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Abstract: Background and Objectives: Due to the soft-field effect of the electromagnetic field and the
limit of detection, image reconstruction of magnetic induction tomography has to recover more
complex electrical characteristics from very few signals. These cause a problem which have under-
determination, nonlinearity, and ill-posed characteristics, and therefore lead to many difficulties in
finding its solution. Although many regularization image reconstruction methods exist, they are
not suitable for MIT applications due to regularization parameter selection. The purpose of this
paper is to study the principle of particle swarm optimization with simulated annealing, and to
propose a regularization method for reconstruction, which will provide a new way to solve the MIT
image problems. Methods and Models: Firstly, the regularization principle of image reconstruction of
MIT will be analyzed. Then the hybrid regularization algorithm, including Tikhonov and NOSER
regularization, will be developed, using the dimension of the Hessian matrix as a penalty term
respecting the prior knowledge. PSO-SA algorithm will be applied to obtain an optimal solution
for regularization parameters. Finally, six typical numerical models and approximately symmetrical
cerebral hemorrhage models by COMSOL will be carried out, and the voltage signals obtained from
the simulation will be used to verify the proposed reconstruction method. Results: Through the
simulation results, the proposed imaging method has the average CC values of 0.9932, 0.8286 and the
average RE values of 0.4982, 0.8320 for simple and complex models, respectively. Moreover, when
the SNR changes from 55 dB to 35 dB, the CC value of the cerebral hemorrhage model reduced by
0.1034. The results demonstrate the effectiveness and high theoretical feasibility of the proposed
method in MIT image reconstruction. Conclusions: This study indicates the potential application of
PSO-SA algorithm in regularization imaging problem. Compared with traditional regularization
imaging methods, the proposed method has the advantages of better accuracy, robustness and noise
resistance, showing the certain application value in other similar ill-ness imaging problems.

Keywords: regularization algorithm; PSO-SA; MIT; image reconstruction; Tikhonov; NOSER

1. Introduction

Magnetic induction tomography (MIT) is an innovative electromagnetic imaging
technique used to visualize the electrical properties (EPs) of an object under investigation.
It calculates the spatial distribution of electrically conductive and magnetically permeable
materials through an electromagnetic sensor array around a target object. Due to its safe,
non-invasive, non-contact and harmless characteristics, MIT technology can be applied
in the fields of medical imaging [1-4], industrial process control [5,6], and geological
exploration [7].
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MIT can use the measured voltages to image the conductivity distribution of objects.
Image reconstruction is a vital part of MIT. As the number of the measured voltage data is
usually limited and is fewer than the unknown conductivity data, MIT’s inverse problem
is ill-posed, usually under-determined and nonlinear. This makes the image reconstruction
of MIT low resolution and obstructs the application of MIT.

In order to improve the accuracy of imaging, researchers have proposed a number of
image reconstruction algorithms. However, there is a problem with image reconstruction
algorithms: most of the current algorithms only rely on experience to determine penalty
term parameters and matrix construction, but these factors have a decisive effect on the
image reconstruction quality. As a result, the quality of the reconstructed images and the
final scheme effect cannot reach the best possible solution.

In this paper, a modified hybrid regularization method for image reconstruction is
proposed. Comparing with traditional algorithms, the proposed algorithm can improve
the quality of the reconstructed images and obtain better noise immunity. The proposed
method obtains lower CC and RE values in the numerical simulation experiments. The
contributions of this paper are as follows:

(1) Take the dimension of the Hessian matrix to obtain a novel penalty term.

(2) Propose a modified hybrid regularization algorithm and add the penalty term in the
MHR (modified regularization algorithm).

(3) To find the optimal parameters, the combined PSO-SA optimizers are proposed.

(4) Use the correlation coefficient (CC), relative error (RE) and condition number of the
Hessian matrix to evaluate the effectiveness of the proposed method.

The rest of the paper is organized as follows: in Section 2, some related works about
image reconstruction of MIT are reviewed. In Section 3, the MIT principles are introduced
alongside the proposed method. In Section 4, some simulation experiments and results
are completed to analyze the performance of the proposed method. The conclusions are
discussed in Section 5.

2. Related Work

Many image reconstruction schemes have been proposed in recent decades, and they
can be classified into non-iterative and iterative algorithms. Non-iterative algorithms
mainly include linear back project (LBP), Tikhonov, NOSER, total variation (TV), and
hybrid regularization algorithm. Li et al. [8], based on the magnetic field lines’ distribution,
proposed an improved BP image reconstruction algorithm which achieved good results
in reflecting the location and shape information under the perturbation. Sun et al. [9]
also made some improvement in linear back projection algorithm by decomposing the
existing measurement data and recreating the way of backward deduction. Hao et al. [10]
presented an improved Tikhonov algorithm to alleviate the ill-posed characteristics of the
MIT inverse problem. The two weighted matrices were estimated using the solution of
the Tikhonov regularization algorithm. Chen et al. [11] proposed a method based on a
stacked autoencoder (SAE) neural network and it is compared with back-projection to
verify the practicability. Wang et al. [12] proposed a modified Tikhonov algorithm for
MIT which used a random boundary optimization method and they tested the method
with two simple models which resulted in high accuracy. Andrea et al. [13] proposed TV
function to realize in vivo imaging of physiological data for EIT, which was solved by
the lagged diffusivity method and the primal dual-interior point method (PD-IPM). In
addition, discontinuities were preserved well in reconstructed profiles. Gong et al. [14]
adapted the finite element model (FEM) framework and total generalized variation (TGV)
regularization to obtain EIT reconstructed images, which promoted more realistic images
compared with TV regularization. Song et al. [15] proposed an adaptive total variation
(SATV) regularization algorithm which used the spatial characteristics to optimize the
regularization term as well as the regularization factor. Chen et al. [16] proposed a hybrid
algorithm, which combined Tikhonov and variation regularization algorithm together.
Tikhonov is used to get the preliminary image and then variation algorithm is used to
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reconstruct the image. He et al. [17] combined Tikhonov and NOSER regularization to
propose a novel hybrid regularization algorithm, which improved the spatial resolution.
Liu et al. [18] proposed a hybrid regularization algorithm by combining the advantages of
the Tikhonov and TV regularization, which enhanced spatial resolution effectively.

Among iterative algorithms, Newton—-Raphson (NR), the Landweber, conjugate gradi-
ent (CG) and simultaneous iterative reconstruction technique (SITR) all received consid-
erable attention. Han et al. [19] introduced weighting matrix and L1-norm regularization
in iterative NR algorithm. This can reduce the drawbacks of large estimation errors and
improve the stability of the image reconstruction algorithm. Liang et al. [20] proposed a ro-
bust and stable reconstruction method for EIT called the Lagrange-Newton method which
combined the Newton—-Raphson iteration algorithm and the Lagrange multiplier method.
Yan et al. [21] proposed the Landweber iterative algorithm with fuzzy thresholding, in
which the threshold value of each iteration was generated by minimizing the measure
of fuzziness of the current reconstructed image. Liu et al. [22] proposed an improved
iterative Landweber algorithm, which used a Tikhonov regularization reconstructed image
as the initial iterative value for the iteration. Zhang et al. [23] used a wavelet function
to fuse reconstructed images by iterative Landweber and conjugate gradient least square
(CGLS) algorithms. Wang et al. [24] used the conjugate gradient algorithm for EIT im-
age reconstruction based on pulmonary prior information. Wang et al. [25] presented a
two-step Landweber-type iteration method which is used to support the reconstruction
of EIT, and can reduce the iterative times. Hao et al. [26] analyzed SIRT algorithm using
pre-iteration and proposed the projected SIRT algorithm to improve the speed of the image
reconstruction and alleviate the ill-posed EMT inverse problem.

Considering that extreme changes in conductivity causes the instability in the recon-
struction, a penalty term is added to iterative schemes based on optimization methods.
Therefore, in the actual image reconstruction processes, regularization parameter selection
has gradually become a research focus. Ando et al. [27] developed the empirical likelihood
information criterion to select the regularization parameter of the penalized empirical
likelihood estimator. Dario et al. [28] proposed a function of the regularization parameter
by analyzing the relationship between the energy evolution and the density of current, and
therefore designed an automatic Tikhonov regularization parameter selector for ECT. An
extended L-curve method was proposed by Xu et al. [29], which determined the regulariza-
tion parameter associated with either the global corner or the new corner. Liao et al. [30]
exploited the generalized cross-validation (GCV) method for an automatic regularization
parameter selection scheme. Wen et al. [31] used GCV to select the regularization parameter
for TV regularization problems, and determined the optimal regularization parameter in
each iteration of the first-order primal-dual method. Scherzer et al. [32] chose the regular-
ization parameter for Tikhonov regularization algorithm by using Morozov’s discrepancy
principle. Recently, more efforts have been made in multiple regularization parameter
selection to improve the quality of reconstructed images. Zhang et al. [33] presented particle
swarm optimization (PSO) to draw inspiration from analyzing the dynamic characteristics
of particle positions. Gong et al. [34] proposed an adaptive parameter technique for strategy
adaptation in differential evolution (DE).

Most methods have a question that the majority of current algorithms are determined
by the penalty parameters and the matrix construction only by experience. However,
these factors are vital to the quality of reconstruction and have a decided influence on
the image reconstruction. Thus, in this paper, a modified hybrid regularization algorithm
has been proposed which obtains the novel penalty term by taking the dimensions of
the Hessian matrix as the prior knowledge and uses particle swarm optimization with
simulated annealing algorithm to find the optimal solution. Table 1 lists some of the related
works with the same metrics of the proposed method.
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Table 1. The methods and results of partial related works.
Author Fields Method Results

Wang et al. [12] MIT Improved TK f{]czz : 825
Chen et al. [16] MIT TK & Variation s
Han et al. [19] MIT Iterative NR CC<0.70

Liu etal. [18] EMT TK & TV % : 8_’;3

Hao et al. [26] EMT Projected SIRT % : gfg
Song et al. [15] ERT Spatially Adaptive TV Eg : 823
Zhang et al. [23] ECT Iterative Landweber& CGLS ig ; 82{?
Wang tal. 125 et Londwaber  RES011

TK: Tikhonov; NR: Newton-Raphson; TV: Total Variation; SIRT: Simultaneous Iterative Reconstruction Technique;
CGLS: Conjugate Gradient Least Square.

3. Principles and Method
3.1. MIT Principles

There are two major calculation problems in MIT. The forward problem is to obtain the
corresponding boundary voltages from the conductivity distribution. The inverse problem,
which is ill-posed, means using the reconstruction algorithms to reconstruct the images by
converting the measured voltages.

The forward problem of MIT is defined as computing the electromagnetic fields for
a given geometry, distribution of dielectric properties, operating frequency, and source
current, subjected to known boundary conditions. Assuming time-harmonic fields with
angular frequency w, the governing Maxwell’s equations [35] are expressed as:

Vx%:aE%—k
V x E = —jwB 1)
VxB=0

where B and E are the magnetic flux density and the electric field intensity, respectively,
o is conductivity, g is permeability, J, is the current source in excitation coil, and the
displacement currents in the conductor are too small and can be negligible. V is the
Hamiltonian operator.
The forward problem of MIT can be solved by magnetic vector potential A, which is
satisfied with Equation (2):
VxA=B )

Substituting Equation (2) into Equation (1) gives:

V x A
Ho

V x

= —jwA +]; 3)
V x A = 01is called the Coulomb standard condition which is introduced later in this
paper. Equation (4) can be acquired by:

V2A
; —jwcA+J, =0 4)
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The solution of A can be solved according to Equation (4) by using the finite element
method. In addition, the induced voltage of the sensing coil can be presented as follows:

V = —jw X Ngi /Z'A .dl )

where V is the induced voltage, n.; indicates the turns of the coil, d/ indicates the line
integral, and I denotes the line along the sensing coils.

For image reconstruction, it is possible to find a solution () to the MIT conductivity
problem by constructing a discrete linear problem of the form:

V =So 6)

where V represents the vector of the voltage, o represents the conductivity distribution,
S € R™*" represents the sensitivity matrix, m is the number of the excitation coils, and n is
that of the receiver coils.

The MIT inverse problem can be presented as:

c=5"1v @)

It is ill-conditioned and under-determined for limited measure data. To achieve good
quality MIT images, image reconstruction algorithms of MIT are the focus of
current researches.

3.2. Hybrid Regularization Method Based on PSO-SA
3.2.1. Regularization Reconstruction

The mathematical model of the MIT system, expressed as the sum of the least-squares
error, is shown in Equation (8), according to the least-squares method [36]. This can
make the calculated voltage value So and the measured voltage value V match as closely
as possible.

min{[|V - So|*} 8)

The partial derivative is calculated to obtain the vector of the reconstruction conduc-
tivity. We can then minimize the objective function, and evaluate k iterate estimates oy,
using the formulas given by:

Aoy, = (STS) 'ST (Vi — Se)
Ok1 = Ok + Aok

)

The Vi, represents the vector of the measured voltage; the process will iterate until it
meets the certain criteria or reaches the maximum number of iterations. To provide stability
to the ill-posed least-squares problem by dampening or filtering the unwanted low singular
values in an implicit fashion, a penalty term is usually added into Equation (8). The penalty
term is also called the regularization term. The general form of regularization algorithm is
described in Equation (10):

mgin{||V—ScTH2 + AR(0)} (10)

where A is the regularization factor, ||V — So| |2 is named the data fidelity term, indicating
that the closeness between V and So, R(0) is penalty term, which impose constraints to the
solution. Two typical regularization algorithms are described in detail below.

Tikhonov regularization Tikhonov regularization algorithm is widely used for solv-
ing the MIT inverse problem. The optimization objective function is shown in Equation (11),
and the solution can be achieved by minimizing it.

mgin{llV—SUHZJr“YHIUHZ} (11)
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|[1o||? is the penalty term of the standard Tikhonov regularization algorithm, and I
represents the regularization matrix, which is calculated by Equation (12).

6)={ o b (12)

others

The solution of the standard Tikhonov regularization algorithm can be calculated by:

Aoy, = (STS + 41T1) ST (Vpn — Soy.)

(13)
Ok+1 = Ok + Aok

Tikhonov regularization algorithm makes the numerical solution stable, but it will
cause excessive smoothness to the edges of the reconstructed images and result in the loss
of the image details.

NOSER regularization Newton one-step error reconstruction (NOSER) is the devel-
opment based on satisfactory results to minimize Newton algorithm execution time. It
takes only one step for Newton’s method to become effective: it starts from a constant
conductivity distribution and it approximates linearization. For NOSER regularization
algorithm, the objective functional is:

. 2 2
min{ ||V — Sc||* + «|[De||*} (14)

The NOSER regularization algorithm uses D'D = diag (STS> for the constraining ma-

trix and « is a constant known as a regularization parameter. Given an initial conductivity,
the NOSER regularization algorithm solves the inverse problem by:

Aoy = (STS +aD™D) 'ST (Vi — Soye)

(15)
Ok+1 = Ok + Aok

This algorithm can locate the perturbed regions accurately and quickly according to
Equation (15), but it is sensitive to the signal noise of inverse problem.

3.2.2. Hybrid Regularization Algorithm

Based on the previous analysis, adding both Tikhonov and NOSER penalty terms
to Equation (8) can decrease the condition number of the Hessian matrix. However,
the high singular values of the Hessian matrix reduce rapidly, which will remove the
detailed information due to the fact that the high singular values play key roles in image
reconstruction. The modified hybrid algorithm is obtained by adding a novel penalty term,
which is inspired by the dimension of the Hessian matrix, into a hybrid regularization
algorithm. To get better reconstruction results, the objective function can be defined
as follows:

ming() = min{ |V - S¢|* + || Der|* + 1o + || Lr|* | (16)

In Equation (16), the first term is called the data fidelity term, the second term is the
NOSER penalty term, applied to enhance the stability, and the third term represents the
Tikhonov penalty, filtering the contribution of lower singular values to the solution of
Equation (16). The fourth term represents the novel penalty term, which can dampen the
quick attenuation of high singular values effectively. It is calculated as follows:

L= LB (17)
n

where n is the dimension of the Hessian matrix and all the elements in the n-dimensional
matrix B are 1. The Newton-Raphson iteration algorithm is used for solving the mini-
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mization of the objective function Equation (16). The first-order gradient function of the
objective function of the modified hybrid regularization algorithm can be obtained by:

¢/(c) = —S"(V — 5¢) + aD"Do + 11"Io + L Lo (18)

The second-order gradient function (Hessian matrix) of the objective function can be
calculated by Equation (19):

¢" (o) = STS+aD'D + 11" 4 BLTL (19)
The final iterative formula is:

Aoy = —[¢" (e1)] ¢’ (1) (20)

Singular value decomposition was employed to decompose the three regularization
Hessian matrix in Equation (19).

¢" () =S'S+aD'D + 111+ BLTL
= P(Z1 + aZp + 7% + fEL)QT (21)
=PxQf

where X is the singular value matrix of STS, ¥p, &1 and %, are the singular value matrix
of the NOSER, Tikhonov and penalty term, respectively. The P = [p;,p, - - ,p,,,] € R™*™
and Q = [qy,9, - - - ,q,] € R"*" are unitary matrices with columns that are orthonormal,
called left and right singular vectors respectively. The diagonal matrix X can be defined
as follows:

Y. = diag(a; + ad; + vi; + Bl;) € R™" (22)

where aj, d;, ij and [; represent the diagonal elements of X1, ¥j, Xp and X, respectively.
They are the singular values of ¢ (¢), which reflect the relationship between the conduc-
tivity distribution and the measured voltages. The pl; guarantees the slow decay of high
singular values and dampens the unwanted low singular values.

3.2.3. PSO and SA Algorithm

The multi-parameter regularization algorithm offers a certain degree of flexibility
and enhances the image quality. In this work, the particle swarm optimization (PSO)
and simulated annealing (SA) optimizers are considered to select better regularization
parameters for improving the performance of image reconstruction.

Particle swarm optimization (PSO) PSO is a global optimization algorithm inspired
by the behavior of bird flocks and fish schools searching for food [37,38]. Every potential
solution is called a particle in PSO algorithm. Each particle i has its own position x; and
velocity vj in the search space. Firstly, the positions and velocities of a group of particles are
initialized randomly, and then the optimal solution can be searched by updating generations
in the search space. As iteration progresses, the position and velocity of each particle is
updated with a function of its fitness and the corresponding values of its neighbors. At
each time step, the position x?l and velocity V?Ll of the i particle are updated according to
the following Equation (23).

vith =¥+ an(pf = X)) + cara (8hes =)
= x4yt (23)

X:W@:Cl‘i‘czl >4
where constriction factor x can control the final convergence of the system behavior and

search different regions effectively, gf . is the global best position in the whole swarm,
p! is the i particle’s optimal position, and ¢; and ¢, are learning factors, representing the
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learning ability of particles in their best position and the best position of the swarm. r; and
1y are random values distributed in [0, 1]. In order to prevent the i particle missing the
optimal solution, the velocity of each particle is limited between [—vVmax,Vmax]- The search
and optimization process is carried out by Algorithm 1.

Simulated annealing (SA) The concept of simulated annealing (SA) is proposed for

finding optimized problems solutions in 1983 [38,39]. The SA mainly simulates the model-
ing of molecular movement in materials during annealing. In the process of annealing, it
will accept a solution which is worse than the current solution with a certain probability,
and jump out of the local optima. The method simulates the physical process of annealing
a solid material and then cooling it naturally after heating it to a high enough temperature.
Algorithm 2 shows the specific solving process of SA.

Algorithm 1 Pseudocode of PSO algorithm.

1: Initialize a swarm of particles with random positions and velocities in the search space
2: Repeat

3:
4:

adjust constriction factor value x
for all particles in swarm do

5: calculate particle’s fitness

6: if fitness is better than that of the best particle
then

7 update best particle and save fitness

8: end if

9: end for

10:  for all particles in swarm do

11: retrieve best particle from neighborhood

12: update position and velocity

13:  update position and velocity

14:  end for

15: until reaching termination condition
16: return solution of best particle in swarm

Algorithm 2 Pseudocode of SA algorithm.

1: Set all parameters : the initial temperature Ty (higher enough), the iteration number Itermax,
temperature coefficient ¢, i denotes the present solution at time k with a cost C(i), j denotes the
neighboring solution with a cost C(j)

2: do while Ty, > Ty

3: for (j=1;j < N;j++),do

4: generate the neighboring solution j of the current solution i
5: calculate AE = C(j) — C(i)

6: ifAE<O0

the neighboring solution is set as the new current solution

7: else

8: calculate

9: p = exp(—AE/KgTy)

10:  Selecta number R € [0,1]

11:  ifp = exp(—AE/KgTy) > R

12: then the neighboring solution is set as the new current solution
13: end if

14:  end for

15: Ty =exToK=K+1;

16: end do

17: return the best solution

3.2.4. Parameters Selection Based on PSO-SA

Regularization parameters selection in the ill-posed inverse problem can be conducted

as a typical optimization problem. The advantages of particle swarm optimization with
simulated annealing behavior (PSO-SA) combines PSO and SA which can calculate quickly
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and obtain the global optimum solution. The multi-parameter regularization algorithm
offers a certain degree of flexibility and enhances the image quality. In this work, the particle
swarm optimization (PSO) and simulated annealing (SA) optimizers are considered to select
better regularization parameters for improving the performance of image reconstruction.
In PSO-SA, and according to the PSO structure, the particle swarms are created randomly.
Following this, the next position of each particle is determined by using Equation (24).
At this stage, the new position of the particle can be determined by the SA metropolis
acceptance rule. There are two cases: one is to accept the new position, and the other is
to recalculate another candidate position. The rule which is based on the fitness function
difference between two positions is used to decide whether to accept the new position. This
enables the solution to jump out of local optima and decreases the vibration near the end of
locating a solution. For MIT inverse problem, the fitness function is defined as:

T -1
| (ST +aH + B + BG) v,

fitness = f(a, 7y, B) = (24)

Tr((SST +aH +7E + BG) _1>

where S is the sensitivity matrix, &, y and p are the regularization parameters. The trace
function evaluates the trace of the corresponding matrix H = diag (STS). Iis an identity
matrix, and G can be calculated as follows:

G=Lum (25)
m

here, m presents the amount of the measurement voltages, and all the elements in the
m-dimensional matrix M are 1.

In the PSO-SA, the X-axis, Y-axis and Z-axis represent the regularization parameters «,
v and B in 3D space, respectively. Algorithm 3 presents the specific solving process of the
optimization of regularization parameters based on PSO-SA.

Algorithm 3 Selecting parameters by PSO-SA.

1: Initialize a swarm of particles with random positions s ({X?, 7?, ,B?) and velocities v; in the
search space,i=1,2,...,n,Letk=0.

2: Evaluate the fitness value of all particles.

3: Set parameter values including learning factors ¢, cp, Itermay, initial temperature Ty and
cooling rate €.

4: repeat

k

5: calculate the fitness <si ) and velocity V}< of each particle.

6: generate the neighboring position sf“ for the current position s of the i
particle and randomly select a number R € [0, 1].

7. calculate Afitness(Af) = fitness <s%‘+1> — fitness <s}‘)
8: if Af <0

accept the new position si‘“

9: else if p = exp(—Af/T;) > random|0, 1]

accept the new position s%"*'l

10: end if

11: until renew each particle to the new position
12: if k < Itermax

13: thenTy = e xTp; k=k+1;

14:  Go to step 4

15: else

16: return the best particle s*
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4. Results and Analysis
4.1. Stimulation Platform

To evaluate the performance of the proposed method (named the modified hybrid
regularization algorithm), six typical models were carried out in COMSOL and MATLAB
environments. In this paper, an 8-coil MIT system is used for the forward problem. The
single coil excitation mode and the finite element method are used to solve it. The material
of the coils is copper. The diameter and cross-sectional area of the coils are set to 50 mm and
4 x 10~° m?, respectively. The radius of the object space is 100 mm. The conductivity of the
background and the targets are set as 0.001 s/m and 2 s/m, respectively. In addition, we
compared the proposed method with the Tikhonov regularization and hybrid regularization
(Tikhonov and NOSER regularization) processes as the benchmark. The combined particle
swarm optimization (PSO) and simulated annealing (SA) optimizers are applied for optimal
parameters selection. In the following figures and tables, TK, HR and MHR represent
Tikhonov, hybrid regularization and the proposed method, respectively.

4.2. Evalution Metrics

Three metrics were used to quantitatively evaluate the performance, including correla-
tion coefficient (CC), relative error (RE) and condition number. Condition number is used
to evaluate the degree of the Hessian matrix. The larger the condition number, the more
ill-conditioned the Hessian matrix. It can be defined as:

cond(A) = A/ Ay (26)

where A is a Hessian matrix. A;, A, are the maximum and minimum non-zero singular
values of A obtained by Equation (22), respectively. r is the rank of A. A small condition
number of the Hessian matrix can make the reconstruction algorithm stable.

The RE values represent the relative error between the calculations and the true values,
and the degree of correlation between the original images and the reconstructed images are
usually measured by the CC values. The definitions of RE and CC are as follows:

o=l

|
RE = 27
17T @)

cc= =1 (28)

where ¢* is the true conductivity, o represents the calculated one, 0; and ¢;" are the i elements
of o and ¢*, respectively. o and 7" are the mean values of ¢ and ¢*, respectively. [ denotes
the pixel amounts of ¢. The quality of the reconstructed images can be demonstrated by
high CC values and low RE values.

4.3. Numerical Stability

The Hessian matrix affects the stability of the reconstruction algorithms. Moreover, the
distribution of singular values reflects the ill-conditioned degree of the Hessian matrix. The
larger the ratio between the highest and lowest singular values is, the more ill-conditioned
the Hessian matrix is. In this section, we conducted a singular values decomposition
simulation of the Hessian matrix of three algorithms, as shown in Figure 1. In addition, the
condition number of the Hessian matrix’s condition number was utilized as an evaluation
metric for the stability of three image reconstruction algorithms, shown in Table 2. From
Figure 1, the singular values of the original Hessian matrix are basically close to 0. The
singular values of the Hessian matrix obtained by hybrid regularization algorithm are
higher than those of the Tikhonov regularization algorithm. However, its high singular
values decay rapidly. The attenuation speed of the high singular values with the proposed
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method is relatively slow. Moreover, it produces higher singular values than the other
two algorithms. The results above demonstrate weak ill-posedness of the Hessian matrix
with the proposed method. The condition number of the Hessian matrix decreases from
1.4675 x 10 to 4.7963 x 10'3 in Table 2, verifying that the proposed method is potential
and stable.

-0 MHR
HR
TK
15 | Original | |
s 15 |
8
£
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=
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Figure 1. Singular values analysis of the Hessian matrix.

Table 2. The condition number of the Hessian matrix of the three algorithms.

Original TK HR MHR
1.4675 x 10%4 2.6809 x 102! 7.3132 x 1014 4.7963 x 1013

4.4. Reconstruction Results and Analysis
4.4.1. Typical Model

We conducted results on six typical models that analyzed the precision of the proposed
method. The results are shown in Figures 2—7. Moreover, the interface of the real targets
in models 1 and 2 are circled to study the edges’ characteristics. The first column of
Figures 2-7 indicate that in the original simulation models, the red refers to conductive
materials, and the blue represents the air. The second column of Figures 2-7 indicate the
reconstructed images obtained by Tikhonov regularization algorithm. The third column of
Figures 27 indicate the reconstructed images obtained by hybrid regularization algorithm.
The last column of Figures 2-7 indicate the reconstructed images obtained by the proposed
method. The initial value of the proposed method was obtained by using the linear back
project (LBP) algorithm. From Figures 2-7, for the reconstruction results of Tikhonov
regularization algorithm, the edges are oversmoothed, resulting in the serious loss of the
edges’ feature information. In addition, the degree of the edges’ information lost in the
complex models 3-6 is more serious than those in the simple models 1 and 2. In particular,
the information lost in model 6 is the most serious, so that the target cannot be found. For
the reconstruction results of hybrid regularization algorithm, the surrounding region of the
target has stronger artifacts. The true shape of the target is hard to determine in model 6.
Compared with the Tikhonov and hybrid regularization algorithm, the proposed method
has a cleaner background and a better imaging performance. The target is clearly revealed
in the background, and the artifacts in the images can be effectively eliminated. Although
model 6 is the most complex model among the selected models, its shape can still be well
preserved by the proposed method. It is obvious that the proposed method has the best
performance among the three algorithms.
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Figure 2. Simulation results of model 1. (a) is the original simulation model. (b) is the reconstructed
result of TK. (c) is the result of HR. (d) is the result of MHR.
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Figure 3. Simulation results of model 2. (a) is the original simulation model. (b) is the reconstructed
result of TK. (c) is the result of HR. (d) is the result of MHR.

LA™
‘b_aﬂn\
L

- —
S
-

(b)

01

0.08

0.06

0.0

0.02

0.02

0.04

0.06

0.08

0.1

(=R

-0.05 0 0.05 o1

(c)

/m

008

006

0ot

002

0.02

0.04

0.06

0.08

. 1 B
\
1 s
5
N
. ‘ ﬂ
0.1 0.05 0 0.05 o1
x/m

(d)

Figure 4. Simulation results of model 3. (a) is the original simulation model. (b) is the reconstructed
result of TK. (c) is the result of HR. (d) is the result of MHR.
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Figure 6. Simulation results of model 5. (a) is the original simulation model. (b) is the reconstructed

result of TK. (c) is the result of HR. (d) is the result of MHR.
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Figure 7. Simulation results of model 6. (a) is the original simulation model. (b) is the reconstructed
result of TK. (c) is the result of HR. (d) is the result of MHR.

The CC and RE values are used to evaluate the precision of the proposed method, as
shown in Table 3. The reconstruction results with the proposed method have higher CC
values and lower RE values compared to Tikhonov regularization and hybrid regularization
algorithm. In addition, for the given simple models 1 and 2, the average CC values of
Tikhonov, hybrid regularization and the proposed method are 0.7367, 0.7765 and 0.9949,
respectively. The average RE values of Tikhonov, hybrid regularization and the proposed
method are 3.2238, 1.7188 and 0.3466, respectively. For the given complex models 3-6, the
average CC values of Tikhonov, hybrid regularization and the proposed method are 0.6332,
0.6597 and 0.8286, respectively. The average RE values of Tikhonov, hybrid regularization
and the proposed method are 1.090, 1.0303 and 0.8320, respectively. The results above
indicate that the quality of the reconstructed images of simple models is better than those
of complex ones.

Table 3. Performance evaluation of the three algorithms of the six models.

RE CcC
Typical Models

TK HR MHR TK HR MHR
1 2.8423 1.8261 0.2355 0.7946 0.7841 0.9971
2 3.6025 1.6115 0.4577 0.6788 0.7689 0.9927
3 1.1516 1.1063 0.7541 0.6595 0.6986 0.8644
4 1.1002 1.0562 0.8493 0.6617 0.6937 0.8493
5 0.9123 0.9008 0.8599 0.5595 0.5651 0.7522
6 1.1954 1.0579 0.9601 0.6523 0.6814 0.8486

To validate the anti-noise performance of the proposed method, the measured dif-
ferential voltage signals are contaminated by different levels of noise. The level of added
noise is expressed in Equation (29).

SNR = 20122

U, (29)
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where signal-to-noise ratios (SNR) refer to the ratio of signal to noise in a measurement
system used to evaluate the level of noise, Us and U, represent the effective value of the
signal and noise voltages, respectively.

Three models, 2, 3 and 6, are chosen as examples to validate the noise tolerance of
the proposed method. Gaussian noises with signal-to-noise ratio (SNR) of 55, 45 and
35 dB are added to the original voltage data, respectively. The reconstructed images
with three algorithms are shown in Figures 8-10. The reconstructed images obtained by
Tikhonov and hybrid regularization algorithms are quickly degraded with the increase
of noise levels, especially in the interface region of the targets. However, under different
levels of interference, the proposed method can obviously differentiate the targets from
the background, which indicates that the proposed method can obviously enhance the
quality of the reconstruction results under different SNRs. For model 2, the reconstruction
results of the three regularization algorithms are well maintained with low noise levels
added. However, with the increase of the noise levels, the reconstructed images obtained
by Tikhonov regularization algorithm have more artifacts, which increase the blurring
of the true features. The reconstructed images of hybrid regularization algorithm also
have strong artifacts, especially in the surrounding region of the targets. In contrast to
hybrid regularization algorithm, the proposed method can still clearly distinguish the
interface between the targets and the background. For model 3, as the noise levels increase,
the interface of the targets obtained by Tikhonov regularization algorithm has serious
degradation. The targets obtained by hybrid regularization algorithm are deformed to
some extent. Compared with the other two algorithms, the proposed method obtains better
effects with relatively high noise levels added. For model 6, when relatively high noise
levels are added, the position and size of the targets obtained by Tikhonov regularization
algorithm cannot be revealed in the background area, and hybrid regularization algorithms
can hardly determine the true shape of the targets. However, the proposed method still
reconstructs the true shape of targets. These results show that the simple model 2 is less
sensitive to the noise than the complex models 3 and 6, and the noise tolerance performance
of the proposed method is better than the other two algorithms.
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Figure 8. Results of model (2) under different SNRs. (a—c) show the results of 55dB. (d-f) show the
results of 45dB. (g—i) show the results of 35dB.
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Figure 9. Results of model (3) under different SNRs. (a—c) show the results of 55dB. (d-f) show the
results of 45dB. (g-i) show the results of 35dB.
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Figure 10. Results of model (6) under different SNRs. (a-c) show the results of 55 dB. (d—f) show the
results of 45 dB. (g—i) show the results of 35 dB.

Tables 4-6 give the CC and RE values of the three regularization algorithms under
different noises for models 2, 3 and 6. When the SNR changes from 55 dB to 35 dB, the
average CC values of Tikhonov, hybrid regularization and the proposed method reduce
by 0.1718, 0.1679 and 0.1418, respectively. The average RE values of Tikhonov, hybrid
regularization and the proposed method reduce by 0.1809, 0.1663 and 0.1294, respectively.
Compared with the other two algorithms, as the noise levels change, the proposed method
is the least sensitive and obtains the largest CC values and the smallest RE values. Moreover,
for the reconstruction results of the proposed method, when the SNR changes from 55 dB to
35 dB, the CC values of models 2, 3 and 6 decrease by 0.0767, 0.1679 and 0.1809, respectively.
The RE values increase by 0.0820, 0.1401 and 0.1681, respectively. The results of the simple
models are less sensitive to the complex ones.
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Table 4. Performance evaluation of model 2 under different SNRs.

RE CC
Typical Models
TK HR MHR TK HR MHR
55 3.6337 1.6324 0.4622 0.6548 0.7531 0.9812
45 3.6963 1.6823 0.4945 0.6080 0.7033 0.9434
35 3.7623 1.7362 0.5442 0.5415 0.6423 0.9045

Table 5. Performance evaluation of model 3 under different SNRs.

RE CccC
Typical Models
TK HR MHR TK HR MHR
55 1.2369 1.1683 0.8113 0.5891 0.6230 0.8080
45 1.3026 1.2227 0.8526 0.5080 0.5564 0.7546
35 1.4243 1.3405 0.9514 0.4267 0.4527 0.6401

Table 6. Performance evaluation of model 6 under different SNRs.

RE ccC
Typical Models
TK HR MHR TK HR MHR
55 1.2854 1.1214 1.0234 0.5622 0.6090 0.7845
45 1.3609 1.2016 1.0853 0.4654 0.5170 0.7182
35 15121 1.3443 1.1915 0.3224 0.3863 0.6036

4.4.2. Head Model

To further verify the performance of the proposed method, a brain CT 3D model is used
in this paper. The brain images are approximately symmetrical. The cerebral hemorrhage
will affect the symmetry of the images obviously. The head model was designed as the
imaging area based on the size of 99% of the national standard for Chinese adults. The
specific size parameters of the head model are shown in Table 7. The model comprises
six materials (tissue types) listed in Table 8. The triangular mesh is used for the forward
problem calculations. Figure 11a shows the mesh distribution of the head model. The
conductivity distribution of section (z = 0) is selected as the research area, as shown in
Figure 11b. Three different left cerebrum hemorrhagic lengths with 5 cm, 3 cm and 2 cm
are taken as the lesions to investigate, respectively.

Table 7. The size of the head model.

Characteristics Maximum Maximum Maximum Head
Length Width Height Circumference
Size (cm) 20 17 24 60

Table 8. Conductivity distribution of the head tissues.

Tissues Scalp Skull Cerebrum Cerebellum Brain Stem Hemorrhage

Conductivity (s/m) 0.02  0.03 0.21 0.24 0.25 2

Three cerebral hemorrhage models are set in the simulation, as shown in Figures 12-14.
The first column of Figures 12-14 show the original distributions. The reconstructed images
of the three algorithms are shown in b—d of Figures 12-14, respectively. Moreover, the
lesion areas are marked with black solid boxes. The lesion edges obtained by Tikhonov
regularization algorithm are oversmoothed, increasing the blurring of the true features.
When the length of the cerebral hemorrhage is 2 cm, a part of the lesion area is reconstructed
outside the black solid box. The construction lesions obtained by hybrid regularization
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algorithm have more artifacts, which affect the determination of the edges of the lesion areas.
The proposed method obtained better results. The lesions and the normal tissues are clearly
distinguished. The disturbance of normal tissues is significantly reduced and the quality
of the reconstructed images is obviously improved. As the cerebral hemorrhage does not
make the image symmetrical any longer, the lesion area of the left brain is shown clearer
compared to that of the right brain. Moreover, the quality of the model with a cerebral
hemorrhage length of 5 cm is superior to that of the model with a cerebral hemorrhage

length of 2 cm.
025
02
015
0.1
oos

woo2

(@) (b)

Figure 11. The model of MIT forward problem. (a) Model mesh distribution. (b) Conductivity
distribution of section (z = 0).
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Figure 12. Results of cerebral hemorrhage length (5 cm). (a) is the original distributions. (b) is the
result of TK. (c) is the result of HR. (d) is the result of MHR.
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Figure 13. Results of cerebral hemorrhage length (3 cm). (a) is the original distributions. (b) is the
result of TK. (c) is the result of HR. (d) is the result of MHR.
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Figure 14. Results of cerebral hemorrhage length (2 cm). (a) is the original distributions. (b) is the
result of TK. (c) is the result of HR. (d) is the result of MHR.

Table 9 presents the CC values of the three cerebral hemorrhage length models. From
Table 9, the average CC values of Tikhonov, hybrid regularization and the proposed
method are 0.7694, 0.8332 and 0.8858, respectively. Compared with Tikhonov and hybrid
regularization algorithms, the proposed method produces larger CC values. For the results
of the proposed method, the CC values of the model with cerebral hemorrhage lengths of
5 cm, 3 cm and 2 cm are 0.8985, 0.8826 and 0.8764, respectively, verifying that the quality
of the model with a cerebral hemorrhage length of 5 cm is better. Figures 15-17 show the
results of the cerebral hemorrhage under different SNRs of 5 cm.

Table 9. The correlation coefficient of the three algorithms of different cerebral hemorrhage lengths.

Length TK HR MHR
5cm 0.7870 0.8224 0.8985
3cm 0.7623 0.8139 0.8826
2cm 0.7589 0.8034 0.8764
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Figure 15. Results under 55 dB. (a) is the result of TK. (b) is the result of HR. (c) is the result of MHR.

o ¢ op 0S|

ooet nns |
oE 004}

0o
noz

| y

, ozt
BT
LI L)
ETL]

00z
004
008
008

a0t

Figure 16. Results under 45 dB. (a) is the result of TK. (b) is the result of HR. (c) is the result of MHR.
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(a) (b) (c)
Figure 17. Results under 35 dB. (a) is the result of TK. (b) is the result of HR. (c) is the result of MHR.

Table 10 indicates the values of the three algorithms under different noise levels for a
cerebral hemorrhage length of 5 cm. From Table 10, compared with the other algorithms,
the CC values of the proposed method are the largest. As the SNR changes from 55 dB
to 35 dB, the CC values of Tikhonov and hybrid regularization algorithm decrease by
0.2181 and 0.1519, respectively, while the CC values of the proposed method only decrease
by 0.1034. The results show that the proposed method can tolerate certain noises.

Table 10. The correlation coefficient of cerebral hemorrhage (5 cm) under different SNRs.

SNR (dB) TK HR MHR
55 0.7070 0.7752 0.8546
45 0.6023 0.7024 0.8126
35 0.4889 0.6234 0.7512

5. Discussion

The image reconstruction quality in MIT greatly depends on factors such as the
penalty term and the chosen regularization parameter of the regularization algorithm. This
paper proposed a modified hybrid regularization algorithm to promote the reconstruction
quality. Six typical numerical models were simulated to prove the effectiveness of the
method proposed in this paper and used to compare the reconstruction quality of different
regularization reconstruction algorithms. The average CC and RE values in terms of the
typical models for the proposed method were 0.8841 and 0.6861, which were better than
Tikhonov and hybrid algorithms. The average CC and RE values in terms of the simple
model were 0.9949 and 0.3466, which were much better than the other two algorithms.
The simulation results demonstrated that the proposed method has higher CC values and
lower RE values. The proposed method also obtained a better performance when the three
algorithms were applied to the cerebral hemorrhage models. In addition to the simulation
of different cerebral hemorrhage models, the experiments were also carried out under
different levels of noise on a 5 cm model. The CC attenuated by 0.1034 as the SNR changed
from 55 dB to 35 dB. According to the mentioned experimental results, the proposed
method has obvious advantages in terms of stability, accuracy and noise immunity.

Wang et al. [12] proposed an improved Tikhonov method for MIT which used a
random boundary optimization method. They tested the method with two simple models:
a single-target model and a triple-targets model. The CC values were lower than 0.9 which
were not as effective as the method proposed in this paper. In addition, comparing to the
experiments of the hybrid regularization algorithm proposed by Chen et al. [16], which
combined Tikhonov and variation regularization algorithm together, the CC values were
also lower than 0.9 with simple models such as single target, two targets and separate four
targets. It was easy to find that the new method obtained better performance.

In summary, through the experimental comparison of the above sections, the proposed
method has better imaging quality and noise resistance. Compared with other regular-
ization algorithm, the modified hybrid regularization algorithm not only obtained clearer
reconstructed images, but also obtained fewer artifacts in the background.
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6. Conclusions

This paper proposed a modified hybrid regularization algorithm applied PSO-SA
which can promote the reconstruction quality. Numerical simulations with six typical
models and the cerebral hemorrhage models were simulated to prove the effectiveness of
the method proposed in this paper and compare it with traditional Tikhonov and hybrid
regularization algorithm. The simulation results demonstrated that the proposed method
has obvious advantages in terms of stability, accuracy and noise immunity.

The future work is to enhance the performance of the algorithm to make it more robust
to noises. In addition, in the process of modeling, more complex biological models that
have a corresponding relationship between conductivity distribution and physiological
structure should be considered to enhance the versatility of the proposed method.
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