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Abstract: The presence of a crack in a beam leads to changes in its dynamic characteristics and hence
changes in its natural frequencies and mode shapes. In this paper, Alternative Admissible Functions
(AAF) with penalties for extracting the dynamic characteristics of a Euler–Bernoulli Beam with a
shallow crack is proposed and validated. The proposed method has two key advantages. First, the
alternative admissible function choice is independent of the boundary conditions, which are modelled
via boundary penalty terms. Second, the crack is treated as a penalty function to account for the local
stiffness reduction while ensuring beam continuity. The approach is validated with different crack
depth ratios and locations. The mass, stiffness, and penalty function matrices for Simply Supported
(SS), Clamped–Clamped (CC), and Clamped–Free (CF) are developed and are used in the analysis of
a beam with a shallow crack. The proposed method demonstrates results in good agreement with
published literature for shallow cracks. A significant advantage of the proposed method is the ease
of applicability, eliminating the need for remodeling with changes in boundary conditions or crack
parameters. The results show that the crack introduces asymmetry to the beam and may require
changing the boundary penalty values, depending on the location and depth of the crack.

Keywords: vibration; beam; cracked beams; assumed modes; eigenvalues; natural frequencies;
modeshapes; shallow cracks; boundary conditions; alternative admissible function

1. Introduction

Vibration analysis of structures with cracks has been a long-standing topic of research
interest. Establishing the influence of a crack on a structure’s dynamic characteristics in
advance can help avoid catastrophic failures. Monitoring of vibration parameters is often
used in structural health monitoring, as demonstrated in a review by Yang et al. [1]. The
assumed modes method is a useful analytical method used to estimate the dynamic charac-
teristics of a structure, where the choice of assumed mode is an important consideration
to the utility of the method. Meirovitch [2] presented a modern treatment for vibration
analysis and developed various mathematical approaches emphasizing analytical and com-
putational solutions. However, certain choices of assumed modes, in particular the system
eigenfunctions, can lead to ill-conditioning and other numerical difficulties. To address
this shortcoming, Monterrubio and Ilanko [3,4] presented a set of admissible functions
which may be used in the assumed mode method. In their approach, alternative admissible
functions were proposed in place of the traditional eigenfunctions, and penalty function
terms were added to the model constraints to account for the boundary conditions. The
proposed set of functions do not lead to ill-conditioning while handling a large number of
terms. Hosseini and Baddour [5] used the set of functions developed in [3] with the penalty
function method to study the vibrations of a beam with lumped attachments. Boundary
conditions were enforced using penalty terms. Kateel and Baddour [6] adopted the set of
functions, furthering the study on the effectiveness of the set of functions for beams with
various boundary conditions viz., simply supported, clamped–clamped and clamped–free
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boundary conditions. It was concluded that the selected set of boundary penalty values
depends on the underlying beam properties and the boundary conditions of the problem.
A crack in a beam causes a change in the local stiffness of a structure, and hence a change in
the dynamic characteristics such as natural frequencies and mode shapes. Doebling et al. [7]
presented a comprehensive literature review on the identification of structural damage
using measured vibrational data. There are two primary approaches to modelling cracks in
beam structures that have been documented in the literature: local stiffness reduction and
a discrete spring model. Ostachowicz and Kalwczak [8] presented an analytical study of
a cracked cantilever beam. The crack was modelled using a stress intensity factor, and it
was assumed that there is decrease in elastic deformation of energy in the plane stress of
the beam. Chondros et al. [9] developed a continuous cracked bar vibration model for a
Euler–Bernoulli cantilever beam with a crack. The crack was assumed to be an edge crack
and was modelled as continuous flexibility. Using a stress intensity factor and Castigliano’s
theorem, the differential equation for the cracked beam was developed. It was suggested
that the continuous cracked beam theory holds applications for other cracked structures.
Yang et al. [10] developed a numerical model to evaluate the dynamic characteristics of a
cracked beam. The crack was assumed to be an open crack and modelled using the strain
energy. A simply supported and a fixed–fixed beam were considered for the study of the
proposed model. Dahak et al. [11] presented a method to identify and quantify of cracks
in beams using natural frequencies. The stiffness matrix was calculated by the theory of
fracture mechanics, by inverting the flexibility matrix. Experimental results were compared
and validated. Khnaijar and Benamar [12] developed a discrete cracked beam model for
multiple cracks. The beam bending stiffness was represented as multiple spiral springs
representing the crack model and connected by bars.

Using approaches such as stress intensity factor, many attempts have been made in
identifying the size, location, and depth of a crack in a beam. Qian et al. [13] proposed a
simple method to determine the crack location based on the relationship between the crack
and the eigencouple. The crack was assumed to be an edge-crack on a cantilever beam.
Using the stress intensity factor and the finite element method, the stiffness matrix of the
cracked beam was developed. The proposed method was suggested for complex structures
with known stress intensity factors. Kam and Lee [14] presented an alternative approach for
a non-destructive method to identify the size of the crack for a given location of the crack
in the structure. The crack was modelled as in [13]. The strain energy of the uncracked and
cracked beam was utilized to determine the crack size iteratively. The effect of the presence
of the crack on the structural strain energy was obtained based on fracture mechanics. The
study was carried out for different beams and frame structures. The proposed method
was verified with the Finite Element Method (FEM). Sinha et al. [15] proposed a simplified
crack modelling approach using an FEM approach for the estimation of crack depth and
location. The crack was modelled using the concept of change in stress and strain in the
vicinity of the crack section. The study used Euler–Bernoulli beam elements with minor
modifications to the local flexibility in the vicinity of cracks. Arem [16] reported a standard
and generic methodology describing the technique of construction of a cracked beam finite
element. Validation of the approach under static loading was given for a cantilever beam
with one and two cracked transverse sections.

Yoon et al. [17] demonstrated the influence of two open cracks on the dynamic behavior
of a double cracked simply supported beam. A Euler–Bernoulli beam represented by spatial
mode functions was considered and the beam was sectioned into three parts. Shifrin and
Ruotolo [18] proposed a new technique to calculate the eigenvalues of a cracked beam
and suggested that the proposed method yields reduced computation time by decreasing
the matrix size. Chondros and Dimarogonas [19] investigated the relationship between
natural frequency of a cracked beam and the depth of a crack. A cantilever beam was
welded at a clamped end, and a crack on the welded end was studied. The crack was
modelled as a torsional spring and assumed to be a transverse surface crack. Liang et al. [20]
demonstrated a method for quantitative assessment of a beam with a crack and provided
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an extension to the work for multiple damages. Local flexibility in the vicinity of the crack
was developed using a massless rotational spring. Lee and Ng [21] used the assumed
modes method to estimate the eigenvalues and eigenvectors of a simply supported Euler–
Bernoulli beam with single-sided crack and a pair of double-sided cracks. The crack was
modelled as a torsional spring and a linear spring to account for the transverse deflection
at the crack. Khiem and Lien [22] developed a new method for the dynamic analysis of a
beam with an arbitrary number of cracks. The crack was modelled as a rotational spring.
Adams et al. [23] evaluated a non-destructive method to study the integrity of structures.
A reduced local stiffness and massless spring model was considered for the modelling of
the crack. The model was considered for the study due to its simple applicability.

Long et al. [24] demonstrated the influence of the partial crack closure to model the
stiffness variation of the cracked beam. A finite element model of a beam with a breathing
crack, using the multiple-scale method was proposed to analyze the nonlinear vibration
of a cracked beam subjected to harmonic excitation. It was that the nonlinear responses
of a beam with a breathing crack are affected by both the structural parameters and the
crack parameters. Afshari and Inman [25] considered a Euler–Bernoulli Beam with a single
crack attached with piezoelectric patch. A new formulation for a beam with a shallow crack
was demonstrated using the Rayleigh–Ritz method for health monitoring. The crack was
modelled as a massless rotational spring to account for the loss of energy. The proposed
methodology was demonstrated to be suitable for use with the assumed modes method. In
their assumed modes approach, the eigenfunctions of the uncracked beam were used. The
study was carried out for simply supported and clamped–clamped boundary conditions
for different crack depth ratios and normalized locations. Dimarogonas [26] defined the
torsional spring constant in the vicinity of the cracked section of the beam when a crack of
uniform depth exists.

The literature review reveals that many attempts have been made by researchers to
accommodate the various crack models. Most approaches divide the beam into sub-beams
connected at the crack. This requires the entire system to be remodeled if the crack location
changes. In particular, if an assumed modes method was used, this requires separate sets
of assumed modes functions for the sub-beams, and then enforcing continuity at the crack,
increasing the complexity of the computation. For research that has used an assumed mode
approach for the entire beam, such as in [25], the traditional beam eigenfunctions were
used, thereby necessitating remodeling if the boundary conditions are changed. In short,
current approaches in the literature require extensive remodeling when crack parameters
and/or boundary conditions of the beam change.

The present paper proposes the use of Alternative Admissible Functions (AAF) to
address the need to easily modify the system model with changes in boundary conditions
and/or crack parameters. An analytical method is proposed to determine the eigenvalues
and eigenfunctions of a beam with a shallow crack. The crack is modelled as a penalty
function to account for the local stiffness reduction in the system due to its presence. This
modelling approach is advantageous as it maintains beam continuity and limits system
remodeling with changes in crack parameters or boundary conditions. The mass, stiffness,
and penalty function matrices for various boundary conditions are developed and are
used for the analysis of a beam with a shallow crack. Due to the presence of the crack,
the stiffness matrix of the unconstrained beam is altered, and the effective stiffness of the
beam with a crack is calculated. The eigenvalues and eigenfunctions for the beam with a
shallow crack for various locations and crack depth ratios are determined by constructing
the equation of motion. The study is conducted for both symmetrical Simply Supported
(SS), Clamped–Clamped (CC) boundary conditions, and asymmetrical Clamped–Free (CF)
boundary conditions.

2. Methodology

The Alternative Admissible Functions (AAF) approach for modelling a beam with
a shallow crack to determine dynamic characteristics is established in this section. The
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formulation for an uncracked beam is established first, followed by the applicability of
boundary penalty functions, and finally inclusion of a shallow crack into the beam. The
choice of AAF in this approach does not alter as the beam boundary conditions and crack
properties change. The changes in the boundary conditions and crack properties are
modelled via a separate set of penalties, which imparts flexibility and ease of use to the
method. The beam is considered as a continuous system and with the inclusion of the crack,
the continuity is maintained by the using the same set of functions throughout the beam.
The proposed approach is validated by comparing the natural frequency and modeshape
values from the literature.

2.1. Alternative Admissible Function Method

The chosen set of AAF, φi(x), consist of a set of simple polynomials and trigonometric
functions, and were first proposed by Monterrubio and Ilanko [3] for modelling vibrations
in beams, plates, and shells. The set of admissible functions, φi(x), are given by

φi(x) = 1 for i = 1
φi(x) =

( x
L
)

for i = 2

φi(x) =
( x

L
)2 for i = 3

φi(x) = cos (i−3)πx
L for i = 4, 5, 6, . . . N

(1)

where x is the axial coordinate of the beam, L is the beam length, and N is the number of
terms included in the set of admissible functions. The selected set of alternative admissible
functions have been demonstrated to be easy to compute and numerically well behaved [6]
for applications to beams. The choice of the set of admissible functions presented in
Equation (1) is such that the functions can best represent the eigenvectors of a structure
in an unconstrained condition [3,4]. Notably, the chosen set of assumed modes are non-
symmetrical in space, as shown in Figure 1.
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Figure 1. First Five Normalized Alternative Admissible Functions.

Further, the advantage of this selected set of admissible functions is that it can be used
with different boundary conditions without altering the choice of assumed mode functions
for various boundary conditions. This is in contrast to the traditional approach to assumed
modes, where the form of the assumed modes is often changed to account for a change in
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boundary conditions. For the assumed modes method, the transverse displacement w (x, t)
of the oscillations of a Euler–Bernoulli beam is modelled as

w(x, t) = W(x)cos(ωt) (2)

where x is the position along the beam, t is time, and ω is the frequency of vibration. The
spatial function, W(x), is assumed to be a sum of the assumed-modes and to have the form
given by

W(x) =
N

∑
i=1

ciφi(x) (3)

where φi(x) is the set of chosen AAF and ci are constants. The variable N is the number of
chosen assumed modes and determines the dimensionality of the model.

Knowing the system parameters such as the mechanical properties (Young’s modulus
E and density per unit length of the beam, ρ) and geometrical parameters (length L, width
b, and height h), then the maximum kinetic energy (Tmax) and maximum potential energy
(Vmax) of the unconstrained system can be written in terms of the admissible functions as

Tmax =
ρω2

2

∫ x=L

x=0
W2(x)dx (4)

and

Vmax =
EI
2

∫ x=L

x=0

(
∂2W
∂x2

)2

dx (5)

where I is the second moment of area of the cross section. For a conservative system,
ignoring the damping, it follows that

Vmax − Tmax = 0 (6)

Applying the Rayleigh–Ritz minimization to the conservative system leads to the
derivation of mass and stiffness matrices via

∂Vmax

∂ci
−ω2 ∂Γmax

∂ci
= 0 i = 1, 2 . . . N (7)

where Γmax = Tmax
ω2 is the normalized maximum kinetic energy function to be minimized.

On solving Equation (7) results in a set of N algebraic equations whose equivalent
matrix representation yields [

K−ω2M
]
C = 0 (8)

Vector C is the vector of coefficients from Equation (3). The mass and stiffness matrices
can be represented in the forms of alternative admissible functions, respectively as

mij = mji = ρ
∫ L

0
φi(x)φj(x)dx (9)

and,

kij = k ji = EI
∫ L

0
φ
′′
i (x)φ′′j (x)dx (10)

where mij denote the coefficients of mass matrix M and kij denote coefficients of the stiffness
matrix, K. The present method (AAF) provides the flexibility to model the system with
different boundary conditions without the need to remodel the system’s mass matrix, M
and the stiffness matrix, K with any change in boundary conditions.
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2.2. Boundary Penalty Functions

As the AAF do not themselves satisfy the boundary conditions, the boundary condi-
tions are addressed by introducing appropriate virtual stiffnesses represented via linear
springs (k0) and rotational springs (kr0) at the boundaries and termed as boundary penalty
functions. The total system potential energy is altered due to the addition of the boundary
penalty terms. Most generally, the penalty function associated with the potential energy of
virtual springs on the boundary is given by

Vp =
k0

2
W2|x=0 +

k0

2
W2|x=L +

kr0

2
L2
(

∂W
∂x

)2
|x=0 +

kr0

2
L2
(

∂W
∂x

)2
|x=L (11)

Incorporating the assumed modes of Equation (3) into (11) and following the procedure
outlined previously results in the boundary penalty stiffness matrix of the system. The
symmetric penalty stiffness matrix is given by

kP,ij = k0φi(0)φj(0) + k0φi(L)φj(L) + kr0L2φ′i(0)φ
′
j(0) + kr0L2φ′i(L)φ′j(L) (12)

The first two terms in Equation (12) indicate the virtual linear springs (k0) and next
two terms indicate the virtual rotational springs (kr0) at the boundaries of the beam. The
virtual linear springs and the rotational springs restrict vertical and rotational movements,
thereby enabling the implementation of various boundary conditions. Depending on the
boundary conditions of the problem, a combination of appropriate virtual spring elements
can be included to produce the penalty stiffness matrix in Equation (12), which is then
added to the unconstrainted beam stiffness matrix.

In the present work, the penalty stiffness matrix associated with three commonly
used boundary conditions, i.e., Clamped–Free (CF), Simply Supported (SS) and Clamped–
Clamped (CC) are reported.

For a CF beam, the energy of the virtual linear spring is represented by k0φi(0)φj(0)
and constrains the vertical movement of the beam. Meanwhile, kr0L2φ′i(0)φ

′
j(0) represents

the rotational spring energy and constrains the rotation of the beam. The penalty stiffness
matrix for CF boundary condition is represented as

kP,CFij = k0φi(0)φj(0) + kr0L2φ′i(0)φ
′
j(0) (13)

In this study, the first three natural frequencies and mode shapes are investigated.
The number of terms should be double the number of frequencies of interest, according to
Meirovitch [2]. The smallest set in the set of AAF that may cover at least two polynomial
and two trigonometric functions is used for illustration purposes, and therefore N = 5. The
matrix form of Equation (13) is given as

KP,CF =


k0
0
0
k0
k0

0
kr0
0
0
0

0
0
0
0
0

k0
0
0
k0
k0

k0
0
0
k0
k0

 (14)

It is noted that although the CF boundary condition does not possess left/right sym-
metry, the penalty stiffness matrix for the CF boundary condition is still a symmetric
matrix. This follows as the penalty stiffness matrix is a matrix implementation of both
boundary conditions.

Similarly, in Equation (15), k0φi(0)φj(0) and k0φi(L)φj(L), impose the virtual linear
springs at x = 0 and x = L. These constrain the vertical movement of the beam at the left
and right-side boundary conditions for the SS beam and result in a penalty matrix with
entries given by

kP,SSij = k0φi(0)φj(0) + k0φi(L)φj(L) (15)
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For N = 5, the penalty stiffness matrix form of Equation (15) is given as

KP,SS =


2k0
k0
k0
0

2k0

k0
k0
k0
−k0
k0

k0
k0
k0
−k0
k0

0
−k0
−k0
2k0
0

2k0
k0
k0
0

2k0

 (16)

It can be noticed that the penalty matrix for the simply supported beam is symmet-
rical in nature and has only virtual linear springs on both the ends, as the beam is only
constrained to move vertically and can rotate freely at the boundaries.

For a CC boundary condition, a combination of virtual linear spring and virtual
rotational spring are symmetrically imposed on both ends of the beam. The k0φi(0)φj(0)
and kr0L2φ′i(0)φ

′
j(0) represent the virtual linear springs and virtual rotational spring at the

x = 0 end, respectively. The k0φi(L)φj(L) and kr0L2φ′i(L)φ′j(L) represent the virtual linear
springs and virtual rotational spring at the x = L end, respectively. Thus, the entries of the
boundary penalty stiffness matrix for CC are given by

kP,CCij = k0φi(0)φj(0) + k0φi(L)φj(L) + kr0L2φ′i(0)φ
′
j(0) + kr0L2φ′i(L)φ′j(L) (17)

For N = 5, the penalty stiffness matrix for CC boundary condition is given as

KP,CC =


2k0
k0
k0
0

2k0

k0
k0 + 2kr0
k0 + 2kr0
−k0
k0

k0
k0 + 2kr0
k0 + 4kr0
−k0
k0

0
−k0
−k0
2k0
0

2k0
k0
k0
0

2k0

 (18)

The virtual linear and rotational springs appear in a symmetrical manner in Equation (18),
as the CC beam is constrained symmetrically at both the ends.

The obtained penalty terms for different boundary conditions are then summed with
the unconstrained stiffness matrix of the unconstrained beam, as well as the stiffness matrix
due to the presence of the crack to obtain the effective total system stiffness matrix. The
modelling of the cracked portion of the beam is reported in the following section.

2.3. Crack Modelling

The established mass, stiffness, and penalty function matrices for various boundary
conditions are used for the analysis of the beam with a shallow crack. The crack is then also
modelled as a penalty function to account for the local stiffness reduction. Figure 2 shows a
Euler–Bernoulli beam with a shallow crack. The dimensions of the beam are represented
by length L, breadth b, thickness h and a shallow crack at a distance xc from one end of
the beam.
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Figure 2. A Euler–Bernoulli beam with a shallow crack at xc.

The magnified view of the shallow crack location in the beam is shown in Figure 3.
The depth of crack is denoted by dc. The crack is represented as a massless rotational
spring [25] due to its simplicity, adaptability.
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The AAF of the uncracked beam is used to model the assumed modes of the beam with
a shallow crack. The presence of a crack reduces stiffness and leads to a loss of potential
energy [25]. This reduction is included by modifying the potential energy of the cracked
beam. The energy loss is proportional to the amount of added flexibility in the beam. To
quantify the added flexibility, the crack is modeled as a penalty function. The virtual linear
stiffness at the location of the crack is assumed to be negligible and the virtual rotational
stiffness at the location of the crack is considered as a massless rotational spring (kc).

The compliance of the crack (Cc) of the virtual rotational stiffness at the location of the
crack is given by the Afshari and Inman approach [25] as

Cc =
1

Kc
=

6hπ

EI
α

(
dc

h

)
(19)

where EI is the flexural rigidity of the beam. The values of the function α for different crack
depth ratios in the range of 0 ≤ dc

h ≤ 0.6 is established in Afshari and Inman [25] and
expressed as

α
(

dc
h

)
= 0.629

(
dc
h

)2
− 1.047

(
dc
h

)3
+ 4.602

(
dc
h

)4
− 9.975

(
dc
h

)5
+ 20.295

(
dc
h

)6
− 32.993

(
dc
h

)7

+47.041
(

dc
h

)8
− 40.693

(
dc
h

)9
+ 19.6

(
dc
h

)10 (20)

The potential energy due to the presence of the crack can be quantified as [25]

Vc =
1
2

EICE

(
∂2W
∂x2 (xc)

)2

(21)

where the effective compliance of crack (CE), is given as CE = EICc.The potential energy
is proportional to the added compliance due to the presence of the crack and the added
rotation. The (modified) potential energy of the cracked beam is formulated by subtracting
the potential energy due to the presence of the crack in Equation (18) from the potential
energy of the unconstrained beam as given in Equation (5). The modified potential energy
(Vmod) of the beam in the presence of crack is then given by

Vmod =
EI
2

∫ x=L

x=0

(
∂2W
∂x2

)2

dx− 1
2

EICE

(
∂2W
∂x2 (xc)

)2

(22)

The effective stiffness for the traverse vibrations of the cracked beam matrices is
obtained using the maximum modified potential energy via Rayleigh–Ritz minimization
and is given as

kE,ij = EI
∫ L

0
φ
′′
i (x)φ′′j (x)dx− EICE

[
φ
′′
i (xc)

][
φ
′′
j (xc)

]
(23)

The first part of Equation (23) accounts for the unconstrained beam stiffness and the
second part accounts for the reduction in stiffness due the presence of the crack. The
stiffness matrix of the cracked beam portion alone is expressed as

kc,ij = EICE
[
φ
′′
i (xc)

][
φ
′′
j (xc)

]
(24)
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Equation (24) can be expressed in matrix form for N = 5 as,

KC = EICE


0 0 0 0 0
0 0 0 0 0
0 0 4 −2π2 cos

(
π xc

L
)

−8π2 cos
(
2π xc

L
)

0 0 −2π2 cos
(
π xc

L
)

π4 cos
(
π xc

L
)2 4π4 cos

(
π xc

L
)

cos
(
2π xc

L
)

0 0 −8π2 cos
(
2π xc

L
)

4π4 cos
(
π xc

L
)

cos
(
2π xc

L
)

16π4 cos
(
2π xc

L
)2

 (25)

In the following section, the equation of motion of the beam with a shallow crack
is established.

2.4. Equation of Motion of a Beam with a Shallow Crack

The frequency equation for a beam with a shallow crack takes the generalized matrix
form as [

((K− Kc) + KP)−ω2M
]
C = 0 (26)

Equation (26) can be simplified as[
(KE + KP)−ω2M

]
C = 0 (27)

where K and M are the generalized unconstrained beam stiffness and mass matrices of size
N × N, respectively. KP is the penalty matrix depending on the type of boundary to be
enforced and detailed under Section 2.2, Kc is the stiffness matrix due to the presence of the
crack, and KE = (K− Kc) is the effective stiffness matrix of the cracked beam (beam with a
shallow crack only, without boundary conditions).

For N = 5, using Equations (9) and (10), the M and K matrices take the matrix form as

M = ρL


1

1/2
1/3

0
0

1/2
1/3
1/4
−2/π2

0

1/3
1/4
1/5
−2/π2

1/2π2

0
−2/π2

−2/π2

1/2
0

0
0

1/2π2

0
1/2

 (28)

and

K =
EI
L3


0
0
0
0
0

0
0
0
0
0

0
0
4
0
0

0
0
0

π4/2
0

0
0
0
0

8π4

 (29)

The effective stiffness matrix of the cracked beam (beam with crack only, without the
boundary conditions) is given by

KE =
EI
L3



0 0 0 0 0
0 0 0 0 0
0 0 4(1− γ) 2π2 cos

(
π xc

L
)
γ 8π2 cos

(
2π xc

L
)
γ

0 0 2π2 cos
(
π xc

L
)
γ π4

2

(
1− 2 cos

(
π xc

L
)2

γ
)

−4π4 cos
(
π xc

L
)

cos
(
2π xc

L
)
γ

0 0 8π2 cos
(
2π xc

L
)
γ −4π4 cos

(
π xc

L
)

cos
(
2π xc

L
)
γ

(2π)4

2

(
1− 2 cos

(
2π xc

L
)2

γ
)

 (30)

and where γ = 6πh
L α

(
dc
h

)
.

It can be noticed that the effective stiffness matrix in Equation (30) involves the location
of the crack, xc, and the crack depth ratio, dc

h . The advantage of modelling the crack as
a penalty is that it can easily be enforced in a beam with different boundary conditions
directly for any location of crack and crack depth ratio.
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For a non-trivial solution of Equation (27), the determinant of the coefficients of C
must be equal to zero, hence

|KE + KP −ω2M| = 0 (31)

Equation (28) is used to estimate the natural frequencies and mode shapes of a beam
with a shallow crack at different location and depth ratio, using appropriate Kp depending
on the boundary conditions of interest.

3. Results

The validation of the proposed approach is carried out for the three boundary condi-
tions viz., SS, CC, and CF using Equation (24), for a beam with a shallow crack. The first
three natural frequencies and modeshapes are evaluated and reported for different location
and crack depth ratio.

3.1. System Parameters

The geometrical parameters and material properties of Afshari and Inman [25] are
tabulated in Table 1 and used for validation. The present method is validated with informa-
tion available in Afshari and Inman [25], i.e., results for symmetrical boundary conditions
viz., Simply Supported (SS) and Clamped–Clamped (CC). Validation for the Clamped–Free
(CF) boundary condition with a shallow crack in estimating the natural frequency and
modeshapes is via comparison with results in Khnaijar and Benamar [12].

Table 1. Geometrical parameters and material properties.

Young’s Modulus (E) 71.7 GPa
Mass Density (ρ ) 2770 kg/m3

Length (L) 0.3048 m
Thickness (h) 0.0032 m

Width (b) 0.0254 m

The normalized crack position considered in the literature is varied from 0.2 to
0.8 times the total length of the beam, and the crack depth ratios are from 0.2 to 0.6. The
following section provides validation of results for SS and CC cracked beam. Matlab code
is generated to solve the eigenproblem.

3.2. Validation of Simply Supported Beam with a Shallow Crack

The geometrical parameters and material properties tabulated in Table 1 are used
to model an SS beam. The boundary penalty function value is selected based on the
range of values used in previous work [3,6] and is considered as k0 = kr0 = 1× 107.27.
Upon substituting the value of k0 in Equation (13), KP,SS is evaluated. Using Equation (27),
the effective stiffness matrix KE of the beam with a shallow crack for the chosen system
parameters is obtained. On substituting the expression for KP,SS, KE and M in Equation (28),
the natural frequencies of the SS beam with shallow crack are evaluated.

Table 2 shows the evaluated first three natural frequencies of an SS beam with shallow
crack for a normalized crack positions of 0.2, 0.4, 0.6, and 0.8 from one end, and with a
crack depth ratio of 0.2. The second and the third column tabulate the natural frequency
using the Afshari and Inman [25] approach and the proposed AAF method, respectively.
The fourth column tabulates the percentage error in predicting the natural frequency using
the present approach.



Symmetry 2022, 14, 311 11 of 20

Table 2. Natural frequencies (Hz) of SS beam with crack depth ratio, (dc/h) = 0.2.

Mode
Afshari and
Inman [25]

(Hz)

AAF
(Hz)

%
Error

Normalized Location of Crack, (xc) = 0.2
1 78.78 79.34 0.71
2 314.40 316.49 0.67
3 707.80 712.24 0.63

Normalized Location of Crack, (xc) = 0.4
1 78.58 79.14 0.71
2 315.20 317.30 0.67
3 709.00 714.30 0.75

Normalized Location of Crack, (xc) = 0.6
1 78.58 79.14 0.71
2 315.2 317.30 0.67
3 709.0 714.30 0.75

Normalized Location of Crack, (xc) = 0.8
1 78.78 79.34 0.71
2 314.4 316.49 0.67
3 707.8 712.24 0.63

It can be noticed that the results obtained are in good agreement with the results from
Afshari and Inman approach [25] and the errors are less than 1%. As the boundary penalties
are symmetric for the SS boundary condition and due to symmetry in crack position, the
results for pairs of cracks present at normalized positions of 0.2 and 0.8, and 0.4 and 0.6, are
the same. As the location of the crack moves towards the center of the beam, a trend of a
decrease in the first natural frequency, increase in the second and third natural frequency
as reported in the literature is observed using the present approach.

Similarly, the natural frequencies for crack depth ratio of 0.4 at four different normal-
ized crack positions are obtained and tabulated in Table 3. It is noticed that estimated
natural frequencies using the AAF method are in good agreement with the reported lit-
erature. It can be observed that the percentage error in predicting the natural frequency
is larger for the first mode as the normalized location of the crack moves closer to the
boundaries compared to the second and third mode. This type of trend could be due to the
asymmetric nature of beam due the presence of crack and selected boundary penalty value.
In the present study, the boundary penalty value for both uncracked and cracked beam
was chosen to be the same. As the predicted natural frequency using the AAF approach is
higher for the first mode compared to Afshari and Inman [25], this may indicate that the
selected boundary penalty value is high and can be tuned by considering the crack.

It can be concluded that the present method can predict the natural frequencies for
different normalized positions and crack-depth ratio. The percentage of error is less than
1% and has a similar type of trend about the center of the beam, as indicated for a crack
depth ratio of 0.2.

The corresponding mode shapes of natural frequencies tabulated in Tables 2 and 3
are generated and shown in Figures 4 and 5, respectively. The solid lines indicate the
modeshapes obtained via Alternative Admissible Function using the uncracked beam
systems (AAF), and the dashed lines indicate the modeshapes of the reference model.
The first mode is indicated by blue color, the second mode is indicated by red, and black
depicts the third mode of the beam. The stated legend applies to Figures 4–8. The SS
boundary conditions modeshapes are validated with reference model of Afshari and Inman
approach [25].
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Table 3. Natural Frequencies (Hz) of SS Beam with Crack Depth Ratio, (dc/h) = 0.4.

Mode
Afshari and
Inman [25]

(Hz)

AAF
(Hz)

%
Error

Normalized Location of Crack, (xc) = 0.2
1 78.37 78.78 0.53
2 309.90 311.02 0.36
3 697.00 700.04 0.44

Normalized Location of Crack, (xc) = 0.4
1 77.50 77.75 0.32
2 313.5 315.26 0.56
3 705.0 710.11 0.72

Normalized Location of Crack, (xc) = 0.6
1 77.50 77.75 0.32
2 313.5 315.26 0.56
3 705.0 710.11 0.72

Normalized Location of Crack, (xc) = 0.8
1 78.37 78.78 0.53
2 309.90 311.02 0.36
3 697.00 700.04 0.44
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Figure 4. Modeshapes of SS Beam with Crack Depth Ratio, (dc/h) = 0.2. (a) Normalized Location
of Crack, (xc) = 0.2, (b) Normalized Location of Crack, (xc) = 0.8, (c) Normalized Location of Crack,
(xc) = 0.4, (d) Normalized Location of Crack, (xc) = 0.6.
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Figure 5. Modeshapes of SS Beam with Crack Depth Ratio, (dc/h) = 0.4. (a) Normalized Location
of Crack, (xc) = 0.2, (b) Normalized Location of Crack, (xc) = 0.8, (c) Normalized Location of Crack,
(xc) = 0.4, (d) Normalized Location of Crack, (xc) = 0.6.
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Figure 6. Modeshapes of CC Beam with Crack Depth Ratio, (dc/h) = 0.2. (a) Normalized Location
of Crack, (xc) = 0.2, (b) Normalized Location of Crack, (xc) = 0.8, (c) Normalized Location of Crack,
(xc) = 0.4, (d) Normalized Location of Crack, (xc) = 0.6.
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Figure 7. Modeshapes of CC Beam with Crack Depth Ratio, (dc/h) = 0.4. (a) Normalized Location
of Crack, (xc) = 0.2, (b) Normalized Location of Crack, (xc) = 0.8, (c) Normalized Location of Crack,
(xc) = 0.4, and (d) Normalized Location of Crack, (xc) = 0.6.

Figure 4 represents the modeshapes of an SS beam with a shallow crack at different
normalized location and crack depth ratio (dc/h) = 0.2. It is noted that the present approach
can produce accurate modeshapes for the symmetrical SS boundary condition. The AAF
method is simple to compute and generate eigenvalues without the need for remodeling
the system. Figure 5 represents the modeshapes of an SS beam with a shallow crack at
different normalized location and crack depth ratio (dc/h) = 0.4.

By visual examination of these plots, it is observed that at the boundaries the lateral
motion is restricted, and the rotational motion is allowed to satisfy the SS beam boundary
condition. It is noticed that the present crack modelling approach used with AAF method
satisfies the boundary condition while generating the modeshapes for different normalized
locations of crack and crack depth ratios. In Figures 4 and 5, the modeshapes are in
symmetry for normalized crack location of 0.2 and 0.8, and 0.4 and 0.6. The next section
reports and discusses the validation of results obtained for CC boundary conditions.

3.3. Validation of Clamped–Clamped Beam with a Shallow Crack

Having obtained a good agreement in results for SS boundary condition, the work is
extended to validate the results for CC boundary conditions using the AAF method. The
geometrical parameters and material properties tabulated in Table 1 is used to model a
CC beam. The boundary penalty function value is selected based on the range of values
used in previous work [3,6] and is considered as k0 = kr0 = 1× 108.02. Upon substituting
the value of k0 in Equation (15), KP,CC can be evaluated. Using Equation (27), the effective
stiffness matrix KE of the beam with a shallow crack for the present system parameters
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are evaluated. On substituting the expression for KP,CC, KE and M in Equation (28), the
natural frequencies of the SS beam with a shallow crack can be evaluated. Table 4 tabulates
the first three natural frequencies of CC beam with shallow crack for a normalized crack
positions of 0.2, 0.4, 0.6, and 0.8 from one end, with a crack depth ratio of 0.2.
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Figure 8. Modeshapes of CF Beam with Crack Depth Ratio, (dc/h) = 0.5. (a) Normalized Location of
Crack, (xc) = 0.25, (b) Normalized Location of Crack, (xc) = 0.50, (c) Normalized Location of Crack,
(xc) = 0.75.
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Table 4. Natural Frequencies (Hz) of CC Beam with Crack Depth Ratio, (dc/h) = 0.2.

Mode
Afshari and
Inman [25]

(Hz)

AAF
(Hz)

%
Error

Normalized Location of Crack, (xc) = 0.2
1 178.80 180.24 0.81
2 492.50 496.44 0.80
3 964.00 972.99 0.93

Normalized Location of Crack, (xc) = 0.4
1 178.50 179.79 0.72
2 492.00 496.12 0.84
3 963.00 976.20 1.37

Normalized Location of Crack, (xc) = 0.6
1 178.50 179.79 0.72
2 492.00 496.12 0.84
3 963.00 976.20 1.37

Normalized Location of Crack, (xc) = 0.8
1 178.80 180.24 0.81
2 492.50 496.44 0.80
3 964.00 972.99 0.93

It is noticed that the results obtained are in good agreement with the results considered
for comparison [25] and the errors are less than 1%. Similarly, the natural frequencies for
crack depth ratio of 0.4 at four different normalized crack positions are obtained and
tabulated in Table 5.

Table 5. Natural Frequencies (Hz) of CC Beam with Crack Depth Ratio, (dc/h) = 0.4.

Mode
Afshari and
Inman [25]

(Hz)

AAF
(Hz)

%
Error

Normalized Location of Crack, (xc) = 0.2
1 178.90 180.19 0.72
2 490.00 493.41 0.70
3 951.00 956.84 0.61

Normalized Location of Crack, (xc) = 0.4
1 176.90 177.88 0.55
2 488.50 491.85 0.69
3 962.00 972.96 1.14

Normalized Location of Crack, (xc) = 0.6
1 176.90 177.88 0.55
2 488.50 491.85 0.69
3 962.00 972.96 1.14

Normalized Location of Crack, (xc) = 0.8
1 178.90 180.19 0.72
2 490.00 493.41 0.70
3 951.00 956.84 0.61

In Tables 4 and 5, it is observed that the percentage error in predicting the natural
frequency for the first and second mode is higher compared to the third mode as the
location of the crack approaches the boundary. Due to symmetric values of boundary
penalties, the symmetry in the results for normalized positions of 0.2 and 0.8, and 0.4 and
0.6 are the same, as expected. The percentage error decreases as the normalized crack
position moves towards the boundaries for third mode and second mode. Meanwhile,
the percentage error in predicting the natural frequency increases for the first mode as the
normalized crack location moves towards the clamped–clamped condition.

In the present study, the boundary penalty value for both uncracked and cracked beam
is considered the same. As the predicted natural frequency using AAF approach is higher
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for all three modes compared to Afshari and Inman [25], this may indicate that the selected
symmetric boundary penalty value is higher and can be tuned by considering the effect of
the crack which induces asymmetry in the beam. Validation carried out for symmetrical
boundary conditions, i.e., SS and CC boundary conditions yields excellent results in good
agreement with the reported literature. It indicates that the crack as a penalty function
model is well suited to accurately evaluate the natural frequencies for different boundary
conditions for shallow cracks. The selected boundary penalty value has scope for tuning
by considering the effect of crack on the boundaries.

To validate the proposed approach for modeshape calculation of a CC beam with
shallow crack, the modeshapes for different normalized location and crack depth ratio of
0.2 are depicted in Figure 6.

In Figure 6, it is noticed that the boundary conditions exhibited by the CC boundary
condition is satisfied by the proposed method. At the clamped end of the beam, the
rotational and the lateral motion are restricted and are clearly depicted in the modeshapes.
An excellent agreement with the reference model Afshari and Inman approach [25] is
observed. Similarly, in Figure 7, the modeshapes of a CC beam for different normalized
locations and crack depth ratio of 0.4 are shown.

As observed in Figure 7, the modes shapes have a mirror image for normalized
crack location of 0.2 and 0.8, and 0.4 and 0.6. This indicates the selected set of AAF,
with boundary penalties and a crack model as penalty method, produces the predicted
behaviors for both the SS and CC boundary conditions. The proposed approach can be
used to generate modeshapes for different crack locations and depth ratio efficiently for
symmetrical boundary conditions. The advantage of the present approach is the ease to
model different boundary conditions and crack parameters without the need to remodel
the entire system.

3.4. Validation of Clamped–Free Beam with a Shallow Crack

To measure the efficiency of the present method, the work is extended to an asym-
metrical boundary condition. A Clamped–Free Beam implies the need for asymmetrical
boundary penalty terms due to the free end. This provides an excellent platform to validate
the proposed approach. Validation for the CF boundary condition with a shallow crack is
carried out and compared with results in Khnaijar and Benamar [12]. The geometrical and
material properties used for validation are tabulated in Table 6.

Table 6. Geometrical Parameters and Material Properties Khnaijar and Benamar [12].

Young’s Modulus (E) 70 × 109 N/m2

Mass Density (ρ ) 2700 kg/m3

Length (L) 0.8 m
Thickness (h) 0.006 m

Width (b) 0.05 m

The geometrical parameters and material properties tabulated in Table 6 are used to
model a CF beam. The boundary penalty value is considered as k0 = kr0 = 1× 107.58.
Upon substituting the value of k0 in Equation (11), KP,CF can be evaluated. Using the same
methodology for SS and CC, the natural frequencies of the CF beam with a shallow crack
can be evaluated. Khnaijar and Benamar [12] reported first two natural frequencies and
Table 7 tabulates the first two natural frequencies estimated using the AAF approach of a
CF beam with shallow crack for normalized crack positions of 0.25, 0.50, and 0.75 from the
fixed end, with a crack depth ratio of 0.5.

It is observed that there is an increase in the percentage error for the fundamental
natural frequency as the position of the crack moves towards the fixed end. A similar trend
is observed in the case of SS and CC boundary conditions. The second natural frequency
has the slightly higher percentage error for the crack at the midpoint of the beam. This



Symmetry 2022, 14, 311 18 of 20

indicates a scope for adjustment of the boundary penalty values by considering the effect
of the crack.

Table 7. Natural Frequencies (Hz) of CF for (dc/h) = 0.5.

Mode
Khnaijar and
Benamar [12]

(Hz)

AAF
(Hz)

%
Error

Normalized Crack Position (xc) = 0.25
1 7.65 7.48 2.18
2 48.52 48.29 0.48

Normalized Crack Position (xc) = 0.50
1 7.71 7.65 0.77
2 47.90 46.78 2.34

Normalized Crack Position (xc) = 0.75
1 7.75 7.71 0.57
2 48.28 47.74 1.12

Using the crack as a penalty model approach shows an acceptable agreement. Com-
paring with results from with Khnaijar and Benamar [12], there is less than 3% error
in predicting the natural frequency. The present crack as a penalty approach provides
flexibility in relocating the crack without the need to reformulate the whole problem to
estimate natural frequencies. The traditional assumed modes include trigonometric func-
tions and hyperbolic functions, leading to computational instability. The present AAF
with penalty approach uses lower order polynomials and cosine series, increasing the
computation efficiency.

The method is further validated for generating asymmetrical CF boundary conditions
mode shapes to compare with Khnaijar and Benamar [12]. In Figure 8, the crack depth ratio
is kept constant at 0.5 and the modeshape is derived for three normalized crack positions.

Symmetry is observed for normalized crack location 0.25 and 0.75. The CF boundary
condition is an example of asymmetrical boundary condition, and the proposed method
satisfies the CF boundary conditions.

The present approach provides promising results for both symmetrical and asymmet-
rical boundary conditions and can be used to derive modeshapes for various normalized
shallow crack locations.

4. Conclusions

In this paper, a methodology using assumed modes with Alternative Admissible
Functions (AAF) and a penalty function was proposed for modelling a beam with a shallow
crack. In this method, the boundary conditions and the crack are modelled as pairs of
virtual linear and rotational springs. For the crack, the effect of the virtual linear spring
is assumed to be negligible, and the virtual rotational spring is modelled as a massless
rotational spring. The loss of energy due to the presence of the crack is accommodated by
modifying the potential energy of the beam. Using this method, the dynamic characteristics
of the beam of both symmetrical and asymmetrical, i.e., Simply Supported (SS), Clamped–
Clamped (CC), and Clamped–Free (CF) boundary conditions are validated with results
found in the literature. The obtained results show excellent agreement with previous
literature results. In the case of SS and CC boundary conditions, the obtained natural
frequency values indicate a symmetry for normalized crack locations 0.2 and 0.8, and 0.4
and 0.6, as would be expected from the physical symmetry of the beam, even though not
all the AAF are symmetric about the center of the beam. The percentage error in natural
frequencies using this approach compared to the approach of Afshari and Inman [25] is
less than 1% for Simply Supported (SS) beam and less than 2% for Clamped–Clamped
(CC) beam. For the Clamped–Free (CF) boundary condition, the method is validated with
results from Khnaijar and Benamar [12]. The obtained results were in good agreement with
the literature for crack depth ratio of 0.5.
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It was observed that the percentage error in predicting the first natural frequency for
all the three cases is higher compared to the other two modes as the location of the crack
is moved closer to boundary condition. The percentage error in predicting the natural
frequency is less than 3% compared to results in Khnaijar and Benamar [12]. The estimated
natural frequencies obtained using the present crack modelling method prove to be efficient.
Furthermore, the efficiency of the method is tested and used to derive the modeshapes of
the SS, CC, and CF beam with a shallow crack. It was observed that the proposed method
can satisfy the different boundary conditions and produce accurate modeshapes.

Finally, the proposed method provides flexibility in choosing the location and depth of
the crack by modelling the crack as a penalty function. The assumed modes method with
AAF is beneficial over the traditional finite element method as it maintains the continuity
of the beam. The proposed method can be efficiently used to estimate accurate natural
frequencies and modeshapes with ease of choosing the location of shallow cracks and types
of boundary conditions without the need to reformulate the problem for different boundary
conditions or crack locations. The proposed method can be extended to beams with deeper
cracks and cracks on circular shafts.
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