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Abstract: The theory of symmetry has a significant influence in many research areas of mathematics.
The class of symmetric functions has wide connections with other classes of functions. Among these,
one is the class of convex functions, which has deep relations with the concept of symmetry. In recent
years, the Schur convexity, convex geometry, probability theory on convex sets, and Schur geometric
and harmonic convexities of various symmetric functions have been extensively studied topics
of research in inequalities. The present attempt provides novel portmanteauHermite–Hadamard–
Jensen–Mercer-type inequalities for convex functions that unify continuous and discrete versions
into single forms. They come as a result of using Riemann–Liouville fractional operators with the
joint implementations of the notions of majorization theory and convex functions. The obtained
inequalities are in compact forms, containing both weighted and unweighted results, where by
fixing the parameters, new and old versions of the discrete and continuous inequalities are obtained.
Moreover, some new identities are discovered, upon employing which, the bounds for the absolute
difference of the two left-most and right-most sides of the main results are established.

Keywords: Jensen’s inequality; Mercer’s inequality; Hermite–Hadamard inequality; Hölder inequality;
majorization

MSC: 26D15; 26A51; 26A33; 26A42

1. Introduction

Mathematical inequalities have successfully extended their influence to various fields
of science and engineering, and they are now accepted and taught as some of the most
applicable disciplines of mathematics. Their fruitful applications can be found in, but not
limited to, areas such as information theory, economics, engineering, and biology [1,2]. On
the basis of such applicability, inequalities and their associated theory have been developed
rapidly, where various new and generalized forms of them have come to the surface. For
instance, the Hermite–Hadamard inequality [3], Jensen’s inequality [4], the Jensen–Mercer
inequality [5], the Ostrowski inequality [6], and the Fejér inequality [7] are some names that
are immensely popular with researchers. In the present age, researchers are particularly
taking interest in generalized inequalities containing various of the above-mentioned
versions in one form. In this regard, the Fejér inequality, the Jensen–Mercer inequality,
and the Hermite–Jensen–Mercer inequality are commonly known. We selected the most
generalized and latest one, that is the Hermite–Jensen–Mercer inequality. This double
inequality has recently attracted researchers’ attention because it unifies the remarkable
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Hermite–Hadamard, Jensen, and Mercer inequalities. The fractional Hermite–Jensen–
Mercer inequality is stated as follows: Let f be the real-valued convex function defined on
the interval [δ1, δ2] of real numbers and [x1, y1] ⊂ [δ1, δ2], with α > 0. The Hermite–Jensen–
Mercer inequality is given as [8]:

f
(

δ1 + δ2 −
x1 + y1

2

)
≤ Γ(α + 1)

2(y1 − x1)α

{
Jα
(δ1+δ2−y1)+

f (δ1 + δ2 − x1)

+Jα
(δ1+δ2−x1)−

f (δ1 + δ2 − y1)
}

≤ f (δ1 + δ2 − x1) + f (δ1 + δ2 − y1)

2

≤ f (δ1) + f (δ2)−
f (x1) + f (y1)

2
. (1)

where Jα
x+1

and Jα
y−1

respectively represent the left- and right-sided Riemann–Liouville

integrals of fractional order α defined as follows:

Jα
x+1

f (z) =
1

Γ(α)

z∫
x1

(z− u)α−1 f (u)du, z > x1,

Jα
y−1

f (z) =
1

Γ(α)

y1∫
z

(u− z)α−1 f (u)du, z < y1.

In the present study, one of the reasons for the selection of Riemann–Liouville operators
is that these operators have some advantages as compared to other fractional operators.
For example, the Riemann–Liouville fractional operators do not need the function to be
continuous or differentiable at the origin. In addition to this, these operators can be used
for the best descriptions and modeling of phenomena having power-law behaviors because
they contain a power function as a kernel in their integral transforms. However, the related
research can also be conducted for other fractional operators, such as that of Caputo’s,
Hadamard’s, Katugampola, or generalized k-fractional operators.

The above inequality in (1) is the generalization of the Hermite–Hadamard, Jensen,
and Mercer inequalities. The following fractional Hermite–Hadamard inequality can be
obtained from (1) when x1 = δ1 and y1 = δ2 [9]:

f
(

δ1 + δ2

2

)
≤ Γ(α + 1)

2(δ2 − δ1)α

[
Jα
δ1+

f (δ2) + Jα
δ2− f (δ1)

]
≤ f (δ1) + f (δ2)

2
. (2)

Some more results related to fractional Hermite–Hadamard–Mercer-type inequalities
were given in [10–14].

Now, we state the definition of majorization, in terms of which we want to present our
results:

Definition 1 ([15]). Let a = (a1, . . . , al) and b = (b1, . . . , bl) be two l-tuples of real numbers
with their order arrangements a[l] ≤ a[l−1] ≤ · · · ≤ a[1], b[l] ≤ b[l−1] ≤ · · · ≤ b[1], then a is said
to majorize b (or b is to be majorized by a, symbolically b ≺ a), if:

k

∑
s=1

b[s] ≤
k

∑
s=1

a[s] for k = 1, 2, . . . , l − 1,

and:
l

∑
s=1

as =
l

∑
s=1

bs.
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Niezgoda [16] used the concept of majorization and extended the Jensen–Mercer
inequality given as follows:

Theorem 1. Let (xis) be an n× l real matrix and δ = (δ1, . . . , δl) be an l-tuple such that δs, xis ∈ I
for all i = 1, 2, . . . , n, s ∈ {1, · · · , l} and f be a convex function defined on I. Furthermore, let

σi ≥ 0 for i = 1, 2, . . . , n with
n
∑

i=1
σi = 1. If δ majorizes every row of (xis), then:

f

(
l

∑
s=1

δs −
l−1

∑
s=1

n

∑
i=1

σixis

)
≤

l

∑
s=1

f (δs)−
l−1

∑
s=1

n

∑
i=1

σi f (xis).

The following lemmas will help us to prove our next results [17].

Lemma 1. Let (xis) be an n× l real matrix and δ = (δ1, . . . , δl), p = (p1, . . . , pl) be two l-tuples
such that δs, xis ∈ I, ps ≥ 0 with pl 6= 0, η = 1

pl
for all i = 1, 2, . . . , n, s ∈ {1, · · · , l} and f be

a convex function defined on I. Furthermore, let σi ≥ 0 for i = 1, 2, . . . , n with
n
∑

i=1
σi = 1. If for

each i = 1, 2, . . . , n, (xi1, . . . , xil) is a decreasing l-tuple and satisfying:

k

∑
s=1

psxis ≤
k

∑
s=1

psδs f or k = 1, 2, . . . , l − 1,
l

∑
s=1

psδs =
l

∑
s=1

psxis,

then:

f

(
l

∑
s=1

ηpsδs −
l−1

∑
s=1

n

∑
i=1

ησi psxis

)
≤

l

∑
s=1

ηps f (δs)−
l−1

∑
s=1

n

∑
i=1

ησi ps f (xis).

Lemma 2. Let (xis) be an n × l real matrix and δ = (δ1, . . . , δl), p = (p1, . . . , pl) be two
l− tuples such that δs, xis ∈ I, ps ≥ 0 with pl 6= 0, η = 1

pl
for all i = 1, 2, . . . , n, s ∈ {1, · · · , l}

and f be a convex function defined on I. Furthermore, let σi ≥ 0 for i = 1, 2, . . . , n with
n
∑

i=1
σi = 1.

If for each i = 1, . . . , n, (δs − xis) and xis are monotonic in the same sense and:

l

∑
s=1

psδs =
l

∑
s=1

psxis,

then:

f

(
l

∑
s=1

ηpsδs −
l−1

∑
s=1

n

∑
i=1

ησi psxis

)
≤

l

∑
s=1

ηps f (δs)−
l−1

∑
s=1

n

∑
i=1

ησi ps f (xis).

The theory of majorization has been receiving considerable attention from researchers
working in different fields. It helps in the conversion of complicated optimization problems
into simple problems that can then easily be solved [18,19]. Some present-day applications
of majorization theory in signal processing and communication can be traced to [20,21].
For more successive works carried out via the concept of majorization, one can see [22,23]
and the references therein.

As mentioned above, there is a growing trend among researchers to combine differ-
ent research fields into one. In this regard, it is better to develop such ideas that bring
researchers of related fields together. In the field of inequalities, up to now, there are two
main concepts (which are continuous and discrete) where mathematicians are conducting
research independently. In both cases, researchers have been developing generalized or
unified inequalities using (sometimes) generalized integral operators and sometimes a
generalized type of convexity, or sometimes, they use both [24]. As a result, they provide a
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unique platform to researchers working with different integrals or convex functions. In
this stage, there is a necessary notion whose applications can lead us to the inequalities
that are a mixture or combination of both discrete and continuous versions. The theory
of majorization is one of these that fulfills these criteria. The present attempt may be
considered as one of the fruitful endeavors in this direction.

Moreover, the name “conticrete” is assigned on the basis of one of the English language
rules for “blending or coining of words”, according to which “brunch” is used for the meal
taken in between “breakfast” and “lunch”. Similarly the word “smog” has been created by
blending the two words “smoke” and “fog”. Here in our case, the word conticrete means
mixture of continuous and discrete inequalities.

The main results of the present paper are organized as follows: In Theorem 2, the
generalized fractional portmanteauform of the Hermite–Hadamard–Jensen–Mercer-type in-
equalities is obtained using Riemann–Liouville fractional integrals. Remarks 1 and 2 show
that these inequalities cover those previously presented versions of fractional Hermite–
Hadamard–Jensen–Mercer-type inequalities, and they also unify continuous and discrete
inequalities of the Hermite–Hadamard-, Jensen-, and Mercer-types. In Theorem 3, an-
other form of the Hermite–Hadamard–Jensen–Mercer-type inequality for fractional inte-
grals is developed. Theorems 4 and 5 present weighted versions of the obtained results.
Lemmas 3 and 4 contain new identities associated with the right side of Theorem 2 and
with the left side of Theorem 3, respectively. Theorems 6 and 7 are proven on the basis of
Lemma 3, and they present various bounds for the absolute difference of the two right-
most terms in Theorem 2. Theorems 8–10 are proven on the basis of Lemma 4, and they
present various bounds for the absolute difference of the two left-most terms in Theorem 3.
Corollaries 1–5 provide information about the classical integral forms of the main obtained
results. At the end, the conclusion of the whole research work is presented.

2. Main Results

In the underlying theorem, we deduce the Hermite–Hadamard inequality of the
Jensen–Mercer-type for fractional integrals.

Theorem 2. Let δ = (δ1, . . . , δl), x = (x1, . . . , xl), and y = (y1, . . . , yl) be three l-tuples such
that δs, xs, ys ∈ I, for all s ∈ {1, · · · , l}, xl > yl , α > 0 and f be a convex function defined on I.
If δ majorizes both x and y, then:

f

(
l

∑
s=1

δs −
l−1

∑
s=1

(
xs + ys

2

))
≤ Γ(α + 1)

2
(

l−1
∑

s=1
(ys − xs)

)α

Jα( l
∑

s=1
δs−

l−1
∑

s=1
ys
)+ f

( l

∑
s=1

δs −
l−1

∑
s=1

xs

)

+Jα( l
∑

s=1
δs−

l−1
∑

s=1
xs
)− f

( l

∑
s=1

δs −
l−1

∑
s=1

ys

)
≤

f
(

l
∑

s=1
δs −

l−1
∑

s=1
ys

)
+ f

(
l

∑
s=1

δs −
l−1
∑

s=1
xs

)
2

≤
l

∑
s=1

f (δs)−

l−1
∑

s=1
f (xs) +

l−1
∑

s=1
f (ys)

2
. (3)
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Proof. We may write:

f

(
l

∑
s=1

δs −
l−1

∑
s=1

(
xs + ys

2

))
= f

{
1
2

{
l

∑
s=1

δs −
l−1

∑
s=1

xs +
l

∑
s=1

δs −
l−1

∑
s=1

ys

}}

= f

{
1
2

{
t
( l

∑
s=1

δs −
l−1

∑
s=1

xs

)
+ (1− t)

( l

∑
s=1

δs −
l−1

∑
s=1

ys

)

+t
( l

∑
s=1

δs −
l−1

∑
s=1

ys

)
+ (1− t)

( l

∑
s=1

δs −
l−1

∑
s=1

xs

)}}
. (4)

Using the convexity of f in (4), we have:

f

(
l

∑
s=1

δs −
l−1

∑
s=1

(
xs + ys

2

))
≤ 1

2

{
f

{
t
( l

∑
s=1

δs −
l−1

∑
s=1

xs

)
+ (1− t)

( l

∑
s=1

δs −
l−1

∑
s=1

ys

)}

+ f

{
t
( l

∑
s=1

δs −
l−1

∑
s=1

ys

)
+ (1− t)

( l

∑
s=1

δs −
l−1

∑
s=1

xs

)}}
. (5)

By multiplication of tα−1 with (5) on both sides and taking integration with respect to
t, we obtain:

1
α

f

(
l

∑
s=1

δs −
l−1

∑
s=1

(
xs + ys

2

))

≤ 1
2

{∫ 1

0
tα−1 f

{
t
( l

∑
s=1

δs −
l−1

∑
s=1

xs

)
+ (1− t)

( l

∑
s=1

δs −
l−1

∑
s=1

ys

)}
dt

+
∫ 1

0
tα−1 f

{
t
( l

∑
s=1

δs −
l−1

∑
s=1

ys

)
+ (1− t)

( l

∑
s=1

δs −
l−1

∑
s=1

xs

)}
dt

}

=
1

2
(

l−1
∑

s=1

(
ys − xs

))α


∫ l

∑
s=1

δs−
l−1
∑

s=1
xs

l
∑

s=1
δs−

l−1
∑

s=1
ys

(
u−

( l

∑
s=1

δs −
l−1

∑
s=1

ys

))α−1

f (u)du

+
∫ l

∑
s=1

δs−
l−1
∑

s=1
xs

l
∑

s=1
δs−

l−1
∑

s=1
ys

(( l

∑
s=1

δs −
l−1

∑
s=1

xs

)
− u

)α−1

f (u)du

. (6)

To apply the definition of the fractional integral in (6), first we show that:

l

∑
s=1

δs −
l−1

∑
s=1

ys <
l

∑
s=1

δs −
l−1

∑
s=1

xs.

As:

xl > yl

⇒ xl − yl > 0. (7)

Furthermore, x ≺ δ and y ≺ δ. Then, we may write:
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l−1

∑
s=1

ys + yl =
l−1

∑
s=1

xs + xl

⇒
l−1

∑
s=1

ys −
l−1

∑
s=1

xs = xl − yl . (8)

Using (7) in (8), we obtain:

l−1

∑
s=1

ys −
l−1

∑
s=1

xs > 0

⇒ −
l−1

∑
s=1

ys < −
l−1

∑
s=1

xs. (9)

Adding
l

∑
s=1

δs to both sides of (9), we deduce:

l

∑
s=1

δs −
l−1

∑
s=1

ys <
l

∑
s=1

δs −
l−1

∑
s=1

xs.

Now, (6) implies:

1
α

f

(
l

∑
s=1

δs −
l−1

∑
s=1

(
xs + ys

2

))
≤ Γ(α)

2
(

l−1
∑

s=1

(
ys − xs

))α

×

Jα( l
∑

s=1
δs−

l−1
∑

s=1
xs
)− f

( l

∑
s=1

δs −
l−1

∑
s=1

ys

)
+ Jα( l

∑
s=1

δs−
l−1
∑

s=1
ys
)+ f

( l

∑
s=1

δs −
l−1

∑
s=1

xs

),

and so:

f

(
l

∑
s=1

δs −
l−1

∑
s=1

(
xs + ys

2

))
≤ Γ(α + 1)

2
(

l−1
∑

s=1

(
ys − xs

))α

×

Jα( l
∑

s=1
δs−

l−1
∑

s=1
xs
)− f

( l

∑
s=1

δs −
l−1

∑
s=1

ys

)
+ Jα( l

∑
s=1

δs−
l−1
∑

s=1
ys
)+ f

( l

∑
s=1

δs −
l−1

∑
s=1

xs

). (10)

Thus, the first inequality of (3) is complete. To achieve the second inequality, we utilize
the convexity of f as follows:

f

(
t
( l

∑
s=1

δs −
l−1

∑
s=1

xs

)
+ (1− t)

( l

∑
s=1

δs −
l−1

∑
s=1

ys

))
≤

t f
( l

∑
s=1

δs −
l−1

∑
s=1

xs

)
+ (1− t) f

( l

∑
s=1

δs −
l−1

∑
s=1

ys

)
. (11)

f

(
t
( l

∑
s=1

δs −
l−1

∑
s=1

ys

)
+ (1− t)

( l

∑
s=1

δs −
l−1

∑
s=1

xs

))
≤

t f
( l

∑
s=1

δs −
l−1

∑
s=1

ys

)
+ (1− t) f

( l

∑
s=1

δs −
l−1

∑
s=1

xs

)
. (12)
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Adding (11) and (12), then applying Theorem 1 for n = 1 and σ1 = 1, we obtain:

f

(
t
( l

∑
s=1

δs −
l−1

∑
s=1

xs

)
+ (1− t)

( l

∑
s=1

δs −
l−1

∑
s=1

ys

))

+ f

(
t
( l

∑
s=1

δs −
l−1

∑
s=1

ys

)
+ (1− t)

( l

∑
s=1

δs −
l−1

∑
s=1

xs

))

≤ f
( l

∑
s=1

δs −
l−1

∑
s=1

xs

)
+ f

( l

∑
s=1

δs −
l−1

∑
s=1

ys

)

≤ 2
l

∑
s=1

f (δs)−
{

l−1

∑
s=1

f (xs) +
l−1

∑
s=1

f (ys)

}
. (13)

By multiplication of tα−1 with (13) on both sides and taking integration with respect
to t, we acquire the second and third inequality in (3).

Remark 1. Taking the same hypothesis, Theorem 2 gives the underlying inequality for the case of
α = 1.

f

(
l

∑
s=1

δs −
l−1

∑
s=1

(
xs + ys

2

))
≤ 1

l−1
∑

s=1
(ys − xs)

∫ l
∑

s=1
δs−

l−1
∑

s=1
xs

l
∑

s=1
δs−

l−1
∑

s=1
ys

f (u)du

≤
f
(

l
∑

s=1
δs −

l−1
∑

s=1
ys

)
+ f

(
l

∑
s=1

δs −
l−1
∑

s=1
xs

)
2

≤
l

∑
s=1

f (δs)−
1
2

{
l−1

∑
s=1

f (xs) +
l−1

∑
s=1

f (ys)

}
.

Remark 2. Theorem 2 gives the following inequality for l = 2, which was proven by Öağülmüş
and Sarikaya in [8].

f
(

δ1 + δ2 −
x1 + y1

2

)
≤ Γ(α + 1)

2(y1 − x1)α

{
Jα(

δ1+δ2−y1

)+ f
(
δ1 + δ2 − x1

)
+Jα(

δ1+δ2−x1

)− f
(
δ1 + δ2 − y1

)}

≤
f
(
δ1 + δ2 − y1

)
+ f

(
δ1 + δ2 − x1

)
2

≤ f (δ1) + f (δ2)−
f (x1) + f (y1)

2
.

Moreover, for l = 2 and α = 1, we obtain the result of Kian and Muslehain [25].

Adopting the same procedure, we give another Hermite–Hadamard inequality of the
Jensen–Mercer-type for fractional integrals as follows.

Theorem 3. Let all conditions in the hypothesis of Theorem 2 hold true, then:
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f

(
l

∑
s=1

δs −
l−1

∑
s=1

(
xs + ys

2

))

≤ 2α−1Γ(α + 1)(
l−1
∑

s=1
(ys − xs)

)α

Jα( l
∑

s=1
δs−

l−1
∑

s=1

(
xs+ys

2

))− f
( l

∑
s=1

δs −
l−1

∑
s=1

ys

)

+Jα( l
∑

s=1
δs−

l−1
∑

s=1

(
xs+ys

2

))+ f
( l

∑
s=1

δs −
l−1

∑
s=1

xs

)
≤

l

∑
s=1

f (δs)−

l−1
∑

s=1
f (xs) +

l−1
∑

s=1
f (ys)

2
. (14)

Proof. For t ∈ [0, 1], it may be written:

f

(
l

∑
s=1

δs −
l−1

∑
s=1

(
xs + ys

2

))
= f

{
1
2

{
l

∑
s=1

δs −
l−1

∑
s=1

xs +
l

∑
s=1

δs −
l−1

∑
s=1

ys

}}

= f

{
1
2

{
l

∑
s=1

δs −
(

t
2

l−1

∑
s=1

xs +
2− t

2

l−1

∑
s=1

ys

)

+
l

∑
s=1

δs −
(

t
2

l−1

∑
s=1

ys +
2− t

2

l−1

∑
s=1

xs

)}}
. (15)

Using the convexity of f in (15), we have:

f

(
l

∑
s=1

δs −
l−1

∑
s=1

(
xs + ys

2

))
≤ 1

2

{
f
( l

∑
s=1

δs −
(

t
2

l−1

∑
s=1

xs +
2− t

2

l−1

∑
s=1

ys

))

+ f
( l

∑
s=1

δs −
(

t
2

l−1

∑
s=1

ys +
2− t

2

l−1

∑
s=1

xs

))}
. (16)

By multiplication of tα−1 with (16) on both sides and taking integration with respect
to t, we obtain:

1
α

f

(
l

∑
s=1

δs −
l−1

∑
s=1

(
xs + ys

2

))

≤ 1
2

{∫ 1

0
tα−1 f

( l

∑
s=1

δs −
(

t
2

l−1

∑
s=1

xs +
2− t

2

l−1

∑
s=1

ys

))
dt

+
∫ 1

0
tα−1 f

( l

∑
s=1

δs −
(

t
2

l−1

∑
s=1

ys +
2− t

2

l−1

∑
s=1

xs

))
dt

}

=
1

2
(

l−1
∑

s=1

( ys−xs
2
))α


∫ l

∑
s=1

δs−
l−1
∑

s=1

(
xs+ys

2

)
l

∑
s=1

δs−
l−1
∑

s=1
ys

(
u−

( l

∑
s=1

δs −
l−1

∑
s=1

ys

))α−1

f (u)du

+
∫ l

∑
s=1

δs−
l−1
∑

s=1
xs

l
∑

s=1
δs−

l−1
∑

s=1

(
xs+ys

2

) (( l

∑
s=1

δs −
l−1

∑
s=1

xs

)
− u

)α−1
. (17)
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In a similar manner as adopted in Theorem 2, we can show that:

l

∑
s=1

δs −
l−1

∑
s=1

(
xs + ys

2

)
<

l

∑
s=1

δs −
l−1

∑
s=1

xs and
l

∑
s=1

δs −
l−1

∑
s=1

(
xs + ys

2

)
>

l

∑
s=1

δs −
l−1

∑
s=1

ys

Now, (17) implies:

1
α

f

(
l

∑
s=1

δs −
l−1

∑
s=1

(
xs + ys

2

))
=

2α−1Γ(α)(
l−1
∑

s=1
(ys − xs)

)α

×

Jα( l
∑

s=1
δs−

l−1
∑

s=1

(
xs+ys

2

))− f
( l

∑
s=1

δs −
l−1

∑
s=1

ys

)
+ Jα( l

∑
s=1

δs−
l−1
∑

s=1

(
xs+ys

2

))+ f
( l

∑
s=1

δs −
l−1

∑
s=1

xs

).

Therefore, we have:

f

(
l

∑
s=1

δs −
l−1

∑
s=1

(
xs + ys

2

))
≤ 2α−1Γ(α + 1)(

l−1
∑

s=1

(
ys − xs

))α

×

Jα( l
∑

s=1
δs−

l−1
∑

s=1

(
xs+ys

2

))− f
( l

∑
s=1

δs −
l−1

∑
s=1

ys

)
+ Jα( l

∑
s=1

δs−
l−1
∑

s=1

(
xs+ys

2

))+ f
( l

∑
s=1

δs −
l−1

∑
s=1

xs

).

This proves the first inequality in (14).
With the purpose of proving the second inequality of (14), we use Theorem 1 for n = 2,

σ1 = t
2 and σ2 = 2−t

2 as follows:

f
( l

∑
s=1

δs −
(

t
2

l−1

∑
s=1

xs +
2− t

2

l−1

∑
s=1

ys

))
≤

l

∑
s=1

f (δs)−
(

t
2

l−1

∑
s=1

f (xs) +
2− t

2

l−1

∑
s=1

f (ys)

)
, (18)

and:

f
( l

∑
s=1

δs −
(

t
2

l−1

∑
s=1

ys +
2− t

2

l−1

∑
s=1

xs

))
≤

l

∑
s=1

f (δs)−
(

t
2

l−1

∑
s=1

f (ys) +
2− t

2

l−1

∑
s=1

f (xs)

)
. (19)

Adding (18) and (19), we obtain:

f
( l

∑
s=1

δs −
(

t
2

l−1

∑
s=1

xs +
2− t

2

l−1

∑
s=1

ys

))

+ f
( l

∑
s=1

δs −
(

t
2

l−1

∑
s=1

ys +
2− t

2

l−1

∑
s=1

xs

))
≤ 2

l

∑
s=1

f (δs)−
( l−1

∑
s=1

f (xs) +
l−1

∑
s=1

f (ys)

)
. (20)

By multiplication of tα−1 with (20) on both sides and taking integration with respect
to t, we acquire the second inequality of (14).
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Remark 3. For the case of l = 2, the inequality (14) reduces to the following inequality proven by
Öağülmüş and Sarikaya in [8].

f
(

δ1 + δ2 −
x1 + y1

2

)
≤ 2α−1Γ(α + 1)

(y1 − x1)α

{
Jα(

δ1+δ2−
x1+y1

2

)− f (δ1 + δ2 − y1)

+Jα(
δ1+δ2−

x1+y1
2

)+ f (δ1 + δ2 − x1)

}

≤ f (δ1) + f (δ2)−
f (x1) + f (y1)

2
.

Remark 4. For the case of l = 2 and α = 1, the inequality (14) reduces to the inequality (2.2)
given in [25].

The underlying theorem includes a result based on Lemma 1.

Theorem 4. Let δ = (δ1, . . . , δl), x = (x1, . . . , xl), y = (y1, . . . , yl), and p = (p1, . . . , pl) be
four l-tuples such that δs, xs, ys ∈ I, ps ≥ 0 with pl 6= 0 for all s ∈ {1, . . . , l}, η = 1

pl
, xl > yl ,

α > 0 and f be a convex function defined on I. If x and y are decreasing l-tuples and:

k

∑
s=1

psxs ≤
k

∑
s=1

psδs,
k

∑
s=1

psys ≤
k

∑
s=1

psδs f or k = 1, . . . , l − 1,

l

∑
s=1

psδs =
l

∑
s=1

psxs,
l

∑
s=1

psδs =
l

∑
s=1

psys,

then:

f

(
l

∑
s=1

ηpsδs − η
l−1

∑
s=1

(
psxs + psys

2

))

≤ Γ(α + 1)

2
(

l−1
∑

s=1
(ηpsys − ηpsxs)

)α

Jα( l
∑

s=1
ηpsδs−

l−1
∑

s=1
ηpsys

)+ f
( l

∑
s=1

ηpsδs −
l−1

∑
s=1

ηpsxs

)

+Jα( l
∑

s=1
ηpsδs−

l−1
∑

s=1
ηpsxs

)− f
( l

∑
s=1

ηpsδs −
l−1

∑
s=1

ηpsys

)

≤
f
(

l
∑

s=1
ηpsδs −

l−1
∑

s=1
ηpsys

)
+ f

(
l

∑
s=1

ηpsδs −
l−1
∑

s=1
ηpsxs

)
2

≤
l

∑
s=1

ηps f (δs)−

l−1
∑

s=1
ηps f (xs) +

l−1
∑

s=1
ηps f (ys)

2
. (21)

Proof. We may write:

f

(
l

∑
s=1

ηpsδs − η
l−1

∑
s=1

ps

(
xs + ys

2

))

= f

{
1
2

{
l

∑
s=1

ηpsδs −
l−1

∑
s=1

ηpsxs +
l

∑
s=1

ηpsδs −
l−1

∑
s=1

ηpsys

}}
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= f

{
1
2

{
t
( l

∑
s=1

ηpsδs −
l−1

∑
s=1

ηpsxs

)
+ (1− t)

( l

∑
s=1

ηpsδs −
l−1

∑
s=1

ηpsys

)

+t
( l

∑
s=1

ηpsδs −
l−1

∑
s=1

ηpsys

)
+ (1− t)

( l

∑
s=1

ηpsδs −
l−1

∑
s=1

ηpsxs

)}}
. (22)

Using the convexity of f in (22), we have:

f

(
l

∑
s=1

ηpsδs − η
l−1

∑
s=1

ps

(
xs + ys

2

))

≤ 1
2

{
f

{
t
( l

∑
s=1

ηpsδs −
l−1

∑
s=1

ηpsxs

)
+ (1− t)

( l

∑
s=1

ηpsδs −
l−1

∑
s=1

ηpsys

)}

+ f

{
t
( l

∑
s=1

ηpsδs −
l−1

∑
s=1

ηpsys

)
+ (1− t)

( l

∑
s=1

ηpsδs −
l−1

∑
s=1

ηpsxs

)}}
. (23)

By multiplication of tα−1 with (23) on both sides and taking integration with respect
to t, we obtain:

1
α

f

(
l

∑
s=1

ηpsδs − η
l−1

∑
s=1

ps

(
xs + ys

2

))

≤ 1
2

{∫ 1

0
tα−1 f

{
t
( l

∑
s=1

ηpsδs −
l−1

∑
s=1

ηpsxs

)
+ (1− t)

( l

∑
s=1

ηpsδs −
l−1

∑
s=1

ηpsys

)}
dt

+
∫ 1

0
tα−1 f

{
t
( l

∑
s=1

ηpsδs −
l−1

∑
s=1

ηpsys

)
+ (1− t)

( l

∑
s=1

ηpsδs −
l−1

∑
s=1

ηpsxs

)}
dt

}

=
1

2
(

l−1
∑

s=1

(
ηpsys − ηpsxs

))α


∫ l

∑
s=1

ηpsδs−
l−1
∑

s=1
ηpsxs

l
∑

s=1
ηpsδs−

l−1
∑

s=1
ηpsys

(
u−

( l

∑
s=1

ηpsδs −
l−1

∑
s=1

ηpsys

))α−1

f (u)du

+
∫ l

∑
s=1

ηpsδs−
l−1
∑

s=1
ηpsxs

l
∑

s=1
ηpsδs−

l−1
∑

s=1
ηpsys

(( l

∑
s=1

ηpsδs −
l−1

∑
s=1

ηpsxs

)
− u

)α−1

f (u)du

. (24)

In order to apply the definition of the fractional integral in (24), first we show that:

l

∑
s=1

ηpsδs −
l−1

∑
s=1

ηpsys <
l

∑
s=1

ηpsδs −
l−1

∑
s=1

ηpsxs.

As:

xl > yl

⇒ pl xl > plyl

⇒ pl xl − plyl > 0. (25)

Furthermore,
l

∑
s=1

psδs =
l

∑
s=1

psxs and
l

∑
s=1

psδs =
l

∑
s=1

psys.
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Therefore, we have:

l

∑
s=1

psys =
l

∑
s=1

psxs

⇒
l−1

∑
s=1

psys + plyl =
l−1

∑
s=1

psxs + pl xl

⇒
l−1

∑
s=1

psys −
l−1

∑
s=1

psxs = pl xl − plyl (26)

Using (25) in (26), we obtain:

l−1

∑
s=1

psys −
l−1

∑
s=1

psxs > 0.

⇒ −
l−1

∑
s=1

ηpsys < −
l−1

∑
s=1

ηpsxs (27)

Adding
l

∑
s=1

ηpsδs to both sides of (27), we deduce:

l

∑
s=1

ηpsδs −
l−1

∑
s=1

ηpsys <
l

∑
s=1

ηpsδs −
l−1

∑
s=1

ηpsxs.

Now, (24) implies:

1
α

f

(
l

∑
s=1

ηpsδs − η
l−1

∑
s=1

ps

(
xs + ys

2

))

≤ Γ(α)

2
(

l−1
∑

s=1

(
ηpsys − ηpsxs

))α

Jα( l
∑

s=1
ηpsδs−

l−1
∑

s=1
ηpsxs

)− f
( l

∑
s=1

ηpsδs −
l−1

∑
s=1

ηpsys

)

+Jα( l
∑

s=1
ηpsδs−

l−1
∑

s=1
ηpsys

)+ f
( l

∑
s=1

ηpsδs −
l−1

∑
s=1

ηpsxs

),

and so:

f

(
l

∑
s=1

ηpsδs − η
l−1

∑
s=1

ps

(
xs + ys

2

))

≤ Γ(α + 1)

2
(

l−1
∑

s=1

(
ηpsys − ηpsxs

))α

Jα( l
∑

s=1
ηpsδs−

l−1
∑

s=1
ηpsxs

)− f
( l

∑
s=1

ηpsδs −
l−1

∑
s=1

ηpsys

)

+Jα( l
∑

s=1
ηpsδs−

l−1
∑

s=1
ηpsys

)+ f
( l

∑
s=1

ηpsδs −
l−1

∑
s=1

ηpsxs

). (28)
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Thus, we achieve the first part of (21). To achieve the second part, from the convexity
of f , we may write:

f

(
t
( l

∑
s=1

ηpsδs −
l−1

∑
s=1

ηpsxs

)
+ (1− t)

( l

∑
s=1

ηpsδs −
l−1

∑
s=1

ηpsys

))
≤

t f
( l

∑
s=1

ηpsδs −
l−1

∑
s=1

ηpsxs

)
+ (1− t) f

( l

∑
s=1

ηpsδs −
l−1

∑
s=1

ηpsys

)
, (29)

and:

f

(
t
( l

∑
s=1

ηpsδs −
l−1

∑
s=1

ηpsys

)
+ (1− t)

( l

∑
s=1

ηpsδs −
l−1

∑
s=1

ηpsxs

))
≤

t f
( l

∑
s=1

ηpsδs −
l−1

∑
s=1

ηpsys

)
+ (1− t) f

( l

∑
s=1

ηpsδs −
l−1

∑
s=1

ηpsxs

)
. (30)

Adding (29) and (30) and then using Lemma 1 for n = 2, σ1 = t, and σ2 = 1− t, we
obtain:

f

(
t
( l

∑
s=1

ηpsδs −
l−1

∑
s=1

ηpsxs

)
+ (1− t)

( l

∑
s=1

ηpsδs −
l−1

∑
s=1

ηpsys

))

+ f

(
t
( l

∑
s=1

ηpsδs −
l−1

∑
s=1

ηpsys

)
+ (1− t)

( l

∑
s=1

ηpsδs −
l−1

∑
s=1

ηpsxs

))

≤ f
( l

∑
s=1

ηpsδs −
l−1

∑
s=1

ηpsxs

)
+ f

( l

∑
s=1

ηpsδs −
l−1

∑
s=1

ηpsys

)

≤ 2
l

∑
s=1

ηps f (δs)−
{

l−1

∑
s=1

ηps f (xs) +
l−1

∑
s=1

ηps f (ys)

}
. (31)

By multiplication of tα−1 with (31) on both sides and taking integration with respect
to t, we obtain the second and third part of (21).

The underlying theorem includes a result based on Lemma 2.

Theorem 5. Let δ = (δ1, . . . , δl), x = (x1, . . . , xl), y = (y1, . . . , yl), and p = (p1, . . . , pl) be
four l-tuples such that δs, xs, ys ∈ I, ps ≥ 0 with pl 6= 0 for all s ∈ {1, . . . , l}, η = 1

pl
, xl > yl ,

α > 0 and f be a convex function defined on I. If δ− x, x, δ− y, and y are monotonic in the same
sense and:

l

∑
s=1

psδs =
l

∑
s=1

psxs,
l

∑
s=1

psδs =
l

∑
s=1

psys,

then:

f

(
l

∑
s=1

ηpsδs − η
l−1

∑
s=1

(
psxs + psys

2

))

≤ Γ(α + 1)

2
(

l−1
∑

s=1

(
ηpsys − ηpsxs

))α

Jα( l
∑

s=1
ηpsδs−

l−1
∑

s=1
ηpsys

)+ f
( l

∑
s=1

ηpsδs −
l−1

∑
s=1

ηpsxs

)

+Jα( l
∑

s=1
ηpsδs−

l−1
∑

s=1
ηpsxs

)− f
( l

∑
s=1

ηpsδs −
l−1

∑
s=1

ηpsys

)
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≤
f
(

l
∑

s=1
ηpsδs −

l−1
∑

s=1
ηpsys

)
+ f

(
l

∑
s=1

ηpsδs −
l−1
∑

s=1
ηpsxs

)
2

≤
l

∑
s=1

ηps f (δs)−

l−1
∑

s=1
ηps f (xs) +

l−1
∑

s=1
ηps f (ys)

2
. (32)

Proof. In similar manner as adopted in Theorem 4, we can easily obtain (32) using
Lemma 2.

Remark 5. Theorems 4 and 5 represent weighted versions of Theorem 2.

3. Bounds Associated with the Main Results

In this section, first, we discover two new identities associated with the right and
left sides of the main results. Then, utilizing these identities, we establish bounds for the
absolute difference of the two right-most and left-most terms of the main results.

Lemma 3. Let δ = (δ1, . . . , δl), x = (x1, . . . , xl), and y = (y1, . . . , yl) be three l-tuples such that
δs, xs, ys ∈ I, for all s ∈ {1, · · · , l}, α > 0, t ∈ [0, 1] and f be a differentiable function defined on
I. If f ′ ∈ L(I), then:

f
(

l
∑

s=1
δs −

l−1
∑

s=1
ys

)
+ f

(
l

∑
s=1

δs −
l−1
∑

s=1
xs

)
2

− Γ(α + 1)

2
(

l−1
∑

s=1

(
ys − xs

))α

×

Jα( l
∑

s=1
δs−

l−1
∑

s=1
ys
)+ f

( l

∑
s=1

δs −
l−1

∑
s=1

xs

)
+ Jα( l

∑
s=1

δs−
l−1
∑

s=1
xs
)− f

( l

∑
s=1

δs −
l−1

∑
s=1

ys

)
=

l−1
∑

s=1

(
ys − xs

)
2

∫ 1

0

(
tα − (1− t)α

)
f ′
(

l

∑
s=1

δs −
l−1

∑
s=1

(
txs + (1− t)ys

))
dt. (33)

Proof. To prove our required result, we consider that:

I =
∫ 1

0

(
tα − (1− t)α

)
f ′
(

l

∑
s=1

δs −
l−1

∑
s=1

(
txs + (1− t)ys

))
dt

=
∫ 1

0
tα f ′

(
l

∑
s=1

δs −
l−1

∑
s=1

(
txs + (1− t)ys

))
dt

−
∫ 1

0
(1− t)α f ′

(
l

∑
s=1

δs −
l−1

∑
s=1

(
txs + (1− t)ys

))
dt

= I1 − I2.
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Assume that
l

∑
s=1

δs −
l−1
∑

s=1
ys <

l
∑

s=1
δs −

l−1
∑

s=1
xs, and using integration by parts formula,

we obtain:

I1 =
∫ 1

0
tα f ′

(
l

∑
s=1

δs −
l−1

∑
s=1

(
txs + (1− t)ys

))
dt

=

tα f

(
l

∑
s=1

δs −
l−1
∑

s=1

(
txs + (1− t)ys

))
l−1
∑

s=1
(ys − xs)

∣∣∣∣∣
1

0

− α
l−1
∑

s=1
(ys − xs)

×
∫ 1

0
tα−1 f

(
l

∑
s=1

δs −
l−1

∑
s=1

(
txs + (1− t)ys

))
dt

=

f
(

l
∑

s=1
δs −

l−1
∑

s=1
xs

)
l−1
∑

s=1
(ys − xs)

− Γ(α + 1)
l−1
∑

s=1
(ys − xs)α+1

Jα( l
∑

s=1
δs−

l−1
∑

s=1
xs
)− f

( l

∑
s=1

δs −
l−1

∑
s=1

ys

)
.

Likewise,

I2 =
∫ 1

0
(1− t)α f ′

(
l

∑
s=1

δs −
l−1

∑
s=1

(
txs + (1− t)ys

))
dt

=

(1− t)α f

(
l

∑
s=1

δs −
l−1
∑

s=1

(
txs + (1− t)ys

))
l−1
∑

s=1
(ys − xs)

∣∣∣∣∣
1

0

+
α

l−1
∑

s=1
(ys − xs)

×
∫ 1

0
(1− t)α−1 f

(
l

∑
s=1

δs −
l−1

∑
s=1

(
txs + (1− t)ys

))
dt

= −
f

(
l

∑
s=1

δs −
l−1
∑

s=1
ys

)
l−1
∑

s=1
(ys − xs)

+
Γ(α + 1)

l−1
∑

s=1
(ys − xs)α+1

Jα( l
∑

s=1
δs−

l−1
∑

s=1
ys
)+ f

( l

∑
s=1

δs −
l−1

∑
s=1

xs

)
.

Now, we have:

I =
f
(

l
∑

s=1
δs −

l−1
∑

s=1
xs

)
+ f

(
l

∑
s=1

δs −
l−1
∑

s=1
ys

)
l−1
∑

s=1
(ys − xs)

− Γ(α + 1)
l−1
∑

s=1
(ys − xs)α+1

×

Jα( l
∑

s=1
δs−

l−1
∑

s=1
ys
)+ f

( l

∑
s=1

δs −
l−1

∑
s=1

xs

)
+ Jα( l

∑
s=1

δs−
l−1
∑

s=1
xs
)− f

( l

∑
s=1

δs −
l−1

∑
s=1

ys

).

Multiplying both sides by

l−1
∑

s=1
(ys−xs)

2 , we obtain (33).
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Corollary 1. If α = 1 and l = 2, in Lemma 3, then we have the following equality:

f (δ1 + δ2 − x1) + f (δ1 + δ2 − y1)

2
− 1

y1 − x1

∫ δ1+δ2−x1

δ1+δ2−y1

f (u)du

=
y1 − x1

2

∫ 1

0
(2t− 1) f ′

(
δ1 + δ2 − (tx1 + (1− t)y1)

)
dt. (34)

Remark 6. If we take x1 = δ1 and y1 = δ2 in Corollary 1, then the equality (34) gives:

f (δ1) + f (δ2)

2
− 1

y1 − x1

∫ δ2

δ1

f (u)du =
y1 − x1

2

∫ 1

0
(2t− 1) f ′

(
tδ2 + (1− t)δ1

)
dt. (35)

The equality (35) was proven by Dragomir and Agarwal [3].

On the basis of Lemma 3, we give the following results.

Theorem 6. Let δ = (δ1, . . . , δl), x = (x1, . . . , xl), and y = (y1, . . . , yl) be three l-tuples such
that δs, xs, ys ∈ I, for all s ∈ {1, · · · , l}, xl > yl , α > 0 and f be a differentiable function defined
on I. If δ majorizes x, y and | f ′| is convex on I, then:

∣∣∣∣∣
f
(

l
∑

s=1
δs −

l−1
∑

s=1
ys

)
+ f

(
l

∑
s=1

δs −
l−1
∑

s=1
xs

)
2

− Γ(α + 1)

2
(

l−1
∑

s=1
(ys − xs)

)α

×

Jα( l
∑

s=1
δs−

l−1
∑

s=1
ys
)+ f

( l

∑
s=1

δs −
l−1

∑
s=1

xs

)
+ Jα( l

∑
s=1

δs−
l−1
∑

s=1
xs
)− f

( l

∑
s=1

δs −
l−1

∑
s=1

ys

)
∣∣∣∣∣

≤

l−1
∑

s=1
|ys − xs|

α + 1

(
1− 1

2α

)
l

∑
s=1
| f ′(δs)| −

l−1
∑

s=1
| f ′(xs)|+

l−1
∑

s=1
| f ′(ys)|

2

. (36)

Proof. Using Lemma 3, we may write:

∣∣∣∣∣
f
(

l
∑

s=1
δs −

l−1
∑

s=1
ys

)
+ f

(
l

∑
s=1

δs −
l−1
∑

s=1
xs

)
2

− Γ(α + 1)

2
(

l−1
∑

s=1
(ys − xs)

)α

×

Jα( l
∑

s=1
δs−

l−1
∑

s=1
ys
)+ f

( l

∑
s=1

δs −
l−1

∑
s=1

xs

)
+ Jα( l

∑
s=1

δs−
l−1
∑

s=1
xs
)− f

( l

∑
s=1

δs −
l−1

∑
s=1

ys

)
∣∣∣∣∣

=

∣∣∣∣∣
l−1
∑

s=1
(ys − xs)

2

∫ 1

0

(
tα − (1− t)α

)
f ′
(

l

∑
s=1

δs −
l−1

∑
s=1

(
txs + (1− t)ys

))
dt

∣∣∣∣∣

≤

l−1
∑

s=1
|ys − xs|

2

∫ 1

0

∣∣∣∣(tα − (1− t)α
)∣∣∣∣∣∣∣∣ f ′

(
l

∑
s=1

δs −
l−1

∑
s=1

(
txs + (1− t)ys

))∣∣∣∣dt. (37)

Using Theorem 1 for n = 2, σ1 = t, and σ2 = 1− t in (37), as a consequence of the
convexity of | f ′|, we obtain:
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≤

l−1
∑

s=1
|ys − xs|

2

∫ 1

0

∣∣∣∣(tα − (1− t)α
)∣∣∣∣

×
{

l

∑
s=1
| f ′(δs)| −

(
t

l−1

∑
s=1
| f ′(xs)|+ (1− t)

l−1

∑
s=1
| f ′(ys)|

)}
dt.

=

l−1
∑

s=1
|ys − xs|

2

×
[∫ 1

2

0

(
(1− t)α − tα

){ l

∑
s=1
| f ′(δs)| −

(
t

l−1

∑
s=1
| f ′(xs)|+ (1− t)

l−1

∑
s=1
| f ′(ys)|

))}
dt

+
∫ 1

1
2

(
tα − (1− t)α

){ l

∑
s=1
| f ′(δs)| −

(
t

l−1

∑
s=1
| f ′(xs)|+ (1− t)

l−1

∑
s=1
| f ′(ys)|

))}
dt

]
.

=

l−1
∑

s=1
|ys − xs|

2
(
C1 + C2

)
. (38)

Now, finding C1 and C2, we have:

C1 =
∫ 1

2

0

(
(1− t)α − tα

){ l

∑
s=1
| f ′(δs)| −

(
t

l−1

∑
s=1
| f ′(xs)|+ (1− t)

l−1

∑
s=1
| f ′(ys)|

))}
dt

=

( l

∑
s=1
| f ′(δs)|

)( ∫ 1
2

0

(
(1− t)α − tα

)
dt
)
−
{

l−1

∑
s=1
| f ′(xs)|

∫ 1
2

0
t
(
(1− t)α − tα

)
dt

+
l−1

∑
s=1
| f ′(ys)|

∫ 1
2

0

(
(1− t)α − tα

)
(1− t)dt

}

=
l

∑
s=1
| f ′(δs)|

(
1

α + 1
−

1
2α

α + 1

)
−
{

l−1

∑
s=1
| f ′(xs)|

( ∫ 1
2

0
t(1− t)αdt−

∫ 1
2

0
tα+1dt

)

+
l−1

∑
s=1
| f ′(ys)|

( ∫ 1
2

0
(1− t)α+1dt−

∫ 1
2

0
(1− t)tαdt

)}

=
l

∑
s=1
| f ′(δs)|

(
1

α + 1
−

1
2α

α + 1

)
−
{

l−1

∑
s=1
| f ′(xs)|

(
1

(α + 1)(α + 2)
−

1
2α+1

α + 1

)

+
l−1

∑
s=1
| f ′(ys)|

(
1

α + 2
−

1
2α+1

α + 1

)}
,

and:

C2 =
∫ 1

1
2

(
tα − (1− t)α

){ l

∑
s=1
| f ′(δs)| −

(
t

l−1

∑
s=1
| f ′(xs)|+ (1− t)

l−1

∑
s=1
| f ′(ys)|

))}
dt
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=

( l

∑
s=1
| f ′(δs)|

)( ∫ 1

1
2

(
tα − (1− t)α

)
dt
)
−
{

l−1

∑
s=1
| f ′(xs)|

∫ 1

1
2

t
(
tα − (1− t)α

)
dt

+
l−1

∑
s=1
| f ′(ys)|

∫ 1

1
2

(
tα − (1− t)α

)
(1− t)dt

}

=
l

∑
s=1
| f ′(δs)|

(
1

α + 1
−

1
2α

α + 1

)
−
{

l−1

∑
s=1
| f ′(xs)|

( ∫ 1

1
2

tα+1dt−
∫ 1

1
2

t(1− t)αdt
)

+
l−1

∑
s=1
| f ′(ys)|

( ∫ 1

1
2

(1− t)tαdt−
∫ 1

1
2

(1− t)α+1dt
)}

=
l

∑
s=1
| f ′(δs)|

(
1

α + 1
−

1
2α

α + 1

)
−
{

l−1

∑
s=1
| f ′(xs)|

(
1

α + 2
−

1
2α+1

α + 1

)

+
l−1

∑
s=1
| f ′(ys)|

(
1

(α + 1)(α + 2)
−

1
2α+1

α + 1

)}
.

Adding C1 and C2, we obtain:

C1 + C2 =
l

∑
s=1
| f ′(δs)|

(
1− 1

2α

α + 1

)
−
(

1− 1
2α

α + 1

)( l−1

∑
s=1
| f ′(xs)|+

l−1

∑
s=1
| f ′(ys)|

)
. (39)

Inserting (39) in (38), we achieve (36).

Remark 7. If we take l = 2, then the inequality (36) reduces to the inequality (3.4) given in [8].

Remark 8. If we take l = 2, x1 = δ1, and y1 = δ2, then the inequality (36) reduces to the
inequality (3.5) given in [9].

Theorem 7. Let δ = (δ1, . . . , δl), x = (x1, . . . , xl), and y = (y1, . . . , yl) be three l-tuples and
a differentiable function f defined on I where δs, xs, ys ∈ I, for all s ∈ {1, · · · , l}, xl > yl , and
α > 0. If q > 1, δ majorizes x, y and | f ′|q is convex on I, then:

∣∣∣∣∣
f
(

l
∑

s=1
δs −

l−1
∑

s=1
ys

)
+ f

(
l

∑
s=1

δs −
l−1
∑

s=1
xs

)
2

− Γ(α + 1)

2
(

l−1
∑

s=1
(ys − xs)

)α

×

Jα( l
∑

s=1
δs−

l−1
∑

s=1
ys
)+ f

( l

∑
s=1

δs −
l−1

∑
s=1

xs

)
+ Jα( l

∑
s=1

δs−
l−1
∑

s=1
xs
)− f

( l

∑
s=1

δs −
l−1

∑
s=1

ys

)
∣∣∣∣∣

≤

(
1− 1

2α

) l−1
∑

s=1
|ys − xs|

α + 1


l

∑
s=1
| f ′(δs)|q −

l−1
∑

s=1
| f ′(xs)|q +

l−1
∑

s=1
| f ′(ys)|q

2

. (40)
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Proof. Using Lemma 3, we have:

∣∣∣∣∣
f
(

l
∑

s=1
δs −

l−1
∑

s=1
ys

)
+ f

(
l

∑
s=1

δs −
l−1
∑

s=1
xs

)
2

− Γ(α + 1)

2
(

l−1
∑

s=1

(
ys − xs

))α

×

Jα( l
∑

s=1
δs−

l−1
∑

s=1
ys
)+ f

( l

∑
s=1

δs −
l−1

∑
s=1

xs

)
+ Jα( l

∑
s=1

δs−
l−1
∑

s=1
xs
)− f

( l

∑
s=1

δs −
l−1

∑
s=1

ys

)
∣∣∣∣∣

=

∣∣∣∣∣
l−1
∑

s=1
(ys − xs)

2

∫ 1

0

(
tα − (1− t)α

)
f ′
(

l

∑
s=1

δs −
l−1

∑
s=1

(
txs + (1− t)ys

))
dt

∣∣∣∣∣

≤

l−1
∑

s=1
|ys − xs|

2

∫ 1

0

∣∣∣∣tα − (1− t)α

∣∣∣∣∣∣∣∣ f ′( l

∑
s=1

δs −
l−1

∑
s=1

(
txs + (1− t)ys

))∣∣∣∣dt.

By applying the power mean inequality to the above integral, we obtain:

≤

l−1
∑

s=1
|ys − xs|

2

( ∫ 1

0

∣∣∣∣tα − (1− t)α

∣∣∣∣dt

)1− 1
q
( ∫ 1

0

∣∣∣∣tα − (1− t)α

∣∣∣∣
×
∣∣∣∣ f ′( l

∑
s=1

δs −
l−1

∑
s=1

(
txs + (1− t)ys

))∣∣∣∣qdt

) 1
q

=

l−1
∑

s=1
|ys − xs|

2

( ∫ 1
2

0

(
(1− t)α − tα

)
dt +

∫ 1

1
2

(
tα − (1− t)α

)
dt

)1− 1
q

×
( ∫ 1

0

∣∣∣∣tα − (1− t)α

∣∣∣∣∣∣∣∣ f ′( l

∑
s=1

δs −
l−1

∑
s=1

(
txs + (1− t)ys

))∣∣∣∣qdt

) 1
q

. (41)

Since | f ′|q is convex, therefore, using Theorem 1 for n = 2, σ1 = t, and σ2 = 1− t
in (41), we obtain:

=

l−1
∑

s=1
|ys − xs|

2

( ∫ 1
2

0

(
(1− t)α − tα

)
dt +

∫ 1

1
2

(
tα − (1− t)α

)
dt

)1− 1
q

×
( ∫ 1

0

∣∣∣∣tα − (1− t)α

∣∣∣∣
(

l

∑
s=1
| f ′(δs)|q −

(
t

l−1

∑
s=1
| f ′(xs)|q + (1− t)

l−1

∑
s=1
| f ′(ys)|q

)
dt

) 1
q
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=

l−1
∑

s=1
|ys − xs|

2

( ∫ 1
2

0

(
(1− t)α − tα

)
dt +

∫ 1

1
2

(
tα − (1− t)α

)
dt

)1− 1
q

×
{∫ 1

2

0

(
(1− t)α − tα

)( l

∑
s=1
| f ′(δs)|q −

(
t

l−1

∑
s=1
| f ′(xs)|q + (1− t)

l−1

∑
s=1
| f ′(ys)|q

))
dt

+
∫ 1

1
2

(
tα − (1− t)α

)( l

∑
s=1
| f ′(δs)|q −

(
t

l−1

∑
s=1
| f ′(xs)|q + (1− t)

l−1

∑
s=1
| f ′(ys)|q

))
dt

} 1
q

By calculating these simple integrals, we obtain (40).

For some further results, we establish another lemma as follows.

Lemma 4. Let all conditions in the hypothesis of Lemma 3 hold true, then:

2α−1Γ(α + 1)(
l−1
∑

s=1
(ys − xs)

)α

Jα( l
∑

s=1
δs−

l−1
∑

s=1

(
xs+ys

2

))+ f
( l

∑
s=1

δs −
l−1

∑
s=1

xs

)

+Jα( l
∑

s=1
δs−

l−1
∑

s=1

(
xs+ys

2

))− f
( l

∑
s=1

δs −
l−1

∑
s=1

ys

)− f

(
l

∑
s=1

δs −
l−1

∑
s=1

(
xs + ys

2

))

=

l−1
∑

s=1
(ys − xs)

4

∫ 1

0
tα

{
f ′
(

l

∑
s=1

δs −
(

2− t
2

l−1

∑
s=1

xs +
t
2

l−1

∑
s=1

ys

))

− f ′
(

l

∑
s=1

δs −
(

2− t
2

l−1

∑
s=1

ys +
t
2

l−1

∑
s=1

xs

))}
dt. (42)

Proof. Adopting the same procedure as given in the proof of Lemma 3, it can be easily
proven.

Remark 9. For the selection of l = 2, the equality (42) reduces to the equality (3.3), which was
proven in [8].

Now, we give some results on the basis of Lemma 4, as:

Theorem 8. Let all conditions in the hypothesis of Theorem 6 hold true, then:∣∣∣∣∣ 2α−1Γ(α + 1)(
l−1
∑

s=1
(ys − xs)

)α

Jα( l
∑

s=1
δs−

l−1
∑

s=1

(
xs+ys

2

))+ f
( l

∑
s=1

δs −
l−1

∑
s=1

xs

)

+Jα( l
∑

s=1
δs−

l−1
∑

s=1

(
xs+ys

2

))− f
( l

∑
s=1

δs −
l−1

∑
s=1

ys

)− f

(
l

∑
s=1

δs −
l−1

∑
s=1

(
xs + ys

2

))∣∣∣∣∣

≤

l−1
∑

s=1
|ys − xs|

2(α + 1)


l

∑
s=1
| f ′(δs)| −

l−1
∑

s=1
| f ′(xs)|+

l−1
∑

s=1
| f ′(ys)|

2

. (43)
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Proof. Using Lemma 4, we have:∣∣∣∣∣ 2α−1Γ(α + 1)(
l−1
∑

s=1
(ys − xs)

)α

Jα( l
∑

s=1
δs−

l−1
∑

s=1

(
xs+ys

2

))+ f
( l

∑
s=1

δs −
l−1

∑
s=1

xs

)

+Jα( l
∑

s=1
δs−

l−1
∑

s=1

(
xs+ys

2

))− f
( l

∑
s=1

δs −
l−1

∑
s=1

ys

)− f

(
l

∑
s=1

δs −
l−1

∑
s=1

(
xs + ys

2

))∣∣∣∣∣

=

∣∣∣∣∣
l−1
∑

s=1
(ys − xs)

4

{∫ 1

0
tα f ′

(
l

∑
s=1

δs −
(

2− t
2

l−1

∑
s=1

xs +
t
2

l−1

∑
s=1

ys

))
dt

−
∫ 1

0
tα f ′

(
l

∑
s=1

δs −
(

2− t
2

l−1

∑
s=1

ys +
t
2

l−1

∑
s=1

xs

))
dt

}∣∣∣∣∣.

≤

l−1
∑

s=1
|ys − xs|

4

{∫ 1

0

∣∣∣∣tα

∣∣∣∣∣∣∣∣ f ′
(

l

∑
s=1

δs −
(

2− t
2

l−1

∑
s=1

xs +
t
2

l−1

∑
s=1

ys

))∣∣∣∣dt

+
∫ 1

0

∣∣∣∣tα

∣∣∣∣∣∣∣∣ f ′
(

l

∑
s=1

δs −
(

2− t
2

l−1

∑
s=1

ys +
t
2

l−1

∑
s=1

xs

))∣∣∣∣dt

}

=

l−1
∑

s=1
|ys − xs|

4

{∫ 1

0
tα

∣∣∣∣ f ′
(

l

∑
s=1

δs −
(

2− t
2

l−1

∑
s=1

xs +
t
2

l−1

∑
s=1

ys

))∣∣∣∣dt

+
∫ 1

0
tα

∣∣∣∣ f ′
(

l

∑
s=1

δs −
(

2− t
2

l−1

∑
s=1

ys +
t
2

l−1

∑
s=1

xs

))∣∣∣∣dt

}
. (44)

By utilizing Theorem 1 for n = 2, σ1 = 2−t
2 , and σ2 = t

2 in (44), we obtain:

≤

l−1
∑

s=1
|ys − xs|

4

{∫ 1

0
tα

(
l

∑
s=1
| f ′(δs)| −

(
2− t

2

l−1

∑
s=1
| f ′(xs)|+

t
2

l−1

∑
s=1
| f ′(ys)|

))
dt

+
∫ 1

0
tα

(
l

∑
s=1
| f ′(δs)| −

(
2− t

2

l−1

∑
s=1
| f ′(ys)|+

t
2

l−1

∑
s=1
| f ′(xs)|

))∣∣∣∣dt

}

=

l−1
∑

s=1
|ys − xs|

4


l

∑
s=1
| f ′(δs)|

α + 1
−

l−1
∑

s=1
| f ′(xs)|

α + 1
+

l−1
∑

s=1
| f ′(xs)|

2(α + 2)
−

l−1
∑

s=1
| f ′(ys)|

2(α + 2)

+

l
∑

s=1
| f ′(δs)|

α + 1
−

l−1
∑

s=1
| f ′(ys)|

α + 1
+

l−1
∑

s=1
| f ′(ys)|

2(α + 2)
−

l−1
∑

s=1
| f ′(xs)|

2(α + 2)


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=

l−1
∑

s=1
|ys − xs|

2(α + 1)


l

∑
s=1
| f ′(δs)| −

l−1
∑

s=1
| f ′(xs)|+

l−1
∑

s=1
| f ′(ys)|

2

.

Hence, the proof is accomplished.

Corollary 2. Considering α = 1 and l = 2, then Theorem 8 gives the following inequality:∣∣∣∣ 1
y1 − x1

∫ δ1+δ2−x1

δ1+δ2−y1

− f
(

δ1 + δ2 −
x1 + y1

2

)∣∣∣∣ ≤
|y1 − x1|

4

{
| f ′(δ1)|+ | f ′(δ2)| −

| f ′(x1)|+ | f ′(y1)|
2

}
.

Theorem 9. Let δ = (δ1, . . . , δl), x = (x1, . . . , xl), and y = (y1, . . . , yl) be three l-tuples such
that δs, xs, ys ∈ I, for all s ∈ {1, · · · , l}, xl > yl , α > 0 and f be a differentiable function defined
on I. If q > 1 such that 1

p + 1
q = 1, δ majorizes x, y and | f ′|q is convex on I, then:

∣∣∣∣∣ 2α−1Γ(α + 1)(
l−1
∑

s=1
(ys − xs)

)α

Jα( l
∑

s=1
δs−

l−1
∑

s=1

(
xs+ys

2

))+ f
( l

∑
s=1

δs −
l−1

∑
s=1

xs

)

+Jα( l
∑

s=1
δs−

l−1
∑

s=1

(
xs+ys

2

))− f
( l

∑
s=1

δs −
l−1

∑
s=1

ys

)− f

(
l

∑
s=1

δs −
l−1

∑
s=1

(
xs + ys

2

))∣∣∣∣∣

≤

l−1
∑

s=1
|ys − xs|

4(αp + 1)
1
p


{

l

∑
s=1
| f ′(δs)|q −

1
4

(
3

l−1

∑
s=1
| f ′(xs)|q +

l−1

∑
s=1
| f ′(ys)|q

)} 1
q

+

{
l

∑
s=1
| f ′(δs)|q −

1
4

(
3

l−1

∑
s=1
| f ′(ys)|q +

l−1

∑
s=1
| f ′(xs)|q

)} 1
q
. (45)

Proof. We write from Lemma 4 that:∣∣∣∣∣ 2α−1Γ(α + 1)(
l−1
∑

s=1
(ys − xs)

)α

Jα( l
∑

s=1
δs−

l−1
∑

s=1

(
xs+ys

2

))+ f
( l

∑
s=1

δs −
l−1

∑
s=1

xs

)

+Jα( l
∑

s=1
δs−

l−1
∑

s=1

(
xs+ys

2

))− f
( l

∑
s=1

δs −
l−1

∑
s=1

ys

)− f

(
l

∑
s=1

δs −
l−1

∑
s=1

(
xs + ys

2

))∣∣∣∣∣

=

∣∣∣∣∣
l−1
∑

s=1
(ys − xs)

4

{∫ 1

0
tα f ′

(
l

∑
s=1

δs −
(

2− t
2

l−1

∑
s=1

xs +
t
2

l−1

∑
s=1

ys

))
dt

−
∫ 1

0
tα f ′

(
l

∑
s=1

δs −
(

2− t
2

l−1

∑
s=1

ys +
t
2

l−1

∑
s=1

xs

))
dt

}∣∣∣∣∣
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≤

l−1
∑

s=1
|ys − xs|

4

{∫ 1

0

∣∣∣∣tα f ′
(

l

∑
s=1

δs −
(

2− t
2

l−1

∑
s=1

xs +
t
2

l−1

∑
s=1

ys

))∣∣∣∣dt

+
∫ 1

0

∣∣∣∣tα f ′
(

l

∑
s=1

δs −
(

2− t
2

l−1

∑
s=1

ys +
t
2

l−1

∑
s=1

xs

))∣∣∣∣dt

}

≤

l−1
∑

s=1
|ys − xs|

4

{∫ 1

0

∣∣∣∣tα

∣∣∣∣∣∣∣∣ f ′
(

l

∑
s=1

δs −
(

2− t
2

l−1

∑
s=1

xs +
t
2

l−1

∑
s=1

ys

))∣∣∣∣dt

+
∫ 1

0

∣∣∣∣tα

∣∣∣∣∣∣∣∣ f ′
(

l

∑
s=1

δs −
(

2− t
2

l−1

∑
s=1

ys +
t
2

l−1

∑
s=1

xs

))∣∣∣∣dt

}
.

By applying Hölder’s inequality to the above integral, we have:

≤

l−1
∑

s=1
|ys − xs|

4


( ∫ 1

0

∣∣tα
∣∣pdt

) 1
p
( ∫ 1

0

∣∣∣∣ f ′
(

l

∑
s=1

δs −
(

2− t
2

l−1

∑
s=1

xs +
t
2

l−1

∑
s=1

ys

))∣∣∣∣qdt

) 1
q

+

( ∫ 1

0

∣∣tα
∣∣pdt

) 1
p
( ∫ 1

0

∣∣∣∣ f ′
(

l

∑
s=1

δs −
(

2− t
2

l−1

∑
s=1

ys +
t
2

l−1

∑
s=1

xs

))∣∣∣∣qdt

) 1
q


=

l−1
∑

s=1
|ys − xs|

4


( ∫ 1

0
tαpdt

) 1
p
( ∫ 1

0

∣∣∣∣ f ′
(

l

∑
s=1

δs −
(

2− t
2

l−1

∑
s=1

xs +
t
2

l−1

∑
s=1

ys

))∣∣∣∣qdt

) 1
q

+

( ∫ 1

0
tαpdt

) 1
p
( ∫ 1

0

∣∣∣∣ f ′
(

l

∑
s=1

δs −
(

2− t
2

l−1

∑
s=1

ys +
t
2

l−1

∑
s=1

xs

))∣∣∣∣qdt

) 1
q


=

l−1
∑

s=1
|ys − xs|

4

( ∫ 1

0
tαpdt

) 1
p


( ∫ 1

0

∣∣∣∣ f ′
(

l

∑
s=1

δs −
(

2− t
2

l−1

∑
s=1

xs +
t
2

l−1

∑
s=1

ys

))∣∣∣∣qdt

) 1
q

+

( ∫ 1

0

∣∣∣∣ f ′
(

l

∑
s=1

δs −
(

2− t
2

l−1

∑
s=1

ys +
t
2

l−1

∑
s=1

xs

))∣∣∣∣qdt

) 1
q
. (46)

Since | f ′|q is convex, therefore, using Theorem 1 for n = 2, σ1 = 2−t
2 , and σ2 = t

2
in (46), we obtain:

=

l−1
∑

s=1
|ys − xs|

4

(
1

αp + 1

) 1
p

×


( ∫ 1

0

(
l

∑
s=1
| f ′(δs)|q −

(
2− t

2

l−1

∑
s=1
| f ′(xs)|q +

t
2

l−1

∑
s=1
| f ′(ys)|q

))
dt

) 1
q

+

( ∫ 1

0

(
l

∑
s=1
| f ′(δs)|q −

(
2− t

2

l−1

∑
s=1
| f ′(ys)|q +

t
2

l−1

∑
s=1
| f ′(xs)|q

))
dt

) 1
q

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=

l−1
∑

s=1
|ys − xs|

4(αp + 1)
1
p


{

l

∑
s=1
| f ′(δs)|q −

1
4

(
3

l−1

∑
s=1
| f ′(xs)|q +

l−1

∑
s=1
| f ′(ys)|q

)} 1
q

+

{
l

∑
s=1
| f ′(δs)|q −

1
4

(
3

l−1

∑
s=1
| f ′(ys)|q +

l−1

∑
s=1
| f ′(xs)|q

)} 1
q
.

Hence, the proof is acquired.

Corollary 3. For the selection of l = 2, Theorem 9 gives the inequality:∣∣∣∣∣ 2α−1Γ(α + 1)(
(y1 − x1)

)α

{
Jα(

a1+a2−
( x1+y1

2

))+ f
(

a1 + a2 − x1

)

+Jα

a1+a2−
( x1+y1

2

))− f
(

a1 + a2 − y1

)}
− f

(
a1 + a2 −

x1 + y1

2

)∣∣∣∣∣
≤ |y1 − x1|

4(αp + 1)
1
p

{[
| f ′(a1)|q + | f ′(a2)|q −

3| f ′(x1)|q + | f ′(y1)|q
4

] 1
q

+

[
| f ′(a1)|q + | f ′(a1)|q −

3| f ′(y1)|q + | f ′(x1)|q
4

] 1
q
}

.

Corollary 4. For the selection of α = 1, Theorem 9 gives the following inequality:

∣∣∣∣∣ 1
l−1
∑

s=1
(ys − xs)

∫ l
∑

s=1
δs−

l−1
∑

s=1
xs

l
∑

s=1
δs−

l−1
∑

s=1
ys

f (u)du− f

(
l

∑
s=1

δs −
l−1

∑
s=1

(
xs + ys

2

))∣∣∣∣∣

≤

l−1
∑

s=1
|ys − xs|

4(p + 1)
1
p


{

l

∑
s=1
| f ′(δs)|q −

1
4

(
3

l−1

∑
s=1
| f ′(xs)|q +

l−1

∑
s=1
| f ′(ys)|q

)} 1
q

+

{
l

∑
s=1
| f ′(δs)|q −

1
4

(
3

l−1

∑
s=1
| f ′(ys)|q +

l−1

∑
s=1
| f ′(xs)|q

)} 1
q
.

Remark 10. For l = 2, x1 = δ1, and y1 = δ2, (45) reduces to (3.6) in [26].

Theorem 10. Let all conditions in the hypothesis of Theorem 7 hold true, then:∣∣∣∣∣ 2α−1Γ(α + 1)(
l−1
∑

s=1
(ys − xs)

)α

Jα( l
∑

s=1
δs−

l−1
∑

s=1

(
xs+ys

2

))+ f
( l

∑
s=1

δs −
l−1

∑
s=1

xs

)

+Jα( l
∑

s=1
δs−

l−1
∑

s=1

(
xs+ys

2

))− f
( l

∑
s=1

δs −
l−1

∑
s=1

ys

)− f

(
l

∑
s=1

δs −
l−1

∑
s=1

(
xs + ys

2

))∣∣∣∣∣
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≤

l−1
∑

s=1
|ys − xs|

4(α + 1)1− 1
q

{{
1

α + 1

l

∑
s=1
| f ′(δs)|q −

(
α + 3

2(α + 1)(α + 2)

l−1

∑
s=1
| f ′(xs)|q

+
1

2(α + 2)

l−1

∑
s=1
| f ′(ys)|q

)} 1
q

+

{
1

α + 1

l

∑
s=1
| f ′(δs)|q −

(
α + 3

2(α + 1)(α + 2)

l−1

∑
s=1
| f ′(ys)|q

+
1

2(α + 2)

l−1

∑
s=1
| f ′(xs)|q

)} 1
q
. (47)

Proof. Using Lemma 4, we have:∣∣∣∣∣ 2α−1Γ(α + 1)(
l−1
∑

s=1
(ys − xs)

)α

Jα( l
∑

s=1
δs−

l−1
∑

s=1

(
xs+ys

2

))+ f
( l

∑
s=1

δs −
l−1

∑
s=1

xs

)

+Jα( l
∑

s=1
δs−

l−1
∑

s=1

(
xs+ys

2

))− f
( l

∑
s=1

δs −
l−1

∑
s=1

ys

)− f

(
l

∑
s=1

δs −
l−1

∑
s=1

(
xs + ys

2

))∣∣∣∣∣

=

∣∣∣∣∣
l−1
∑

s=1
(ys − xs)

4

{∫ 1

0
tα f ′

(
l

∑
s=1

δs −
(

2− t
2

l−1

∑
s=1

xs +
t
2

l−1

∑
s=1

ys

))
dt

−
∫ 1

0
tα f ′

(
l

∑
s=1

δs −
(

2− t
2

l−1

∑
s=1

ys +
t
2

l−1

∑
s=1

xs

))
dt

}∣∣∣∣∣

≤

l−1
∑

s=1
|ys − xs|

4

{∫ 1

0

∣∣∣∣tα

∣∣∣∣∣∣∣∣ f ′
(

l

∑
s=1

δs −
(

2− t
2

l−1

∑
s=1

xs +
t
2

l−1

∑
s=1

ys

))∣∣∣∣dt

+
∫ 1

0

∣∣∣∣tα

∣∣∣∣∣∣∣∣ f ′
(

l

∑
s=1

δs −
(

2− t
2

l−1

∑
s=1

ys +
t
2

l−1

∑
s=1

xs

))∣∣∣∣dt

}
.

By applying the power mean inequality to the above integral, we obtain:

≤

l−1
∑

s=1
|ys − xs|

4


( ∫ 1

0
tαdt

)1− 1
q
( ∫ 1

0
tα

∣∣∣∣ f ′( l

∑
s=1

δs −
(

2− t
2

l−1

∑
s=1

xs +
t
2

l−1

∑
s=1

ys

))∣∣∣∣qdt

) 1
q

+

( ∫ 1

0
tαdt

)1− 1
q
( ∫ 1

0
tα

∣∣∣∣ f ′( l

∑
s=1

δs −
(

2− t
2

l−1

∑
s=1

ys +
t
2

l−1

∑
s=1

xs

))∣∣∣∣qdt

) 1
q


=

l−1
∑

s=1
|ys − xs|

4

(
1

α + 1

)1− 1
q


( ∫ 1

0
tα

∣∣∣∣ f ′( l

∑
s=1

δs −
(

2− t
2

l−1

∑
s=1

xs +
t
2

l−1

∑
s=1

ys

))∣∣∣∣qdt

) 1
q

+

( ∫ 1

0
tα

∣∣∣∣ f ′( l

∑
s=1

δs −
(

2− t
2

l−1

∑
s=1

ys +
t
2

l−1

∑
s=1

xs

))∣∣∣∣qdt

) 1
q
. (48)
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Due to the convexity of | f ′|q, using Theorem 1 for n = 2, σ1 = 2−t
2 , and σ2 = t

2 in (48),
we have:

=

l−1
∑

s=1
|ys − xs|

4(α + 1)1− 1
q


( ∫ 1

0
tα

(
l

∑
s=1
| f ′(δs)|q −

(
2− t

2

l−1

∑
s=1
| f ′(xs)|q +

t
2

l−1

∑
s=1
| f ′(ys)|q

))
dt

) 1
q

+

( ∫ 1

0
tα

(
l

∑
s=1
| f ′(δs)|q −

(
2− t

2

l−1

∑
s=1
| f ′(ys)|q +

t
2

l−1

∑
s=1
| f ′(xs)|q

))
dt

) 1
q


=

l−1
∑

s=1
|ys − xs|

4(α + 1)1− 1
q

{{
1

α + 1

l

∑
s=1
| f ′(δs)|q −

(
α + 3

2(α + 1)(α + 2)

l−1

∑
s=1
| f ′(xs)|q

+
1

2(α + 2)

l−1

∑
s=1
| f ′(ys)|q

)} 1
q

+

{
1

α + 1

l

∑
s=1
| f ′(δs)|q −

(
α + 3

2(α + 1)(α + 2)

l−1

∑
s=1
| f ′(ys)|q

+
1

2(α + 2)

l−1

∑
s=1
| f ′(xs)|q

)} 1
q
.

Hence, the proof is acquired.

Corollary 5. Taking α = 1 and l = 2, Theorem 10 gives the following inequality:∣∣∣∣∣ 1
y1 − x1

∫ δ1+δ2−x1

δ1+δ2−y1

f (u)du− f
(

δ1 + δ2 −
x1 + y1

2

)∣∣∣∣∣
≤ |y1 − x1|

2
3q−1

q


(
| f ′(δ1)|q + | f ′(δ2)|q

2
−
(

2| f ′(x1)|q + | f ′(y1)|q
6

)) 1
q

+

(
| f ′(δ1)|q + | f ′(δ2)|q

2
−
(

2| f ′(y1)|q + | f ′(x1)|q
6

)) 1
q

.

Example 1. Let a, b, c ∈ R such that a > b > c. Suppose that α > 0 and δ = (2a, 2b, 2c),
x = (a + b

2 + c
2 , b + a

2 + c
2 , a

2 + b
2 + c), and y = (a + b, c + a, b + c) are three tuples. First, we

show that a
2 + b

2 + c > b + c and x ≺ δ. Clearly, a + b
2 + c

2 > b + a
2 + c

2 > a
2 + b

2 + c. As a > b
and b > c, therefore, we have:

2b < a + b⇒ 2b + 2c < a + b + 2c⇒ b + c <
a
2
+

b
2
+ c.

Now,

b + a < a + a⇒ b + c < 2a⇒ 2a + b + c < 4a⇒ a +
b
2
+

c
2
< 2a,

and

2c < b + a⇒ 2c + a + b < 2b + 2a⇒ a +
b
2
+

c
2
+ b +

a
2
+

c
2
< 2a + 2b.
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Also, a +
b
2
+

c
2
+ b +

a
2
+

c
2
+

a
2
+

b
2
+ c = 2a + 2b + 2c.

Hence, x ≺ δ. Similarly, we can show that y ≺ δ.
Now, applying Theorem 2, for these tuples, we obtain:

f

(
a + 3b + 4c

4

)
≤ Γ(α + 1)

2
( a−b

2
)α

{
Jα
(b+c)+ f

(
a + b + 2c

2

)
+ Jα(

a+b+2c
2

)− f
(
b + c

)}

≤
f
(
b + c

)
+ f

(
a+b+2c

2

)
2

≤ f (2a) + f (2b) + f (2c)

−
f (a + b

2 + c
2 ) + f (b + a

2 + c
2 ) + f (a + b) + f (c + a)

2
.

Remark 11. The results presented in this manuscript may also be given for other fractional
operators such as Caputo’s, Hadamard’s, Katugampola’s, and generalized k-fractional operators.

4. Conclusions and Future Research Work

New portmanteauinequalities containing both continuous and discrete versions were
successfully introduced for the first time in the present field of research. This work was
carried out using the joint notions of convexity and majorization theory. As a result, new
unified fractional portmanteauversions of the Hermite–Hadamard–Jensen–Mercer-type
inequality emerged. Firstly, majorized Hermite–Hadamard inequalities of the Jensen–
Mercer-type for fractional integrals were established. It was noted that these inequalities
cover those previously presented results, as well as unifying continuous and discrete
inequalities of the Hermite–Hadamard-, Jensen-, and Mercer-types into a single form.
Secondly, another Hermite–Hadamard inequality of the Jensen–Mercer-type for fractional
integrals, where integrals appear with another combination of limits, was developed.
Weighted versions of these results were also established. It was observed that the results
adopt an interesting look when an additional condition of strict monotonicity is applied to
the tuples. New identities were discovered based on which various bounds for absolute
differences of the left and right sides of the obtained results were obtained. The present
work may also be considered as a direct application of majorization theory, which with the
combination of convex theory gives rise to the new mixture of inequalities. Moreover, as
there is an extensive literature devoted to Hermite–Hadamard and related inequalities, in a
future study, we will focus on real-world applications of these inequalities.
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