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Abstract: Generalizing bicommutant theorem to the higher-order commutator case is very useful
for representation theory of Lie algebras, which plays an important role in symmetry analysis. In
this paper, we mainly prove that for any spectral operator A on a complex Hilbert space whose
radical part is locally nilpotent, if a bounded operator B lies in the k-centralizer of every bounded
linear operator in the l-centralizer of A, where k and l are two arbitrary positive integers satisfying
l > k, then B must belong to the von Neumann algebra generated by A and the identity operator.
This result generalizes a matrix commutator theorem proved by M. F. Smiley. To this aim, Smiley
operators are defined and an example of a non-spectral Smiley operator is given by the unilateral
shift, indicating that Smiley-type theorems might also hold for general spectral operators.
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1. Introduction and Preliminaries

Lie algebra is a standard language for continuous symmetry, while operator algebra is
a foundational language for quantum physics, and they usually interact with each other.
For recent studies relevant to the present article in this respect, please refer to [1,2] and the
references therein. In 1960, generalizing von Neumann’s bicommutant theorem (which is
fundamental to the representation theory of C∗-algebras) in the matrix case, M. F. Smiley [3]
proved the following important and interesting fact, to which we may refer as Classical
Smiley Theorem:

Let F be an algebraically closed field and the characteristic is 0 or at least n, and let Mn(F)
be the ring of all n× n matrices whose entries are in F. Let A, B ∈ Mn(F) be such that,
for some positive integer s, ads

A(X) = 0 for X in Mn(F) implies ads
X(B) = 0. Then, B

is a polynomial in A with coefficients in F. Here, the notation ad will be defined below.

After Smiley, D. W. Robinson proved that the above theorem is also valid in the event
that F is not algebraically closed, and gave a final and complete form of Smiley’s theorem
for matrix algebras (cf. [4] or [5], pp. 114–115). In this paper, we seek to generalize Smiley’s
theorem to infinite-dimensional complex Hilbert spaces. This is also partially motivated
by the first author’s study on the long-standing classification problem for quasi-finite
representations of Lie algebras of vector fields (cf. [6]), which plays an important role in
symmetry analysis for mathematics and physics (see, e.g., [7–9]).

Let H be a Hilbert space over complex number field C, and B(H) the C∗-algebra of
all bounded operators on H. There is a natural Lie product [X, Y] := XY − YX for any
X, Y ∈ B(H); thus, B(H) can be viewed as a Lie algebra. The operator algebra generated by
a subset S ⊆ B(H), denoted by 〈S〉, is the smallest algebra containing S . For any operator
A in B(H), we denote by Pol(A) := 〈{A, idH}〉 the algebra of all polynomials in A with
coefficients in C, where idH is the identity operator on H. Throughout this paper, we denote
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the adjoint operator of A ∈ B(H) by A∗, the spectrum of A by σ(A), the set of natural
numbers by N, and the set of positive integers by N+.

For any operator Z ∈ B(H), we can define the corresponding left (respectively, right)
multiplier on B(H) by

LZX := ZX ( respectively, RZX := XZ ) ∀X ∈ B(H).

Then, adZ := LZ −RZ is also a linear operator on B(H). For any s ∈ N+, we denote by
ads

A the s-multiple composition of the operator adA, i.e.,

ads
AX := [A, [A, [A, [A, · · · [A, X] · · · ]]]],

where [A, ·] is repeated s times. If B is a subset of B(H), we denote by B′ the commutant of
B, i.e.,

B′ := {Y ∈ B(H) | XY = YX, ∀X ∈ B}.

The bicommutant B′′ of B is (B′)′, and the s-commutant Bs of B is (Bs−1)′ for any integer
s > 3. Also, for any s ∈ N+, we define the s-centralizer of B by

Cs(B) := {Y ∈ B(H) | ads
XY = 0, ∀X ∈ B}.

These concepts also appeared in some earlier references, such as Chapter 4 in [10]
and [5] p. 113. In particular, when B is a singleton set, we may abbreviate Cs({Z}) as
Cs(Z). Note that C1(Z) = Z′.

Definition 1. An operator A ∈ B(H) is called a (k, l)-type Smiley operator if there exist
k, l ∈ N+ such that Ck(Cl(A)) ⊆ VN(A), where VN(A) is the von Neumann algebra in B(H)
generated by A and idH. In addition, a (k, l)-type Smiley operator A is said to be proper if
Ck(Cl(A)) is contained in the subalgebra Pol(A) of VN(A).

When H is an n-dimensional complex Hilbert space, which is isomorphic to Cn, B(H)
is nothing but the matrix algebra Mn(C). Using the notations above, we may restate the
classical Smiley theorem over C as follows (cf. [5], pp. 113–115):

For any s ∈ N+ and A ∈ Mn(C), one has Cs(Cs(A)) ⊆ Pol(A).

In other words, every n × n matrix over C is a proper (s, s)-type Smiley operator on
Cn for any s ∈ N+. More interestingly, von Neumann’s bicommutant theorem (see, e.g.,
Theorem 4.1.5 in [10]) actually tells us that every A ∈ B(H) is a (1, 1)-type Smiley operator.
Thus, the following question arises naturally:

Which operators on a Hilbert space are (k, l)-type Smiley operators for given k, l?

In the present article, we partially answer this question for spectral operators on a
complex Hilbert space. Loosely speaking, a spectral operator is an operator admitting
a spectral reduction; that is, it can be reduced by a family of spectral projections. These
projections are also known as the resolution of the identity or the spectral resolution of
the given operator. It has been observed in [11] that the spectral reduction is simply the
Jordan canonical form in matrix theory. In other words, every complex matrix is a spectral
operator. Furthermore, another famous example of a spectral operator is a normal Hilbert
space operator that has spectral measures and spectral resolution (cf. Section 4.3 in [12]).
Here, we use an equivalent formulation of spectral operators.

Definition 2 (Theorem 5, Section 4, Chapter XV in [13]). An operator T ∈ B(H) is called a
spectral operator if there is a canonical decomposition of T = S + N into a sum of a bounded
scalar type operator S and a quasi-nilpotent operator N commuting with S. That is, the
scalar part S has a unique spectral resolution E for which S =

∫
σ(S) z dE(z), and the spectrum

σ(N) of the radical part N is simply {0}. Note that T and S have the same spectrum and the same
spectral resolution.
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We refer to the good survey [14] and the famous book [13] for more details on spectral
operators. Clearly, any nilpotent operator, whose kth-power is the zero operator for
some k ∈ N+, is a very common quasi-nilpotent operator. Moreover, J. Wermer [15] has
shown that

The scalar-type operators on a Hilbert space are those operators similar to normal ones.

In this paper, we consider a special but still large family of spectral operators. Denote
by Sln(H) the set of all bounded spectral operators T = S + N whose radical part N is
locally nilpotent, i.e., for every v ∈ H, there exists some k ∈ N+ such that Nkv = 0. The
operators in Sln(H) are a direct generalization of matrices to the infinite-dimensional case,
since the Jordan canonical form of a complex matrix is the sum of a diagonal matrix and a
nilpotent matrix. This is another reason that we here mainly consider the subclass Sln(H)
of spectral operators. The following theorem is our main result, which may be viewed as a
generalization of Smiley’s theorem to Sln(H).

Theorem 1. Every bounded operator on a complex Hilbert space H is a (1, 1)-type Smiley operator,
and every operator in Sln(H) is also a (s, s)-type Smiley operator for any s ∈ N+.

Since Ck(Cl(A)) ⊆ Cl(Cl(A)) and Ck(Cl(A)) ⊆ Ck(Ck(A)) hold for every operator
A ∈ B(H) and any k, l ∈ N+ satisfying l > k, a slightly more general result, as a direct
consequence of Theorem 1, is immediately obtained.

Corollary 1. Every operator in Sln(H) is a (k, l)-type Smiley operator for any two integers k and l
satisfying l > k > 1.

This article is organized as follows. In Section 2, we start with some key lemmas and
apply them to prove Theorem 1. In the process, we will see that the condition l > k in
Corollary 1 can be dropped when l > 2. In Section 3, we give an example of a Smiley oper-
ator, which is provided by a kind of non-spectral operator. Finally, in Section 4, we outline
a plan for settling Smiley-type theorems for general spectral operators in future studies.

2. Proof of the Main Theorem

Before proving our main result, we need two crucial lemmas. The proof of the first
lemma follows from similar lines of argument as in Lemma 1 in [3]. For completeness, we
present the argument here.

Lemma 1. If A ∈ B(H) is similar to a normal operator, i.e., there exists an operator P ∈ B(H)
with bounded inverse P−1 such that P−1 AP is normal, then Cs(A) = A′, i.e., for every X ∈ B(H),
we have ads

A(X) = 0 for some s ∈ N+ implies [A, X] = 0.

Proof. If we prove this lemma for any normal operator A, then the general case readily
follows, observing ads

P−1 AP(X) = P−1ads
A(PXP−1)P.

Henceforth, let A be a normal operator. Then, there is a spectral resolution E such that
A =

∫
σ(A) z dE(z). Due to [A, E(Ω)] = 0 for all Borel sets Ω of σ(A), the Jacobi identity

for the Lie product (cf. [16], p. 1) shows that adAadE(Ω)(X) = adE(Ω)adA(X) for all X
in B(H). It is well known that T ∈ B(H) commutes with both A and A∗ if and only if
TE(Ω) = E(Ω)T for all Borel sets Ω of σ(A) (cf. Chapter II, Theorem 2.5.5 in [10]).

However, the classical Fuglede’s theorem (Chapter IV, Theorem 4.10 in [12]) tells
us that, for any T ∈ B(H) commuting with the normal operator A, the operator T necessarily
commutes with A∗. Therefore, ads

A(X) = [A, ads−1
A (X)] = 0 gives

ads−1
A adE(Ω)(X) = [E(Ω), ads−1

A (X)] = 0.
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It follows by induction that

0 = ads
E(Ω)(X) = (LE(Ω) −RE(Ω))

s(X) =
s

∑
k=0

(−1)k
(

s
k

)
E(Ω)s−kXE(Ω)k.

Note that s can be assumed to be an odd number without loss of any generality, and then
the above equations simplify to [E(Ω), X] = 0, and consequently [A, X] = 0.

Lemma 2. Let A ∈ B(H) be normal. For any X ∈ C1(A), one has [<X, A] = [=X, A] = 0,

[<A, X] = [<A,<X] = [<A,=X] = [=A, X] = [=A,<X] = [=A,=X] = 0.

Here, the real part <X := X+X∗
2 and imaginary part =X := X−X∗

2i are both self-adjoint.

Proof. If [X, A] = 0, then the Fuglede’s theorem gives [X, A∗] = 0, and equivalently
[A, X∗] = 0. Now, the lemma clearly follows by linearity.

Proposition 1. If A ∈ B(H) is similar to a normal operator, then, for any k, l ∈ N+, A is a
(k, l)-type Smiley operator; more precisely, Ck(Cl(A)) = VN(A).

Proof. Firstly, assume that A is normal, and let B ∈ Ck(Cl(A)). For any X ∈ C1(A), we
have [<X, A] = [=X, A] = 0 by Lemma 2. Thus, adk

<X(B) = adk
=X(B) = 0, by definition.

Then, ad<X(B) = ad=X(B) = 0 by Lemma 1. Consequently, [X, B] = 0. That is to say,

A′′ ⊆ Ck(A′) = Ck(Cl(A)) ⊆ A′′ = VN(A).

Now, consider the general case. Choose P ∈ B(H) such that PAP−1 is normal, noting

P · Ck(Cl(A)) · P−1 = Ck(Cl(PAP−1)) = C1(C1(PAP−1)) = P · A′′ · P−1,

we still obtain Ck(Cl(A)) = A′′ = VN(A).

Now, we are in a position to prove the main result. The proof is divided into two cases,
and the main strategy is reducing the second case to the first case.

Proof of Theorem 1. It is divided into s = 1 and s > 2 cases.

Case s = 1. The bicommutant theorem tells us that every A ∈ B(H) is a (1, 1)-type
Smiley operator, i.e., C1(C1(A)) = VN(A).

Case s > 2. Let A ∈ Sln(H) with the canonical decomposition A = S + N. By
Proposition 1 and its proof, we may assume that the radical part N 6= 0, and the scalar part
S is normal. Henceforth, let B be any bounded operator in Cs(Cs(A)).

Let Nj = ker N j := {v ∈ H | N jv = 0} (j = 0, 1, 2, · · · ) be a filtration of H, i.e.,
N1 ⊆ N2 ⊆ · · · ⊆ H =

⋃∞
j=1 Nj. Clearly, each closed subspace Nj is invariant under S since

[S, N] = 0. Let Hj+1 be the orthogonal complement of Nj in Nj+1, which is also closed and
invariant under S, since S is normal. The orthogonal projection from H onto Hj is denoted
by Ej. Note that Nj = H1 ⊕ · · · ⊕Hj and N maps Hj+1 injectively into Hj for any j ∈ N+.
Clearly, NHj+1 and its orthogonal complement in Hj, which will be denoted by H′j, are also
invariant under S, since S is normal and commutes with N. We denote the orthogonal
projection from Hj onto H′j by Pj, and let P̄j := PjEj be the orthogonal projection from H

onto H′j. Note that P̄jN = 0.
For j, k ∈ N+, denote by Ej(k) the orthogonal projection from H onto the closure of H′j +

NH′j+1 + N2H′j+2 + · · ·+ Nk−1H′j+k−1 ⊆ Hj. Inspired by the Cartan elements in the finite-
dimensional irreducible representations of the Lie algebra gl(2)—see, e.g., the standard
book ([16], pp. 31–34)—let us consider two commuting self-adjoint operators, namely
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the projection F(k) := ∑k
`=1 Ek+1−`(`) and the weight operator H(k) := ∑k

`=1 `Ek+1−`(`).
Direct computation shows that

[F(k), S] = [F(k), N] = [H(k), S] = 0, [H(k), N] = [H(k), NF(k)] = NF(k).

Then, ad2
AH(k) = 0, and it follows that ads

H(k)B = 0 by definition of B. By Lemma 1,
we have [H(k), B] = 0. Similarly, [F(k), B] = 0. In particular, [Ej(k), B] = [Ej, B] = 0 for
any j, k ∈ N+. Further consider Y(k) := H(k) + NF(k), and we have ad2

AY(k) = 0; thus,
ads

Y(k)B = 0. Note that Y(k) is similar to H(k); more precisely, Y(k) = e−NF(k)H(k)eNF(k);
thus, we obtain [Y(k), B] = 0 by Lemma 1, and then [N, B]F(k) = 0. Therefore, [N, B] = 0.

Now, for any operator W ∈ C1(S), by Lemma 2, we may assume that W is self-adjoint
by treating its real and imaginary parts separately. Consider

Z(k) := (E1 − δ1k P̄1)WNk−1P̄k, where δ1k = 1 if k = 1, otherwise δ1k = 0.

Obviously, [Z(k), S] = [Z(k), N] = 0, thus ad2
A(H(k) + Z(k)) = 0, and ads

H(k)+Z(k)B = 0.
Simple computation shows that [H(k), Z(k)] = λkZ(k), where λk = k− 1− δ1k. Hence,
e−Z(k)/λk H(k)eZ(k)/λk = H(k) + Z(k). Lemma 1 gives [H(k) + Z(k), B] = [Z(k), B] = 0.
From [P̄1WP̄1, A] = 0, we routinely obtain P̄1[W, B]P̄1 = 0. Thus, E1[W, B]Nk−1P̄k = 0
for every k ∈ N+, which means E1[W, B]E1 = 0. Denote S1 := S|H1 , B1 := B|H1 , and
let Jj : Hj → H be the inclusion map of Hj into H. Then, for any W1 ∈ C1(S1), clearly,
we have J1W1E1 ∈ C1(S), and the above argument proves that [B1, W1] = 0. That is,
B1 ∈ C1(C1(S1)) = VN(S1).

Then, we may approximate B1 in the strong operator topology, by polynomials
pλ(S1, S∗1) in S1 and S∗1 . In brief, pλ(S1, S∗1) → B1. By induction on k ∈ N+, using the
injectivity of N from Hk+1 to Hk, we iteratively see that

pλ(S, S∗)F(k)→ BF(k), Npλ(S, S∗)Ek+1 = pλ(S, S∗)NEk+1 → BNEk+1 = NBEk+1.

Therefore, pλ(S, S∗)→ B, so B ∈ VN(S). What we have actually proven is the following,
roughly finding that the double higher-order centralizer kills the radical part.

Proposition 2. If A ∈ Sln(H) has scalar part S, then Ck(Cl(A)) ⊆ VN(S) for any integers
k > 1 and l > 2.

Finally, we show VN(S) = C1(C1(S)) ⊆ C1(C1(A)) = VN(A) to finish the proof
of Theorem 1. In fact, if a bounded operator X belongs to C1(A), then X must commute
with every spectral resolution for A (cf. [14] p. 226 or Lemma 3, Section 3, Chapter XVI
in [13]). Then, X ∈ C1(S) since A and S have the same spectral resolution. This means that
C1(A) ⊆ C1(S), and consequently C1(C1(A)) ⊇ C1(C1(S)); now, we are finished.

Corollary 2. If A ∈ Sln(H) has scalar part S, then Ck(Cl(A)) = VN(S) ⊆ VN(A) for any
integers l > 2 and k > 1.

Proof. We already know that C1(A) ⊆ C1(S), and thus Cs(A) ⊆ Cs(S) follows inductively.
In fact, for every X ∈ Cs+1(A), one has adAX ∈ Cs(A). By induction hypothesis, we obtain
0 = ads

SadAX = adAads
SX, and then ads+1

S X = 0 follows. Now, the corollary follows from
the obvious fact Ck(Cl(A)) ⊇ Ck(Cl(S)) and Propositions 1 and 2.

We would like to point out that the above corollary is quite useful. For example,
consider a nilpotent Lie algebra (cf. [16], pp. 11–12) N ⊆ Sln(H). There exists an integer
n > 2 such that adn

AB = 0 for any A, B ∈ N, thus Cn(A) ⊇ N, and C1(Cn(A)) ⊆ N′. If H is
separable and irreducible under the action of N, then a version of Schur’s Lemma (cf. [16],
p. 26) states that N′ = CidH. Therefore, the scalar part of every operator in N is simply a
scalar. On the other hand, there is a natural question posed by W. Wojtynski:
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Let X be a Banach space and L a Banach Lie subalgebra of B(X) consisting of quasi-
nilpotent operators; does the associative algebra A(L) generated by L also consist of
quasi-nilpotent operators?

V. S. Shulman and Y. V. Turovskii [17] have given an affirmative answer under a
compactness assumption. They also proved that A(L) is commutative modulo its Jacobson
radical. In [1], the assumption is weakened, i.e., claiming that it only needs to be essentially
nilpotent, and some necessary and sufficient conditions for an essentially nilpotent Lie
algebra of quasi-nilpotent operators to generate the closed algebra of quasi-nilpotent
operators are given. From these results, we see that the irreducible module H over the
nilpotent Lie algebra N is 1-dimensional, which is closely linked with Lie’s Theorem in Lie
theory (cf. [16], p. 15).

Remark 1. Let A be a bounded normal operator on H. By Theorem 1, we know that every operator
B ∈ Cs(Cs(A)) for some s ∈ N+ lies in VN(A). In other words, the operator B is determined
by A. More precisely, by Borel functional calculus (cf. [10], p. 72), we can further see that there
exists f ∈ B∞(σ(A)) such that B = f (A), where B∞(σ(A)) is the C∗-algebra of all bounded Borel
measurable complex-valued functions on σ(A).

In particular, if A is a compact self-adjoint operator on H, then A has the canonical spectral
decomposition (also known as diagonalization) A = ∑∞

i=1 λiPi (see Theorem 5.1, Chapter II in [18]).
Applying the classical Smiley theorem to the finite-dimensional range space of every Pi, we see that
B = ∑∞

i=1 gi(A)χi(A), where gi is some polynomial and χi is the characteristic function of the
singleton set {λi}.

3. Non-Spectral Example of Smiley Operator

In this section, as an example of a non-spectral Smiley operator, we prove that every
infinite-dimensional unilateral shift operator is a proper (k, 2)-type Smiley operator when
k ∈ {1, 2}.

Definition 3 (Proposition 2.10, Chapter II in [18]). Let `2(N+) be the separable Hilbert space
with an orthonormal basis {en}∞

n=1, which consists of all complex number sequences (x1, x2, · · · )
satisfying ∑∞

i=1|xi|2 < +∞. The unilateral shift operator A on `2(N+) is defined by A(en) = en+1
for all n ∈ N+, or equivalently, A(x1, x2, · · · ) = (0, x1, x2, · · · ) for any sequence (x1, x2, · · · ) ∈
`2(N+). Note that σ(A) = D, where D is the closed unit disk in the complex plane (cf. Proposition 6.5,
Chapter VII in [18]). Thus, the unilateral shift operator on `2(N+) is obviously not quasi-nilpotent.

Proposition 3 (Corollary of Problem 147 in [19]). The unilateral shift operator on `2(N+) does
not have any non-trivial reducing subspace, and so is not a spectral operator.

Proposition 4. The unilateral shift operator A on `2(N+) is a proper (k, 2)-type Smiley operator
when k ∈ {1, 2}.

Proof. It suffices to prove C2(C2(A)) ⊆ Pol(A). Taking an arbitrary sequence ξ =
(ξ1, ξ2, · · · )T ∈ `2(N+) and an infinite-dimensional complex matrix X = (xij)i,j∈N+ , then

adA(X)ξ = (AX− XA)ξ

=

(
0,

∞

∑
j=1

x1jξ j,
∞

∑
j=1

x2jξ j, · · ·
)T

−
(

∞

∑
j=1

x1,j+1ξ j,
∞

∑
j=1

x2,j+1ξ j, · · ·
)T

=

(
−

∞

∑
j=1

x1,j+1ξ j,
∞

∑
j=1

(x1j − x2,j+1)ξ j, · · · ,
∞

∑
j=1

(xkj − xk+1,j+1)ξ j, · · ·
)T

,

(1)
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ad2
A(X)ξ = [A(AX− XA)− (AX− XA)A]ξ

=

(
0,−

∞

∑
j=1

x1,j+1ξ j,
∞

∑
j=1

(x1j − x2,j+1)ξ j, · · · ,
∞

∑
j=1

(xkj − xk+1,j+1)ξ j, · · ·
)T

−
(
−

∞

∑
j=1

x1,j+2ξ j,
∞

∑
j=1

(x1,j+1 − x2,j+2)ξ j, · · · ,
∞

∑
j=1

(xk−1,j+1 − xk,j+2)ξ j, · · ·
)T

=

(
∞

∑
j=1

x1,j+2ξ j,
∞

∑
j=1

(−2x1,j+1 + x2,j+2)ξ j,
∞

∑
j=1

(x1j − 2x2,j+1 + x3,j+2)ξ j,

∞

∑
j=1

(x2j − 2x3,j+1 + x4,j+2)ξ j, · · · ,
∞

∑
j=1

(xk−2,j − 2xk−1,j+1 + xk,j+2)ξ j, · · ·
)T

.

(2)

Letting ad2
A(X)ξ = 0, by the arbitrariness of ξ, we know that every matrix X ∈ C2(A)

has the form of

x11 x12 0 0 0 · · · 0 · · ·
x21 x22 2x12 0 0 · · · 0 · · ·
x31 x32 2x22 − x11 3x12 0 · · · 0 · · ·
x41 x42 2x32 − x21 3x22 − 2x11 4x12 · · · 0 · · ·
x51 x52 2x42 − x31 3x32 − 2x21 4x22 − 3x11 · · · 0 · · ·

...
...

...
...

...
...

...
...

xk,1 xk,2 2xk−1,2 − xk−2,1 3xk−2,2 − 2xk−3,1 4xk−3,2 − 3xk−4,1 · · · kx12 · · ·
...

...
...

...
...

...
...

...


.

In the following, we compute C2(C2(A)). Since

(Xξ)(1) = x11ξ1 + x12ξ2,

(Xξ)(k) = xk1ξ1 + xk2ξ2 +
k−2

∑
j=1

[(j + 1)xk−j,2 − jxk−j−1,1]ξ j+2 + kx12ξk+1 (k > 2),

setting (Bψ)(k) = ∑∞
j=1 βkjψj for all ψ = {ψj}∞

j=1 in `2(N+), we obtain

(BXξ)(k) =
∞

∑
l=1

βkl

{
xl1ξ1 + xl2ξ2 +

l−2

∑
j=1

[(j + 1)xl−j,2 − jxl−j−1,1]ξ j+2 + lx12ξl+1

}
, (3)

(XBξ)(k) = xk1(Bξ)(1) + xk2(Bξ)(2) +
k−2

∑
l=1

[(l + 1)xk−l,2 − lxk−l−1,1](Bξ)(l + 2)

+ kx12(Bξ)(k + 1)

= xk1

 ∞

∑
j=1

β1jξ j

+ xk2

 ∞

∑
j=1

β2jξ j


+

k−2

∑
l=1

[(l + 1)xk−l,2 − lxk−l−1,1]

 ∞

∑
j=1

βl+2,jξ j

+ kx12

 ∞

∑
j=1

βk+1,jξ j


=

∞

∑
j=1

{
xk1β1j + xk2β2j +

k

∑
l=3

[(l − 1)xk−l+2,2 − (l − 2)xk−l+1,1]βl,j + kx12βk+1,j

}
ξ j.

(4)
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It follows that

(XB− BX)ξ(k) =

{
xk1β11 + xk2β21 +

k

∑
l=3

[(l − 1)xk−l+2,2 − (l − 2)xk−l+1,1]βl,1

+ kx12βk+1,1 −
∞

∑
l=1

βkl xl1

}
ξ1 +

{
xk1β12 + xk2β22

+
k

∑
l=3

[(l − 1)xk−l+2,2 − (l − 2)xk−l+1,1]βl,2 + kx12βk+1,2 −
∞

∑
l=1

βkl xl2

}
ξ2

+
∞

∑
j=3

{
xk1β1j + xk2β2j +

k

∑
l=3

[(l − 1)xk−l+2,2 − (l − 2)xk−l+1,1]βl,j

+ kx12βk+1,j − (j− 1)βk,j−1xl2 +
∞

∑
l=j

βkl [(j− 1)xl−j+2,2 − (j− 2)xl−j+1,1]

}
ξ j.

(5)

Considering a special case when x11 = 1, xij = 0 (i 6= 1, j 6= 1), we have

Xψ = (ψ1, 0,−ψ3,−2ψ4, · · · ,−(k− 2)ψk, · · · )T , (6)

(XB− BX)ξ =

(
β12ξ2 +

∞

∑
j=3

(j− 1)β1,jξ j,−β21ξ1 +
∞

∑
j=3

(j− 2)β2,jξ j,

− 2β31ξ1 − β32ξ2, · · · , (1− k)βk1ξ1 − (k− 2)βk2ξ2, · · ·
)T

.

(7)

Hence

(X(XB− BX))ξ =

(
β12ξ2 +

∞

∑
j=3

(j− 1)β1,jξ j,

0, 2β31ξ1 + β32ξ2, · · · , (1− k)(2− k)βk1ξ1 + (k− 2)2βk2ξ2, · · ·
)T

,

(8)

((XB− BX)X)ξ =

(
∞

∑
j=3

(j− 1)(2− j)β1,jξ j,

− β21ξ1 −
∞

∑
j=3

(j− 2)2β2,jξ j,−2β31ξ1, · · · , (1− k)βk1ξ1, · · ·
)T

.

(9)

If X(XB− BX) = (XB− BX)X holds, then, by (8) and (9), we have

β1k = 0 (k 6= 1), β2k = 0 (k 6= 2) , βk1 = 0 (k 6= 1), βk2 = 0 (k 6= 2).

Next, we consider another case in which x12 = 1, xij = 0 (i 6= 1, j 6= 2); from similar
procedures as above, we can obtain

βkj = 0 (k 6= j), βk+1,k+1 − βk,k = βk,k − βk−1,k−1 (k > 2).

That is, B is an infinite-dimensional bounded diagonal operator with the matrix form
diag(β11, β22, · · · ) satisfying βk+1,k+1 − βk,k = βk,k − βk−1,k−1 (k > 2). Since all diagonal
entries in a bounded diagonal operator are uniformly bounded (see Problem 61 in [19] or
Exercise 8, Section II.1 in [18]), it is immediately known that

βk+1,k+1 − βk,k = βk,k − βk−1,k−1 = 0 (k > 2).
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Thus, we can set βk,k = λ, where λ is an arbitrary complex number, then B = λ · id`2(N+),
which states that

C2(C2(A)) = Cid ⊆ Pol(A).

The proof is completed now.

4. Concluding Remarks

In this article, we mainly prove that for any bounded spectral operator A = S + N on
a complex Hilbert space H, if the radical part N is locally nilpotent, i.e., if

H0 := {v ∈ H | Nkv = 0 for some k ∈ N+} = H,

then Cs(Cs(A)) ⊆ VN(A) for every s ∈ N+. Now, consider the general case—namely, the
radical part N is only known to be quasi-nilpotent. Without loss of generality, we may
suppose that the scalar part S is normal. Decompose H into the direct sum of H0 (the closure
of H0) and H⊥0 , and then H0 is clearly invariant under S, N since SN = NS, and thus H⊥0 is
invariant under S. For convenience, denote by E0, E1 the orthogonal projections from H

onto H0,H⊥0 , respectively.
Let B ∈ Cs(Cs(A)) and s > 2. For any W ∈ C1(S), by similar arguments as in the proof

of Theorem 1, it seems that if Cs(Cs(E1 AE1)) ⊆ VN(E1SE1) holds, then one might be able
to show that Cs(Cs(A)) ⊆ VN(S). Note that E1 AE1 is a spectral operator on H⊥0 whose
radical part is injective, and injective quasi-nilpotent operators behave as weighted shifts, at
least for compact ones on separable Hilbert spaces. However, in Section 3, we have shown
that the unilateral shifts are Smiley operators. This strongly indicates that our Smiley-
type theorem can be further generalized, possibly to general spectral operators. Such
generalizations and applications to infinite-dimensional representations of Lie algebras
will be carried out in the future.
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