
����������
�������

Citation: Mohamed, N.A.; Zulkifley,

M.A.; Kamari, N.A.M.; Kadim, Z.

Symmetrically Stacked Long

Short-Term Memory Networks for

Fall Event Recognition Using

Compact Convolutional Neural

Networks-Based Tracker. Symmetry

2022, 14, 293. https://dx.doi.org/

10.3390/sym14020293

Academic Editor: Jianfeng Ren

Received: 29 November 2021

Accepted: 28 January 2022

Published: 1 February 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

symmetryS S

Article

Symmetrically Stacked Long Short-Term Memory Networks for
Fall Event Recognition Using Compact Convolutional Neural
Networks-Based Tracker
Nur Ayuni Mohamed 1,2 , Mohd Asyraf Zulkifley 1,* , Nor Azwan Mohamed Kamari 1 and Zulaikha Kadim 3

1 Department of Electrical, Electronic and Systems Engineering, Faculty of Engineering and Built Environment,
Universiti Kebangsaan Malaysia, Bangi 43600, Selangor, Malaysia; ayuni@siswa.ukm.edu.my (N.A.M.);
azwank@ukm.edu.my (N.A.M.K.)

2 Backend Industrial Engineering, Infineon Technologies (Malaysia) Sdn Bhd, Free Trade Zone,
Batu Berendam 75710, Melaka, Malaysia

3 Advanced Informatics Lab, MIMOS Berhad, Technology Park Malaysia, Kuala Lumpur 57000, Wilayah
Persekutuan Kuala Lumpur, Malaysia; zulaikha.kadim@mimos.my

* Correspondence: asyraf.zulkifley@ukm.edu.my

Abstract: In recent years, the advancement of pattern recognition algorithms, specifically the deep
learning-related techniques, have propelled a tremendous amount of researches in fall event recogni-
tion systems. It is important to detect a fall incident as early as possible, whereby a slight delay in
providing immediate assistance can cause severe unrecoverable injuries. One of the main challenges
in fall event recognition is the imbalanced training data between fall and no-fall events, where a
real-life fall incident is a sporadic event that occurs infrequently. Most of the recent techniques
produce a lot of false alarms, as it is hard to train them to cover a wide range of fall situations.
Hence, this paper aims to detect the exact fall frame in a video sequence, as such it will not be
dependent on the whole clip of the video sequence. Our proposed approach consists of a two-stage
module where the first stage employs a compact convolutional neural network tracker to generate
the object trajectory information. Features of interest will be sampled from the generated trajectory
paths, which will be fed as the input to the second stage. The next stage network then models the
temporal dependencies of the trajectory information using symmetrical Long Short-Term Memory
(LSTM) architecture. This two-stage module is a novel approach as most of the techniques rely on the
detection module rather than the tracking module. The simulation experiments were tested using
Fall Detection Dataset (FDD). The proposed approach obtains an expected average overlap of 0.167,
which is the best performance compared to Multi-Domain Network (MDNET) and Tree-structured
Convolutional Neural Network (TCNN) trackers. Furthermore, the proposed 3-layers of stacked
LSTM architecture also performs the best compared to the vanilla recurrent neural network and
single-layer LSTM. This approach can be further improved if the tracker model is firstly pre-tuned in
offline mode with respect to a specific type of object of interest, rather than a general object.

Keywords: fall event recognition; Compact Convolutional Neural Networks; Symmetrical Recurrent
Neural Networks

1. Introduction

Nowadays, advancements in both machine learning and computer vision fields have
propelled the number of studies in activity recognition applications. These studies are
mostly geared towards intelligent systems that focus on monitoring and analysis of daily
human activities. Furthermore, computational devices have become highly efficient and
thus, contribute greatly to the development of many autonomous systems in activity
recognition. In general, most of the studies have emphasized developing algorithms for
classifying normal human activities, which is also known as Activities of Daily Living
(ADL), such as sitting, walking, standing, and crouching down. Primarily, these algorithms

Symmetry 2022, 14, 293. https://doi.org/10.3390/sym14020293 https://www.mdpi.com/journal/symmetry

https://doi.org/10.3390/sym14020293
https://doi.org/10.3390/sym14020293
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/symmetry
https://www.mdpi.com
https://orcid.org/0000-0003-1683-7449
https://orcid.org/0000-0002-4010-3990
https://orcid.org/0000-0002-6999-6593
https://doi.org/10.3390/sym14020293
https://www.mdpi.com/journal/symmetry
https://www.mdpi.com/article/10.3390/sym14020293?type=check_update&version=2


Symmetry 2022, 14, 293 2 of 19

are also used in assessing the physical fitness and movement quality of an individual. Apart
from that, the detection of abnormal activities is similarly important, specifically for safety
and security-related reason. The inability to differentiate abnormal activities can cause
many potential health risks, especially towards toddlers and elderly people. Therefore,
early detection of abnormal activities is indispensable to prevent any bad consequence due
to delay in detecting the event.

Fall event recognition is one of the most researched abnormal activities over the
past few years [1,2]. The World Health Organization (WHO) has defined a fall event as
a situation in which a person unintentionally lays down onto a lower surface [3]. It is
usually unintentional, as such there will be a sudden change of body position from sitting
or standing to a lower position [4,5]. Noury et al. [6] have categorized a fall event into four
phases; pre-fall, critical, post-fall, and recovery, as illustrated in Figure 1. The pre-fall period
is the phase in which a person is doing normal activities such as walking and sitting. The
critical phase is the condition when there is a large change in body movements, directed
towards a lower surface and ends with a vertical stop. Let us denote the start and end period
of a fall event as T0 and T1. The inactivity period of a person after the fall is recognized
as the post-fall phase. Lastly, the recovery phase is the condition when the person gets
up again after the post-fall phase, where the timing is regarded as the response time, T2.
In general, the main cause for the occurrence of a fall event can be attributed to a loss of
balance due to sudden trip or slip, or instability during movements [7,8]. Furthermore,
WHO has also reported that the fall event is the second biggest death contributor globally
with an estimate of 646,000 cases each year.

Figure 1. The four phases of a fall event.

Age and frailty level are the two most contributing factors for the fall event. Generally,
elderly peoples tend to have weak muscles and they are prone to experience loss of
balance easily. Thus, these factors will increase the occurrence probability of a falling-down
situation. This statement is supported by statistical data from the United States National
Institutes of Health (NIH), which has reported that about 1.6 million elderly peoples are
involved in fall event injuries [9]. Moreover, individuals with low frailty levels, such as
post-operative patients and people with mild disabilities, also belong to a high-risk group
of fall event injuries. A possible consequence of a fall incident to these high-risk people
is severe injury that leads to losing confidence, fear of falling, and loss of independence.
Usually, a “long lie” situation, which is the total length of time of an individual to remain
inactive lying on the floor after the incident, is a good indicator of the injury severity level.
The long lie situation may cause loss of consciousness, hypothermia, internal bleeding, and
dehydration [10]. In addition, the fall event can also cause death in some situations if early
treatment is not administered [11]. Therefore, an early fall event recognition is very crucial
and much needed to reduce the negative consequences and related injuries.

The state-of-the-art fall event recognition technology can be categorized into wearable
device, ambient device, and vision-based system [12]. Generally, wearable devices utilize
gyroscopes, barometric pressure sensors, and accelerometers to automatically detect a fall



Symmetry 2022, 14, 293 3 of 19

event. It is known to have good accuracy, stability, and simplicity. Despite its efficacy,
it requires an individual to wear the device for a prolonged time, which usually causes
discomfort. Ambient devices make use of the infrared sensor, acoustic sensor, and piezo-
electric sensor [13]. This method requires the installation of several ambient sensors at
selected active regions to detect the occurrence of a fall event. However, ambient sensors
are easily affected by noise, which then can trigger false fall event detection. Due to these
circumstances, many studies have focused on vision-based systems to alleviate the afore-
mentioned issues, as well as to allow fast and appropriate assistance. The vision-based
systems rely on either one or more surveillance cameras to detect the occurrence of a fall
event. The main advantages of a vision-based system are high flexibility, less intrusion,
and it does not require other complementary sensors. In this paper, we only focus on a
vision-based system for fall event recognition. Presently, most of the public facilities such
as shopping malls, streets, as well as housing areas have been equipped with surveillance
cameras like Closed Circuit Television (CCTV) or Internet Protocol (IP) cameras. This event
detection has become indispensable in ensuring safety and providing security in public
areas. More importantly, surveillance cameras can provide rich and useful information
about the areas, not just solely for fall event detection. Moreover, recent advancements
in camera technology and high-speed computer networks have made the system more
affordable for commercial purposes.

In real-life situations, a fall event is classified as a sporadic event, in which it occurs
infrequently, and thus the number of training data collected for a supervised system may
not be optimal [14]. The imbalance in training data between fall and normal activities makes
the development of a fall event detection system more challenging. Recently, Convolutional
Neural Networks (CNNs/ConvNet) have gained tremendous achievements and attention,
and have been widely used in various computer applications such as object detection [15,16],
object tracking [17,18], image classification [19,20], image segmentation [21,22], machine
translation [23,24], natural language processing [25,26], and physiotherapy monitoring [27].
This is because CNNs have strong capabilities in learning the object’s features using
multi-layer nonlinear transformations. Apart from that, a transfer learning method can be
adopted to overcome the lack of training data by transferring a set of trained parameters
from one model to a related task [28]. Besides, the top trackers of Visual Object Tracking
(VOT) Challenge in 2015 and 2016, namely MDNET [29] and TCNN [30], have derived
CNNs to represent and train the object appearance model, which has also achieved good
results in tracking performance. Thus, this outstanding capability has motivated us to
employ CNN-based tracker as a feature extractor that is robust to the challenges in fall
event detection.

To the best of our knowledge, most of the existing fall event recognition methods only
focus on classifying the presence of the fall event from normal activities throughout video
sequences. However, our goal is to not only detect the fall event, but we aim to determine
the exact instantaneous fall frame, falldetect in which the fall event occurs. Since time
management is a vital issue in fall event detection, hence reducing the time between the
occurrence of a fall event and the response time will reduce the negative consequences of
fall-related injuries. Therefore, this paper introduces a two-stage fall event detection system.
The first stage aims to detect the object and obtain the object’s trajectories throughout the
contiguous video frames by employing a fully CNN-based tracker. The instantaneous
fall frame detection will be determined in the second stage by modeling the temporal
dependencies between contiguous spatial coordinates using the symmetrically stacked
Recurrent Neural Networks (RNN) with underlying Long Short-Term Memory (LSTM)
networks. The symmetrical stacking of the networks has managed to create a more accurate
deep network that relates the possibility of a fall event to the movement trajectories. The
selection of the symmetrically stacked LSTM network over Vanilla RNN is due to its better
capabilities in capturing time-series relationships and its ability to overcome the issue of
vanishing gradients.



Symmetry 2022, 14, 293 4 of 19

2. Related Works

Over the past few years, there is a large volume of published studies on the devel-
opment of machine learning approaches to fall event recognition. The previous studies
have reported that machine learning approaches can provide a non-intrusive approach and
be less susceptible to noise. There are various different types of features extracted from
video sequences, which are then used to train a classifier to detect the fall event. Generally,
machine learning can be categorized into traditional and deep learning approaches. The
traditional machine learning approaches include basic neural networks, support vector
machine (SVM), and hidden Markov model (HMM), which all follow a shallow learning
paradigm. Meanwhile, a deep learning approach exploits many numbers of hidden lay-
ers that are capable to learn object features and representations directly with little to no
prior knowledge.

The earliest work of fall event recognition using neural networks has been introduced
by Alhimale et al. [31]. Silhouette information is utilized by implementing median filter
background subtraction to separate the foreground from background. Object’s binary map
is then fed to the neural networks and the bounding box aspect ratio is computed for fall
event identification. Utilizing a similar approach, Hsu et al. [32] have introduced a Gaussian
mixture model (GMM) background subtraction to obtain the foreground information.
The bounding box aspect ratio, ellipse orientation, and vertical velocity of the object’s
center point are combined to train the neural networks for fall event detection. Fall event
recognition based on SVM classification has been proposed in [33–36]. In [33], SVM is used
for final fall event classification, which was trained by integrating Hu-moment and body
posture information. The final fall event classification is determined if and only if there is a
fall event, which is characterized by the velocity and changes in the bounding box aspect
ratio. Similarly, authors in [34] have also extracted body posture information by considering
acceleration as an additional feature to cater for the situation in which velocity changes are
not able to provide clear speed differential during fall event movements. In [35], fall event
detection is classified through SVM by taking the object features from the top-view depth
images. They argued that the top-view depth images have less occlusion compared to the
frontal-view images. Iazzi et al. [36] has implemented multi-class SVM, which is trained
using vertical and horizontal histogram representations to classify a fall event from the
confounding events such as bending, sitting, and lying. Unlike others, Zerrouki et al. [37]
claimed that HMM can solve the classification problem better for sequential data. Therefore,
they implemented HMM to discriminate fall events from other normal activities, which
has resulted in reliable fall detection results. Meanwhile, Thuc et al. [38] have introduced
two types of HMMs to model two different scenarios. The first HMM is implemented to
differentiate fall-risk event from walking scenarios, while the second HMM is employed to
determine the exact fall event based on the object shape and motion features.

Nowadays, many researchers have exploited the deep learning approach in fall
event recognition to handle the limitations of traditional machine learning approaches.
Li et al. [39] presented a fall event recognition method by applying CNNs to learn human
shape deformation features in each video frame sequence. A similar approach has also
been explored by works in [40,41]. However, silhouette information is obtained through
background subtraction first, which is later used as the input to the CNNs architecture
despite taking the whole frame information. In [42], human pose information obtained from
the OpenPose algorithm is used to train CNNs to detect the fall event. The paper [43] has
introduced two-stage training with the implementation of Principal Component Analysis
Network (PCANet) as a feature extractor on colored image input. During the first-stage
training, they have applied SVM to predict frame labels from each sub-video that contains
walking, falling, and lying activities, while an SVM is re-applied as an action model to
predict each sub-video label in the second-stage training. Conceptually, similar work has
also been carried out by Wang et al. [44]. However, they extract silhouette information
using Caffe framework and combined it with histograms of oriented gradients (HOG) and
local binary pattern (LBP) to increase the fall event detection performances.



Symmetry 2022, 14, 293 5 of 19

Apart from that, Marcos et al. [45] has incorporated CNNs with motion information,
extracted from optical flow to detect a fall event. While, Haraldsson [46] has employed
motion history images (MHI) to learn the temporal features, which is used to classify fall
events via depthwise CNNs. Additionally, the same idea is used by Kong et al. [47], in which
they have used three-stream CNNs in taking full benefit of object motion and appearance
representations. The work by Abobakr et al. [48] has developed an end-to-end deep
learning framework comprising of convolutional and RNN networks. They have applied
ConvNet to analyze human body features for each frame sequence using depth images
and then model the temporal information to recognize fall events using LSTM architecture.
The paper by Anishchenko [49] has used a fixed second fully-connected (FC) with only
two hidden nodes instead of following the exact AlexNet architecture. Interestingly, the
modification has contributed to better Cohen’s kappa measurement for fall and no-fall
classification. Shojaei-Hashemi et al. [50] has introduced fall event recognition using the
LSTM networks by employing the transfer learning approach to compensate for a small
training data size of fall event. Firstly, the multi-class LSTM network is trained using a
large number of normal human activities. Then, the learned weights are transferred so
that it can be retrained for two-class LSTM for fall event recognition. Feng et al. [51] has
introduced a fall event recognition in complex scenes using object detection approach.
Firstly, the You Only Look Once (YOLO) v3 architecture is used to detect the object and
the tracking process is performed by implementing a Deep-Sort tracking method. Next, a
CNN architecture is used to extract the object features for each trajectory, which is later fed
to the LSTM network to classify the fall event.

Nonetheless, the implementation of CNNs in object tracking application is less ex-
ploited, despite fruitful advantages in other computer vision domains. The difficulty in
fitting the CNNs with limited training data is the major challenge to implement CNNs in
object tracking purpose. This is due to the only information such as position and size of
tracked object can be extracted in the first frame for a model-free tracker setting. Another
drawback of CNNs is a longer training time which makes it impractical to be used in an
online learning-based model update. However, the top trackers of 2015 VOT Challenge,
namely TCNN and MDNET trackers have designed compact CNNs in its tracker architec-
ture. These trackers were based on model-free tracker setting which trained and updated
its object appearance model by using information that was only supplied during the first
frame. Generally, these trackers shared a similar tracking fundamental, but differed a lot
in handling the FC models. The TCNN tracker proposed a tree-structured to handle the
FC nodes by retaining the parent node and deleting the oldest node once a new child
node was spawned out. The TCNN tracker updated its FC models using the positive
training data that were selected from the top matched object appearance model. However,
MDNET tracker updated its FC layers by dividing them into several domains that were
correspond to the most recent training samples. Each domain was trained separately and
then categorized into either tracked object or background.

3. Methods

In this paper, we propose an instantaneous fall event recognition method which
consists of two main modules; (1) object detection and (2) fall frame event recognition as
outlined in Figure 2. The main purpose of the first module is to detect and track the object
of interest throughout the video sequence, in which a fully CNN-based tracker is employed.
The tracker base follows a similar network architecture as used in the Multiple Model
Convolutional Neural Network (MMCNN) tracker [52]. Whereas, the second module
will determine the exact instantaneous fall frame, falldetect by utilizing the LSTM network,
which has been trained using the trajectories information, obtained from the first module.



Symmetry 2022, 14, 293 6 of 19

Figure 2. Pipeline of the proposed approach.

3.1. Dataset

The Fall Detection Dataset (FDD) [53] is used to conduct the experiments. The dataset
consists of 124 annotated RGB videos comprising 94 falls and 30 ADLs videos in two
different simulated situations, termed as the “Coffee Room” and “Home” situation as
shown in Figure 3. This dataset contains acting events, in which the actor has purposely
fall under various fall angles; forward, backward, and lateral. It also includes fall events
from different starting posture positions such as standing and sitting. Nonetheless, the
ADLs videos are excluded in this experiment since our main goal is only to determine the
fall event occurrence. Each video is recorded using a single camera with a frame size of
320× 240 pixels and a frame rate of 25 frames/s.

Figure 3. Sample of images from FDD dataset with “Coffee Room” scene shown at the top row and
“Home” scene shown at the bottom row for three different types of fall event.

3.2. Object Detection
3.2.1. Tracker Architecture

In this section, the head region is selected as the region of interest that will be tracked,
instead of the whole body. Figure 4 depicts eight consecutive samples of the head region
during two different fall event situations. The base MMCNN tracker employed in this paper
consists of three convolutional layers and three FC layers as illustrated in Figure 5. However,
the FC layers’ configurations are modified to produce a compact tracker architecture to be
implemented for object tracking purposes. The Table 1 summarizes the full configurations
of MMCNN tracker architecture. In this work, pre-trained VGG-M weights and biases that
have been trained on ImageNet database [54] are imported as feature extractor and they
will not be retrained due to the limited number of training data. Meanwhile, the weights
and biases for FC layers are randomly initialized and trained using softmax cross-entropy
loss function. All RGB input images will be resized to 75× 75 pixels before they are fed
to the first CNN layer. The first, second, and third CNN layers will have filter sizes of 96,
256, and 512, respectively. Local response normalization and maximum down-pooling
operations are applied to the first and second layers of CNN. The down-pooling kernel
size is 3 by 3 with a stride size of 2. The output of the third CNN layer will be flattened out
into a vector R512 before being passed to the dense classification layers. The number of
hidden nodes for the first and second FC layers are fixed to 512, while the last layer will be
classified into two output classes, either the tracked object or background information.



Symmetry 2022, 14, 293 7 of 19

Figure 4. Head regions during two different fall event situations.

Table 1. The full configurations of the proposed tracker architecture.

Layer Filter Size Stride Padding Output Activation Function

Conv1 7× 7 2 0 96× 35× 35 ReLU
Pool1 3× 3 2 0 96× 17× 17 -
Conv2 5× 5 2 0 256× 7× 7 ReLU
Pool2 3× 3 2 0 256× 3× 3 -
Conv3 3× 3 1 0 512× 1× 1 ReLU

FC1 - - - 512 ReLU
FC2 - - - 512 ReLU
FC3 - - - 2 Softmax

Figure 5. Architecture of the MMCNN tracker.

Additionally, the MMCNN tracker retains a compact number of object appearance
models that are symmetrically aligned for the FC layers’ configurations. The illustration of
symmetrical multiple object appearance models is depicted as in Figure 5, with m refers
as the total number of object appearance models. The MMCNN maintains m models for
the FC layers with the direction to cater for occlusion problems and help to re-detect the
tracked object if it has been occluded for a short period of time. Maintaining several m
models is necessary since the object appearance model will be different before and during
the occlusion. For example, if only a single object appearance is maintained, the model
will have higher probability to be updated with the occlusion information. Contrarily, if
several object appearance models are maintained, the first model might be updated with
occlusion information while, the rest of the models will remain unchanged. Then, the rest
of the models will be a good reference point for the model updates after the occlusion is
over. Simultaneously, this approach helps to reduce model drifting during tracking process
if multiple object appearance models are retained.



Symmetry 2022, 14, 293 8 of 19

Generally, the handling of multiple object appearance models for the FC layers of
MMCNN shares similar fundamental with TCNN and MDNET trackers. However, there
are some improvements that have been proposed. The TCNN handles the FC nodes in
a tree-structure approach by retaining the parent node and deleting the oldest FC nodes
once the new child node is born. The tree-structure approach helps to update the FC
nodes using the top matched appearance model. Similarly, the MMCCN tracker adopts
the tree-structure approach in handling the FC nodes. However, the MMCNN tracker
will retain a set of diverse FC nodes instead of just deleting the oldest model. Figure 6
represents the comparison of the tree-structure approach for TCNN and MMCNN tracker
in updating the object appearance model with n represents the FC nodes. For a new model
update in MMCNN tracker, a parent node will be replaced by a newly spawned child node
according to the similarity score that is calculated during the model update. Hence, the
most similar node will be replaced and updated with the new information.

Figure 6. Comparison of tree-structure approach for (a) TCNN and (b) MMCNN trackers.

Even though we have employed MMCNN tracker in this manuscript, however, there
are some different approaches that have been utilized. The approaches are listed as follow:

1. Implementation using RGB images instead of thermal infrared (TIR) images.
2. The head is used as the region of interest (ROI) instead of the whole body.
3. The sampling candidates’ scheme for the training data.

Generally, the MMCNN is developed for the object tracking purposes using the TIR
images. However, the remarkable improvement of the MMCNN tracker with regards to the
handling of multiple object appearance models have motivated us to adopt the MMCNN
tracker in our experiment. Moreover, the head region is used as the ROI instead of the whole
body as implemented in MMCNN’s experiments. The noticeable drawback of the FDD
dataset is that there are situations in which the tracked object is near to the camera placement
that result in large size of ROI if the whole body is used as the ROI. Hence, to alleviate this
situation, we have selected the head as the ROI with the assumption that the head size will
not differ much as the person moves across the video. Additionally, the MMCNN tracker
have extracted the sampling candidates based on the Gaussian distribution using the last
known tracked object’s position. This situation can cause the background information
is sampled far from the last position. However, we have proposed a different sampling
candidates’ scheme in which the sampling candidates are constrained by a specific rule
where we employed a translation strategy in both foreground and background sampling
candidates’ extraction. This is to ensure that all sampling candidates are sampled at and
nearby the last known position as well as to ensure that all sampling candidates bounding



Symmetry 2022, 14, 293 9 of 19

boxes are generated to a fixed size similar to the first frame information. This is crucial to
mitigate the issue of different ROI regions that exists in the FDD dataset.

3.2.2. Sampling Generation

The tracker is trained according to binary classifier problem with the object of interest
is considered as one class, and the background is considered to be the other class. A
set of sparse sampling data, Btrain = Btrain,+ve

⋃
Btrain,−ve, is generated, which consists

of positive, Btrain,+ve and negative, Btrain,−ve training bounding boxes to represent the
foreground and background regions, respectively, as shown in Figure 7. For initialization,
only the first frame information will be used to train the FC model. While for model update,
which is training a new FC model, the samples are collected from a fixed frame interval.
The number of samples is also lesser compared to the initialization stage where the samples
are generated based on the tracked output, which does not represent the object appearance
perfectly. Hence, it becomes a weak supervision method, where it is normal for the model
to experience model drift after a certain period of tracking. To reduce uncertainty in
sampling generation, each frame will contribute equally in case of tracking drift in some of
the frames.

Figure 7. Sampling candidates with positive and negative samples are shown at the top and bottom
rows, respectively.

Let t represents the current frame, a set of patches of Bt
train,+ve and Bt

train,−ve are sam-
pled with regards to the given first frame ground truth bounding box, Bt

gt = [xt, yt, wt, ht] ∈
R4 as in Equations (1) and (2), where s+ve and s−ve represent the total number of positive
and negative patches, respectively.

Bt
train,+ve =

{
b1
+ve, . . . , bs+ve

+ve

}
(1)

Bt
train,−ve =

{
b1
−ve, . . . , bs−ve

−ve

}
(2)

The Bt
train,+ve bounding boxes are generated by sampling a set of foreground regions

that are similar to Bt
gt with a translation stride threshold, ρ = 15. On the other hand,

Bt
train,−ve bounding boxes are generated by sampling a set of background regions that are

closed to the Bt
gt with each patch, b−ve will follow the rule in Equation (3), where xi and yi

represent the top-left coordinates, w, and h represent the width and height of each patch,
respectively. Then, both Bt

train,+ve and Bt
train,−ve will be resized to 75× 75 pixels to fit the

required input size of the first CNN layer.

b−ve,i = [xi, yi, w, h], bi,−ve 6∈ Bi
gt

with i = {1, . . . , s−ve}
(3)

With the assumption that a head size will not differ much as the person moves across
the video, all generated samples will have a fixed size similar to the first frame information.
The candidate bounding boxes will be generated according to the last known previous



Symmetry 2022, 14, 293 10 of 19

location, which is the tracker output of the previous frame. For Bt
train,+ve, the samples

generated need to fulfill the condition of intersection over union (IoU) rule with regards to
the previous tracker output. The IoU needs to be at least 0.85, which means that the object
moves between the two frames will not be too large. While, for Bt

train,−ve, the IoU must
be less than 0.15, so that they represent the background image that surrounds the tracked
object. When the minimum IoU rule is enforced, the generated Bt

train,−ve will not be too far
from the tracked object, which will help in training the new FC model.

3.2.3. Tracker Model Update

Since the object’s appearance will change as it moves, the tracker must be updated
periodically to avoid model drift issue. A set of Btrain,+ve and Btrain,−ve are collected using
Gaussian distribution with an intersection over union (IoU) limiting factor, c+ve and c−ve,
which are set to 0.7 and 0.3, respectively, with σ = 3. These limits are enforced so that both
training bounding boxes are still sampled around the last updated position given the fact
that it is a model-free tracker with no consequence frames Bgt information. Both Btrain,+ve
and Btrain,−ve will be accumulated throughout r recent frames.

The FC model with the highest score will be selected among the m models, which
will be retrained using similar Btrain,+ve and Btrain,−ve. However, the FC models with the
highest similarity score will be replaced by a newly trained FC model. The FC model
will be trained for a maximum number of 50 epochs using softmax cross-entropy loss
function and Adam optimizer with a fixed learning rate of 0.001. Contrary to the previous
methods [29,30], an old model is not deleted as the object might revisit the scene once again
or the object might strike the same pose again. However, the most similar model will be
updated and spawned as a new node. This scheme allows the tracker to maintain a diverse
set of appearance models, as such any similar model will have limited weights towards the
final decision.

Bt
train,+ve ∼ N (Bt

gt, σ)

s.t. IoUi > c+ve, i = {1, . . . , s+ve}
(4)

Bt
train,−ve ∼ N (Bt

gt, σ)

s.t. IoUi < c−ve, i = {1, . . . , s−ve}
(5)

3.3. Fall Frame Event Recognition

The implementation of fall frame event detection using the LSTM network is explained
in this section. The LSTM network is employed to incorporate temporal information in
detecting a fall event. The tracked object trajectories from the first stage are used to train the
LSTM network in distinguishing between fall and no-fall features. Then, the final features
are smoothed out by a fall event decision-making module to identify the exact frame, in
which the fall event has occurred.

3.3.1. Fall Event Classification

The proposed LSTM network will follow a standard k stacked LSTM layers as depicted
in Figure 8 with h = 32 number of hidden layers. Tracked object trajectories that were
obtained in the first stage are fed to the LSTM network to classify the fall from no-fall event
features with sn = [xn, yn] ∈ Rn×d×1 denotes the spatial coordinates at each time steps,
n, where d is the total number of input. sn will follow weighted components approach
with weight, Ws ∈ Rh×d, which will be randomly initialized. The LSTM is used to relate
the outputs from several previous time steps (n− 1, n− 2, . . . , 0). Hence, at the current
time step, the input sn is mapped to the current output, yn based on the previous hidden
states, (hn−1, hn−2, . . . , 0). hn, which is the current hidden states will be forwarded to
the next sn+1 to estimate the new output features yn+1. A softmax cross-entropy loss
function is applied so that the last output becomes a probability distribution P(hn) with
d ∈ R2 = {fall, no-fall} classes. A five-fold cross-validation procedure is applied to test
performance of the LSTM network. The training data will be divided into five-fold, in



Symmetry 2022, 14, 293 11 of 19

which four out of the five folds will be used to train the LSTM network, while the remaining
fold is used for testing purpose. These procedures are repeated five times, whereby each
fold will be tested independently.

Four different features are used as the input, sn to train the networks as summarized
in Table 2. The F1 features include only the (xn, yn) trajectory coordinates whereas, the F2
features are also based on the trajectory coordinates but with the additional dropout layer
with channel probability of 0.5. Dropout layers are included with the intention of reducing
the over-fitting problem during the training phase. The F3 features are (xn, ynormalize,n)
trajectory coordinates, where ynormalize,n is obtained by normalizing each yn with regards
to the first frame input, y0 as in Equation (6). The motivation behind this normalization
layer is to figure out the significant features, where a fall event should results in a large
change of y-coordinates during the critical phase. Figure 9 depicts the comparison of the
pixel position between yn and ynormalize,n. Similarly, the F4 features implement the same
features as in F3, but with the addition of dropout layers.

yn,i = yi − y0, i = {1, . . . , V} (6)

Figure 8. Stacked LSTM architecture.

0 20 40 60 80 100 120
Frame Length

0

20

40

60

80

100

120

140

Pi
xe

l P
os

iti
on

Pixel position for y_original and y_normalize

ynormalize, n
yn

Figure 9. Comparison graph of yn and ynormalize,n.



Symmetry 2022, 14, 293 12 of 19

Table 2. Description of features used to train RNN architecture.

No. Feature Description

1 F1 xn,yn

2 F2 xn,yn + dropout

3 F3 xn,ynormalize,n

4 F4 xn,ynormalize,n + dropout

3.3.2. Fall Event Decision-Making

The goal of this subsection is to make a final decision on locating the exact fall frame us-
ing previous fall event classification features. Let i represents the current frame, ∆ybest ∈ R1

is calculated based on Equation (8), where yi is the current and yi−1 is the previous output
scores in a video sequence of V length. ∆yi is measured since the output scores of fall event
classification is in d classes, in which the fall frame is detected when the change in output
scores is the biggest. The exact fall frame, falldetect is finally calculated as in Equation (9).

∆yi = yi − yi−1, i = {1, . . . , V − n} (7)

∆ybest = arg max(|∆yi|) (8)

f alldetect = ∆ybest + n (9)

3.4. Performance Evaluation

Four Visual Object Tracking (VOT) evaluation metrics are used to quantify the per-
formance of the trackers that include accuracy (Ac), robustness (Ro), reliability (Re), and
expected area overlap (EAO). The VOT protocol follows a reset-based procedure, in which
a tracking failure, F is triggered whenever a tracker predicts no overlapping areas (IoU = 0)
between the tracker bounding box, Bt and ground truth bounding box, Bt

gt in a video
sequence of V length as ruled in Equation (11). Figure 10 illustrates an example of the IoU
for both bounding boxes. The VOT protocol also requires the tracker to re-initialize five
frames after each failure. Ac measures the average IoU between the Bt and Bt

gt bounding
boxes, while Ro captures the number of F. Re measures the likelihood of successful tracking
after Q frames which have been fixed to 100. Lastly, EAO averages the IoU over a range of
frames between upper limit, limup and lower limit, limlow. The EAO is introduced to rank
the tracker by considering a trade-off between Ac and Ro. Meanwhile mean error, (Mean
Err) is used to quantify the performance of the proposed fall frame event detection. Mean
Err measures the mean error between the detected fall frame, falldetect and the provided
ground truth frame, fallgt.

Ac =
Bt ⋂ Bt

gt

Bt ⋃ Bt
gt

(10)

Ro =
V

∑
i=1

Fi, Fi =

{
1, if IoUi = 0
0, if IoUi > 0

(11)

Re = e−Q Ro
V (12)

EAO =
1

limup − limlow

limup

∑
i=limlow

IoUi (13)

Mean Err =
∣∣ f alldetect − f allgt

∣∣ (14)



Symmetry 2022, 14, 293 13 of 19

Figure 10. Illustration of IoU for both Bt and Bt
gt bounding boxes.

4. Results and Discussion
4.1. Tracker Initialization

The MMCNN, TCNN, and MDNET trackers have been configured as model-free
tracker as such the object appearance model will be learned using the first frame ground
truth bounding box, Bgt. The FC layers will be trained using softmax cross-entropy loss
function and Adam optimizer with a learning rate of 0.0005. The training cycle is set to
a maximum of 50 epochs with a mini-batch sampling size of 128. An equal number of
positive, Btrain,+ve and negative, Btrain,−ve training samples are used to train the trackers. A
similar set of Btrain,+ve and Btrain,−ve training samples are also used to initialize all m object
appearance models for the MMCNN tracker, in case of occlusion that happens in the early
part of the video. Both Btrain,+ve and Btrain,−ve will then be sampled with the limiting factor
of IoU in the model update process for all the trackers. Let c+ve and c−ve represent the IoU
threshold for the positive and negative training data, while N+ve and N−ve indicates the
positive and negative sampling data for the model update process. Similarly, the LSTM
network is trained using softmax cross-entropy loss function and Adam optimizer, but
with the learning rate of 1e−6 and mini-batch sampling size of 32 for a maximum number
of 1000 epochs. A ratio of 1:2 of positive, Strain,+ve versus negative, Strain,−ve training data
is used to train the LSTM network. Table 3 summarizes the list of parameters involved.

Table 3. List of parameters.

Parameter Value

Btrain,+ve 400
Btrain,+ve 400
m 3
c+ve 0.7
cve 0.3
N+ve 50
N−ve 200
Strain,+ve 6200
Strain,−ve 9400

The selection of all parameters has been meticulously performed using greedy op-
timization technique. Three significant parameters have been tested that includes the
optimization technique, learning rate values, and the size of mini-batch for both MMCNN
and LSTM networks. These parameters are denoted as the essential parameters that need
to be accentuated during the training process. The first greedy optimization approach tests
various types of optimizers: Adam, Stochastic Gradient Descent (SGD), RMSProp, and
AdaDelta, in which Adam optimization has been selected as the best optimization tech-
nique. The next greedy optimization covers the selection of learning rate values. Through
the testing, MMCNN tracker and LSTM networks work well with 0.0005 and 1e−6, respec-
tively. Lastly, the greedy optimization is used to find the suitable size of mini-batch with



Symmetry 2022, 14, 293 14 of 19

mini-batch sets to 128 and 32 sampling data are the best values for MMCNN and LSTM
networks, respectively.

4.2. Tracking Performance Comparison of the Fully CNN-Based trackers

This subsection aims to compare and measure the performance of three CNN-based
trackers, which are MMCNN, TCNN and MDNET. Furthermore, each tracker will also be
tested by considering two difficulty attributes, which are background clutter and occlusion
to represent real-life challenges. Firstly, Table 4 shows the full results of each tracker per-
formance without considering any attribute-based video. The MMCNN tracker performs
the best with the highest EAO of 0.167, followed by MDNET and TCNN with 0.158 and
0.145, respectively. Even though the MMCNN tracker has the lowest average accuracy,
which is 0.442, it is more reliable with performance values of 0.855. The tracker is able to
track the object with the fewest number of track failures. Undeniably, average accuracy
will drop over a period of time due to model appearance drift and thus, the trade-off
between accuracy and track failure needs to be observed. Contrarily, TCNN has the highest
robustness with 1.000, followed by MDNET with 0.812. Their higher accuracy values are
caused by frequent re-initialization procedures, but the EAO performance will be lower, as
it neglects the accuracy after the first track failure. Figure 11 shows some output samples
for all tested trackers.

Table 4. Performance comparison of Ac, Ro, Re, and EAO results of all three tested trackers without
considering any attribute-based video.

Method EAO Ac Ro Re

MMCNN 0.167 0.442 0.449 0.855

MDNET 0.158 0.508 0.812 0.738

TCNN 0.145 0.494 1.000 0.692

Figure 11. Samples of tracking output of fully CNN-based trackers.

Background clutter is a situation, in which the background that surrounds the object
of interest has similar appearance information to the foreground as shown in Figure 12a.
Table 5 shows the tracking results of all three trackers with MMCNN still achieves the
highest EAO of 0.274. Surprisingly, TCNN achieves a higher EAO of 0.229 compared to
MDNET for this test case, which is the opposite of the normal test case. MMCNN and
TCNN performances, which are better in this cluttered case can be attributed to training
data that considers the parent node information. In MDNET, the new FC node will be
updated solely based on recent accumulated samples and thus if the scene is cluttered, the
samples will be degenerated in value. However, the failure rates for TCNN and MDNET
are still high with 1.200 and 1.800, respectively. This indicates that both trackers cannot
locate the object as good as MMCNN.



Symmetry 2022, 14, 293 15 of 19

Figure 12. Samples of tracking output according to the attribute-based (a) background clutter
(b) occlusion.

Table 5. Performance comparison of Ac, Ro, Re, and EAO results of the three tested trackers for the
background clutter scenario.

Method EAO Ac Ro Re

MMCNN 0.274 0.431 1.000 0.626

TCNN 0.229 0.395 1.200 0.557

MDNET 0.214 0.471 1.800 0.449

Occlusion is one the challenging aspect in visual object tracking, as such the object
of interest is either partially or fully occluded as illustrated in Figure 13b. Occlusion
affects the hardest for a tracker which follows track-by-detection philosophy as appearance
information is severely limited. Table 6 shows that MMCNN is the top among all trackers
with the highest EAO of 0.204 and robustness of 0.583. The EAO of MDNET is slightly
lower than MMCNN with 0.202 followed by TCNN with 0.175. Furthermore, MMCNN has
the smallest total number of tracking failure which is triggered when IOU is less than zero
as shown in Table 7. Both MDNET and TCNN trackers have a total of 13 tracking failures,
which contribute to the high robustness value of 1.083. On the other hand, the number of
tracking failures for MMCNN is around half of the MDNET and TCNN and thus, it is more
suitable for the implementation in autonomous fall event detection.

Table 6. Performance comparison of Ac, Ro, Re, and EAO results of three trackers for the occlusion case.

Method EAO Ac Ro Re

MMCNN 0.204 0.392 0.583 0.865

MDNET 0.202 0.473 1.083 0.706

TCNN 0.175 0.459 1.083 0.783

Table 7. Comparison of the total number of failure (Iou < 0) of three tested trackers for the occlusion scenario.

Method MMCNN MDNET TCNN

Failure 7 13 13

4.3. Fall Frame Event Recognition Comparison

This subsection is dedicated to validate our proposed approach to recognize the exact
fall frame event, falldetect. The validation process will be done by comparing two different
Recurrent Neural Networks (RNN) models, which are Vanilla RNN and LSTM. The falldetect
is determined according to ∆ybest, extracted from the sequences of ∆yi. Figure 13 depicts
an example of how ∆ybest and mean error are obtained. In short, the mean error is the
average difference between the detected fall frame and its ground truth value. Meanwhile,
Table 8 shows the comparison of the mean error performance of three network models. For



Symmetry 2022, 14, 293 16 of 19

Vanilla RNN, it achieves 36 mean error frames for both F1 and F2 features, followed by F4
and F3 with 37 frames and 43 frames, respectively. Note that, F3 features do not have a
large impact and significant in training all network models for fall event detection. For a
single-layer LSTM case, F1 features produce the lowest mean error of 32 frames, followed
by F4 features. However, there is only a slight difference between the mean error of F2 and
F3 features. It is interesting to note that a single-layer LSTM model performs better with
the addition of dropout layers compared to the Vanilla RNN.

Figure 13. Illustration of the ∆ybest and mean error.

Furthermore, additional experiments have also been performed using various layer
configurations of the Stacked LSTM. F1 features work well on 2 layers of stacked LSTM
with a mean error of 29 frames. However, a further increment in the number of layers will
also increase the mean error value. For F2 features, it performs well with both 3 and 4
layers of stacked LSTM and manages to obtain a mean error of 28 frames. Similarly, the
number of mean error also increases accordingly to the increasing number of layers for
the F3 features. Surprisingly, F4 features provide the most prominent representation with
the lowest number of mean error of 22 frames for 3 layers of stacked LSTM. However, the
same pattern is observed when further testing is done with an additional number of layers,
where the mean error is also increasing. The 22 frames of mean error are still tolerable as
it produces ≈1 s delay time for a real-time application, given 30 frames per second video
data. Hence, Stacked LSTM performs the best compared to the Vanilla RNN and Single
LSTM networks. This is because the hierarchy of the hidden layers enables the network to
represent more complex representations to capture information at different scales.

Table 8. Mean error value for Vanilla RNN, Single-layer LSTM and Stacked LSTM.

No. Features Vanilla RNN Single LSTM Stacked LSTM
2-Layer 3-Layer 4-Layer 5-Layer 6-Layer 7-Layer

1 F1 36 32 29 33 32 35 30 44

2 F2 36 35 33 28 28 31 41 43

3 F3 43 36 26 29 30 32 36 37

4 F4 37 33 26 22 32 37 37 39

5. Conclusions

In this work, we have presented a method to detect instantaneously the frame, in which
the fall event has occurred. Our core approach relies on deep learning representations,



Symmetry 2022, 14, 293 17 of 19

where a fully CNNs tracker is employed to detect and track the object of interest in a video
sequence. Furthermore, we have presented a symmetrically stacked LSTM approach to
identify the fall from no-fall features. The model learns the temporal information and
able to exploit the significant features, specifically the rich amount of information from
human motion. A larger movement difference towards the ground level in the vertical axis
indicates a higher possibility of fall event occurrence. Simulation experiments, tested on
the FDD dataset, have shown that the proposed approach outperforms the state-of-the-art
method in terms of frame mean error and suitable for real-time application. In future work,
depth image will be exploited to further relate the temporal information for a more robust
fall event detection system.

Author Contributions: Conceptualization, N.A.M. and M.A.Z.; methodology, N.A.M.; software,
N.A.M. and M.A.Z.; validation, N.A.M.; formal analysis, N.A.M. and M.A.Z.; investigation, N.A.M.
and M.A.Z.; writing—original draft preparation, N.A.M., M.A.Z., N.A.M.K. and Z.K.; writing—
review and editing, N.A.M., M.A.Z., N.A.M.K. and Z.K. All authors have read and agreed to the
published version of the manuscript.

Funding: This work was funded in part by Ministry of Higher Education Malaysia under Grant
FRGS/1/2019/ICT02/UKM/02/1 and in part by Universiti Kebangsaan Malaysia under Grant
GUP-2019-008.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The orginal dataset can be downloaded from http://le2i.cnrs.fr/Fall-
detection-Dataset?lang=en (accessed on 1 November 2021).

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations
The following abbreviations are used in this manuscript:

ADL Activities of Daily Living
CNN Convolutional Neural Networks
LSTM Long Short-Term Memory
RNN Recurrent Neural Networks

References
1. Khan, S.S.; Hoey, J. Review of fall detection techniques: A data availability perspective. Med. Eng. Phys. 2017, 39, 12–22.

[CrossRef] [PubMed]
2. Khan, S. Classification and Decision-Theoretic Framework for Detecting and Reporting Unseen Falls. Ph.D. Thesis, University of

Waterloo, Waterloo, ON, USA, 2016.
3. Ahmed, M.; Mehmood, N.; Nadeem, A.; Mehmood, A.; Rizwan, K. Fall detection system for the elderly based on the classification

of shimmer sensor prototype data. Healthc. Inform. Res. 2017, 23, 147–158. [CrossRef] [PubMed]
4. Makhlouf, A.; Boudouane, I.; Saadia, N.; Cherif, A.R. Ambient assistance service for fall and heart problem detection. J. Ambient

Intell. Humaniz. Comput. 2019, 10, 1527–1546. [CrossRef]
5. Fortino, G.; Gravina, R. Fall-MobileGuard: A smart real-time fall detection system. In Proceedings of the International Conference

on Body Area Networks, Sydney, Australia, 28–30 September 2015; pp. 44–50.
6. Noury, N.; Rumeau, P.; Bourke, A.; ÓLaighin, G.; Lundy, J. A proposal for the classification and evaluation of fall detectors. Innov.

Res. BioMed. Eng. 2008, 29, 340–349. [CrossRef]
7. Igual, R.; Medrano, C.; Plaza, I. Challenges, issues and trends in fall detection systems. Biomed. Eng. Online 2013, 12, 1–24.

[CrossRef]
8. Mohamed, N.A.; Zulkifley, M.A. Moving object detection via TV-L1 optical flow in fall-down videos. Bull. Electr. Eng. Inform.

2019, 8, 839–846. [CrossRef]
9. Yang, L.; Ren, Y.; Hu, H.; Tian, B. New fast fall detection method based on spatio-temporal context tracking of head by using

depth images. Sensors 2015, 15, 23004–23019. [CrossRef]
10. Bhandari, S.; Babar, N.; Gupta, P.; Shah, N.; Pujari, S. A novel approach for fall detection in home environment. In Proceedings of

the Global Conference on Consumer Electronics (GCCE), Nagoya, Japan, 24–27 October 2017; pp. 1–5.

http://le2i.cnrs.fr/Fall-detection-Dataset?lang=en
http://le2i.cnrs.fr/Fall-detection-Dataset?lang=en
http://dx.doi.org/10.1016/j.medengphy.2016.10.014
http://www.ncbi.nlm.nih.gov/pubmed/27889391
http://dx.doi.org/10.4258/hir.2017.23.3.147
http://www.ncbi.nlm.nih.gov/pubmed/28875049
http://dx.doi.org/10.1007/s12652-018-0724-4
http://dx.doi.org/10.1016/j.irbm.2008.08.002
http://dx.doi.org/10.1186/1475-925X-12-66
http://dx.doi.org/10.11591/eei.v8i3.1346
http://dx.doi.org/10.3390/s150923004


Symmetry 2022, 14, 293 18 of 19

11. Khel, M.A.B.; Ali, M. Technical Analysis of Fall Detection Techniques. In Proceedings of the International Conference on
Advancements in Computational Sciences (ICACS), Lahore, Pakistan, 18–20 February 2019; pp. 1–8.

12. Ge, C.; Gu, I. Y. H.; Yang, J. Human fall detection using segment-level CNN features and sparse dictionary learning. In Proceedings
of the International Workshop on Machine Learning for Signal Processing (MLSP), Tokyo, Japan, 25–28 September 2017; pp. 1–6.

13. Stone, E.E.; Skubic, M. Fall detection in homes of older adults using the Microsoft Kinect. IEEE J. Biomed. Health Inform. 2014, 19,
290–301. [CrossRef]

14. Mohamed, N.A.; Zulkifley, M.A.; Ibrahim, A.A.; Aouache, M. Optimal Training Configurations of a CNN-LSTM-Based Tracker
for a Fall Frame Detection System. Sensors 2021, 21, 6485. [CrossRef]

15. Ouyang, W.; Wang, X.; Zeng, X.; Qiu, S.; Luo, P.; Tian, Y.; Li, H.; Yang, S.; Wang, Z.; Loy, C.-C.; et al. Deepid-net: Deformable
deep convolutional neural networks for object detection. In Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, Boston, MA, USA, 7–12 June 2015; pp. 2403–2412.

16. Ouyang, W.; Wang, X. Joint deep learning for pedestrian detection. In Proceedings of the IEEE International Conference on
Computer Vision, Portland, OR, USA, 23–28 June 2013; pp. 2056–2063.

17. Zulkifley, M.A. Two streams multiple-model object tracker for thermal infrared video. IEEE Access 2019, 7, 32383–32392. [CrossRef]
18. Mohamed, N.A.; Zulkifley, M.A.; Kamari, N.A.M. Convolutional Neural Networks Tracker with Deterministic Sampling for

Sudden Fall Detection. In Proceedings of the International Conference on System Engineering and Technology (ICSET), Shah
Alam, Malaysia, 7 October 2019; pp. 1–5.

19. Shaikh, S.H.; Saeed, K.; Chaki, N. Moving Object Detection Approaches, Challenges and Object Tracking; Springer: Berlin/Heidelberg,
Germany, 2014; pp. 5–14.

20. Simonyan, K.; Zisserman, A. Very deep convolutional networks for large-scale image recognition. arXiv 2014, arXiv:1409.1556.
21. Ronneberger, O.; Fischer, P.; Brox, T. U-net: Convolutional networks for biomedical image segmentation. In International Conference

on Medical Image Computing and Computer-Assisted Intervention; Springer: Cham, Switzerland, 2015; pp. 234–241.
22. Long, J.; Shelhamer, E.; Darrell, T. Fully convolutional networks for semantic segmentation. In Proceedings of the IEEE Conference

on Computer Vision and Pattern Recognition, Boston, MA, USA, 7–12 June 2015; pp. 3431–3440.
23. Zoph, B.; Yuret, D.; May, J.; Knight, K. Transfer learning for low-resource neural machine translation. arXiv 2016, arXiv:1604.02201.
24. Zhou, J.; Cao, Y.; Wang, X.; Li, P.; Xu, W. Deep recurrent models with fast-forward connections for neural machine translation.

Trans. Assoc. Comput. Linguist. 2016, 4, 371–383. [CrossRef]
25. Conneau, A.; Schwenk, H.; Barrault, L.; Lecun, Y. Very deep convolutional networks for natural language processing. arXiv 2016,

arXiv:1606.01781.
26. Zhang, J.; Zong, C. Deep learning for natural language processing. In Deep Learning: Fundamentals, Theory and Applications;

Springer: Berlin/Heidelberg, Germany, 2019 ; pp. 111–138.
27. Zulkifley, M.A.; Mohamed, N.A.; Zulkifley, N.H. Squat angle assessment through tracking body movements. IEEE Access 2019, 7,

48635–48644. [CrossRef]
28. Goodfellow, I.; Bengio, Y.; Courville, A. Deep Learning; MIT Press: Cambridge, MA, USA, 2016.
29. Nam, H.; Han, B. Learning multi-domain convolutional neural networks for visual tracking. In Proceedings of the IEEE

Conference on Computer Vision and Pattern Recognition, Las Vegas, NE, USA, 27–30 June 2016; pp. 4293–4302.
30. Nam, H.; Baek, M.; Han, B. Modeling and propagating cnns in a tree structure for visual tracking. arXiv 2016, arXiv:1608.07242.
31. Alhimale, L.; Zedan, H.; Al-Bayatti, A. The implementation of an intelligent and video-based fall detection system using a neural

network. Appl. Soft Comput. 2014, 18, 59–69. [CrossRef]
32. Hsu, Y.-W.; Perng, J.-W.; Liu, H.-L. Development of a vision based pedestrian fall detection system with back propagation neural

network. In Proceedings of the International Symposium on System Integration (SII), Nagoya, Japan, 11–13 December 2015;
pp. 433–437.

33. Wang, R.-D.; Zhang, Y.-L.; Dong, L.-P.; Lu, J.-W.; Zhang, Z.-Q.; He, X. Fall detection algorithm for the elderly based on human
characteristic matrix and SVM. In Proceedings of the International Conference on Control, Automation and Systems (ICCAS),
Busan, Korea, 13–16 October 2015; pp. 1190–1195.

34. Mohd, M.N.H.; Nizam, Y.; Suhaila, S.; Jamil, M.M.A. An optimized low computational algorithm for human fall detection from
depth images based on Support Vector Machine classification. In Proceedings of the IEEE International Conference on Signal and
Image Processing Applications (ICSIPA), Kuching, Malaysia, 12–14 September 2017; pp. 407–412.

35. Kasturi, S.; Jo, K.-H. Classification of human fall in top Viewed kinect depth images using binary support vector machine. In
Proceedings of the International Conference on Human System Interactions (HSI), Ulsan, Korea, 17–19 July 2017; pp. 144–147.

36. Iazzi, A.; Rziza, M.; Thami, R.O.H. Fall detection based on posture analysis and support vector machine. In Proceedings of the
International Conference on Advanced Technologies for Signal and Image Processing (ATSIP), Sousse, Tunisia, 21–24 March 2018;
pp. 1–6.

37. Zerrouki, N.; Houacine, A. Combined curvelets and hidden Markov models for human fall detection. Multimed. Tools Appl. 2018,
77, 6405–6424. [CrossRef]

38. Thuc, H.L.U.; Van Tuan, P.; Hwang, J.-N. An effective video-based model for fall monitoring of the elderly. In Proceedings of the
International Conference on System Science and Engineering (ICSSE), Ho Chi Minh City, Vietnam, 21–23 July 2017; pp. 48–52.

http://dx.doi.org/10.1109/JBHI.2014.2312180
http://dx.doi.org/10.3390/s21196485
http://dx.doi.org/10.1109/ACCESS.2019.2903829
http://dx.doi.org/10.1162/tacl_a_00105
http://dx.doi.org/10.1109/ACCESS.2019.2910297
http://dx.doi.org/10.1016/j.asoc.2014.01.024
http://dx.doi.org/10.1007/s11042-017-4549-5


Symmetry 2022, 14, 293 19 of 19

39. Li, X.; Pang, T.; Liu, W.; Wang, T. Fall detection for elderly person care using convolutional neural networks. In Proceedings of
the International Congress on Image and Signal Processing, BioMedical Engineering and Informatics (CISP-BMEI), Shanghai,
China, 14–16 October 2017; pp. 1–6.

40. Adhikari, K.; Bouchachia, H.; Nait-Charif, H. Activity recognition for indoor fall detection using convolutional neural network.
In Proceedings of the International Conference on Machine Vision Applications (MVA), Nagoya, Japan, 8–12 May 2017; pp. 81–84.

41. Yu, M.; Gong, L.; Kollias, S. Computer vision based fall detection by a convolutional neural network. In Proceedings of the
International Conference on Multimodal Interaction, Glasgow, UK, 13–17 November 2017; pp. 416–420.

42. Huang, Z.; Liu, Y.; Fang, Y.; Horn, B.K. Video-based fall detection for seniors with human pose estimation. In Proceedings of the
International Conference on Universal Village (UV), Boston, MA, USA, 21–24 October 2018; pp. 1–4.

43. Wang, S.; Chen, L.; Zhou, Z.; Sun, X.; Dong, J. Human fall detection in surveillance video based on PCANet. Multimed. Tools Appl.
2016, 75, 11603–11613. [CrossRef]

44. Wang, K.; Cao, G.; Meng, D.; Chen, W.; Cao, W. Automatic fall detection of human in video using combination of features. In
Proceedings of the International Conference on Bioinformatics and Biomedicine (BIBM), Shenzhen, China, 15–18 December 2016;
pp. 1228–1233.

45. Núñez-Marcos, A.; Azkune, G.; Arganda-Carreras, I. Vision-based fall detection with convolutional neural networks. In Wireless
Communications and Mobile Computing; Hindawi: London, UK, 2017 ; pp. 1–16.

46. Haraldsson, T. Real-time Vision-based Fall Detection: With Motion History Images and Convolutional Neural Networks. Master’s
Thesis, Luleå University of Technology, Luleå, Sweden, 2018.

47. Kong, Y.; Huang, J.; Huang, S.; Wei, Z.; Wang, S. Learning spatiotemporal representations for human fall detection in surveillance
video. J. Vis. Commun. Image Represent. 2019, 59, 215–230. [CrossRef]

48. Abobakr, A.; Hossny, M.; Abdelkader, H.; Nahavandi, S. Rgb-d fall detection via deep residual convolutional lstm networks. In
Proceedings of the Digital Image Computing: Techniques and Applications (DICTA), Canberra, Australia, 10–13 December 2018;
pp. 1–7.

49. Anishchenko, L. Machine learning in video surveillance for fall detection. In Proceedings of the Symposium on Biomedical
Engineering, Radioelectronics and Information Technology (USBEREIT), Yekaterinburg, Russia, 7–8 May 2018; pp. 99–102.

50. Shojaei-Hashemi, A.; Nasiopoulos, P.; Little, J.J.; Pourazad, M.T. Video-based human fall detection in smart homes using deep
learning. In Proceedings of the International Symposium on Circuits and Systems (ISCAS), Florence, Italy, 27–30 May 2018;
pp. 1–5.

51. Feng, Q.; Gao, C.; Wang, L.; Zhao, Y.; Song, T.; Li, Q. Spatio-temporal fall event detection in complex scenes using attention
guided LSTM. Pattern Recognit. Lett. 2020, 130, 242–249. [CrossRef]

52. Zulkifley, M.A.; Trigoni, N. Multiple-model fully convolutional neural networks for single object tracking on thermal infrared
video. IEEE Access 2018, 6, 42790–42799. [CrossRef]

53. Charfi, I.; Miteran, J.; Dubois, J.; Atri, M.; Tourki, R. Optimized spatio-temporal descriptors for real-time fall detection: Comparison
of support vector machine and Adaboost-based classification. J. Electron. Imaging Int. Soc. Opt. Photonics 2013, 22, 041106.
[CrossRef]

54. Russakovsky, O.; Deng, J.; Su, H.; Krause, J.; Satheesh, S.; Ma, S.; Huang, Z.; Karpathy, A.; Khosla, A.; Bernstein, M.; et al.
Imagenet large scale visual recognition challenge. Int. J. Comput. Vis. 2015, 115, 211–252. [CrossRef]

http://dx.doi.org/10.1007/s11042-015-2698-y
http://dx.doi.org/10.1016/j.jvcir.2019.01.024
http://dx.doi.org/10.1016/j.patrec.2018.08.031
http://dx.doi.org/10.1109/ACCESS.2018.2859595
http://dx.doi.org/10.1117/1.JEI.22.4.041106
http://dx.doi.org/10.1007/s11263-015-0816-y

	Introduction
	Related Works
	Methods
	Dataset
	Object Detection
	Tracker Architecture
	Sampling Generation
	Tracker Model Update

	Fall Frame Event Recognition
	Fall Event Classification
	Fall Event Decision-Making

	Performance Evaluation

	Results and Discussion
	Tracker Initialization
	Tracking Performance Comparison of the Fully CNN-Based trackers
	Fall Frame Event Recognition Comparison

	Conclusions
	References

