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Abstract: In many industrial systems, symmetry is the key to ensuring efficiency and reliability.
For example, in electric vehicles, the driving system often requires high symmetry. As widely used
motors, permanent magnet synchronous motors (PMSMs) are often used in highly symmetrical
structures as the driving devices. Consequently, maintaining the symmetry of the system relies on
the normal and stable operation of the PMSM, and it is necessary to diagnose faults in the PMSM
in a timely manner. In PMSM fault diagnosis methods, frequency domain features of the stator
current are extensively used. However, these features change with the switching of motor operating
conditions, leading to difficulty of diagnosis in multiple operating conditions. Therefore, a fault
diagnosis method based on a convolutional neural network (CNN) phase tracker is proposed in
this paper. Through phase tracking and angular domain resampling, the fundamental frequency of
stator currents in different operating conditions are aligned, so as to fix the distribution of frequency
domain features and solve the problem of features changing with operating conditions. Experimental
results show that the proposed method can resample the stator current signals with a small error,
detect faults in a relatively short time with high accuracy, and diagnose fault type and severity level
under multiple operating conditions.

Keywords: PMSM; fault diagnosis; CNN; multi-condition; order tracking

1. Introduction

A permanent magnet synchronous motor (PMSM) is a type of motor that shows
excellent dynamic performance and high reliability. It is widely used in electric vehicles, rail
transit, smart manufacturing, and other fields. During the running of motors, performance
degradation and even failure will inevitably occur, which seriously affects the reliability
and safety of the whole system [1,2]. The two most common faults in PMSMs are the inter-
turn short circuit fault (ITSF) and the irreversible demagnetization fault (IDF) [3]. ITSF
refers to a short circuit between two or more turns winding coils in the same phase of the
stator [4], whereas IDF refers to the weakening of the permanent magnets on the rotor [5].
The occurrence of this fault will cause the output torque of the motor to become oscillatory,
and at the same time the increase in the heat may lead to further deterioration related to the
fault. In order to ensure the operation of the system, fault diagnosis technology is critical in
order to quickly detect and diagnose faults.

The motor fault diagnosis method emerged in the last century, but it has attracted
considerable attention in recent years, with the rapid development and wide application
of PMSMs [6]. Generally, motor fault diagnosis relies on signals measured using sensors
to extract fault features, using these features for fault detection, classification, and fault
severity estimation. Common fault monitoring signals include stator current, speed, torque,
vibration, induced voltage, temperature, and some signals from other parts of the system
that can reflect motor faults. Features extracted from these signals include statistical
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features from the time domain, frequency domain, and time-frequency domain; coordinate
transformation features; rate of change; motor parameter estimation; and so on [7]. In the
case of a motor fault, these features will also change in accordance with specific rules, and
fault diagnosis can be realized by analyzing these changes. Taking ITSF as an example,
when it occurs in a PMSM, odd harmonics will appear in the stator current, and the
amplitude of the odd harmonics will increase with the severity of the fault [8]. Therefore,
the frequency-domain conversion of stator current signals is carried out to extract the
amplitude of odd harmonics as fault features, which is a common method for the diagnosis
of ITSF. Similarly, this method can also be used in IDF diagnosis [9], although the order of
extracted harmonics is different.

Among many PMSM fault diagnosis methods, frequency-domain features are the
most common and simplest fault features used. However, these features have a great
disadvantage, that is, they cannot work under nonstationary conditions [10], and when used
in multiple operating conditions, a large number of samples are needed to learn features.
The basic idea behind such a method is that the fault frequency of the motor is proportional
to the fundamental frequency of the stator current; thus, when the fundamental frequency
of the stator current changes under different operating conditions, the frequency domain
features will also change accordingly. In order to solve this problem, researchers have
proposed some methods based on signal decomposition. For example, in [11], the stator
current under transient conditions is decomposed into the fundamental signal and the
residual signal, and the root mean square (RMS) of the residual signal is used as the feature
to detect ITSF. This method can realize motor fault detection under multiple operating
conditions, but the RMS of decomposed signals cannot distinguish the types of faults.
Another solution is to use order tracking. At present, order tracking is one of the commonly
used techniques in multi-condition fault diagnosis. It changes the sampling rate in real time
to ensure that sampling occurs at fixed-angle intervals, so as to keep the frequency-domain
feature distribution of sensor signals unchanged under different operating conditions. The
real-time adjustment of the sampling rate requires the cooperation of the sensor, which is
suitable for rotating machinery [12]. However, order tracking based on hardware is not
suitable for analysis of the stator current, so a computed order tracking method is needed.

There are several ways to achieve computed phase tracking [13], and these have
different computational costs. For instance, an order tracking method using a speed sensor
and a Kalman filter is proposed in [14]. This method requires one to obtain the motor
speed at a high sampling rate, and makes it possible to introduce additional error and
noise. Another method, using a phase-locked loop to realize the phase tracking of a rotor,
was developed in [15], but the parameters of the phase-locked loop need to be adjusted,
which limits the scope of application. The existing computed order tracking methods for
motor fault diagnosis have various deficiencies, such as the requirements of the sampling
rate, the manual adjustment of parameters, and a narrow working range. Therefore, a new
phase tracker based on a convolutional neural network (CNN) is proposed in this paper, a
method which uses a CNN model to replace the traditional filter and phase-locked loop,
eliminates the trouble of manual parameter adjustment, and in which the working range
can be adjusted flexibly. The main contributions of this paper are as follows:

1. A phase tracker based on a CNN is proposed, which can directly obtain the funda-
mental wave amplitude, frequency, and phase of the stator current. This method can
automatically adapt the parameters according to historical operation data and does
not require a manual adjustment step in computed order tracking.

2. A method of angular domain resampling and fault spectrum feature extraction is pre-
sented, which is based on the output of the phase tracker, in which the stator current is
resampled without interpolation and aligned with same fundamental frequency. The
resampling error is reduced by means of proper spectrum processing. The resampling
speed of this method is faster than order tracking, and it can reduce the number of
fault samples needed for training and improve the accuracy of fault diagnosis of a
PMSM under multiple operating conditions.
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The reminder of this paper is organized as follows. The basic techniques of the CNN
and fault severity level assessment used in the proposed method are briefly introduced
in Section 2. The proposed PMSM fault diagnosis method based on the CNN phase
tracker is developed in Section 3. In Section 4, an experiment on a hardware-in-the-loop
simulation platform is conducted for method validation and analysis. Section 5 presents
our conclusions.

2. Preliminaries

There are three steps in the complete motor fault diagnosis process: fault detection,
classification, and severity prediction. Among all the motor fault diagnosis methods, deep
learning models are usually unable to build an end-to-end model due to the difficulty
involved in obtaining training data and their poor anti-noise ability, so artificial features are
required [16–18]. However, deep learning models have a strong representation ability and
can be used as a part of a diagnosis method for feature preprocessing and other operations.
Furthermore, most stator-current-based PMSM fault diagnosis methods have difficulty
predicting severity. In this section, a brief introduction to the deep learning model and fault
severity level prediction methods is provided to convey the main purpose of this paper
more clearly.

2.1. Convolutional Neural Network

A CNN [19] is a kind of neural network, composed of several convolutional layers.
By sharing parameters through convolutional kernels, the use of a CNN greatly reduces
the number of parameters. Hence, CNNs are widely used in image and video recogni-
tion, recommender systems, and natural language processing, and have made remarkable
achievements [20]. In motor fault diagnosis, CNN is usually used as a feature extraction
model for time series [21,22]. Depending on the features of the input data, the convolu-
tional kernels of the first layer can be one-dimensional or two-dimensional convolutional
kernels, or both. After extracting features from the CNN, the fully connected layer or
other models can be used to realize fault diagnosis. For example, CNN–long short-term
memory (LSTM) [23] is a common structure. When the input features are multiple time
series, such as three-phase stator currents, the processing of the convolutional layers will
not destroy the time-domain distribution of the features, so the output of CNNs are still
time series, which can be transferred to the LSTM model for fault diagnosis. To realize fault
diagnosis using a CNN requires accurate manual feature extraction and a large amount
of data, but actual motor fault operation data are hard to obtain, which can easily lead to
model overfitting.

2.2. Fault Severity Level Assessment

Faults of differing severity have various influences on motor operation [24], and the
corresponding maintenance measures that need to be taken are also discriminative, so it is
necessary to assess the fault severity. Due to the influence of noise, it is hard to accurately
estimate the fault severity based on the raw sensor signal. A more reasonable approach
is to grade the fault severity according to the characteristics of motor faults [25,26], and
then to predict the level. This assessment is actually a classification problem, so it can
be implemented using various classification algorithms [27]. For motor faults, machine
learning is usually used to diagnose fault severity, such as support vector machine (SVM)
and random forest (RF) methods. Similarly to fault type diagnosis, severity diagnosis
also depends on artificial features. For example, when a PMSM suffers from an inter-turn
short-circuit fault, the specific fault frequency will appear in the stator current, and its
amplitude is proportional to the degree of the inter-turn short circuit. When the fault
severity is small, that is, the short circuit resistance is minor, the amplitude of the fault
frequency will be tiny, so the estimation is difficult. The common solution is to separate the
fault and noise signal from the original sensor data for analysis.
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3. Proposed Fault Diagnosis Method

The fundamental frequency of the stator current changes when the motor is running
in multiple operating conditions, which leads to a change in the fault frequency. In order to
apply frequency-domain features to fault diagnosis in a PMSM under multiple operating
conditions, a new method based on a CNN phase tracker is proposed. Figure 1 shows the
flowchart of fault diagnosis in a PMSM using the proposed method. First, the appropriate
phase tracker is trained on an artificial dataset according to the motor’s historical operation
dataset. Then the phase tracker is used to convert original signals in time domain into the
angular domain. After angular resampling, the fundamental frequency of stator current
signals under any operating condition will be adjusted to the same, so the motor fault
diagnosis can be performed by using the fixed frequency-domain fault features. At this
point, the construction of a fixed frequency feature library and the diagnosis of a fault by
matching samples with the library can effectively reduce the complexity of the method.
In the testing phase, the real-time stator current signal is inputted into the trained phase
tracker, and the obtained phase signal is used for resampling, and then the residual signal
and its frequency-domain features are calculated. These features are inputted into the
fault diagnosis algorithm to obtain the final result. In this method, both the training and
testing phases only need to obtain the stator three-phase current signal as inputs, which are
common feedback signals in almost any PMSM monitoring system. No other information
or instructions are needed, so it can run in parallel with the PMSM control system and
monitoring system.

Historical PMSM 

Operation Data Set

Angle Tracking

Angular Resample

Feature Library 

Construction

Real-time Stator 

Current

Angle Tracking

Angular Resample

Features Calculation

Fault Diagnosis

Generate Training 

Data Set for Angular 

Tracker

Training Angular 

Tracker

Off-line training Real-time diagnosis

Figure 1. Flowchart of the proposed fault diagnosis method.
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3.1. CNN-Based Phase Tracker

If order tracking is directly applied to the PMSM system, the following problems
exist. First, accurate electrical rotating speed feedback is needed. Generally, the PMSM is
equipped with a rotating speed sensor and a three-phase stator current sensor. The rotating
speed sensor can obtain motor mechanical rotating speed in r/min, which can be converted
into electrical rotating speed in rad/s using Equation (1)

ωe =
πnp

30
N (1)

where ωe is the electrical rotating speed, np is the number of poles, and N is the mechanical
rotating speed acquired by the sensor. It can be seen from Equation (1) that if such a
conversion is performed, the number of poles of the motor needs to be obtained, that is,
parameter identification is required.

Secondly, changing the sampling rate of the stator current sensor in real time may affect
the running of other subsystems. For example, the control system generally requires the
sampling rate of current feedback to be constant. If the sampling rate changes, the control
system also needs to make corresponding modifications, which introduces additional work.
Therefore, the sampling rate of the stator current sensor cannot be changed at will.

Although the stator current sensor cannot implement order tracking at the hardware
level, a similar approach can be achieved at the software level. The stator current is a sine
wave when in the normal status or fault severity is not high, and the amplitude, frequency,
and phase of any sine wave can be calculated using dedicated algorithms. After the
parameters of the fundamental wave are obtained, the order tracking at the software level
can be realized by digital resampling, that is, via the phase tracking of the stator current.

Before building the CNN model, the training and validation dataset of the phase
tracker are first constructed, which are a number of computer-generated sinusoidal wave
sequences with certain noise, and the generation equation is

Si = aisin(2π fiT + θi) + ni(T) (2)

where Si denotes the i-th generated sequence; ai, fi, and θi represent the amplitude, fre-
quency, and phase of i-th sequence, respectively; ai ∈ [Amin, Amax], Amin, and Amax rep-
resent the minimum and maximum values of stator current amplitude and that deter-
mined based on the actual operation data of the motor; fi ∈ [Fmin, Fmax], Fmin, and Fmax
denote the minimum and maximum value of the stator current frequency and that de-
termined based on the actual data; θi is drawn randomly from [0, 2π]; T is a time series,
T = [ 1

fs
, 2

fs
, 3

fs
, . . . , L

fs
], fs is the sampling rate of the stator current sensor; and L is the

sequence length. ni(T) is a noise sequence contained in the i-th sequence; it is assumed to
follow a Gaussian distribution in this paper. A large number of sequences can be generated
by changing ai, fi and θi, and it is not necessary to have the corresponding actual motor
data; this allows the phase tracker to operate over a very wide range and ensure accuracy.

After generating the training sequences, the next step is to build a CNN-based phase
tracker. The framework for the proposed CNN-based phase tracker is shown in Figure 2.
The inputs of the CNN model in the training phase are the sequences generated by
Equation (2), and the inputs in testing phase are the real-time stator current signals fed
back by the sensors. The input signals are passed through the CNN, then three outputs
are obtained, corresponding to the amplitude, frequency, and phase of the fundamental
frequency of the input signals. The model consists of several convolutional layers and
pooling layers stacked to form the former CNN part, and then the fully connected layer
as the output layer. In the sequences generated, the larger the amplitude and frequency
intervals, or the greater the noise, the more convolutional and pooling layers are required,
according to experience. The activation function used by all neurons in the model is recti-
fied linear units (ReLU), and the loss function is the sum of the mean square error of the
three outputs that are normalized between 0 and 1. It is worth noting that phase trackers
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are not necessarily built using only CNN models; other neural networks can perform the
same function. Compared with other neural networks, CNN has fewer parameters and a
faster training speed, so the CNN model was chosen in this work.

One-dimensional 

Convolution

Training Data

One-dimensional 

Convolution

One-dimensional 

Convolution

.

.

.

Pooling ... Fully Connected 

Layer

Amplitude

Frequency

Phase

Figure 2. Illustration of CNN-based phase tracker.

After the CNN model is trained using the stochastic gradient descent method, actual
motor data or simulation data are used for testing. In the stator-current data used for testing,
the amplitude should be within [Amin, Amax], the frequency should be within [Fmin, Fmax],
and the noise amplitude should not exceed the maximum noise added when generating
the phase tracker training dataset. As long as the stator-current data used in the test are
within the previously defined range, the phase tracker can accurately output the amplitude,
frequency, and phase of the stator current’s fundamental wave.

3.2. Angular Domain Resample

With the proposed CNN-based phase tracker, the signal collected by the stator current
sensor can be converted into three time-domain signals, namely, the amplitude, frequency,
and phase, among which the phase signal can be used for the angular domain resampling
of the original signal. The principle of angular domain resampling is based on selecting the
first sampling point of the signal as a benchmark and resampling every time it passes a set
angle interval until traversing the entire signal. However, since the feedback signal of the
sensor is discrete, if the resampling is not carried out physically, it cannot be guaranteed
that there is a corresponding sampling point at every angle, so interpolation or approximate
sampling is required. The angular domain resampling method is introduced below.

After resampling at fixed-angle intervals, the frequency of the stator current signal
in any operating conditions will be aligned to the same frequency, that is, the frequency
reference. If the fundamental frequency of the original signal is higher than the reference,
it will be upsampled, or otherwise subsampled. Resampling in this way will require
interpolation calculations and reduce the execution speed of the algorithm. Since the
sampling rate of the stator current sensor is usually very fast, selecting a high frequency as
the reference and subsampling the signals under all operating conditions can effectively
improve the calculation speed. This method will introduce some resampling error, but this
error can be reduced by means of feature extraction. The angle interval of resampling is
calculated by

∆θre =
2πFre f

fs
(3)

where ∆θre is the resampling interval and Fre f is the frequency reference, which should be
chosen manually. Since no interpolation is carried out, resampling using only the original
data will lead to a certain error in the fundamental frequency of the resampled signals,
which will decrease with the increment of Fre f . However, a larger reference value means
that more data will be discarded when the low-frequency signal is resampled, which will
lead to a slow speed of the algorithm. Therefore, the selection of the reference value should
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be decided according to the actual situation. The odd harmonics of the highest fundamental
frequency should be retained, so in this paper 3Fmax is selected as the reference value.

After the angle interval is calculated based on Equation (3), the phase signal is rese-
lected with each sampling interval of ∆θre; if there is no corresponding point on the phase
signal, the nearest point is selected. The next step is to record the index of each reselected
point on the phase signal, and extract the point of the same position from the original stator
current signal to obtain the angular-domain resampled signal.

3.3. Fault Feature Library Construction

The fundamental frequency of the stator current after angular domain resampling
will become Fre f , but each sampling point may have a certain error. The next step is to
minimize these errors by establishing a fault feature library. Common fault frequency
domain features of PMSMs are proportional to the fundamental frequency of the stator
current, so a small number of fault samples can be used to construct the fault feature library
after fundamental frequency unification. Firstly, in the historical data of the PMSM, each
kind of fault and various fault severities are selected uniformly. After phase tracking and
angular-domain resampling with the proposed method, the samples for constructing the
fault feature library are obtained. Since the amplitude of the fundamental frequency in the
stator current is much larger than the fault frequency amplitude, in order to improve the
accuracy of fault diagnosis, it is necessary to delete the fundamental frequency component
from the original signal and retain only the residual signal for fault diagnosis. The residual
signal is computed as follows:

ei = âisin(2π f̂iTi + θ̂i)− Ii (4)

where âi, f̂i, and θ̂i represent the estimated value of amplitude, frequency, and phase of the
i-th signal by the phase tracker; Ti is the sampling of T according to the index of i-th signal
in the angular domain resampling; and Ii is the i-th signal after angular domain resampling.

Then fast Fourier transform (FFT) is performed on these residual signals, and compo-
nents with frequencies less than the highest fault frequency are retained. If the highest fault
frequency is three times that of the fundamental frequency, components with frequencies
less than 3Fre f are retained.

The deviation caused by resampling is reduced by dividing the FFT results into
segments and merging them; that is, among all retained components, the average value of
each adjacent Q components is taken as a new feature; Q is an integer and can be adjusted
depending on the size of deviation.

3.4. Fault Diagnosis

The motor fault diagnosis procedure is divided into fault detection, fault classification,
and fault severity prediction. After establishing the fault feature library with a small
number of samples, motor fault detection and classification can be realized by matching
features between the real-time stator current and the fault feature library. In the case of the
fault severity prediction, it is necessary to learn the relationship between the fault frequency
amplitude and the fault severity from the data. In an SVM model, the kernel function can
map the complex nonlinear relationship, while having a certain smoothing effect. For this
reason, the SVM model is used for the fault severity prediction, as shown in Figure 3. The
real-time stator currents are first fed into the phase tracker. After completing the signal
resampling, the FFT of the residual signals is performed, and then several similar samples
can be found in the fault feature library. These similar samples and residual signals are fed
into the SVM model for further determination. The specific diagnostic steps are shown in
Algorithm 1.
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Match Similar 

Samples

Features of 

Residual Signal

Fault Feature 

Library

Fault Type

SVM

Fault Severity

Figure 3. Flowchart of fault diagnosis.

Algorithm 1 PMSM fault diagnosis based on CNN phase tracker
Input: PMSM stator currents, data
Output: Fault status, Fs; fault type, Ft; fault severity level, Fl

1: Divide data into segments and input to the CNN phase tracker, obtain corresponding
amplitude âi, frequency f̂i, and phase θ̂i;

2: Resample data with interval ∆θre and record resampling index;
3: Calculate residual signals ei using Equation (4);
4: Perform FFT on ei, retain frequency spectrum coefficients less than 3Fre f , and divide

into Q intervals to obtain residual frequency spectral features si;
5: Input si, âi, f̂i to different trained SVM model to get Fs, Ft, Fl .

3.5. Comparison

Compared with traditional PMSM fault diagnosis methods based on frequency-
domain feature analysis, the proposed method features two key components: the phase
tracker and angular domain resampling, in which the phase tracker can be executed quickly
after off-line training, whereas the angular domain resampling step cancels the interpolation
algorithm to improve execution speed, so it can maintain the same level of timeliness as the
traditional method. In constructing the fault feature library steps, the signals’ fundamental
frequency is adjusted to a same value after sampling; thus, it is not necessary to use a large
number of fault samples under different operating conditions, as in traditional methods.
Only the minimum speed, maximum speed, and small samples of other speeds under
fault conditions are needed. The proposed method reduces the demand for fault samples,
and at the same time improves the generalization ability. Figure 4 shows an illustrative
comparison between the proposed method and traditional methods. In the next section,
experimental verification and further analysis are carried out using simulation data.

Input Data
Phase Tracking, 

Angular Resample

Normalization, 

Filtering
Input Data

Frequency Domain 

Feature Extraction

Frequency Domain 

Feature Extraction

Fault Detection, 

Fault Classification, 

Fault Severity Prediction

Fault Detection, 

Fault Classification

proposed method

traditional method

Figure 4. Comparison between proposed method and traditional fault diagnosis method.

4. Experimental Validation and Discussion

In this section, the proposed method is experimentally verified using simulation data,
and the results are analyzed in detail.
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4.1. Introduction to Experiment Platform and Data Set

The experimental data were collected from a real-time PMSM fault injection simulation
model, which was built on a hardware-in-the-loop (HIL) simulation platform. A schematic
diagram of the simulation system is shown in Figure 5. It consisted of three parts, in which
a computer was used to set parameters, control the simulation process, and record and
display data. DSP performed PMSM control and the fault injection program; the inverter
and motor models were implemented by the field programmable gate array (FPGA). During
the simulation, all relevant parameters were set using the setup software in the computer,
and then the motor control commands and fault injection commands were sent to the DSP
controller. The controller generated corresponding driving signals to the inverter instantly,
so the PMSM could output corresponding signals on the stator current, rotational speed,
torque, etc. During the simulation process, all output signals of the PMSM were fed back to
the controller and its computer through the sampling circuit.

Controller

Real-time PMSM Fault Injection Simulation System

Fault Injection 

Unit

Inverter

PMSM

Sampling 

Circuit

PC DSP FPGA

Data Recorder

Monitor & Setup 

Software

Figure 5. Schematic diagram of real-time PMSM fault injection simulation system.

The system operation parameters and fault injection parameters can be set using the
computer software. The system operation parameters include speed and load, and the fault
injection parameters include injection time, fault type, and fault severity. After establishing
these settings, the simulation system was run, and the three-phase stator current and
PMSM rotating speed were fed back to the computer and recorded. The DSP chip used in
the simulation system was TMS320F28335, in which the motor control program and fault
injection program were executed. The main function of control program was to receive
the three-phase stator current feedback from the motor, modulate the drive signal of the
inverter by using a vector control strategy, and output the drive signal of each transistor of
the three-phase inverter through digital I/O pins. The main function of the fault injection
program was to superimpose an additional signal in the motor feedback stator currents,
causing the motor to operate in the same state as the fault conditions, so as to realize
software fault injection. The principle of fault injection is discussed further in [28]. The
inverter received the drive signal from DSP, generated the three-phase voltage, and then
transferred this to the PMSM model. The PMSM model calculated the state of the motor
according to the motor equation, and outputted the three-phase stator current, rotating
speed, electromagnetic torque, etc. All programs in the computer were realized through the
MATLAB platform, including the simulation control software and fault diagnosis program.
The motor parameters used in the experiment are shown in Table 1; it was a small power
PMSM for a drive system.
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Table 1. Parameters of PMSM.

Parameter Value

rated power 1 kW
stator resistance 0.15 Ω
rotor pole pair 4

d-axis inductance 8.4 mH
q-axis inductance 8.4 mH
stator flux linkage 0.175 Wb
rotational inertia 10−3 kg ·m2

friction coefficient 8× 10−3 N ·m · s

In the simulation model, the PMSM has a constant load, so only rotating speed
setting values were considered as operating conditions. Under each condition, three
kinds of data—namely, normal, ITSF and IDF data—were collected for the experiment
regarding the fault diagnosis method. The motor rotating speed ranged from 500 r/min to
1800 r/min, so operating conditions consisted of four rotating speeds, i.e., 500, 1000, 1500,
and 1800 r/min. Fault severity was set at three levels of 3%, 5%, and 10%, respectively, to
simulate corresponding degrees of short-circuit and demagnetization. With the addition of
the normal data, there were four levels of fault severity in each condition. Table 2 shows
the settings used for the experimental dataset. According to the range in Table 2, there
were three levels of each fault in each condition, so there were 24 groups of fault data and
4 groups of normal data in four operating conditions.

Table 2. Settings of the experimental data set.

Settings Range

Fault type Normal, ITSF, IDF
Condition 500, 1000, 1500, 1800 (r/min)

Fault severity level 1, 2, 3

The sampling rate of the stator current fed back by the PMSM was 25 kHz. In order
to collect enough samples, the data under normal and fault conditions were continuously
sampled for 30 s. Under the same operating conditions, the speed set value was unchanged,
but the actual speed of the motor fluctuated to some extent, and the sensor was affected by
noise and measurement errors, so the stator current signal collected was not an ideal sine
wave, as shown in Figure 6. For the faulty signal, only weak PMSM faults were studied
in this experiment, so the change in the stator-current signals when a fault occurred was
small, and there were no obvious fault symptoms. As a result, faults were invisible and
could only be diagnosed using a specific algorithm.

Figure 6. Normal stator current in 500 r/min.
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Figure 7 shows the stator current spectrum of ITSF with four different fault severity
levels under 500 r/min. It can be seen that the amplitude of the third harmonic increased
with the aggravation of the fault, but was relatively small compared with the fundamental
frequency amplitude.

Figure 7. The stator current spectrum of ITSF with different severity levels at 500 r/min.

4.2. Experimental Results and Analysis

To construct a phase tracker, the training dataset of the phase tracker needs to be
generated first. According to statistics of the collected experimental data, since the load
was constant and the amplitude of stator current did not change much, it was assumed
to be [5, 30]; the fundamental frequency range of the current was [25, 130]. Considering
the requirement of diagnostic rapidity, the diagnostic period was set to 0.1 s, so the input
sequence length of the phase tracker was 2500. A total of 10,000 sequences with different
amplitudes and frequencies were generated using Equation (2). The CNN model was
trained by taking these sequences as the input and amplitude, frequency, and phase as
the output. There were seven layers of the CNN constructed in this experiment; the first
four layers were alternately stacked with a convolutional layer and average pooling layer,
whereas the last three layers were fully connected. The last layer did not use an activation
function, and the activation functions of the other layers were all ReLU.

The entire model had only 160,000 parameters, and the training time on a GTX1080Ti
GPU was only a few minutes. The phase tracking result for a normal stator current at a
rotating speed of 500 r/min is shown in Figure 8. In fact, the phase tracker acts as a phase
lock loop, but can acquire amplitude, frequency, and phase at the same time, without the
manual adjustment of parameters and with a larger range of operation. After the phase
of each sampling point of the stator current was obtained by the phase tracker, angular
domain resampling was performed, and the angle interval of sampling ∆θre was 0.0905
calculated by Equation (3). After resampling at this interval, the fundamental frequency of
the stator current at all rotating speeds became 360 Hz. Figure 9 shows the stator current
after resampling at 500 r/min, and Figure 10 presents the spectrum diagrams of normal
stator currents after resampling under four operating conditions.

It can be seen that the fundamental frequency of the stator current under different
conditions was aligned to 360 Hz after resampling, but there was a very small error. In the
resampling process, the point closest to the set value of the sampling interval is directly
selected instead of using an interpolation algorithm, and the sensor sampling rate is
constant, so the actual sampling interval is not always equal to ∆θre. Therefore, the actual
sampling interval needs to be recorded and the residual calculated according to the actual
sampling interval.
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Figure 8. Phase tracking of normal stator current at 500 r/min.

Figure 9. Normal stator current after resampling at 500 r/min.

Figure 10. Frequency spectrum of normal stator current after resampling in four operating conditions.

After the residual signals were obtained from Equation (4), FFT was applied to obtain
the residual spectrum. Considering that when ITSF occurs in PMSM, the fault frequency is
an odd times of the fundamental frequency, and that resampling also has certain errors,
all components less than 1500 Hz were retained in the residual spectrum. As mentioned
above, in order to make up for the spectral error caused by angular domain resampling,
the spectral coefficients were divided into ranges and combined. In this experiment, the
rotating speed distribution was not wide, so the error caused by resampling was very
small, and the width of the range was set to 30. That is, every 30 spectral coefficients
were averaged once, and the resulting mean sequence was taken as the spectral features.
Figure 11 presents an example of segmenting and merging operation, in which the number
of coefficients is greatly reduced, which can eliminate the errors caused by resampling and
noise to some extent. In addition, the amplitude of the fault frequency is not only related to
the severity of the fault, but is also related to operating conditions of the motor. Therefore,
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the fundamental frequency amplitude and frequency obtained by the phase tracker were
added as the residual features.

Figure 11. Examples of segmenting and merging the spectral coefficients of residual signals.

According to the above discussion, the residual features included the spectrum coeffi-
cient and the amplitude and frequency outputted by the phase tracker, and these features
were taken as the sample features of diagnostic algorithm to realize PMSM fault diagnosis.
Before constructing the fault feature library, first of all, all the data were divided into
the training set, validation set, and test set, in order to test the proposed method in the
performance of multi-condition fault diagnosis. In this experiment, the data obtained at
500, 1000, and 1800 r/min were divided into training sets and validation sets with the
ratio of 7:3, and the data obtained at 1500 r/min were taken as the test set to verify the
diagnostic performance of the algorithm under conditions other than the training set. As a
comparison, the traditional motor fault diagnosis method using an SVM [29] and RF [30,31]
based on the fault frequency features of the stator current was tested using the same data set
division, and the fault detection, fault type classification, and fault severity level prediction
were compared, respectively. To compare the performance of each method with these
three tasks, a unified indicator of accuracy was used for comparison, that is, we measured
the proportion of samples of which the predicted values were consistent with the true
values according to the total number of test samples. A statistical table of the accuracy and
execution time per sample of the experimental results is shown in Table 3.

Table 3. Accuracy for different data sets.

Methods
Validation Set Test Set Execution

TimeDetection Type Severity Detection Type Severity

SVM 1.00 0.99 - 0.74 0.68 - 0.007 s
RF 0.99 0.99 - 0.80 0.47 - 0.008 s

Proposed 1.00 0.99 0.99 0.94 0.94 0.89 0.038 s

It can be seen in Table 3 that both methods were able to accurately realize fault
diagnosis under the existing conditions on training set, but in the test set, the diagnosis
performance of the traditional SVM and RF method based on fault frequency features was
not good, whereas the proposed method maintained high diagnostic accuracy. Although
there is still room for improvement in the prediction of fault severity on the test set, with
the main bias concentrated on samples with a fault severity of 3% and 5%, the experimental
results imply that the proposed method improves the accuracy of motor fault diagnosis
under different operating conditions, and can be trained with partial fault samples and
diagnose samples under conditions outside of the training set. Based on the comparison
of these methods, the main difference of the proposed method is that the stator current
is processed through the phase tracker and angular domain resampling. Therefore, it can
be shown that phase tracking and angular domain resampling are effective methods to
improve the accuracy of fault diagnosis in the multi-condition motor.
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From the perspective of execution time, the proposed method requires neural network
calculation, so the execution time is longer than that of the traditional method, but it still can
meet the requirement of a diagnosis time within 0.1 s. Depending on the actual sampling
rate of the stator current sensor, the phase tracker will define different input sequence
lengths and the execution time may vary, which is an issue to be considered.

4.3. Discussion

Firstly, based on the experimental results, the proposed method can significantly
improve the accuracy of fault diagnosis under multiple operating conditions. When the
sampling rate is sufficient, only fault samples in partial operating conditions can be used to
complete the fault diagnosis in other intermediate operating conditions. Compared with
the methods in [29–31] that use a large number of training samples and complex artificial
features, the proposed method is based on traditional fault features and is still effective
under multiple working conditions, reducing the number of fault samples required by the
diagnostic algorithm and helps to solve the problem that fault samples are rare and difficult
to obtain at present. Considering that most PMSM control systems have stator three-phase
current feedback, and the fault frequency domain features are not affected by PMSM types
and parameters, this method can be applied to most PMSM fault diagnoses.

The phase tracker based on CNN aligns the fundamental frequency of the stator
current, so it can also be used by fault diagnosis algorithms with frequency domain features
or residual signals as inputs. The proposed method has good portability. According to the
input of different algorithms, the output of the phase tracker, the resampling signal, residual
signal, and other intermediate components can be extracted as features for multi-condition
fault diagnosis.

The phase tracker can obtain the corresponding phase of each sampling point, and the
phase signal can be used for other aspects in addition to the resampling step of the proposed
method, such as complementary filtering with the electromechanical angle obtained by the
sensor to improve the control performance.

Some factors have an impact on the final fault diagnosis performance but have not
been fully considered. For fault symptoms, this paper only considers faults that cause
an increase in the magnitude of specific harmonics; other faults with special symptoms
may not be properly diagnosed. Another concern is the training of neural networks. Due
to the existence of environmental noise, phase tracking cannot be completely accurate.
Different model structures and parameters may cause different loss values when the model
converges. Although the phase tracker has three outputs, a single total loss value may
not accurately reflect the quality of training, which is worth considering. Moreover, the
hyperparameters in the model include the length of inputs and the number of network
layers and neurons, and it is hard to summarize a suitable hyperparameter setting scheme
at present.

The proposed method also has some shortcomings, such as the fact that the anti-noise
ability depends on the error between the artificially added noise distribution and the actual
stator current sensor noise distribution; therefore, the performance of the phase tracker
depends entirely on the generated training dataset. Thus, a transfer learning method can
be added to the training of phase tracker to improve its accuracy with regard to actual data.
Due to the use of a neural network, the model parameters of proposed method are more
numerous than those of traditional methods and the execution speed is slower. It would be
worth considering a faster method to achieve phase tracking.

5. Conclusions

In this paper, a multi-condition PMSM fault diagnosis method based on a CNN
phase tracker is proposed. By tracking the amplitude, frequency, and phase of the stator
current and conducting angular-domain resampling, the fundamental frequency of the
stator current is aligned, so as to make the fault frequency distribution consistent under
different operating conditions, reduce the training samples required by the diagnosis
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algorithm, and improve the performance of PMSM fault diagnosis under multiple operating
conditions. The experimental results show that the proposed method can maintain high
diagnostic accuracy in conditions outside the training set with a small number of training
samples and without extracting complex artificial features. Moreover, the shortcomings and
possible future directions for the improvement of the proposed method have been analyzed.
Nowadays, there are still some difficulties in motor fault diagnosis under multiple operating
conditions. As a feasible and verified scheme, the phase tracking method proposed in this
paper can provide a reference for other motor fault diagnosis methods.
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