝑎𝔫ାଵ𝓏𝔫ାଵ + ⋯ }, 
where ℧ଵ = ℧, the subclass of normalized analytic functions in U°. Further, indicate by M 
the subfamily of 𝒦(U°) of the form: 

𝑓(𝓏) = 𝓏 + ෍ 𝑎𝔫𝓏𝔫 , 𝓏 ∈ U°ஶ
𝔫ୀଶ , (1)

which are univalent in U°. For analytic functions 𝑓 and 𝐹, the function 𝑓 is said to be 
subordinate to 𝐹, if 𝑓(𝓏) = 𝐹൫Θ(𝓏)൯, (𝓏 ∈ 𝑈°), 

where Θ(𝓏) is analytic and  Θ(0) = 0, |Θ(𝓏)| < 1. This subordination is indicated by 𝑓(𝓏) ≺ 𝐹(𝓏). 
Cho and Kim [20] proposed the multiplier transformation as a linear operator. Let 𝔫 

be any integer; the multiplier transformation ℒఓఉ: 𝑀 → 𝑀  is given by ℒఓఉ𝑓(𝓏) = 𝓏 +∑ ቀ𝔫ାఓଵାఓቁఉ 𝑎𝔫𝓏𝔫 , 𝜇 ≥ 0, 𝛽 ∈ ℤ = {⋯ , −1,0,1, ⋯ }ஶ𝔫ୀଶ . 
 
The Hurwitz–Lerch Zeta function [21] is 

𝜁గ,ఘ(𝓏) = 1𝜌గ + ෍ 𝓏𝔫(𝔫 + 𝜌)గஶ
𝔫ୀଵ , 

(𝜌 ∈ ℂ\𝑍௢ି = {0, −1, −2, … }, 𝜋 ∈ ℂ, where |𝓏| < 1, ℛ𝑒(𝜋) > 1, 𝓏 ∈ 𝜕𝑈°) 

By making use of the following normalized function, we have: 𝐺గ,ఘ(𝓏) = (1 + 𝜌)గൣ𝜁గ,ఘ(𝓏) − 𝜌ିగ൧ = 𝓏 + ∑ ቀଵାఘ𝔫ାఘቁగ   , 𝓏 ∈ 𝑈°ஶ𝔫ୀଶ . 

If 𝑓, 𝑔 ∈ 𝑀, where 𝑓 given by (1) and 𝑔 is defined by 

𝑔(𝓏) = 𝓏 + ෍ 𝑏𝔫𝓏𝔫ஶ
𝔫ୀଶ  , 𝓏 ∈ U°, 

then 

(𝑓 ∗ 𝑔)(𝓏) = 𝓏 + ෍ 𝑎𝔫𝑏𝔫ஶ
𝔫ୀଶ 𝓏𝔫 = (𝑔 ∗ 𝑓)(𝓏). 

Using the convolution defined above, a new operator is next introduced as the 
original part of the present paper. 

  

);
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Well-known notations and definitions used for obtaining the original results are next 
presented. 𝒦(U°) denotes the family of analytic functions in U°that have the form: 𝒦[a, 𝔫] = {𝑓 ∈ 𝒦(U°): 𝑓(𝓏) = 𝑎 + 𝑎𝔫𝓏𝔫 + 𝑎𝔫ାଵ𝓏𝔫ାଵ + ⋯ }, 𝑎 ∈ ℂ, 𝔫 ∈ 𝑁 = {1,2, … }, 

and let ℧𝔫 be the collection of the form: ℧𝔫 = {𝑓 ∈ 𝒦(𝑈°): 𝑓(𝓏) = 𝓏 + 𝑎𝔫ାଵ𝓏𝔫ାଵ + ⋯ }, 
where ℧ଵ = ℧, the subclass of normalized analytic functions in U°. Further, indicate by M 
the subfamily of 𝒦(U°) of the form: 

𝑓(𝓏) = 𝓏 + ෍ 𝑎𝔫𝓏𝔫 , 𝓏 ∈ U°ஶ
𝔫ୀଶ , (1)

which are univalent in U°. For analytic functions 𝑓 and 𝐹, the function 𝑓 is said to be 
subordinate to 𝐹, if 𝑓(𝓏) = 𝐹൫Θ(𝓏)൯, (𝓏 ∈ 𝑈°), 

where Θ(𝓏) is analytic and  Θ(0) = 0, |Θ(𝓏)| < 1. This subordination is indicated by 𝑓(𝓏) ≺ 𝐹(𝓏). 
Cho and Kim [20] proposed the multiplier transformation as a linear operator. Let 𝔫 

be any integer; the multiplier transformation ℒఓఉ: 𝑀 → 𝑀  is given by ℒఓఉ𝑓(𝓏) = 𝓏 +∑ ቀ𝔫ାఓଵାఓቁఉ 𝑎𝔫𝓏𝔫 , 𝜇 ≥ 0, 𝛽 ∈ ℤ = {⋯ , −1,0,1, ⋯ }ஶ𝔫ୀଶ . 
 
The Hurwitz–Lerch Zeta function [21] is 

𝜁గ,ఘ(𝓏) = 1𝜌గ + ෍ 𝓏𝔫(𝔫 + 𝜌)గஶ
𝔫ୀଵ , 

(𝜌 ∈ ℂ\𝑍௢ି = {0, −1, −2, … }, 𝜋 ∈ ℂ, where |𝓏| < 1, ℛ𝑒(𝜋) > 1, 𝓏 ∈ 𝜕𝑈°) 

By making use of the following normalized function, we have: 𝐺గ,ఘ(𝓏) = (1 + 𝜌)గൣ𝜁గ,ఘ(𝓏) − 𝜌ିగ൧ = 𝓏 + ∑ ቀଵାఘ𝔫ାఘቁగ   , 𝓏 ∈ 𝑈°ஶ𝔫ୀଶ . 

If 𝑓, 𝑔 ∈ 𝑀, where 𝑓 given by (1) and 𝑔 is defined by 

𝑔(𝓏) = 𝓏 + ෍ 𝑏𝔫𝓏𝔫ஶ
𝔫ୀଶ  , 𝓏 ∈ U°, 

then 

(𝑓 ∗ 𝑔)(𝓏) = 𝓏 + ෍ 𝑎𝔫𝑏𝔫ஶ
𝔫ୀଶ 𝓏𝔫 = (𝑔 ∗ 𝑓)(𝓏). 

Using the convolution defined above, a new operator is next introduced as the 
original part of the present paper. 

  

∈ U
◦
)
}

,

then q(
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Well-known notations and definitions used for obtaining the original results are next 
presented. 𝒦(U°) denotes the family of analytic functions in U°that have the form: 𝒦[a, 𝔫] = {𝑓 ∈ 𝒦(U°): 𝑓(𝓏) = 𝑎 + 𝑎𝔫𝓏𝔫 + 𝑎𝔫ାଵ𝓏𝔫ାଵ + ⋯ }, 𝑎 ∈ ℂ, 𝔫 ∈ 𝑁 = {1,2, … }, 

and let ℧𝔫 be the collection of the form: ℧𝔫 = {𝑓 ∈ 𝒦(𝑈°): 𝑓(𝓏) = 𝓏 + 𝑎𝔫ାଵ𝓏𝔫ାଵ + ⋯ }, 
where ℧ଵ = ℧, the subclass of normalized analytic functions in U°. Further, indicate by M 
the subfamily of 𝒦(U°) of the form: 

𝑓(𝓏) = 𝓏 + ෍ 𝑎𝔫𝓏𝔫 , 𝓏 ∈ U°ஶ
𝔫ୀଶ , (1)

which are univalent in U°. For analytic functions 𝑓 and 𝐹, the function 𝑓 is said to be 
subordinate to 𝐹, if 𝑓(𝓏) = 𝐹൫Θ(𝓏)൯, (𝓏 ∈ 𝑈°), 

where Θ(𝓏) is analytic and  Θ(0) = 0, |Θ(𝓏)| < 1. This subordination is indicated by 𝑓(𝓏) ≺ 𝐹(𝓏). 
Cho and Kim [20] proposed the multiplier transformation as a linear operator. Let 𝔫 

be any integer; the multiplier transformation ℒఓఉ: 𝑀 → 𝑀  is given by ℒఓఉ𝑓(𝓏) = 𝓏 +∑ ቀ𝔫ାఓଵାఓቁఉ 𝑎𝔫𝓏𝔫 , 𝜇 ≥ 0, 𝛽 ∈ ℤ = {⋯ , −1,0,1, ⋯ }ஶ𝔫ୀଶ . 
 
The Hurwitz–Lerch Zeta function [21] is 

𝜁గ,ఘ(𝓏) = 1𝜌గ + ෍ 𝓏𝔫(𝔫 + 𝜌)గஶ
𝔫ୀଵ , 

(𝜌 ∈ ℂ\𝑍௢ି = {0, −1, −2, … }, 𝜋 ∈ ℂ, where |𝓏| < 1, ℛ𝑒(𝜋) > 1, 𝓏 ∈ 𝜕𝑈°) 

By making use of the following normalized function, we have: 𝐺గ,ఘ(𝓏) = (1 + 𝜌)గൣ𝜁గ,ఘ(𝓏) − 𝜌ିగ൧ = 𝓏 + ∑ ቀଵାఘ𝔫ାఘቁగ   , 𝓏 ∈ 𝑈°ஶ𝔫ୀଶ . 

If 𝑓, 𝑔 ∈ 𝑀, where 𝑓 given by (1) and 𝑔 is defined by 

𝑔(𝓏) = 𝓏 + ෍ 𝑏𝔫𝓏𝔫ஶ
𝔫ୀଶ  , 𝓏 ∈ U°, 

then 

(𝑓 ∗ 𝑔)(𝓏) = 𝓏 + ෍ 𝑎𝔫𝑏𝔫ஶ
𝔫ୀଶ 𝓏𝔫 = (𝑔 ∗ 𝑓)(𝓏). 

Using the convolution defined above, a new operator is next introduced as the 
original part of the present paper. 

  

) ≺ Γπ,ρ,β,δ f (
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Well-known notations and definitions used for obtaining the original results are next 
presented. 𝒦(U°) denotes the family of analytic functions in U°that have the form: 𝒦[a, 𝔫] = {𝑓 ∈ 𝒦(U°): 𝑓(𝓏) = 𝑎 + 𝑎𝔫𝓏𝔫 + 𝑎𝔫ାଵ𝓏𝔫ାଵ + ⋯ }, 𝑎 ∈ ℂ, 𝔫 ∈ 𝑁 = {1,2, … }, 

and let ℧𝔫 be the collection of the form: ℧𝔫 = {𝑓 ∈ 𝒦(𝑈°): 𝑓(𝓏) = 𝓏 + 𝑎𝔫ାଵ𝓏𝔫ାଵ + ⋯ }, 
where ℧ଵ = ℧, the subclass of normalized analytic functions in U°. Further, indicate by M 
the subfamily of 𝒦(U°) of the form: 

𝑓(𝓏) = 𝓏 + ෍ 𝑎𝔫𝓏𝔫 , 𝓏 ∈ U°ஶ
𝔫ୀଶ , (1)

which are univalent in U°. For analytic functions 𝑓 and 𝐹, the function 𝑓 is said to be 
subordinate to 𝐹, if 𝑓(𝓏) = 𝐹൫Θ(𝓏)൯, (𝓏 ∈ 𝑈°), 

where Θ(𝓏) is analytic and  Θ(0) = 0, |Θ(𝓏)| < 1. This subordination is indicated by 𝑓(𝓏) ≺ 𝐹(𝓏). 
Cho and Kim [20] proposed the multiplier transformation as a linear operator. Let 𝔫 

be any integer; the multiplier transformation ℒఓఉ: 𝑀 → 𝑀  is given by ℒఓఉ𝑓(𝓏) = 𝓏 +∑ ቀ𝔫ାఓଵାఓቁఉ 𝑎𝔫𝓏𝔫 , 𝜇 ≥ 0, 𝛽 ∈ ℤ = {⋯ , −1,0,1, ⋯ }ஶ𝔫ୀଶ . 
 
The Hurwitz–Lerch Zeta function [21] is 

𝜁గ,ఘ(𝓏) = 1𝜌గ + ෍ 𝓏𝔫(𝔫 + 𝜌)గஶ
𝔫ୀଵ , 

(𝜌 ∈ ℂ\𝑍௢ି = {0, −1, −2, … }, 𝜋 ∈ ℂ, where |𝓏| < 1, ℛ𝑒(𝜋) > 1, 𝓏 ∈ 𝜕𝑈°) 

By making use of the following normalized function, we have: 𝐺గ,ఘ(𝓏) = (1 + 𝜌)గൣ𝜁గ,ఘ(𝓏) − 𝜌ିగ൧ = 𝓏 + ∑ ቀଵାఘ𝔫ାఘቁగ   , 𝓏 ∈ 𝑈°ஶ𝔫ୀଶ . 

If 𝑓, 𝑔 ∈ 𝑀, where 𝑓 given by (1) and 𝑔 is defined by 

𝑔(𝓏) = 𝓏 + ෍ 𝑏𝔫𝓏𝔫ஶ
𝔫ୀଶ  , 𝓏 ∈ U°, 

then 

(𝑓 ∗ 𝑔)(𝓏) = 𝓏 + ෍ 𝑎𝔫𝑏𝔫ஶ
𝔫ୀଶ 𝓏𝔫 = (𝑔 ∗ 𝑓)(𝓏). 

Using the convolution defined above, a new operator is next introduced as the 
original part of the present paper. 

  

), and q(
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Well-known notations and definitions used for obtaining the original results are next 
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) is the best subordinate of (23).

Proof. The proof of theorem is similar to that of Theorem 5 and is omitted here. �

5. Sandwich-Type Results

Now, by using Theorems 5 and 9, we have the sandwich-type result.

Theorem 11. Consider two analytic functions
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then 𝕢(𝓏) ≺ 𝛤గ,ఘ,ఉ,ఋ𝑓(𝓏), and 𝕢(𝓏) is the best subordinate of (24). 

Proof. The proof of theorem is similar to that of Theorem 5 and is omitted here. □ 

5. Sandwich-Type Results 
Now, by using Theorems 5 and 9, we have the sandwich-type result. 

Theorem 11. Consider two analytic functions  𝓀ଵ(𝓏) 𝑎𝑛𝑑 𝕢ଵ(𝓏)  in 𝑈° , and  𝕢ଶ(𝓏) ∈ Ҩଵ 
with  𝕢ଵ(0) = 𝕢ଶ(0) =1. In addition let the function  𝓀ଶ(𝓏) be univalent in  𝑈°  and  𝛶 ∈𝜃௰[ 𝓀ଶ, 𝕢ଶ] ∩ 𝜃௰ᇱ [𝓀ଵ, 𝕢ଵ]. If 𝛤గ,ఘ,ఉ,ఓ𝑓(𝓏) ∈ Ҩଵ ∩ 𝒦, 𝑓 ∈ 𝑀, ൛𝛶൫𝛤గ,ఘ,ఉ,ఓ𝑓(𝓏), 𝛤గ,ఘ,ఉାଵ,ఓ𝑓(𝓏), 𝛤గ,ఘ,ఉାଶ,ఓ𝑓(𝓏), 𝛤గ,ఘ,ఉାଷ,ఓ𝑓(𝓏), 𝛤గ,ఘ,ఉାସ,ఓ𝑓(𝓏)ቁ : 𝓏 ∈ 𝑈°ቅ 

is univalent in 𝑈°, and the two conditions (7) and (22) are satisfied as 𝓀ଵ(𝓏) ≺ {𝛶൫𝛤గ,ఘ,ఉ,ఓ𝑓(𝓏), 𝛤గ,ఘ,ఉାଵ,ఓ𝑓(𝓏), 𝛤గ,ఘ,ఉାଶ,ఓ𝑓(𝓏), 𝛤గ,ఘ,ఉାଷ,ఓ𝑓(𝓏), 𝛤గ,ఘ,ఉାସ,ఓ𝑓(𝓏); 𝓏 ∈ 𝑈°)} ≺  𝓀ଶ(𝓏), 
then 𝕢ଵ(𝓏) ≺ 𝛤గ,ఘ,ఉ,ఓ𝑓(𝓏) ≺ 𝕢ଶ(𝓏) 

6. Conclusions 
A new differential operator is introduced in the present paper in Definition 1. Using 

the concepts of fourth-order differential subordination and superordination, the classes 
of admissible functions are defined related to each of the two concepts, and using those 
definitions, several theorems are proved involving the newly defined operator regarding 
fourth-order subordinations in Section 3 and regarding fourth-order superordination in 
Section 4. By applying a well-known technique, a sandwich-type theorem is stated in 
Section 5 of the paper combining the subordination and superordination results obtained 
before. The results presented here could inspire future work involving other operators 
for obtaining fourth-order differential subordinations and superordinations. Certain 
special classes of univalent functions could be introduced using the operator defined in 
this paper, and studies for obtaining properties of those classes could be done invoking 
the notions of fourth-order differential subordination and superordination using the 
admissibility conditions given here in Definition 7., Definition 8. and Definition 9. and 
the best dominant obtained in Theorem 5. 
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Well-known notations and definitions used for obtaining the original results are next 
presented. 𝒦(U°) denotes the family of analytic functions in U°that have the form: 𝒦[a, 𝔫] = {𝑓 ∈ 𝒦(U°): 𝑓(𝓏) = 𝑎 + 𝑎𝔫𝓏𝔫 + 𝑎𝔫ାଵ𝓏𝔫ାଵ + ⋯ }, 𝑎 ∈ ℂ, 𝔫 ∈ 𝑁 = {1,2, … }, 

and let ℧𝔫 be the collection of the form: ℧𝔫 = {𝑓 ∈ 𝒦(𝑈°): 𝑓(𝓏) = 𝓏 + 𝑎𝔫ାଵ𝓏𝔫ାଵ + ⋯ }, 
where ℧ଵ = ℧, the subclass of normalized analytic functions in U°. Further, indicate by M 
the subfamily of 𝒦(U°) of the form: 

𝑓(𝓏) = 𝓏 + ෍ 𝑎𝔫𝓏𝔫 , 𝓏 ∈ U°ஶ
𝔫ୀଶ , (1)

which are univalent in U°. For analytic functions 𝑓 and 𝐹, the function 𝑓 is said to be 
subordinate to 𝐹, if 𝑓(𝓏) = 𝐹൫Θ(𝓏)൯, (𝓏 ∈ 𝑈°), 

where Θ(𝓏) is analytic and  Θ(0) = 0, |Θ(𝓏)| < 1. This subordination is indicated by 𝑓(𝓏) ≺ 𝐹(𝓏). 
Cho and Kim [20] proposed the multiplier transformation as a linear operator. Let 𝔫 

be any integer; the multiplier transformation ℒఓఉ: 𝑀 → 𝑀  is given by ℒఓఉ𝑓(𝓏) = 𝓏 +∑ ቀ𝔫ାఓଵାఓቁఉ 𝑎𝔫𝓏𝔫 , 𝜇 ≥ 0, 𝛽 ∈ ℤ = {⋯ , −1,0,1, ⋯ }ஶ𝔫ୀଶ . 
 
The Hurwitz–Lerch Zeta function [21] is 

𝜁గ,ఘ(𝓏) = 1𝜌గ + ෍ 𝓏𝔫(𝔫 + 𝜌)గஶ
𝔫ୀଵ , 

(𝜌 ∈ ℂ\𝑍௢ି = {0, −1, −2, … }, 𝜋 ∈ ℂ, where |𝓏| < 1, ℛ𝑒(𝜋) > 1, 𝓏 ∈ 𝜕𝑈°) 

By making use of the following normalized function, we have: 𝐺గ,ఘ(𝓏) = (1 + 𝜌)గൣ𝜁గ,ఘ(𝓏) − 𝜌ିగ൧ = 𝓏 + ∑ ቀଵାఘ𝔫ାఘቁగ   , 𝓏 ∈ 𝑈°ஶ𝔫ୀଶ . 

If 𝑓, 𝑔 ∈ 𝑀, where 𝑓 given by (1) and 𝑔 is defined by 

𝑔(𝓏) = 𝓏 + ෍ 𝑏𝔫𝓏𝔫ஶ
𝔫ୀଶ  , 𝓏 ∈ U°, 

then 

(𝑓 ∗ 𝑔)(𝓏) = 𝓏 + ෍ 𝑎𝔫𝑏𝔫ஶ
𝔫ୀଶ 𝓏𝔫 = (𝑔 ∗ 𝑓)(𝓏). 

Using the convolution defined above, a new operator is next introduced as the 
original part of the present paper. 

  

) and q1(
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then 
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original part of the present paper. 
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Definition 1. Assume  𝑓 ∈ 𝑀, 𝓏 ∈ 𝜕𝑈°, 𝜌 ∈ ℂ\𝑍௢ି = {0, −1, −2, … }, 𝑤ℎ𝑒𝑟𝑒 |𝓏| < 1, ℛ𝑒(𝜋) >1, 𝜇 ≥ 0, 𝛽 ∈ ℤ, 𝜋 ∈ ℂ; we define new operator 𝛤గ,ఘ,ఉ,ఓ𝑓(𝓏): 𝑀 → 𝑀, where 

Γగ,ఘ,ఉ,ఓ𝑓(𝓏) = 𝐺గ,ఘ(𝓏) ∗ ℒఓఉ𝑓(𝓏) = 𝓏 + ෍ ൬1 + 𝜌𝔫 + 𝜌൰గ ൬𝔫 + 𝜇1 + 𝜇൰ఉ 𝑎𝔫𝓏𝔫ஶ
𝔫ୀଶ . (2)

After a simple computation, we obtain the relation: 𝓏 ቀΓగ,ఘ,ఉ,ఓ𝑓(𝓏)ቁᇱ = (1 + 𝜇)Γగ,ఘ,ఉାଵ,ఓ𝑓(𝓏) − 𝜇 Γగ,ఘ,ఉ,ఓ𝑓(𝓏). (3)

2. Problem Formulation 
The subcollection of various analytic and univalent functions, which are connected 

to differential subordination and superordination in the open unit disk U°, has been ini-
tiated in recent times from a variety of intriguing outcomes and perspectives (cf. 
[22,23,24,25,7,26,27,28]). Additionally, several authors obtained good results on second- 
and third-order differential subordination; e.g., [29,30,31–34,35]. 

In order to demonstrate the original results, we will need the basic concepts of 
fourth-order theory previously introduced, which we present below showing the papers 
where they first appeared. 

Definition 2. Ref. [4]: Assume that Ҩ is called the set of functions 𝕢 that are univalent and 
analytic on the set 𝑈°\𝐸(𝕢) , where 𝐸(𝕢) = {𝒥: 𝒥 ∈ 𝜕𝑈° 𝑎𝑛𝑑 𝑙𝑖𝑚𝓏→𝒥 𝕢(𝓏) = ∞}  are such that 𝑚𝑖𝑛|𝕢ᇱ(𝒥)| = 𝛾 > 0 𝑓𝑜𝑟 𝒥 ∈ 𝜕𝑈°\𝐸(𝕢). In addition, indicate by Ҩ(𝑎) the subclass of function 𝕢 for which 𝕢(0) = 𝑎. Note that  Ҩଵ = Ҩ(1) = {𝕢(𝓏) ∈ Ҩ: 𝕢(0) = 1}. 

Definition 3. See [6,7]: Assume that 𝓀 is univalent in 𝑈°and 𝜓: ℂହ × 𝑈° → ℂ. If the analytic 
function 𝑝 fulfills the fourth-order differential subordination 𝜓(𝑝(𝓏), 𝓏𝑝ᇱ(𝓏), 𝓏ଶ𝑝ᇱᇱ(𝓏), 𝓏ଷ𝑝ᇱᇱᇱ(𝓏), 𝓏ସ𝑝ᇱᇱᇱᇱ(𝓏); 𝓏) ≺ 𝓀(𝓏), (4)

then the function 𝑝 is named a solution of the differential subordination (4). A univalent func-
tion 𝕢 is named a dominant of the solutions of the differential subordination if 𝑝 ≺ 𝕢 for all 𝑝 
satisfying (4). A dominant 𝕢෥(𝓏) that fulfills 𝕢෥ ≺ 𝕢 for all dominants 𝕢 of (4) is named the best 
dominant. 

Definition 4. See [6,7]: Assume that 𝕢 ∈ Ҩ and 𝛺 is a set in ℂ. The admissible functions class 𝛷𝓃[𝛺, 𝕢], (𝔫 ∈ 𝑁\{2}) consists of those functions 𝜓: ℂହ × 𝑈° → ℂ that fulfill the following ad-
missibility condition: 

ψ(𝔯, 𝔰, 𝔱, 𝔲, 𝑏; 𝓏) ∉ Ω, 
wherever 𝔯 = 𝕢(𝜏)  , 𝔰 = 𝔪𝜏𝕢ᇱ(𝜏) ,    ℛℯ ൬ 𝔱𝔰 + 1൰ ≥ 𝔪ℛℯ ቆ1 + 𝜏𝕢ᇱᇱ(𝜏)𝕢ᇱ(𝜏) ቇ, 

ℯℛ ቀ𝔲𝔰ቁ ≥ 𝔪ଶℛℯ ቀఛమ𝕢ᇲᇲᇲ(ఛ)𝕢ᇲ(ఛ) ቁ ,ℯℛ ቀ௕௦ቁ ≥ 𝔪ଷℛℯ ቀఛయ𝕢ᇲᇲᇲᇲ(ఛ)𝕢ᇲ(ఛ) ቁ, ( 𝓏 ∈ 𝑈°, 𝜏 ∈ 𝜕𝑈°\E(𝕢)  𝑎𝑛𝑑   𝔪 ≥ 𝔫). 
 

Theorem 1. See [7]: Let 𝑝 ∈ 𝒦[𝑎, 𝔫], ( 𝔫 ∈ 𝑁\{2}). In addition, let 𝕢 ∈ Ҩ and fulfill the condi-
tions: 

1
with q1(0) = q2(0) = 1. In addition let the function
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{𝜓(𝑝(𝓏), 𝓏𝑝ᇱ(𝓏), 𝓏ଶ𝑝ᇱᇱ(𝓏), 𝓏ଷ𝑝ᇱᇱᇱ(𝓏), 𝓏ସ𝑝ᇱᇱᇱᇱ(𝓏); 𝓏 ∈ 𝑈°)} = 𝓀(𝓏),  (25)

has a solution 𝕢(𝓏) ∈ Ҩଵ. If 𝛤గ,ఘ,ఉ,ఓ𝑓(𝓏) ∈ Ҩଵ, 𝕢 ∈ 𝒦ଵ, 𝕢ᇱ(𝓏) ് 0 and 𝑓 ∈ 𝑀 satisfy the con-
ditions (7) and (22), ൛𝛶൫𝛤గ,ఘ,ఉ,ఓ𝑓(𝓏), 𝛤గ,ఘ,ఉାଵ,ఓ𝑓(𝓏), 𝛤గ,ఘ,ఉାଶ,ఓ𝑓(𝓏), 𝛤గ,ఘ,ఉାଷ,ఓ𝑓(𝓏), 𝛤గ,ఘ,ఉାସ,ఓ𝑓(𝓏)ቁ : 𝓏 ∈ 𝑈°ቅ 
is univalent in 𝑈°, and 𝓀(𝓏) ⊂ {Υ൫Γగ,ఘ,ఉ,ఓ𝑓(𝓏), Γగ,ఘ,ఉାଵ,ఓ𝑓(𝓏), Γగ,ఘ,ఉାଶ,ఓ𝑓(𝓏), Γగ,ఘ,ఉାଷ,ఓ𝑓(𝓏), 𝛤గ,ఘ,ఉାସ,ఓ𝑓(𝓏); 𝓏 ∈ 𝑈°)}, 
then 𝕢(𝓏) ≺ 𝛤గ,ఘ,ఉ,ఋ𝑓(𝓏), and 𝕢(𝓏) is the best subordinate of (24). 

Proof. The proof of theorem is similar to that of Theorem 5 and is omitted here. □ 

5. Sandwich-Type Results 
Now, by using Theorems 5 and 9, we have the sandwich-type result. 

Theorem 11. Consider two analytic functions  𝓀ଵ(𝓏) 𝑎𝑛𝑑 𝕢ଵ(𝓏)  in 𝑈° , and  𝕢ଶ(𝓏) ∈ Ҩଵ 
with  𝕢ଵ(0) = 𝕢ଶ(0) =1. In addition let the function  𝓀ଶ(𝓏) be univalent in  𝑈°  and  𝛶 ∈𝜃௰[ 𝓀ଶ, 𝕢ଶ] ∩ 𝜃௰ᇱ [𝓀ଵ, 𝕢ଵ]. If 𝛤గ,ఘ,ఉ,ఓ𝑓(𝓏) ∈ Ҩଵ ∩ 𝒦, 𝑓 ∈ 𝑀, ൛𝛶൫𝛤గ,ఘ,ఉ,ఓ𝑓(𝓏), 𝛤గ,ఘ,ఉାଵ,ఓ𝑓(𝓏), 𝛤గ,ఘ,ఉାଶ,ఓ𝑓(𝓏), 𝛤గ,ఘ,ఉାଷ,ఓ𝑓(𝓏), 𝛤గ,ఘ,ఉାସ,ఓ𝑓(𝓏)ቁ : 𝓏 ∈ 𝑈°ቅ 

is univalent in 𝑈°, and the two conditions (7) and (22) are satisfied as 𝓀ଵ(𝓏) ≺ {𝛶൫𝛤గ,ఘ,ఉ,ఓ𝑓(𝓏), 𝛤గ,ఘ,ఉାଵ,ఓ𝑓(𝓏), 𝛤గ,ఘ,ఉାଶ,ఓ𝑓(𝓏), 𝛤గ,ఘ,ఉାଷ,ఓ𝑓(𝓏), 𝛤గ,ఘ,ఉାସ,ఓ𝑓(𝓏); 𝓏 ∈ 𝑈°)} ≺  𝓀ଶ(𝓏), 
then 𝕢ଵ(𝓏) ≺ 𝛤గ,ఘ,ఉ,ఓ𝑓(𝓏) ≺ 𝕢ଶ(𝓏) 

6. Conclusions 
A new differential operator is introduced in the present paper in Definition 1. Using 

the concepts of fourth-order differential subordination and superordination, the classes 
of admissible functions are defined related to each of the two concepts, and using those 
definitions, several theorems are proved involving the newly defined operator regarding 
fourth-order subordinations in Section 3 and regarding fourth-order superordination in 
Section 4. By applying a well-known technique, a sandwich-type theorem is stated in 
Section 5 of the paper combining the subordination and superordination results obtained 
before. The results presented here could inspire future work involving other operators 
for obtaining fourth-order differential subordinations and superordinations. Certain 
special classes of univalent functions could be introduced using the operator defined in 
this paper, and studies for obtaining properties of those classes could be done invoking 
the notions of fourth-order differential subordination and superordination using the 
admissibility conditions given here in Definition 7., Definition 8. and Definition 9. and 
the best dominant obtained in Theorem 5. 
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Well-known notations and definitions used for obtaining the original results are next 
presented. 𝒦(U°) denotes the family of analytic functions in U°that have the form: 𝒦[a, 𝔫] = {𝑓 ∈ 𝒦(U°): 𝑓(𝓏) = 𝑎 + 𝑎𝔫𝓏𝔫 + 𝑎𝔫ାଵ𝓏𝔫ାଵ + ⋯ }, 𝑎 ∈ ℂ, 𝔫 ∈ 𝑁 = {1,2, … }, 

and let ℧𝔫 be the collection of the form: ℧𝔫 = {𝑓 ∈ 𝒦(𝑈°): 𝑓(𝓏) = 𝓏 + 𝑎𝔫ାଵ𝓏𝔫ାଵ + ⋯ }, 
where ℧ଵ = ℧, the subclass of normalized analytic functions in U°. Further, indicate by M 
the subfamily of 𝒦(U°) of the form: 

𝑓(𝓏) = 𝓏 + ෍ 𝑎𝔫𝓏𝔫 , 𝓏 ∈ U°ஶ
𝔫ୀଶ , (1)

which are univalent in U°. For analytic functions 𝑓 and 𝐹, the function 𝑓 is said to be 
subordinate to 𝐹, if 𝑓(𝓏) = 𝐹൫Θ(𝓏)൯, (𝓏 ∈ 𝑈°), 

where Θ(𝓏) is analytic and  Θ(0) = 0, |Θ(𝓏)| < 1. This subordination is indicated by 𝑓(𝓏) ≺ 𝐹(𝓏). 
Cho and Kim [20] proposed the multiplier transformation as a linear operator. Let 𝔫 

be any integer; the multiplier transformation ℒఓఉ: 𝑀 → 𝑀  is given by ℒఓఉ𝑓(𝓏) = 𝓏 +∑ ቀ𝔫ାఓଵାఓቁఉ 𝑎𝔫𝓏𝔫 , 𝜇 ≥ 0, 𝛽 ∈ ℤ = {⋯ , −1,0,1, ⋯ }ஶ𝔫ୀଶ . 
 
The Hurwitz–Lerch Zeta function [21] is 

𝜁గ,ఘ(𝓏) = 1𝜌గ + ෍ 𝓏𝔫(𝔫 + 𝜌)గஶ
𝔫ୀଵ , 

(𝜌 ∈ ℂ\𝑍௢ି = {0, −1, −2, … }, 𝜋 ∈ ℂ, where |𝓏| < 1, ℛ𝑒(𝜋) > 1, 𝓏 ∈ 𝜕𝑈°) 

By making use of the following normalized function, we have: 𝐺గ,ఘ(𝓏) = (1 + 𝜌)గൣ𝜁గ,ఘ(𝓏) − 𝜌ିగ൧ = 𝓏 + ∑ ቀଵାఘ𝔫ାఘቁగ   , 𝓏 ∈ 𝑈°ஶ𝔫ୀଶ . 

If 𝑓, 𝑔 ∈ 𝑀, where 𝑓 given by (1) and 𝑔 is defined by 

𝑔(𝓏) = 𝓏 + ෍ 𝑏𝔫𝓏𝔫ஶ
𝔫ୀଶ  , 𝓏 ∈ U°, 

then 

(𝑓 ∗ 𝑔)(𝓏) = 𝓏 + ෍ 𝑎𝔫𝑏𝔫ஶ
𝔫ୀଶ 𝓏𝔫 = (𝑔 ∗ 𝑓)(𝓏). 

Using the convolution defined above, a new operator is next introduced as the 
original part of the present paper. 

  

) be univalent in U
◦

and Y ∈
θΓ

[
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{𝜓(𝑝(𝓏), 𝓏𝑝ᇱ(𝓏), 𝓏ଶ𝑝ᇱᇱ(𝓏), 𝓏ଷ𝑝ᇱᇱᇱ(𝓏), 𝓏ସ𝑝ᇱᇱᇱᇱ(𝓏); 𝓏 ∈ 𝑈°)} = 𝓀(𝓏),  (25)

has a solution 𝕢(𝓏) ∈ Ҩଵ. If 𝛤గ,ఘ,ఉ,ఓ𝑓(𝓏) ∈ Ҩଵ, 𝕢 ∈ 𝒦ଵ, 𝕢ᇱ(𝓏) ് 0 and 𝑓 ∈ 𝑀 satisfy the con-
ditions (7) and (22), ൛𝛶൫𝛤గ,ఘ,ఉ,ఓ𝑓(𝓏), 𝛤గ,ఘ,ఉାଵ,ఓ𝑓(𝓏), 𝛤గ,ఘ,ఉାଶ,ఓ𝑓(𝓏), 𝛤గ,ఘ,ఉାଷ,ఓ𝑓(𝓏), 𝛤గ,ఘ,ఉାସ,ఓ𝑓(𝓏)ቁ : 𝓏 ∈ 𝑈°ቅ 
is univalent in 𝑈°, and 𝓀(𝓏) ⊂ {Υ൫Γగ,ఘ,ఉ,ఓ𝑓(𝓏), Γగ,ఘ,ఉାଵ,ఓ𝑓(𝓏), Γగ,ఘ,ఉାଶ,ఓ𝑓(𝓏), Γగ,ఘ,ఉାଷ,ఓ𝑓(𝓏), 𝛤గ,ఘ,ఉାସ,ఓ𝑓(𝓏); 𝓏 ∈ 𝑈°)}, 
then 𝕢(𝓏) ≺ 𝛤గ,ఘ,ఉ,ఋ𝑓(𝓏), and 𝕢(𝓏) is the best subordinate of (24). 

Proof. The proof of theorem is similar to that of Theorem 5 and is omitted here. □ 

5. Sandwich-Type Results 
Now, by using Theorems 5 and 9, we have the sandwich-type result. 

Theorem 11. Consider two analytic functions  𝓀ଵ(𝓏) 𝑎𝑛𝑑 𝕢ଵ(𝓏)  in 𝑈° , and  𝕢ଶ(𝓏) ∈ Ҩଵ 
with  𝕢ଵ(0) = 𝕢ଶ(0) =1. In addition let the function  𝓀ଶ(𝓏) be univalent in  𝑈°  and  𝛶 ∈𝜃௰[ 𝓀ଶ, 𝕢ଶ] ∩ 𝜃௰ᇱ [𝓀ଵ, 𝕢ଵ]. If 𝛤గ,ఘ,ఉ,ఓ𝑓(𝓏) ∈ Ҩଵ ∩ 𝒦, 𝑓 ∈ 𝑀, ൛𝛶൫𝛤గ,ఘ,ఉ,ఓ𝑓(𝓏), 𝛤గ,ఘ,ఉାଵ,ఓ𝑓(𝓏), 𝛤గ,ఘ,ఉାଶ,ఓ𝑓(𝓏), 𝛤గ,ఘ,ఉାଷ,ఓ𝑓(𝓏), 𝛤గ,ఘ,ఉାସ,ఓ𝑓(𝓏)ቁ : 𝓏 ∈ 𝑈°ቅ 

is univalent in 𝑈°, and the two conditions (7) and (22) are satisfied as 𝓀ଵ(𝓏) ≺ {𝛶൫𝛤గ,ఘ,ఉ,ఓ𝑓(𝓏), 𝛤గ,ఘ,ఉାଵ,ఓ𝑓(𝓏), 𝛤గ,ఘ,ఉାଶ,ఓ𝑓(𝓏), 𝛤గ,ఘ,ఉାଷ,ఓ𝑓(𝓏), 𝛤గ,ఘ,ఉାସ,ఓ𝑓(𝓏); 𝓏 ∈ 𝑈°)} ≺  𝓀ଶ(𝓏), 
then 𝕢ଵ(𝓏) ≺ 𝛤గ,ఘ,ఉ,ఓ𝑓(𝓏) ≺ 𝕢ଶ(𝓏) 

6. Conclusions 
A new differential operator is introduced in the present paper in Definition 1. Using 

the concepts of fourth-order differential subordination and superordination, the classes 
of admissible functions are defined related to each of the two concepts, and using those 
definitions, several theorems are proved involving the newly defined operator regarding 
fourth-order subordinations in Section 3 and regarding fourth-order superordination in 
Section 4. By applying a well-known technique, a sandwich-type theorem is stated in 
Section 5 of the paper combining the subordination and superordination results obtained 
before. The results presented here could inspire future work involving other operators 
for obtaining fourth-order differential subordinations and superordinations. Certain 
special classes of univalent functions could be introduced using the operator defined in 
this paper, and studies for obtaining properties of those classes could be done invoking 
the notions of fourth-order differential subordination and superordination using the 
admissibility conditions given here in Definition 7., Definition 8. and Definition 9. and 
the best dominant obtained in Theorem 5. 
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{𝜓(𝑝(𝓏), 𝓏𝑝ᇱ(𝓏), 𝓏ଶ𝑝ᇱᇱ(𝓏), 𝓏ଷ𝑝ᇱᇱᇱ(𝓏), 𝓏ସ𝑝ᇱᇱᇱᇱ(𝓏); 𝓏 ∈ 𝑈°)} = 𝓀(𝓏),  (25)

has a solution 𝕢(𝓏) ∈ Ҩଵ. If 𝛤గ,ఘ,ఉ,ఓ𝑓(𝓏) ∈ Ҩଵ, 𝕢 ∈ 𝒦ଵ, 𝕢ᇱ(𝓏) ് 0 and 𝑓 ∈ 𝑀 satisfy the con-
ditions (7) and (22), ൛𝛶൫𝛤గ,ఘ,ఉ,ఓ𝑓(𝓏), 𝛤గ,ఘ,ఉାଵ,ఓ𝑓(𝓏), 𝛤గ,ఘ,ఉାଶ,ఓ𝑓(𝓏), 𝛤గ,ఘ,ఉାଷ,ఓ𝑓(𝓏), 𝛤గ,ఘ,ఉାସ,ఓ𝑓(𝓏)ቁ : 𝓏 ∈ 𝑈°ቅ 
is univalent in 𝑈°, and 𝓀(𝓏) ⊂ {Υ൫Γగ,ఘ,ఉ,ఓ𝑓(𝓏), Γగ,ఘ,ఉାଵ,ఓ𝑓(𝓏), Γగ,ఘ,ఉାଶ,ఓ𝑓(𝓏), Γగ,ఘ,ఉାଷ,ఓ𝑓(𝓏), 𝛤గ,ఘ,ఉାସ,ఓ𝑓(𝓏); 𝓏 ∈ 𝑈°)}, 
then 𝕢(𝓏) ≺ 𝛤గ,ఘ,ఉ,ఋ𝑓(𝓏), and 𝕢(𝓏) is the best subordinate of (24). 

Proof. The proof of theorem is similar to that of Theorem 5 and is omitted here. □ 

5. Sandwich-Type Results 
Now, by using Theorems 5 and 9, we have the sandwich-type result. 

Theorem 11. Consider two analytic functions  𝓀ଵ(𝓏) 𝑎𝑛𝑑 𝕢ଵ(𝓏)  in 𝑈° , and  𝕢ଶ(𝓏) ∈ Ҩଵ 
with  𝕢ଵ(0) = 𝕢ଶ(0) =1. In addition let the function  𝓀ଶ(𝓏) be univalent in  𝑈°  and  𝛶 ∈𝜃௰[ 𝓀ଶ, 𝕢ଶ] ∩ 𝜃௰ᇱ [𝓀ଵ, 𝕢ଵ]. If 𝛤గ,ఘ,ఉ,ఓ𝑓(𝓏) ∈ Ҩଵ ∩ 𝒦, 𝑓 ∈ 𝑀, ൛𝛶൫𝛤గ,ఘ,ఉ,ఓ𝑓(𝓏), 𝛤గ,ఘ,ఉାଵ,ఓ𝑓(𝓏), 𝛤గ,ఘ,ఉାଶ,ఓ𝑓(𝓏), 𝛤గ,ఘ,ఉାଷ,ఓ𝑓(𝓏), 𝛤గ,ఘ,ఉାସ,ఓ𝑓(𝓏)ቁ : 𝓏 ∈ 𝑈°ቅ 

is univalent in 𝑈°, and the two conditions (7) and (22) are satisfied as 𝓀ଵ(𝓏) ≺ {𝛶൫𝛤గ,ఘ,ఉ,ఓ𝑓(𝓏), 𝛤గ,ఘ,ఉାଵ,ఓ𝑓(𝓏), 𝛤గ,ఘ,ఉାଶ,ఓ𝑓(𝓏), 𝛤గ,ఘ,ఉାଷ,ఓ𝑓(𝓏), 𝛤గ,ఘ,ఉାସ,ఓ𝑓(𝓏); 𝓏 ∈ 𝑈°)} ≺  𝓀ଶ(𝓏), 
then 𝕢ଵ(𝓏) ≺ 𝛤గ,ఘ,ఉ,ఓ𝑓(𝓏) ≺ 𝕢ଶ(𝓏) 

6. Conclusions 
A new differential operator is introduced in the present paper in Definition 1. Using 

the concepts of fourth-order differential subordination and superordination, the classes 
of admissible functions are defined related to each of the two concepts, and using those 
definitions, several theorems are proved involving the newly defined operator regarding 
fourth-order subordinations in Section 3 and regarding fourth-order superordination in 
Section 4. By applying a well-known technique, a sandwich-type theorem is stated in 
Section 5 of the paper combining the subordination and superordination results obtained 
before. The results presented here could inspire future work involving other operators 
for obtaining fourth-order differential subordinations and superordinations. Certain 
special classes of univalent functions could be introduced using the operator defined in 
this paper, and studies for obtaining properties of those classes could be done invoking 
the notions of fourth-order differential subordination and superordination using the 
admissibility conditions given here in Definition 7., Definition 8. and Definition 9. and 
the best dominant obtained in Theorem 5. 
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Well-known notations and definitions used for obtaining the original results are next 
presented. 𝒦(U°) denotes the family of analytic functions in U°that have the form: 𝒦[a, 𝔫] = {𝑓 ∈ 𝒦(U°): 𝑓(𝓏) = 𝑎 + 𝑎𝔫𝓏𝔫 + 𝑎𝔫ାଵ𝓏𝔫ାଵ + ⋯ }, 𝑎 ∈ ℂ, 𝔫 ∈ 𝑁 = {1,2, … }, 

and let ℧𝔫 be the collection of the form: ℧𝔫 = {𝑓 ∈ 𝒦(𝑈°): 𝑓(𝓏) = 𝓏 + 𝑎𝔫ାଵ𝓏𝔫ାଵ + ⋯ }, 
where ℧ଵ = ℧, the subclass of normalized analytic functions in U°. Further, indicate by M 
the subfamily of 𝒦(U°) of the form: 

𝑓(𝓏) = 𝓏 + ෍ 𝑎𝔫𝓏𝔫 , 𝓏 ∈ U°ஶ
𝔫ୀଶ , (1)

which are univalent in U°. For analytic functions 𝑓 and 𝐹, the function 𝑓 is said to be 
subordinate to 𝐹, if 𝑓(𝓏) = 𝐹൫Θ(𝓏)൯, (𝓏 ∈ 𝑈°), 

where Θ(𝓏) is analytic and  Θ(0) = 0, |Θ(𝓏)| < 1. This subordination is indicated by 𝑓(𝓏) ≺ 𝐹(𝓏). 
Cho and Kim [20] proposed the multiplier transformation as a linear operator. Let 𝔫 

be any integer; the multiplier transformation ℒఓఉ: 𝑀 → 𝑀  is given by ℒఓఉ𝑓(𝓏) = 𝓏 +∑ ቀ𝔫ାఓଵାఓቁఉ 𝑎𝔫𝓏𝔫 , 𝜇 ≥ 0, 𝛽 ∈ ℤ = {⋯ , −1,0,1, ⋯ }ஶ𝔫ୀଶ . 
 
The Hurwitz–Lerch Zeta function [21] is 

𝜁గ,ఘ(𝓏) = 1𝜌గ + ෍ 𝓏𝔫(𝔫 + 𝜌)గஶ
𝔫ୀଵ , 

(𝜌 ∈ ℂ\𝑍௢ି = {0, −1, −2, … }, 𝜋 ∈ ℂ, where |𝓏| < 1, ℛ𝑒(𝜋) > 1, 𝓏 ∈ 𝜕𝑈°) 

By making use of the following normalized function, we have: 𝐺గ,ఘ(𝓏) = (1 + 𝜌)గൣ𝜁గ,ఘ(𝓏) − 𝜌ିగ൧ = 𝓏 + ∑ ቀଵାఘ𝔫ାఘቁగ   , 𝓏 ∈ 𝑈°ஶ𝔫ୀଶ . 

If 𝑓, 𝑔 ∈ 𝑀, where 𝑓 given by (1) and 𝑔 is defined by 

𝑔(𝓏) = 𝓏 + ෍ 𝑏𝔫𝓏𝔫ஶ
𝔫ୀଶ  , 𝓏 ∈ U°, 

then 

(𝑓 ∗ 𝑔)(𝓏) = 𝓏 + ෍ 𝑎𝔫𝑏𝔫ஶ
𝔫ୀଶ 𝓏𝔫 = (𝑔 ∗ 𝑓)(𝓏). 

Using the convolution defined above, a new operator is next introduced as the 
original part of the present paper. 

  

) ∈
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Definition 1. Assume  𝑓 ∈ 𝑀, 𝓏 ∈ 𝜕𝑈°, 𝜌 ∈ ℂ\𝑍௢ି = {0, −1, −2, … }, 𝑤ℎ𝑒𝑟𝑒 |𝓏| < 1, ℛ𝑒(𝜋) >1, 𝜇 ≥ 0, 𝛽 ∈ ℤ, 𝜋 ∈ ℂ; we define new operator 𝛤గ,ఘ,ఉ,ఓ𝑓(𝓏): 𝑀 → 𝑀, where 

Γగ,ఘ,ఉ,ఓ𝑓(𝓏) = 𝐺గ,ఘ(𝓏) ∗ ℒఓఉ𝑓(𝓏) = 𝓏 + ෍ ൬1 + 𝜌𝔫 + 𝜌൰గ ൬𝔫 + 𝜇1 + 𝜇൰ఉ 𝑎𝔫𝓏𝔫ஶ
𝔫ୀଶ . (2)

After a simple computation, we obtain the relation: 𝓏 ቀΓగ,ఘ,ఉ,ఓ𝑓(𝓏)ቁᇱ = (1 + 𝜇)Γగ,ఘ,ఉାଵ,ఓ𝑓(𝓏) − 𝜇 Γగ,ఘ,ఉ,ఓ𝑓(𝓏). (3)

2. Problem Formulation 
The subcollection of various analytic and univalent functions, which are connected 

to differential subordination and superordination in the open unit disk U°, has been ini-
tiated in recent times from a variety of intriguing outcomes and perspectives (cf. 
[22,23,24,25,7,26,27,28]). Additionally, several authors obtained good results on second- 
and third-order differential subordination; e.g., [29,30,31–34,35]. 

In order to demonstrate the original results, we will need the basic concepts of 
fourth-order theory previously introduced, which we present below showing the papers 
where they first appeared. 

Definition 2. Ref. [4]: Assume that Ҩ is called the set of functions 𝕢 that are univalent and 
analytic on the set 𝑈°\𝐸(𝕢) , where 𝐸(𝕢) = {𝒥: 𝒥 ∈ 𝜕𝑈° 𝑎𝑛𝑑 𝑙𝑖𝑚𝓏→𝒥 𝕢(𝓏) = ∞}  are such that 𝑚𝑖𝑛|𝕢ᇱ(𝒥)| = 𝛾 > 0 𝑓𝑜𝑟 𝒥 ∈ 𝜕𝑈°\𝐸(𝕢). In addition, indicate by Ҩ(𝑎) the subclass of function 𝕢 for which 𝕢(0) = 𝑎. Note that  Ҩଵ = Ҩ(1) = {𝕢(𝓏) ∈ Ҩ: 𝕢(0) = 1}. 

Definition 3. See [6,7]: Assume that 𝓀 is univalent in 𝑈°and 𝜓: ℂହ × 𝑈° → ℂ. If the analytic 
function 𝑝 fulfills the fourth-order differential subordination 𝜓(𝑝(𝓏), 𝓏𝑝ᇱ(𝓏), 𝓏ଶ𝑝ᇱᇱ(𝓏), 𝓏ଷ𝑝ᇱᇱᇱ(𝓏), 𝓏ସ𝑝ᇱᇱᇱᇱ(𝓏); 𝓏) ≺ 𝓀(𝓏), (4)

then the function 𝑝 is named a solution of the differential subordination (4). A univalent func-
tion 𝕢 is named a dominant of the solutions of the differential subordination if 𝑝 ≺ 𝕢 for all 𝑝 
satisfying (4). A dominant 𝕢෥(𝓏) that fulfills 𝕢෥ ≺ 𝕢 for all dominants 𝕢 of (4) is named the best 
dominant. 

Definition 4. See [6,7]: Assume that 𝕢 ∈ Ҩ and 𝛺 is a set in ℂ. The admissible functions class 𝛷𝓃[𝛺, 𝕢], (𝔫 ∈ 𝑁\{2}) consists of those functions 𝜓: ℂହ × 𝑈° → ℂ that fulfill the following ad-
missibility condition: 

ψ(𝔯, 𝔰, 𝔱, 𝔲, 𝑏; 𝓏) ∉ Ω, 
wherever 𝔯 = 𝕢(𝜏)  , 𝔰 = 𝔪𝜏𝕢ᇱ(𝜏) ,    ℛℯ ൬ 𝔱𝔰 + 1൰ ≥ 𝔪ℛℯ ቆ1 + 𝜏𝕢ᇱᇱ(𝜏)𝕢ᇱ(𝜏) ቇ, 

ℯℛ ቀ𝔲𝔰ቁ ≥ 𝔪ଶℛℯ ቀఛమ𝕢ᇲᇲᇲ(ఛ)𝕢ᇲ(ఛ) ቁ ,ℯℛ ቀ௕௦ቁ ≥ 𝔪ଷℛℯ ቀఛయ𝕢ᇲᇲᇲᇲ(ఛ)𝕢ᇲ(ఛ) ቁ, ( 𝓏 ∈ 𝑈°, 𝜏 ∈ 𝜕𝑈°\E(𝕢)  𝑎𝑛𝑑   𝔪 ≥ 𝔫). 
 

Theorem 1. See [7]: Let 𝑝 ∈ 𝒦[𝑎, 𝔫], ( 𝔫 ∈ 𝑁\{2}). In addition, let 𝕢 ∈ Ҩ and fulfill the condi-
tions: 

1 ∩K, f ∈ M,

{
Y
(

Γπ,ρ,β,µ f (
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Well-known notations and definitions used for obtaining the original results are next 
presented. 𝒦(U°) denotes the family of analytic functions in U°that have the form: 𝒦[a, 𝔫] = {𝑓 ∈ 𝒦(U°): 𝑓(𝓏) = 𝑎 + 𝑎𝔫𝓏𝔫 + 𝑎𝔫ାଵ𝓏𝔫ାଵ + ⋯ }, 𝑎 ∈ ℂ, 𝔫 ∈ 𝑁 = {1,2, … }, 

and let ℧𝔫 be the collection of the form: ℧𝔫 = {𝑓 ∈ 𝒦(𝑈°): 𝑓(𝓏) = 𝓏 + 𝑎𝔫ାଵ𝓏𝔫ାଵ + ⋯ }, 
where ℧ଵ = ℧, the subclass of normalized analytic functions in U°. Further, indicate by M 
the subfamily of 𝒦(U°) of the form: 

𝑓(𝓏) = 𝓏 + ෍ 𝑎𝔫𝓏𝔫 , 𝓏 ∈ U°ஶ
𝔫ୀଶ , (1)

which are univalent in U°. For analytic functions 𝑓 and 𝐹, the function 𝑓 is said to be 
subordinate to 𝐹, if 𝑓(𝓏) = 𝐹൫Θ(𝓏)൯, (𝓏 ∈ 𝑈°), 

where Θ(𝓏) is analytic and  Θ(0) = 0, |Θ(𝓏)| < 1. This subordination is indicated by 𝑓(𝓏) ≺ 𝐹(𝓏). 
Cho and Kim [20] proposed the multiplier transformation as a linear operator. Let 𝔫 

be any integer; the multiplier transformation ℒఓఉ: 𝑀 → 𝑀  is given by ℒఓఉ𝑓(𝓏) = 𝓏 +∑ ቀ𝔫ାఓଵାఓቁఉ 𝑎𝔫𝓏𝔫 , 𝜇 ≥ 0, 𝛽 ∈ ℤ = {⋯ , −1,0,1, ⋯ }ஶ𝔫ୀଶ . 
 
The Hurwitz–Lerch Zeta function [21] is 

𝜁గ,ఘ(𝓏) = 1𝜌గ + ෍ 𝓏𝔫(𝔫 + 𝜌)గஶ
𝔫ୀଵ , 

(𝜌 ∈ ℂ\𝑍௢ି = {0, −1, −2, … }, 𝜋 ∈ ℂ, where |𝓏| < 1, ℛ𝑒(𝜋) > 1, 𝓏 ∈ 𝜕𝑈°) 

By making use of the following normalized function, we have: 𝐺గ,ఘ(𝓏) = (1 + 𝜌)గൣ𝜁గ,ఘ(𝓏) − 𝜌ିగ൧ = 𝓏 + ∑ ቀଵାఘ𝔫ାఘቁగ   , 𝓏 ∈ 𝑈°ஶ𝔫ୀଶ . 

If 𝑓, 𝑔 ∈ 𝑀, where 𝑓 given by (1) and 𝑔 is defined by 

𝑔(𝓏) = 𝓏 + ෍ 𝑏𝔫𝓏𝔫ஶ
𝔫ୀଶ  , 𝓏 ∈ U°, 

then 

(𝑓 ∗ 𝑔)(𝓏) = 𝓏 + ෍ 𝑎𝔫𝑏𝔫ஶ
𝔫ୀଶ 𝓏𝔫 = (𝑔 ∗ 𝑓)(𝓏). 

Using the convolution defined above, a new operator is next introduced as the 
original part of the present paper. 

  

), Γπ,ρ,β+1,µ f (
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Well-known notations and definitions used for obtaining the original results are next 
presented. 𝒦(U°) denotes the family of analytic functions in U°that have the form: 𝒦[a, 𝔫] = {𝑓 ∈ 𝒦(U°): 𝑓(𝓏) = 𝑎 + 𝑎𝔫𝓏𝔫 + 𝑎𝔫ାଵ𝓏𝔫ାଵ + ⋯ }, 𝑎 ∈ ℂ, 𝔫 ∈ 𝑁 = {1,2, … }, 

and let ℧𝔫 be the collection of the form: ℧𝔫 = {𝑓 ∈ 𝒦(𝑈°): 𝑓(𝓏) = 𝓏 + 𝑎𝔫ାଵ𝓏𝔫ାଵ + ⋯ }, 
where ℧ଵ = ℧, the subclass of normalized analytic functions in U°. Further, indicate by M 
the subfamily of 𝒦(U°) of the form: 

𝑓(𝓏) = 𝓏 + ෍ 𝑎𝔫𝓏𝔫 , 𝓏 ∈ U°ஶ
𝔫ୀଶ , (1)

which are univalent in U°. For analytic functions 𝑓 and 𝐹, the function 𝑓 is said to be 
subordinate to 𝐹, if 𝑓(𝓏) = 𝐹൫Θ(𝓏)൯, (𝓏 ∈ 𝑈°), 

where Θ(𝓏) is analytic and  Θ(0) = 0, |Θ(𝓏)| < 1. This subordination is indicated by 𝑓(𝓏) ≺ 𝐹(𝓏). 
Cho and Kim [20] proposed the multiplier transformation as a linear operator. Let 𝔫 

be any integer; the multiplier transformation ℒఓఉ: 𝑀 → 𝑀  is given by ℒఓఉ𝑓(𝓏) = 𝓏 +∑ ቀ𝔫ାఓଵାఓቁఉ 𝑎𝔫𝓏𝔫 , 𝜇 ≥ 0, 𝛽 ∈ ℤ = {⋯ , −1,0,1, ⋯ }ஶ𝔫ୀଶ . 
 
The Hurwitz–Lerch Zeta function [21] is 

𝜁గ,ఘ(𝓏) = 1𝜌గ + ෍ 𝓏𝔫(𝔫 + 𝜌)గஶ
𝔫ୀଵ , 

(𝜌 ∈ ℂ\𝑍௢ି = {0, −1, −2, … }, 𝜋 ∈ ℂ, where |𝓏| < 1, ℛ𝑒(𝜋) > 1, 𝓏 ∈ 𝜕𝑈°) 

By making use of the following normalized function, we have: 𝐺గ,ఘ(𝓏) = (1 + 𝜌)గൣ𝜁గ,ఘ(𝓏) − 𝜌ିగ൧ = 𝓏 + ∑ ቀଵାఘ𝔫ାఘቁగ   , 𝓏 ∈ 𝑈°ஶ𝔫ୀଶ . 

If 𝑓, 𝑔 ∈ 𝑀, where 𝑓 given by (1) and 𝑔 is defined by 

𝑔(𝓏) = 𝓏 + ෍ 𝑏𝔫𝓏𝔫ஶ
𝔫ୀଶ  , 𝓏 ∈ U°, 

then 

(𝑓 ∗ 𝑔)(𝓏) = 𝓏 + ෍ 𝑎𝔫𝑏𝔫ஶ
𝔫ୀଶ 𝓏𝔫 = (𝑔 ∗ 𝑓)(𝓏). 

Using the convolution defined above, a new operator is next introduced as the 
original part of the present paper. 

  

), Γπ,ρ,β+2,µ f (
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Well-known notations and definitions used for obtaining the original results are next 
presented. 𝒦(U°) denotes the family of analytic functions in U°that have the form: 𝒦[a, 𝔫] = {𝑓 ∈ 𝒦(U°): 𝑓(𝓏) = 𝑎 + 𝑎𝔫𝓏𝔫 + 𝑎𝔫ାଵ𝓏𝔫ାଵ + ⋯ }, 𝑎 ∈ ℂ, 𝔫 ∈ 𝑁 = {1,2, … }, 

and let ℧𝔫 be the collection of the form: ℧𝔫 = {𝑓 ∈ 𝒦(𝑈°): 𝑓(𝓏) = 𝓏 + 𝑎𝔫ାଵ𝓏𝔫ାଵ + ⋯ }, 
where ℧ଵ = ℧, the subclass of normalized analytic functions in U°. Further, indicate by M 
the subfamily of 𝒦(U°) of the form: 

𝑓(𝓏) = 𝓏 + ෍ 𝑎𝔫𝓏𝔫 , 𝓏 ∈ U°ஶ
𝔫ୀଶ , (1)

which are univalent in U°. For analytic functions 𝑓 and 𝐹, the function 𝑓 is said to be 
subordinate to 𝐹, if 𝑓(𝓏) = 𝐹൫Θ(𝓏)൯, (𝓏 ∈ 𝑈°), 

where Θ(𝓏) is analytic and  Θ(0) = 0, |Θ(𝓏)| < 1. This subordination is indicated by 𝑓(𝓏) ≺ 𝐹(𝓏). 
Cho and Kim [20] proposed the multiplier transformation as a linear operator. Let 𝔫 

be any integer; the multiplier transformation ℒఓఉ: 𝑀 → 𝑀  is given by ℒఓఉ𝑓(𝓏) = 𝓏 +∑ ቀ𝔫ାఓଵାఓቁఉ 𝑎𝔫𝓏𝔫 , 𝜇 ≥ 0, 𝛽 ∈ ℤ = {⋯ , −1,0,1, ⋯ }ஶ𝔫ୀଶ . 
 
The Hurwitz–Lerch Zeta function [21] is 

𝜁గ,ఘ(𝓏) = 1𝜌గ + ෍ 𝓏𝔫(𝔫 + 𝜌)గஶ
𝔫ୀଵ , 

(𝜌 ∈ ℂ\𝑍௢ି = {0, −1, −2, … }, 𝜋 ∈ ℂ, where |𝓏| < 1, ℛ𝑒(𝜋) > 1, 𝓏 ∈ 𝜕𝑈°) 

By making use of the following normalized function, we have: 𝐺గ,ఘ(𝓏) = (1 + 𝜌)గൣ𝜁గ,ఘ(𝓏) − 𝜌ିగ൧ = 𝓏 + ∑ ቀଵାఘ𝔫ାఘቁగ   , 𝓏 ∈ 𝑈°ஶ𝔫ୀଶ . 

If 𝑓, 𝑔 ∈ 𝑀, where 𝑓 given by (1) and 𝑔 is defined by 

𝑔(𝓏) = 𝓏 + ෍ 𝑏𝔫𝓏𝔫ஶ
𝔫ୀଶ  , 𝓏 ∈ U°, 

then 

(𝑓 ∗ 𝑔)(𝓏) = 𝓏 + ෍ 𝑎𝔫𝑏𝔫ஶ
𝔫ୀଶ 𝓏𝔫 = (𝑔 ∗ 𝑓)(𝓏). 

Using the convolution defined above, a new operator is next introduced as the 
original part of the present paper. 

  

), Γπ,ρ,β+3,µ f (
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Well-known notations and definitions used for obtaining the original results are next 
presented. 𝒦(U°) denotes the family of analytic functions in U°that have the form: 𝒦[a, 𝔫] = {𝑓 ∈ 𝒦(U°): 𝑓(𝓏) = 𝑎 + 𝑎𝔫𝓏𝔫 + 𝑎𝔫ାଵ𝓏𝔫ାଵ + ⋯ }, 𝑎 ∈ ℂ, 𝔫 ∈ 𝑁 = {1,2, … }, 

and let ℧𝔫 be the collection of the form: ℧𝔫 = {𝑓 ∈ 𝒦(𝑈°): 𝑓(𝓏) = 𝓏 + 𝑎𝔫ାଵ𝓏𝔫ାଵ + ⋯ }, 
where ℧ଵ = ℧, the subclass of normalized analytic functions in U°. Further, indicate by M 
the subfamily of 𝒦(U°) of the form: 

𝑓(𝓏) = 𝓏 + ෍ 𝑎𝔫𝓏𝔫 , 𝓏 ∈ U°ஶ
𝔫ୀଶ , (1)

which are univalent in U°. For analytic functions 𝑓 and 𝐹, the function 𝑓 is said to be 
subordinate to 𝐹, if 𝑓(𝓏) = 𝐹൫Θ(𝓏)൯, (𝓏 ∈ 𝑈°), 

where Θ(𝓏) is analytic and  Θ(0) = 0, |Θ(𝓏)| < 1. This subordination is indicated by 𝑓(𝓏) ≺ 𝐹(𝓏). 
Cho and Kim [20] proposed the multiplier transformation as a linear operator. Let 𝔫 

be any integer; the multiplier transformation ℒఓఉ: 𝑀 → 𝑀  is given by ℒఓఉ𝑓(𝓏) = 𝓏 +∑ ቀ𝔫ାఓଵାఓቁఉ 𝑎𝔫𝓏𝔫 , 𝜇 ≥ 0, 𝛽 ∈ ℤ = {⋯ , −1,0,1, ⋯ }ஶ𝔫ୀଶ . 
 
The Hurwitz–Lerch Zeta function [21] is 

𝜁గ,ఘ(𝓏) = 1𝜌గ + ෍ 𝓏𝔫(𝔫 + 𝜌)గஶ
𝔫ୀଵ , 

(𝜌 ∈ ℂ\𝑍௢ି = {0, −1, −2, … }, 𝜋 ∈ ℂ, where |𝓏| < 1, ℛ𝑒(𝜋) > 1, 𝓏 ∈ 𝜕𝑈°) 

By making use of the following normalized function, we have: 𝐺గ,ఘ(𝓏) = (1 + 𝜌)గൣ𝜁గ,ఘ(𝓏) − 𝜌ିగ൧ = 𝓏 + ∑ ቀଵାఘ𝔫ାఘቁగ   , 𝓏 ∈ 𝑈°ஶ𝔫ୀଶ . 

If 𝑓, 𝑔 ∈ 𝑀, where 𝑓 given by (1) and 𝑔 is defined by 

𝑔(𝓏) = 𝓏 + ෍ 𝑏𝔫𝓏𝔫ஶ
𝔫ୀଶ  , 𝓏 ∈ U°, 

then 

(𝑓 ∗ 𝑔)(𝓏) = 𝓏 + ෍ 𝑎𝔫𝑏𝔫ஶ
𝔫ୀଶ 𝓏𝔫 = (𝑔 ∗ 𝑓)(𝓏). 

Using the convolution defined above, a new operator is next introduced as the 
original part of the present paper. 

  

), Γπ,ρ,β+4,µ f (
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Well-known notations and definitions used for obtaining the original results are next 
presented. 𝒦(U°) denotes the family of analytic functions in U°that have the form: 𝒦[a, 𝔫] = {𝑓 ∈ 𝒦(U°): 𝑓(𝓏) = 𝑎 + 𝑎𝔫𝓏𝔫 + 𝑎𝔫ାଵ𝓏𝔫ାଵ + ⋯ }, 𝑎 ∈ ℂ, 𝔫 ∈ 𝑁 = {1,2, … }, 

and let ℧𝔫 be the collection of the form: ℧𝔫 = {𝑓 ∈ 𝒦(𝑈°): 𝑓(𝓏) = 𝓏 + 𝑎𝔫ାଵ𝓏𝔫ାଵ + ⋯ }, 
where ℧ଵ = ℧, the subclass of normalized analytic functions in U°. Further, indicate by M 
the subfamily of 𝒦(U°) of the form: 

𝑓(𝓏) = 𝓏 + ෍ 𝑎𝔫𝓏𝔫 , 𝓏 ∈ U°ஶ
𝔫ୀଶ , (1)

which are univalent in U°. For analytic functions 𝑓 and 𝐹, the function 𝑓 is said to be 
subordinate to 𝐹, if 𝑓(𝓏) = 𝐹൫Θ(𝓏)൯, (𝓏 ∈ 𝑈°), 

where Θ(𝓏) is analytic and  Θ(0) = 0, |Θ(𝓏)| < 1. This subordination is indicated by 𝑓(𝓏) ≺ 𝐹(𝓏). 
Cho and Kim [20] proposed the multiplier transformation as a linear operator. Let 𝔫 

be any integer; the multiplier transformation ℒఓఉ: 𝑀 → 𝑀  is given by ℒఓఉ𝑓(𝓏) = 𝓏 +∑ ቀ𝔫ାఓଵାఓቁఉ 𝑎𝔫𝓏𝔫 , 𝜇 ≥ 0, 𝛽 ∈ ℤ = {⋯ , −1,0,1, ⋯ }ஶ𝔫ୀଶ . 
 
The Hurwitz–Lerch Zeta function [21] is 

𝜁గ,ఘ(𝓏) = 1𝜌గ + ෍ 𝓏𝔫(𝔫 + 𝜌)గஶ
𝔫ୀଵ , 

(𝜌 ∈ ℂ\𝑍௢ି = {0, −1, −2, … }, 𝜋 ∈ ℂ, where |𝓏| < 1, ℛ𝑒(𝜋) > 1, 𝓏 ∈ 𝜕𝑈°) 

By making use of the following normalized function, we have: 𝐺గ,ఘ(𝓏) = (1 + 𝜌)గൣ𝜁గ,ఘ(𝓏) − 𝜌ିగ൧ = 𝓏 + ∑ ቀଵାఘ𝔫ାఘቁగ   , 𝓏 ∈ 𝑈°ஶ𝔫ୀଶ . 

If 𝑓, 𝑔 ∈ 𝑀, where 𝑓 given by (1) and 𝑔 is defined by 

𝑔(𝓏) = 𝓏 + ෍ 𝑏𝔫𝓏𝔫ஶ
𝔫ୀଶ  , 𝓏 ∈ U°, 

then 

(𝑓 ∗ 𝑔)(𝓏) = 𝓏 + ෍ 𝑎𝔫𝑏𝔫ஶ
𝔫ୀଶ 𝓏𝔫 = (𝑔 ∗ 𝑓)(𝓏). 

Using the convolution defined above, a new operator is next introduced as the 
original part of the present paper. 

  

)
)

:
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∈ U
◦
}

is univalent in U
◦
, and the two conditions (7) and (21) are satisfied as
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then 𝕢(𝓏) ≺ 𝛤గ,ఘ,ఉ,ఋ𝑓(𝓏), and 𝕢(𝓏) is the best subordinate of (24). 

Proof. The proof of theorem is similar to that of Theorem 5 and is omitted here. □ 

5. Sandwich-Type Results 
Now, by using Theorems 5 and 9, we have the sandwich-type result. 

Theorem 11. Consider two analytic functions  𝓀ଵ(𝓏) 𝑎𝑛𝑑 𝕢ଵ(𝓏)  in 𝑈° , and  𝕢ଶ(𝓏) ∈ Ҩଵ 
with  𝕢ଵ(0) = 𝕢ଶ(0) =1. In addition let the function  𝓀ଶ(𝓏) be univalent in  𝑈°  and  𝛶 ∈𝜃௰[ 𝓀ଶ, 𝕢ଶ] ∩ 𝜃௰ᇱ [𝓀ଵ, 𝕢ଵ]. If 𝛤గ,ఘ,ఉ,ఓ𝑓(𝓏) ∈ Ҩଵ ∩ 𝒦, 𝑓 ∈ 𝑀, ൛𝛶൫𝛤గ,ఘ,ఉ,ఓ𝑓(𝓏), 𝛤గ,ఘ,ఉାଵ,ఓ𝑓(𝓏), 𝛤గ,ఘ,ఉାଶ,ఓ𝑓(𝓏), 𝛤గ,ఘ,ఉାଷ,ఓ𝑓(𝓏), 𝛤గ,ఘ,ఉାସ,ఓ𝑓(𝓏)ቁ : 𝓏 ∈ 𝑈°ቅ 

is univalent in 𝑈°, and the two conditions (7) and (22) are satisfied as 𝓀ଵ(𝓏) ≺ {𝛶൫𝛤గ,ఘ,ఉ,ఓ𝑓(𝓏), 𝛤గ,ఘ,ఉାଵ,ఓ𝑓(𝓏), 𝛤గ,ఘ,ఉାଶ,ఓ𝑓(𝓏), 𝛤గ,ఘ,ఉାଷ,ఓ𝑓(𝓏), 𝛤గ,ఘ,ఉାସ,ఓ𝑓(𝓏); 𝓏 ∈ 𝑈°)} ≺  𝓀ଶ(𝓏), 
then 𝕢ଵ(𝓏) ≺ 𝛤గ,ఘ,ఉ,ఓ𝑓(𝓏) ≺ 𝕢ଶ(𝓏) 

6. Conclusions 
A new differential operator is introduced in the present paper in Definition 1. Using 

the concepts of fourth-order differential subordination and superordination, the classes 
of admissible functions are defined related to each of the two concepts, and using those 
definitions, several theorems are proved involving the newly defined operator regarding 
fourth-order subordinations in Section 3 and regarding fourth-order superordination in 
Section 4. By applying a well-known technique, a sandwich-type theorem is stated in 
Section 5 of the paper combining the subordination and superordination results obtained 
before. The results presented here could inspire future work involving other operators 
for obtaining fourth-order differential subordinations and superordinations. Certain 
special classes of univalent functions could be introduced using the operator defined in 
this paper, and studies for obtaining properties of those classes could be done invoking 
the notions of fourth-order differential subordination and superordination using the 
admissibility conditions given here in Definition 7., Definition 8. and Definition 9. and 
the best dominant obtained in Theorem 5. 
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Using the convolution defined above, a new operator is next introduced as the 
original part of the present paper. 

  

) ≺
{

Y
(

Γπ,ρ,β,µ f (
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), Γπ,ρ,β+1,µ f (
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), Γπ,ρ,β+2,µ f (
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Well-known notations and definitions used for obtaining the original results are next 
presented. 𝒦(U°) denotes the family of analytic functions in U°that have the form: 𝒦[a, 𝔫] = {𝑓 ∈ 𝒦(U°): 𝑓(𝓏) = 𝑎 + 𝑎𝔫𝓏𝔫 + 𝑎𝔫ାଵ𝓏𝔫ାଵ + ⋯ }, 𝑎 ∈ ℂ, 𝔫 ∈ 𝑁 = {1,2, … }, 

and let ℧𝔫 be the collection of the form: ℧𝔫 = {𝑓 ∈ 𝒦(𝑈°): 𝑓(𝓏) = 𝓏 + 𝑎𝔫ାଵ𝓏𝔫ାଵ + ⋯ }, 
where ℧ଵ = ℧, the subclass of normalized analytic functions in U°. Further, indicate by M 
the subfamily of 𝒦(U°) of the form: 

𝑓(𝓏) = 𝓏 + ෍ 𝑎𝔫𝓏𝔫 , 𝓏 ∈ U°ஶ
𝔫ୀଶ , (1)

which are univalent in U°. For analytic functions 𝑓 and 𝐹, the function 𝑓 is said to be 
subordinate to 𝐹, if 𝑓(𝓏) = 𝐹൫Θ(𝓏)൯, (𝓏 ∈ 𝑈°), 

where Θ(𝓏) is analytic and  Θ(0) = 0, |Θ(𝓏)| < 1. This subordination is indicated by 𝑓(𝓏) ≺ 𝐹(𝓏). 
Cho and Kim [20] proposed the multiplier transformation as a linear operator. Let 𝔫 

be any integer; the multiplier transformation ℒఓఉ: 𝑀 → 𝑀  is given by ℒఓఉ𝑓(𝓏) = 𝓏 +∑ ቀ𝔫ାఓଵାఓቁఉ 𝑎𝔫𝓏𝔫 , 𝜇 ≥ 0, 𝛽 ∈ ℤ = {⋯ , −1,0,1, ⋯ }ஶ𝔫ୀଶ . 
 
The Hurwitz–Lerch Zeta function [21] is 

𝜁గ,ఘ(𝓏) = 1𝜌గ + ෍ 𝓏𝔫(𝔫 + 𝜌)గஶ
𝔫ୀଵ , 

(𝜌 ∈ ℂ\𝑍௢ି = {0, −1, −2, … }, 𝜋 ∈ ℂ, where |𝓏| < 1, ℛ𝑒(𝜋) > 1, 𝓏 ∈ 𝜕𝑈°) 

By making use of the following normalized function, we have: 𝐺గ,ఘ(𝓏) = (1 + 𝜌)గൣ𝜁గ,ఘ(𝓏) − 𝜌ିగ൧ = 𝓏 + ∑ ቀଵାఘ𝔫ାఘቁగ   , 𝓏 ∈ 𝑈°ஶ𝔫ୀଶ . 

If 𝑓, 𝑔 ∈ 𝑀, where 𝑓 given by (1) and 𝑔 is defined by 

𝑔(𝓏) = 𝓏 + ෍ 𝑏𝔫𝓏𝔫ஶ
𝔫ୀଶ  , 𝓏 ∈ U°, 

then 

(𝑓 ∗ 𝑔)(𝓏) = 𝓏 + ෍ 𝑎𝔫𝑏𝔫ஶ
𝔫ୀଶ 𝓏𝔫 = (𝑔 ∗ 𝑓)(𝓏). 

Using the convolution defined above, a new operator is next introduced as the 
original part of the present paper. 

  

), Γπ,ρ,β+3,µ f (
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Well-known notations and definitions used for obtaining the original results are next 
presented. 𝒦(U°) denotes the family of analytic functions in U°that have the form: 𝒦[a, 𝔫] = {𝑓 ∈ 𝒦(U°): 𝑓(𝓏) = 𝑎 + 𝑎𝔫𝓏𝔫 + 𝑎𝔫ାଵ𝓏𝔫ାଵ + ⋯ }, 𝑎 ∈ ℂ, 𝔫 ∈ 𝑁 = {1,2, … }, 

and let ℧𝔫 be the collection of the form: ℧𝔫 = {𝑓 ∈ 𝒦(𝑈°): 𝑓(𝓏) = 𝓏 + 𝑎𝔫ାଵ𝓏𝔫ାଵ + ⋯ }, 
where ℧ଵ = ℧, the subclass of normalized analytic functions in U°. Further, indicate by M 
the subfamily of 𝒦(U°) of the form: 

𝑓(𝓏) = 𝓏 + ෍ 𝑎𝔫𝓏𝔫 , 𝓏 ∈ U°ஶ
𝔫ୀଶ , (1)

which are univalent in U°. For analytic functions 𝑓 and 𝐹, the function 𝑓 is said to be 
subordinate to 𝐹, if 𝑓(𝓏) = 𝐹൫Θ(𝓏)൯, (𝓏 ∈ 𝑈°), 

where Θ(𝓏) is analytic and  Θ(0) = 0, |Θ(𝓏)| < 1. This subordination is indicated by 𝑓(𝓏) ≺ 𝐹(𝓏). 
Cho and Kim [20] proposed the multiplier transformation as a linear operator. Let 𝔫 

be any integer; the multiplier transformation ℒఓఉ: 𝑀 → 𝑀  is given by ℒఓఉ𝑓(𝓏) = 𝓏 +∑ ቀ𝔫ାఓଵାఓቁఉ 𝑎𝔫𝓏𝔫 , 𝜇 ≥ 0, 𝛽 ∈ ℤ = {⋯ , −1,0,1, ⋯ }ஶ𝔫ୀଶ . 
 
The Hurwitz–Lerch Zeta function [21] is 

𝜁గ,ఘ(𝓏) = 1𝜌గ + ෍ 𝓏𝔫(𝔫 + 𝜌)గஶ
𝔫ୀଵ , 

(𝜌 ∈ ℂ\𝑍௢ି = {0, −1, −2, … }, 𝜋 ∈ ℂ, where |𝓏| < 1, ℛ𝑒(𝜋) > 1, 𝓏 ∈ 𝜕𝑈°) 

By making use of the following normalized function, we have: 𝐺గ,ఘ(𝓏) = (1 + 𝜌)గൣ𝜁గ,ఘ(𝓏) − 𝜌ିగ൧ = 𝓏 + ∑ ቀଵାఘ𝔫ାఘቁగ   , 𝓏 ∈ 𝑈°ஶ𝔫ୀଶ . 

If 𝑓, 𝑔 ∈ 𝑀, where 𝑓 given by (1) and 𝑔 is defined by 

𝑔(𝓏) = 𝓏 + ෍ 𝑏𝔫𝓏𝔫ஶ
𝔫ୀଶ  , 𝓏 ∈ U°, 

then 

(𝑓 ∗ 𝑔)(𝓏) = 𝓏 + ෍ 𝑎𝔫𝑏𝔫ஶ
𝔫ୀଶ 𝓏𝔫 = (𝑔 ∗ 𝑓)(𝓏). 

Using the convolution defined above, a new operator is next introduced as the 
original part of the present paper. 

  

), Γπ,ρ,β+4,µ f (
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Well-known notations and definitions used for obtaining the original results are next 
presented. 𝒦(U°) denotes the family of analytic functions in U°that have the form: 𝒦[a, 𝔫] = {𝑓 ∈ 𝒦(U°): 𝑓(𝓏) = 𝑎 + 𝑎𝔫𝓏𝔫 + 𝑎𝔫ାଵ𝓏𝔫ାଵ + ⋯ }, 𝑎 ∈ ℂ, 𝔫 ∈ 𝑁 = {1,2, … }, 

and let ℧𝔫 be the collection of the form: ℧𝔫 = {𝑓 ∈ 𝒦(𝑈°): 𝑓(𝓏) = 𝓏 + 𝑎𝔫ାଵ𝓏𝔫ାଵ + ⋯ }, 
where ℧ଵ = ℧, the subclass of normalized analytic functions in U°. Further, indicate by M 
the subfamily of 𝒦(U°) of the form: 

𝑓(𝓏) = 𝓏 + ෍ 𝑎𝔫𝓏𝔫 , 𝓏 ∈ U°ஶ
𝔫ୀଶ , (1)

which are univalent in U°. For analytic functions 𝑓 and 𝐹, the function 𝑓 is said to be 
subordinate to 𝐹, if 𝑓(𝓏) = 𝐹൫Θ(𝓏)൯, (𝓏 ∈ 𝑈°), 

where Θ(𝓏) is analytic and  Θ(0) = 0, |Θ(𝓏)| < 1. This subordination is indicated by 𝑓(𝓏) ≺ 𝐹(𝓏). 
Cho and Kim [20] proposed the multiplier transformation as a linear operator. Let 𝔫 

be any integer; the multiplier transformation ℒఓఉ: 𝑀 → 𝑀  is given by ℒఓఉ𝑓(𝓏) = 𝓏 +∑ ቀ𝔫ାఓଵାఓቁఉ 𝑎𝔫𝓏𝔫 , 𝜇 ≥ 0, 𝛽 ∈ ℤ = {⋯ , −1,0,1, ⋯ }ஶ𝔫ୀଶ . 
 
The Hurwitz–Lerch Zeta function [21] is 

𝜁గ,ఘ(𝓏) = 1𝜌గ + ෍ 𝓏𝔫(𝔫 + 𝜌)గஶ
𝔫ୀଵ , 

(𝜌 ∈ ℂ\𝑍௢ି = {0, −1, −2, … }, 𝜋 ∈ ℂ, where |𝓏| < 1, ℛ𝑒(𝜋) > 1, 𝓏 ∈ 𝜕𝑈°) 

By making use of the following normalized function, we have: 𝐺గ,ఘ(𝓏) = (1 + 𝜌)గൣ𝜁గ,ఘ(𝓏) − 𝜌ିగ൧ = 𝓏 + ∑ ቀଵାఘ𝔫ାఘቁగ   , 𝓏 ∈ 𝑈°ஶ𝔫ୀଶ . 

If 𝑓, 𝑔 ∈ 𝑀, where 𝑓 given by (1) and 𝑔 is defined by 

𝑔(𝓏) = 𝓏 + ෍ 𝑏𝔫𝓏𝔫ஶ
𝔫ୀଶ  , 𝓏 ∈ U°, 

then 

(𝑓 ∗ 𝑔)(𝓏) = 𝓏 + ෍ 𝑎𝔫𝑏𝔫ஶ
𝔫ୀଶ 𝓏𝔫 = (𝑔 ∗ 𝑓)(𝓏). 

Using the convolution defined above, a new operator is next introduced as the 
original part of the present paper. 

  

);
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Well-known notations and definitions used for obtaining the original results are next 
presented. 𝒦(U°) denotes the family of analytic functions in U°that have the form: 𝒦[a, 𝔫] = {𝑓 ∈ 𝒦(U°): 𝑓(𝓏) = 𝑎 + 𝑎𝔫𝓏𝔫 + 𝑎𝔫ାଵ𝓏𝔫ାଵ + ⋯ }, 𝑎 ∈ ℂ, 𝔫 ∈ 𝑁 = {1,2, … }, 

and let ℧𝔫 be the collection of the form: ℧𝔫 = {𝑓 ∈ 𝒦(𝑈°): 𝑓(𝓏) = 𝓏 + 𝑎𝔫ାଵ𝓏𝔫ାଵ + ⋯ }, 
where ℧ଵ = ℧, the subclass of normalized analytic functions in U°. Further, indicate by M 
the subfamily of 𝒦(U°) of the form: 

𝑓(𝓏) = 𝓏 + ෍ 𝑎𝔫𝓏𝔫 , 𝓏 ∈ U°ஶ
𝔫ୀଶ , (1)

which are univalent in U°. For analytic functions 𝑓 and 𝐹, the function 𝑓 is said to be 
subordinate to 𝐹, if 𝑓(𝓏) = 𝐹൫Θ(𝓏)൯, (𝓏 ∈ 𝑈°), 

where Θ(𝓏) is analytic and  Θ(0) = 0, |Θ(𝓏)| < 1. This subordination is indicated by 𝑓(𝓏) ≺ 𝐹(𝓏). 
Cho and Kim [20] proposed the multiplier transformation as a linear operator. Let 𝔫 

be any integer; the multiplier transformation ℒఓఉ: 𝑀 → 𝑀  is given by ℒఓఉ𝑓(𝓏) = 𝓏 +∑ ቀ𝔫ାఓଵାఓቁఉ 𝑎𝔫𝓏𝔫 , 𝜇 ≥ 0, 𝛽 ∈ ℤ = {⋯ , −1,0,1, ⋯ }ஶ𝔫ୀଶ . 
 
The Hurwitz–Lerch Zeta function [21] is 

𝜁గ,ఘ(𝓏) = 1𝜌గ + ෍ 𝓏𝔫(𝔫 + 𝜌)గஶ
𝔫ୀଵ , 

(𝜌 ∈ ℂ\𝑍௢ି = {0, −1, −2, … }, 𝜋 ∈ ℂ, where |𝓏| < 1, ℛ𝑒(𝜋) > 1, 𝓏 ∈ 𝜕𝑈°) 

By making use of the following normalized function, we have: 𝐺గ,ఘ(𝓏) = (1 + 𝜌)గൣ𝜁గ,ఘ(𝓏) − 𝜌ିగ൧ = 𝓏 + ∑ ቀଵାఘ𝔫ାఘቁగ   , 𝓏 ∈ 𝑈°ஶ𝔫ୀଶ . 

If 𝑓, 𝑔 ∈ 𝑀, where 𝑓 given by (1) and 𝑔 is defined by 

𝑔(𝓏) = 𝓏 + ෍ 𝑏𝔫𝓏𝔫ஶ
𝔫ୀଶ  , 𝓏 ∈ U°, 

then 

(𝑓 ∗ 𝑔)(𝓏) = 𝓏 + ෍ 𝑎𝔫𝑏𝔫ஶ
𝔫ୀଶ 𝓏𝔫 = (𝑔 ∗ 𝑓)(𝓏). 

Using the convolution defined above, a new operator is next introduced as the 
original part of the present paper. 

  

∈ U
◦
)
}
≺
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{𝜓(𝑝(𝓏), 𝓏𝑝ᇱ(𝓏), 𝓏ଶ𝑝ᇱᇱ(𝓏), 𝓏ଷ𝑝ᇱᇱᇱ(𝓏), 𝓏ସ𝑝ᇱᇱᇱᇱ(𝓏); 𝓏 ∈ 𝑈°)} = 𝓀(𝓏),  (25)

has a solution 𝕢(𝓏) ∈ Ҩଵ. If 𝛤గ,ఘ,ఉ,ఓ𝑓(𝓏) ∈ Ҩଵ, 𝕢 ∈ 𝒦ଵ, 𝕢ᇱ(𝓏) ് 0 and 𝑓 ∈ 𝑀 satisfy the con-
ditions (7) and (22), ൛𝛶൫𝛤గ,ఘ,ఉ,ఓ𝑓(𝓏), 𝛤గ,ఘ,ఉାଵ,ఓ𝑓(𝓏), 𝛤గ,ఘ,ఉାଶ,ఓ𝑓(𝓏), 𝛤గ,ఘ,ఉାଷ,ఓ𝑓(𝓏), 𝛤గ,ఘ,ఉାସ,ఓ𝑓(𝓏)ቁ : 𝓏 ∈ 𝑈°ቅ 
is univalent in 𝑈°, and 𝓀(𝓏) ⊂ {Υ൫Γగ,ఘ,ఉ,ఓ𝑓(𝓏), Γగ,ఘ,ఉାଵ,ఓ𝑓(𝓏), Γగ,ఘ,ఉାଶ,ఓ𝑓(𝓏), Γగ,ఘ,ఉାଷ,ఓ𝑓(𝓏), 𝛤గ,ఘ,ఉାସ,ఓ𝑓(𝓏); 𝓏 ∈ 𝑈°)}, 
then 𝕢(𝓏) ≺ 𝛤గ,ఘ,ఉ,ఋ𝑓(𝓏), and 𝕢(𝓏) is the best subordinate of (24). 

Proof. The proof of theorem is similar to that of Theorem 5 and is omitted here. □ 

5. Sandwich-Type Results 
Now, by using Theorems 5 and 9, we have the sandwich-type result. 

Theorem 11. Consider two analytic functions  𝓀ଵ(𝓏) 𝑎𝑛𝑑 𝕢ଵ(𝓏)  in 𝑈° , and  𝕢ଶ(𝓏) ∈ Ҩଵ 
with  𝕢ଵ(0) = 𝕢ଶ(0) =1. In addition let the function  𝓀ଶ(𝓏) be univalent in  𝑈°  and  𝛶 ∈𝜃௰[ 𝓀ଶ, 𝕢ଶ] ∩ 𝜃௰ᇱ [𝓀ଵ, 𝕢ଵ]. If 𝛤గ,ఘ,ఉ,ఓ𝑓(𝓏) ∈ Ҩଵ ∩ 𝒦, 𝑓 ∈ 𝑀, ൛𝛶൫𝛤గ,ఘ,ఉ,ఓ𝑓(𝓏), 𝛤గ,ఘ,ఉାଵ,ఓ𝑓(𝓏), 𝛤గ,ఘ,ఉାଶ,ఓ𝑓(𝓏), 𝛤గ,ఘ,ఉାଷ,ఓ𝑓(𝓏), 𝛤గ,ఘ,ఉାସ,ఓ𝑓(𝓏)ቁ : 𝓏 ∈ 𝑈°ቅ 

is univalent in 𝑈°, and the two conditions (7) and (22) are satisfied as 𝓀ଵ(𝓏) ≺ {𝛶൫𝛤గ,ఘ,ఉ,ఓ𝑓(𝓏), 𝛤గ,ఘ,ఉାଵ,ఓ𝑓(𝓏), 𝛤గ,ఘ,ఉାଶ,ఓ𝑓(𝓏), 𝛤గ,ఘ,ఉାଷ,ఓ𝑓(𝓏), 𝛤గ,ఘ,ఉାସ,ఓ𝑓(𝓏); 𝓏 ∈ 𝑈°)} ≺  𝓀ଶ(𝓏), 
then 𝕢ଵ(𝓏) ≺ 𝛤గ,ఘ,ఉ,ఓ𝑓(𝓏) ≺ 𝕢ଶ(𝓏) 

6. Conclusions 
A new differential operator is introduced in the present paper in Definition 1. Using 

the concepts of fourth-order differential subordination and superordination, the classes 
of admissible functions are defined related to each of the two concepts, and using those 
definitions, several theorems are proved involving the newly defined operator regarding 
fourth-order subordinations in Section 3 and regarding fourth-order superordination in 
Section 4. By applying a well-known technique, a sandwich-type theorem is stated in 
Section 5 of the paper combining the subordination and superordination results obtained 
before. The results presented here could inspire future work involving other operators 
for obtaining fourth-order differential subordinations and superordinations. Certain 
special classes of univalent functions could be introduced using the operator defined in 
this paper, and studies for obtaining properties of those classes could be done invoking 
the notions of fourth-order differential subordination and superordination using the 
admissibility conditions given here in Definition 7., Definition 8. and Definition 9. and 
the best dominant obtained in Theorem 5. 
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Well-known notations and definitions used for obtaining the original results are next 
presented. 𝒦(U°) denotes the family of analytic functions in U°that have the form: 𝒦[a, 𝔫] = {𝑓 ∈ 𝒦(U°): 𝑓(𝓏) = 𝑎 + 𝑎𝔫𝓏𝔫 + 𝑎𝔫ାଵ𝓏𝔫ାଵ + ⋯ }, 𝑎 ∈ ℂ, 𝔫 ∈ 𝑁 = {1,2, … }, 

and let ℧𝔫 be the collection of the form: ℧𝔫 = {𝑓 ∈ 𝒦(𝑈°): 𝑓(𝓏) = 𝓏 + 𝑎𝔫ାଵ𝓏𝔫ାଵ + ⋯ }, 
where ℧ଵ = ℧, the subclass of normalized analytic functions in U°. Further, indicate by M 
the subfamily of 𝒦(U°) of the form: 

𝑓(𝓏) = 𝓏 + ෍ 𝑎𝔫𝓏𝔫 , 𝓏 ∈ U°ஶ
𝔫ୀଶ , (1)

which are univalent in U°. For analytic functions 𝑓 and 𝐹, the function 𝑓 is said to be 
subordinate to 𝐹, if 𝑓(𝓏) = 𝐹൫Θ(𝓏)൯, (𝓏 ∈ 𝑈°), 

where Θ(𝓏) is analytic and  Θ(0) = 0, |Θ(𝓏)| < 1. This subordination is indicated by 𝑓(𝓏) ≺ 𝐹(𝓏). 
Cho and Kim [20] proposed the multiplier transformation as a linear operator. Let 𝔫 

be any integer; the multiplier transformation ℒఓఉ: 𝑀 → 𝑀  is given by ℒఓఉ𝑓(𝓏) = 𝓏 +∑ ቀ𝔫ାఓଵାఓቁఉ 𝑎𝔫𝓏𝔫 , 𝜇 ≥ 0, 𝛽 ∈ ℤ = {⋯ , −1,0,1, ⋯ }ஶ𝔫ୀଶ . 
 
The Hurwitz–Lerch Zeta function [21] is 

𝜁గ,ఘ(𝓏) = 1𝜌గ + ෍ 𝓏𝔫(𝔫 + 𝜌)గஶ
𝔫ୀଵ , 

(𝜌 ∈ ℂ\𝑍௢ି = {0, −1, −2, … }, 𝜋 ∈ ℂ, where |𝓏| < 1, ℛ𝑒(𝜋) > 1, 𝓏 ∈ 𝜕𝑈°) 

By making use of the following normalized function, we have: 𝐺గ,ఘ(𝓏) = (1 + 𝜌)గൣ𝜁గ,ఘ(𝓏) − 𝜌ିగ൧ = 𝓏 + ∑ ቀଵାఘ𝔫ାఘቁగ   , 𝓏 ∈ 𝑈°ஶ𝔫ୀଶ . 

If 𝑓, 𝑔 ∈ 𝑀, where 𝑓 given by (1) and 𝑔 is defined by 

𝑔(𝓏) = 𝓏 + ෍ 𝑏𝔫𝓏𝔫ஶ
𝔫ୀଶ  , 𝓏 ∈ U°, 

then 

(𝑓 ∗ 𝑔)(𝓏) = 𝓏 + ෍ 𝑎𝔫𝑏𝔫ஶ
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6. Conclusions

A new differential operator is introduced in the present paper in Definition 1. Using
the concepts of fourth-order differential subordination and superordination, the classes
of admissible functions are defined related to each of the two concepts, and using those
definitions, several theorems are proved involving the newly defined operator regarding
fourth-order subordinations in Section 3 and regarding fourth-order superordination in
Section 4. By applying a well-known technique, a sandwich-type theorem is stated in
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Section 5 of the paper combining the subordination and superordination results obtained
before. The results presented here could inspire future work involving other operators for
obtaining fourth-order differential subordinations and superordinations. Certain special
classes of univalent functions could be introduced using the operator defined in this paper,
and studies for obtaining properties of those classes could be done invoking the notions
of fourth-order differential subordination and superordination using the admissibility
conditions given here in Definition 7, Definition 8 and Definition 9 and the best dominant
obtained in Theorem 5.
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2020, 9, 8455–8467. [CrossRef]
8. Atshan, W.G.; Ali, A.A.R. On sandwich theorems results for certain univalent functions defined by generalized operators. Iraqi J.

Sci. 2021, 62, 2376–2383. [CrossRef]
9. Atshan, W.G.; Abbas, I.A.; Yalcin, S. New concept on Fourth-order differential subordination and superordination with some

results for multivalent analytic functions. J. Al-Qadisiyah Comput. Sci. Math. 2020, 12, 96–107.
10. Atshan, W.G.; Battor, A.H.; Abaas, A.F. On third-order differential subordination results for univalent analytic functions involving

an operator. J. Phys. Conf. Ser. 2020, 1664, 012041. [CrossRef]
11. Atshan, W.G.; Battor, A.H.; Abaas, A.F. Some sandwich theorems for meromorphic univalent functions defined by new integral

operator. J. Interdiscip. Math. 2021, 24, 579–591. [CrossRef]
12. Atshan, W.G.; Battor, A.H.; Abaas, A.F.; Oros, G.I. New and extended results on fourth-order differential subordination for

univalent analytic functions. Al-Qadisiyah J. Pure Sci. 2020, 25, 1–13. [CrossRef]
13. Atshan, W.G.; Hadi, R.A. Some differential subordination and superordination results of p-valent functions defined by differential

operator. J. Phys. Conf. Ser. 2020, 1664, 012043. [CrossRef]
14. Atshan, W.G.; Hassan, H.Z.; Yalcin, S. On third-order differential subordination results for univalent functions defined by

differential operator. Uzb. Math. J. 2021, 62, 26–42.
15. Atshan, W.G.; Kulkarni, S.R. On application of differential subordination for certain subclass of meromorphically p-valent

functions with positive coefficients defined by linear operator. J. Inequalities Pure Appl. Math. 2009, 10, 11.
16. Attiya, A.A.; Kwon, O.S.; Hang, P.J.; Cho, N.E. An Integrodifferential operator for meromorphic functions associated with the

Hurwitz-Lerch Zeta function. Filomat 2016, 30, 2045–2057. [CrossRef]
17. NCho, E.; Kim, T.H. Multiplier transformations and strongly close-to convex functions. Bull. Korean Math. Soc. 2003, 40, 399–410.
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