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Abstract: With the rapid development of intelligent speech technologies, automatic speaker veri-
fication (ASV) has become one of the most natural and convenient biometric speaker recognition
approaches. However, most state-of-the-art ASV systems are vulnerable to spoofing attack techniques,
such as speech synthesis, voice conversion, and replay speech. Due to the symmetry distribution
characteristic between the genuine (true) speech and spoof (fake) speech pair, the spoofing attack
detection is challenging. Many recent research works have been focusing on the ASV anti-spoofing
solutions. This work investigates two types of new acoustic features to improve the performance
of spoofing attacks. The first features consist of two cepstral coefficients and one LogSpec feature,
which are extracted from the linear prediction (LP) residual signals. The second feature is a harmonic
and noise subband ratio feature, which can reflect the interaction movement difference of the vocal
tract and glottal airflow of the genuine and spoofing speech. The significance of these new features
has been investigated in both the t-stochastic neighborhood embedding space and the binary classifi-
cation modeling space. Experiments on the ASVspoof 2019 database show that the proposed residual
features can achieve from 7% to 51.7% relative equal error rate (EER) reduction on the development
and evaluation set over the best single system baseline. Furthermore, more than 31.2% relative EER
reduction on both the development and evaluation set shows that the proposed new features contain
large information complementary to the source acoustic features.

Keywords: linear prediction residual signal; harmonic and noise ratio; anti-spoofing; system fusion

1. Introduction

In recent years, the performances of automatic speaker verification (ASV) systems
have been significantly improved. It has become one of the most natural and convenient
biometric speaker recognition methods. The ASV technologies are now widely deployed
in many diverse applications and services, such as call centers, intelligent personalized
services, payment security, access authentication, etc. However, many studies in recent
years have found that the state-of-the-art ASV systems fail to handle the speech spoofing
attacks, especially for three major types of attacks: the replay [1], speech synthesis [2,3],
and voice conversion. Therefore, great efforts are required to ensure adequate protection of
ASV systems against spoofing. Due to the symmetry distribution characteristic between
the genuine speech and spoof speech pair, the spoofing attack detection is challenging.
As commonly used acoustic features between genuine and spoof speech share lots of
similarities, specifically designed features for spoofing attack detection are in great demand.

Replay attacks refer to using pre-recorded speech samples collected from the genuine
target speakers to attack the ASV systems. They are the most simple and accessible attacks,
and pose huge threats to ASV, because of the availability of high quality and low-cost
recording devices [1]. Unlike replay attacks, speech synthesis and voice conversion attacks
are usually produced from sophisticated speech processing techniques. In these attacks,
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the state-of-the-art text-to-speech synthesis (TTS) systems are utilized to generate the artifi-
cial speech signals, while the voice conversion (VC) systems are utilized to adapt a given
natural speech to target speakers. Given sufficient training data, both the speech synthesis
and voice conversion techniques can produce high-quality spoofing signals to mimic the
ASV systems [2].

To help research works on anti-spoofing and provide common platforms for the as-
sessment and comparison of spoofing countermeasures, the Automatic Speaker Verification
Spoofing and Countermeasures (ASVSpoof) challenges were organized every two years in
ASV society from 2015. The most recent ASVSpoof 2019 was the first to consider the replay,
speech synthesis, and voice conversion attacks within a single challenge [2]. In ASVSpoof
2019, these attacks are divided into the logical access (LA, speech synthesis, and voice
conversion attacks) and physical access (PA, replay attacks) scenarios according to different
use case scenarios (https://www.asvspoof.org/(accessed on 1 November 2021)).

In this study, we focus on using the ASVSpoof 2019 database to explore automatic
spoofing detection methods for both logical and physical access spoofing attacks. We
investigate two types of new acoustic features to enhance the discriminative information
between bonafide and spoofed speech utterances.

The first proposed features consist of two cepstral coefficients and one log spectrum
feature, which are extracted from the linear prediction (LP) residual signals of speech
utterances. As we know that the LP residual signal of each utterance implicity contains
its excitation source information. Although the latest TTS and VC algorithms can even
produce spoofed speech that is perceptually indistinguishable from bonafide speech under
some well-controlled conditions, there is still a big difference in excitation source signals
between these spoofed speech and the bonafide speech. Moreover, from the analysis of
replayed speech, we find that most of the playback device distortions occur in excitation
signals, they can not affect much in the speech spectrum trajectories. Therefore, compared
with the typical acoustic features that are directly extracted from the bonafide speech,
we speculate the cepstral features extracted from the residual signals can capture better
discrimination between the bonafide and spoofed speech, either for the synthetic or voice
converted attacks or for the replayed attacks.

The second new feature is the harmonic and noise subband ratio feature (HNSR). It is
motivated by the conventional Harmonic plus Noise Model (HNM) [4] for high-quality
speech analysis. Based on the HNM, the speech signal is decomposed into a deterministic
component and a stochastic (noise or residual) component. According to the decomposition,
we assume that the interaction movement difference of the vocal tract and glottal airflow of
the bonafide and spoofed speech can be reflected and distinguishable in the HNSR features.
The usefulness of the proposed features is examined in both the t-stochastic neighborhood
embedding (t-SNE) space and the spoofing detection modeling space.

Besides that two new features, this paper also compared various single features on two
major baseline systems, which are Gaussian mixture model (GMM) based system and Light
Convolutional Neural Networks (LCNN)-based system. Then, to verify the complementarity
between different features, the score-level fusion system is proposed.

2. Related Work

In the literature, the continuously organized ASVSpoof challenges [2,5,6] have re-
sulted in a large number of spoofing detection countermeasures. These countermeasures
can be divided into two main categories, binary classification modeling algorithms, and
new discriminative features, either for the replayed, or the synthetic or voice converted
speech detection.

2.1. Classifiers

At the classifier level, the algorithms or architectures used for replay speech and synthetic
or converted speech detection are almost the same in recent ASVspoof challenges. They
can be categorized into shallow models and deep models. In the literature, the Gaussian

https://www.asvspoof.org/
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mixture model (GMM) is the most widely used shallow model in most spoofing detection
works [1,7–12]. Most of the deep models are based on the DNNs [13–15], recurrent neural
networks [16,17], and convolution neural networks (CNN) [18,19]. It has been found that
the deep models perform better than the shallow models given the same input features in
the in-domain ASV tasks. However, our previous work in [20] found that the performance
gains obtained from the development set was very difficult to generalize to the evaluation
set, the shallow model GMMs showed better robustness to the unseen or new conditions in
our works on ASVSpoof 2019 challenge.

2.2. Features

For replay speech detection, previous works mainly focus on extracting new features
to reflect the acoustic level difference between original and replay speech. These differences
have resulted from the recording or playback devices, and the recording environments.
Ref. [21] explored the re-recording distortions by using the constant Q cepstral coefficients
(CQCC) in the high-frequency sub-band (6–8 kHz). Ref. [22] proposed to extract phase
information by incorporating the Constant Q Transform (CQT) with a Modified Group
Delay (MGD) on ASVSpoof 2019. Ref. [23] extracted the mel-frequency cepstral coefficients
(MFCC) from the linear prediction residual signal to capture the playback device distortions.
Ref. [24] proposed a low-frequency frame-wise normalization in CQT domain to capture
the artifacts in the playback speech. Though MFCC is a widely used feature for speech-
related works, it is not utilized for the two ASVSpoof baseline systems conducted by this
work. Besides these hand-crafted features, deep features using neural networks have also
been investigated to detect playback speech. For instance, the convolutional neural network
(CNN) was used to learn deep features from the group delay [25] and Siamese embedding
the spectrogram [26]. In [27], the DNN-based frame-level and RNN-based sequence-level
features were extracted to capture a better representation of playback distortions. In general,
due to the strong feature modeling ability of deep neural networks, these deep features
are more effective than hand-crafted features on the in-domain ASV tasks. However,
these features may not easy to be generalized to out-of-domain ASV tasks, because their
extraction is highly dependent on the DNN model training data.

To capture the artifacts introduced during the TTS and VC speech manipulation, new
features mainly focus on both the acoustic and prosodic level features. For instance, the
modulation features from magnitude and phase spectrum proposed in [28] were used to
detect temporal artifacts caused by the frame-by-frame speech synthesis processing. The
best system [29] in ASVSpoof 2015 used a combination of standard MFCC and cochlear
filter cepstral coefficients (CFCCs) with the change in instantaneous frequency (IF) to detect
the discrimination between bonafide and spoofed speech. As the phase information is
almost entirely lost in a spoofed speech in current synthesis/conversion techniques, a
modified group delay-based feature and the frequency derivative of the phase spectrum
have been explored in [7]. And in [8], the fundamental frequency variation features were
also proposed to capture the prosodic difference between the bonafide and spoofed speech.
Actually, in the ASVSpoof challenge, we find many acoustic level features are effective
in both the logical and physical spoofing speech detection, the typical features are the
CQCC [9] and the linear frequency cepstral coefficient (LFCC) [30] features that have been
used to build the ASVSpoof 2019 baselines.

In this study, we also focus on exploring new acoustic features to capture the artifacts
in logical and physical spoofing speech detection. The CQCC and LFCC features extracted
from the LP residual signals, and the harmonic and noise subband ratio feature are first
investigated together with the shallow GMM classifier. Then we validate the effectiveness
of using deep CNNs to model the spectrum of natural speech and its residual signals.
Details of all these new features are presented in the next sections.
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3. New Cepstral Coefficients of Residual Signals
3.1. Linear Prediction Residual Modeling and Analysis

In the LP model of speech, the bonafide speech signal St(n) is formulated as

St(n) = Ŝt(n) + rt(n) (1)

Ŝt(n) =
p

∑
k=1

akSt(n− k) (2)

where Ŝt(n) models the vocal-tract component of the bonafide speech signal in terms of
LP coefficients ak, k = 1, 2, . . . , p, and the error in the prediction rt(n), called as LP residual
signal that models the excitation component.

As discussed in [23], the replayed speech Sr(n) is the convolution of input speech
St(n) with impulse response i(n) of the playback device as,

Sr(n) = St(n) ∗ i(n) (3)

According to Equations (1) and (2), Sr(n) can be expanded to

Sr(n) = [
p

∑
k=1

akSt(n− k) + rt(n)] ∗ i(n) (4)

Equation (4) can be expanded to Equation (5) as

Sr(n) =
p

∑
k=1

akSt(n− k) ∗ i(n) + rt(n) ∗ i(n) (5)

Equation (6) is a simplified version of Equation (5). Equation (7) is part of Equation (6),
indicating the replay signal generated by linear prediction, the other part of Equation (6) is
the residual signal.

Sr(n) = Ŝr(n) + rr(n) (6)

Ŝr(n) =
p

∑
k=1

ckSr(n− k) (7)

the Ŝr(n) models the vocal-tract component of replayed speech in terms of LP coefficients
ck, k = 1, 2, . . . , p, and rr(n) corresponds to the excitation component. It is clear from
Equation (5) that, both the vocal-tract and excitation source components of bonafide speech
St(n) are affected by the characteristics of playback device i(n). Detail analysis in [23]
showed that, compared with the vocal tract component, the source component is relatively
more affected. It indicated that the i(n) affected residual signal is more different from
that of bonafide speech, so it has advantages for detecting whether the speech is bonafide
or replayed.

For the synthesized speech, as most latest TTS and VC techniques are parametric-based
approaches, not the traditional unit selection and waveform concatenation approaches,
there is still a big difference in the excitation source signals between these synthesized
spoofing and the bonafide speech.

Figures 1 and 2 demonstrate the time and spectral domain representation, and the
corresponding LP residuals between a bonafide speech and its corresponding replayed and
synthesized speech, respectively. It is clear to observe that, there is a big difference between
time-domain representation comparisons under PA and LA scenarios. Compared with
the large temporal differences observed in Figure 2, The temporal differences between the
bonafide speech and replayed one, and their corresponding LP residuals are much smaller.
This indicates that the excitation variations introduced by speech synthesis methods are
much larger than the impulse response of the playback device.
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Figure 1. Time domain representation of a bonafide (a) and corresponding replay (b) speech segments,
and their corresponding LP residuals (e,f) for a female speaker. Frequency domain representation of
a bonafide (c) and corresponding replay (d) speech segments, and their corresponding LP residuals
spectrum (g,h) for a female speaker. The LP order = 12.

Figure 2. Time domain representation of a bonafide (a) and corresponding synthesized (b) speech
segments, and their corresponding LP residuals (e,f) for a female speaker. Frequency domain
representation of a bonafide (c) and corresponding synthesized (d) speech segments, and their
corresponding LP residuals spectrum (g,h) for a female speaker The LP order = 12.
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3.2. Conventional Cepstral Features

The constant Q cepstral coefficients (CQCCs) [9] and linear frequency cepstral coeffi-
cients (LFCCs) [30] are two types of effective conventional acoustic features used for anti-
spoofing speech detection in ASV tasks. Both of them have been widely used in previous
ASVSpoof Challenges, such as ASVSpoof 2015, 2017, etc. A brief description of these two
features is presented in the next subsections.

3.2.1. CQCC Features

The extraction of CQCCs can be summarized in Figure 3. First, we calculate the constant-
Q transform (CQT) XCQ(k, n) of the input discrete time-domain signal x(n) as:

XCQ(k, n) =
n+ Nk

2

∑
j=n− Nk

2

x(j)a∗k (j− n +
Nk
2
) (8)

where k = 1, 2, . . . , K is the frequency bin index, a∗k (n) is the complex conjugate of ak(n) and
Nk are variable window lengths. ak(n) are cinolex-valued time-frquency atoms, the defini-
tion of ak(n) can be found from paper [9]. The notation b.c infers rounding down towards
the nearest integer. Unlike the regularly spaced frequency bins used in the standard Short-
Time Fourier Transform (STFT), the CQT uses geometrically spaced frequency bins. This
makes it offers a higher frequency resolution at lower frequencies and higher temporal
resolution at higher frequencies.

Figure 3. Block diagram of CQCC feature extraction.

Then, after the CQT, the log power spectrum of XCQ(k, n) is computed before perform-
ing a uniform re-sampling. As cepstral analysis cannot be applied directly to the CQT, due
to the fact that the frequency bins are on a different scale to those of the basic functions of
the discrete cosine transform (DCT). By applying the uniform re-sampling, the geometric
space is then converted into the linear space for conventional cepstral analysis. Finally,
in the linear space, the DCT is applied to get the CQCCs as

CQCC(p) =
L

∑
l=1

log |XCQ(l)|2cos[
p(l − 1

2 )π

L
] (9)

where p = 0, 1, . . . , L− 1, and where l is the newly re-sampled frequency bins. More details
of the CQCCs extraction, please find in [9].

3.2.2. LFCC

Like mel−frequency cepstral coefficients (MFCCs), Linear frequency cepstral coefficients
(LFCCs) [30] are extracted the same way but the filters are triangular and spaced in linear
scale as illustrated in Figure 4. The power spectrum is first integrated using overlapping
band-pass filters and logarithmic compression followed by DCT is performed to produce the
cepstral coefficients.

3.3. Residual Cepstral Coefficients

Motivated by the discussion on the potential effectiveness of residual signal for detect-
ing the replayed and synthesized speech in Section 3.1, in this section, we investigate to
extract the conventional acoustic features, CQCCs, and LFCCs from the LP residual signals
instead of the raw audio. These new features are termed residual CQCC (RCQCC) and
residual LFCC (RLFCC), respectively.
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Figure 4. Filter bank used in the computation of LFCC.

Figure 5 shows the detailed block diagram of RCQCC feature extraction. Given a
speech segment s(n), it is the first overlap segmented into short-time frames using Hamming
window. Then we perform the p-th order linear prediction analysis and inverse filtering to
obtain the residual signal r(n) frame-by-frame. These frames are then taken as the input
signal to extract D-dimensional (D = 30) CQCC feature as shown in Figure 3, followed by
a ∆ + ∆∆ operation to achieve 2D-dimensional dynamic features. These 3D-dimensional
features are concatenated together to form the final RCQCC acoustic features to train the
spoofing detection classifiers.

Figure 5. Block diagram of RCQCC feature extraction.

Figure 6 demonstrates the extraction diagram of RLFCC features. The frame-by-frame
residual signal r(n) is obtained in the same way as in RCQCCs. Then the DFT is used to
transform the time-domain residual signal to the spectrum domain. After performing the
linear-frequency scale uniform triangular band-pass filter banks on the power spectrum,
the discrete cosine transform (DCT) is applied on the logarithm of the subband energies
obtained from the triangular-filter banks to get the LFCC features. And as the RCQCCs, we
also extract the ∆ + ∆∆ dynamic features to form the final RLFCC features.

Figure 6. Block diagram of RLFCC feature extraction.
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3.4. t-SNE Feature Visualization

Before using the above proposed residual features to build ASVSpoof systems, in this
section, the discrimination ability between the genuine and spoof speech segments are
investigated, using the t-stochastic neighborhood embedding (t-SNE) [31] visualization.

Figures 7 and 8 demonstrate the effectiveness of the proposed residual acoustic features
RCQCCs and RLFCCs over the standard CQCCs and LFCCs, under the logical access
and physical access scenarios, respectively. In both t-SNE figures, the two-dimensional
visualization of LFCCs and RLFCCs are transformed from the 60-dimensional raw feature
(including ∆ + ∆∆) as described in Sections 3.2.2 and 3.3; while the two-dimensional
visualization of CQCCs and RCQCCs are transformed from the 90-dimensional raw features
(including ∆ + ∆∆).

Figure 7. t-SNE visualization of (a) LFCCs (b) RLFCCs and (c) CQCCs (d) RCQCCs of the genuine
and spoof speech segments, under the logical access scenario.

From both Figures 7 and 8, we see that there is a significant overlap between the
original genuine and spoof speech segments, either in the CQCC (subfigure (c)) or the LFCC
(subfigure (a)) features spaces, and whatever is under the LA or the PA scenarios. However,
from sub-figure (b) and (d), the acoustic features of residual signals of genuine and spoof
speech are clearly separated, especially for the RCQCCs and RLFCCs of examples under
the PA scenario. It tells us that the acoustic feature discrimination between the residual
signal of bonafide and spoof speech is much larger than that in the original/raw speech
signals. Therefore, using RLFCCs and RCQCCs can build better ASVSpoof systems.
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Figure 8. t-SNE visualization of (a) LFCCs (b) RLFCCs and (c) CQCCs (d) RCQCCs of the genuine
and spoof speech segments, under the physical access scenario.

4. Harmonic and Noise Interaction Features

From the speech production mechanism and the success of Harmonic plus Noise
Model (HNM) [4] for high-quality speech analysis and synthesis, we know that the genera-
tion of speech can be regarded as the interaction movement of the vocal tract and glottal
airflow. Our previous work [32] has proposed a new feature called the spectral subband en-
ergy ratios (SSER) to reflect the interaction property, and experimental results have proved
its effectiveness to characterize the speaker identity. Therefore, we think that the natural
interaction property in the synthesized or replayed spoofing speech may be distorted by
the speech synthesis algorithms or the speech recording devices, etc. These distortions
may result in very different interaction features between the bonafide and spoofed speech.
Therefore, in this section, we try to explore the effectiveness of the interactive features for
the ASVSpoof task.

As proposed in our previous work of [32], here, we also use the spectral subband
energy ratios as the interactive features but extract them differently as in [32]. So, in order
to distinguish these features from SSER, we call them “Harmonic and Noise Subband
Ratio (HNSR)”. The principle of the HNSR is shown in Figure 9.

Given a speech segment s(t), we first estimate the fundamental frequency (F0) and
make the unvoiced/voiced decision using the Normalized Cross-Correlation Function
(NCCF). Both F0 and NCCF are estimated using the Kaldi toolkit [33]. The pitch-markers
are computed as in [34,35]. All the unvoiced frames are discarded, only voiced frames
are used to extract the HNSRs. The pitch-synchronous frames are then extracted by using
Hamming windows of two pitch period, and centered at each pitch marker. Finally,
the harmonic component h(t) is then estimated with the HNM analysis [4]. Instead of
using the high-pass filtering method to get the stochastic noise part as in [4] for speech
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synthesis, in this study, we choose to directly subtract the h(t) by the original windowed
speech signal s(t) to achieve the n(t).

Figure 9. HNSR feature extraction.

Once the h(t) and n(t) are available, we then transform them into the spectrum domain
and compute the frequency subband energies as

Eb
h =

Be

∑
k=Bs

|STFT{h(t)}|2k (10)

Eb
n =

Be

∑
k=Bs

|STFT{n(t)}|2k (11)

where STFT is the short-time Fourier transform, Bs and Be represent the starting and ending
frequencies of the spectral subband. For each frequency subband, we set the bandwidth
Bw = Be − Bs to the averaged F0 (225 Hz) value of all the training datasets to have as many
spectral subbands as possible. The maximum voiced frequency used in HNM analysis is
fixed to 8 kHz. So, we can obtain a 35-dimensional HNSR feature vector for each voiced
frame as

HNSR f eature = 10 ∗ ln(
Eb

h
Eb

n
) (12)

As the RCQCC and RLFCC visualization, we also apply the t-SNE to see the distribution
of HNSR features as shown in Figure 10. Compared with Figures 7 and 8, the discrimination
of HNSRs is much poor. It indicates that the HNSR features can not well distinguish the
genuine and spoof speech, but in this study, we can verify whether there is complementarity
information between HNSR features and other acoustic features.

Figure 10. HNSR t-SNE plots under logical access (a) and physical access (b) scenarios.
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5. Experiments and Results
5.1. Dataset-ASVSpoof 2019

All of our experiments are performed on 2019 Automatic Speaker Verification Spoof-
ing and Countermeasures (ASVSpoof) challenge [2]. Different from previous ASVSpoof
challenges, the 2019 year challenge is the first to focus on countermeasures for all three
major attack types, namely those stemming from TTS, VC, and replay spoofing attacks. It
contains two sub-challenges, namely the logical access (LA) task, and physical access (PA)
task. Brief descriptions [20] of these two tasks are as follows.

Logical access task: Compared with the ten spoofing types in ASVSpoof 2015 [5],
the spoofing utterances of LA sub-challenge in the ASVSpoof 2019 were synthetic speech
using the most recent technology [10]. The quality of the synthetic speech from the ASVSpoof
2019 has improved a lot, which poses substantial threats to ASV. This sub-challenge contained
training, development, and evaluation partitions. The genuine speech was collected from
107 speakers with no significant channel or background noise. The spoofed speech was
generated from the genuine data using various spoofing approaches. No speaker overlap
among the three subsets.

Physical access task: The speech of replay attacks in the ASVSpoof2019 was based
upon simulated and carefully controlled environments. The training and development
data of the PA sub-challenge was created according to 27 different acoustic environments,
consisting of 3 room sizes, 3 levels of reverberation, and 3 microphone distances. There were
9 different replay configurations generated by 3 categories of recording distances, and 3
audio qualities. Detailed information about the training, development, and evaluation sets
of ASVSpoof 2019 is illustrated in Table 1.

Table 1. Number of non-overlapping target speakers and the number of utterances in training,
development, and evaluation sets of the ASVSpoof 2019 database.

Subset

Speakers Utterances

Male Female
Logical Access Physical Access

Bonafide Spoof Bonafide Spoof

Training 8 12 2580 22,800 5400 48,600
Development 4 6 2548 22,296 5400 24,300

Evaluation 21 27 7355 63,882 18,090 116,640

5.2. Experimental Configurations
5.2.1. Classifiers

Official baselines: Two official baseline countermeasure systems were made available
to ASVSpoof 2019 participants. Both use a common Gaussian mixture model (GMM)
back-end classifier with either constant-Q cepstral coefficient (CQCC) features [9] (B01) or
linear frequency cepstral coefficient (LFCC) features [30] (B02). The GMMs for both B01
and B02 are with 512 components. The bonafide and spoofing GMM models are trained
separately. Baselines are trained separately for LA and PA scenarios.

LCNN classifier: Besides the official GMM baselines, we also investigate using the
Light Convolutional Neural Networks (LCNN) [18] as the classifier, which was the best
system submitted to the ASVSpoof 2017 Challenge. As in [18], the same normalized
log power magnitude spectrum (logspec) obtained by FFT is utilized as input of LCNN.
To get a unified time-frequency (T-F), the shape of input features. the normalized FFT
spectrograms along the time axis with the size of 864× 400× 1 is truncated as the input
of LCNN. Short files are extended by repeating their contents to keep the same in length.
The LCNN classifier used in this paper is a reduced CNN architecture with Max-Feature
Map activation (MFM), which provides feature selection function for LCNN. Detail about
LCNN is the same as LCNN-9 that was used in work [18], with only a minor change of the
outputs of FC6 layer, here, we use 256× 2 instead of the 32× 2.
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5.2.2. Features

CQCC-based baselines use a constant-Q transform (CQT), which is applied with a
maximum frequency of fnyq = f s/2 ( f s = 16 kHz); The minimum frequency is set to nine
octaves below the maximum frequency f min = f max/29 ∼= 15 Hz. The number of bins per
octave is set to 96. The resulting geometrically-scaled CQT spectrogram is re-sampled to a
linear scale using a sampling period of 16. The 29 + 0th order DCT static coefficients plus
its ∆ + ∆∆ dynamic coefficients that are computed using two adjacent frames are taken as
our final CQCC features.

LFCC-based baselines use a short-term Fourier transform. Each frame is 20ms with
Hamming window and 10 ms shift. The power magnitude spectrum of each frame is
calculated using a 512-point FFT. A triangular, linearly spaced filter-bank of 20 channels is
applied. Different from the CQCCs, only 19 + 0th order DCT static coefficients are extracted,
plus its ∆ + ∆∆, the final LFCCs are 60-dimensional acoustic feature vectors.

Table 2 presents all other detail parameters that are not mentioned in the baseline features
or in Section 3. These parameters can generate the best performance for this experiment. “FL”
and “FS” refer to frame-length and frame-shift in milliseconds(ms), respectively, “LA/PA”
means the parameters for LA and PA condition, LP-order is the LP order to obtain the residual
signal, “GMM(LA/PA)” means the GMM components for LA and PA conditions, respectively.
All these parameters are tuned on the development datasets of the ASVSpoof 2019 challenge.

Table 2. Configurations of the proposed features.

Features FL (LA/PA) FS (LA/PA) LP-Order GMM (LA/PA)

RLFCC 30/25 15/12.5 12 512/256
RCQCC 30/30 15/15 12 256/128
HNSR 25/25 12.5/12.5 - 512/256

RLogSpec 25/20 10/10 12 -

5.3. Evaluation Metrics

Besides the equal error rate (EER) that was used for evaluating previous ASVSpoof
challenge systems, in ASVSpoof 2019, a new ASV-centric metric referred to as the tandem
detection cost function (t-DCF) [36] was first proposed as the primary evaluation metric.
Use of the t-DCF means that the ASVSpoof 2019 database is designed not for the standalone
assessment of spoofing countermeasures but their impact on the reliability of an ASV
system when subjected to spoofing attacks. In this study, we use both the EER and t-DCF
to evaluate the effectiveness of our proposed methods.

5.4. Results on LA Task

As presented in Section 5.2.1, two classifiers are used to build ASVSpoof detection
systems, one is the GMM, and the other is the LCNN, either for the LA task or for the PA
task. We first evaluate our proposed features for the LA task as follows.

5.4.1. Detection Results of Single Systems

Results for the LA task of ASVSpoof 2019 are shown in Table 3. L1 and L3 are the
official GMM-based baselines, and L6 is our LCNN baseline. By comparing L2 with L1,
the proposed residual CQCCs achieve similar results with the CQCCs on the development
set, but with around absolute 2.14% worse EER than the CQCC baseline on the evaluation
set. However, when we compare L4 with its baseline L3, significant performance improve-
ments are obtained, either in EER or in t-DCF for both the development and evaluation
sets, such as on the development set, the EER is reduced from 2.72% to 1.16%, and t-DCF
is reduced from 0.0663 to 0.0358, and on the evaluation set, consistent performance gains
are achieved. Relative equal error rate (EER) improvements of 57.2%, 24.8% are achieved
for development and evaluation set over the official baseline, respectively. It tells us that
the RLFCC features extracted from the residual signal are much effective than the LFCCs
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extracted from the original source signal. Moreover, from L5, it is clear that the proposed
HNSR features are much worse than other features with GMM classifier, however, we hope
that it may provide some complementary information to other acoustic features during the
system fusion, because the HNSRs, RCQCCs, RLFCCs are extracted in a totally different
way, they may capture the spoofing acoustic characteristics of speech synthesis, voice
conversion in different aspects.

Table 3. The t-DCF and EER (%) results for the LA task on the development and evaluation sets. The
lower the values of t-DCT and EER, the better is the performance.

ID Classifier Features
Dev. Eval.

EER t-DCF EER t-DCF

L1 GMM CQCC 0.43 0.0123 9.57 0.2359
L2 RCQCC 0.40 0.0108 11.71 0.2817

L3 LFCC 2.71 0.0663 9.09 0.2115
L4 RLFCC 1.17 0.0358 6.84 0.1855

L5 HNSR 13.34 0.3064 26.41 0.6403

L6 LCNN LogSpec 0.20 0.0059 20.83 0.2971
L7 RLogSpec 0.86 0.0286 10.07 0.1925

Furthermore, we also investigate extracting LogSpec features from residual signals to
see its effectiveness for detecting spoofing speech. Comparing system L7 with its baseline
L6, it is interesting to find that the EER and t-DCF on the evaluation set are significantly
reduced, but the gains on the development set are exactly the opposite. We also hope the
proposed RLogSpec can provide some complementary information for the LCNN-based
countermeasures. This experiment shows the efficiency of residual signals compared to
their respective baseline features for the ASVSpoof LA task. However, the performance
of RCQCCs and RLFCCs for the LCNN model and RLogSpecs for the GMM model are
missing. The efficiency of the proposed features for other ASVSpoof LA tasks needs further
evaluation in the future.

5.4.2. System Fusion

To verify whether the different acoustic features are complementary, we perform
system fusion on the score level instead of the feature level. The bosaris toolkit [37] is
used. This toolkit provides a logistic regression solution, which can perform the fusion
by learning the weights from scores of the development set and evaluation set. Results
for the LA task of the ASVSpoof 2019 Challenge are shown in Table 4. In this table, we
investigate many system fusion strategies to exploit complementary information of the
acoustic features. By comparing these results with those ones in Table 3, it is clear to see that,
score-level fusion can result in significant performance gains than single systems, either for
the CQCCs, LFCCs, or the RCQCCs and RLFCCs. Considering both the performances on
development and evaluation sets, we see the LF1 + RLFCC achieves the best fusion results
on the GMM-based systems.

Furthermore, by comparing LF7 with L6 in Table 3, we see that adding residual
LogSpec features can provide significant complementary information to the original
LogSpec features, e.g., the EERs are reduced from 0.2%, 20.83% to 0.12%, 9.67% on the
development and evaluation set, respectively. From LF8, we see further improvements by
combining the best GMM-based system (LF5 + HNSR) with the LCNN-based system (LF7),
the EER and t-DCF on the development set are reduced to zeros on the development set,
and these numbers are also significantly reduced to 2.57% and 0.073931 on the evaluation
test set. All these performance gains can prove that our provided residual acoustic features
are useful and effective. From the big performance difference between the development
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and evaluation set, it is clear that the generalization ability of current GMM-based and
LCNN-based systems is limited.

Table 4. The score-level system fusion results (EER% and t-DCF) for the LA task on the development
and evaluation sets.

ID Classifier Features
Dev. Eval.

EER t-DCF EER t-DCF

LF1 GMM LFCC + CQCC 0.04 0.000449 5.08 0.130134
LF1-1 LF1 + RLFCC 0.04 0.000493 4.42 0.118015
LF1-2 LF1 + RCQCC 0.04 0.000404 5.11 0.130379
LF1-3 LF1 + HNSR 0.04 0.000404 5.05 0.132326
LF2 RLFCC + RCQCC 0.09 0.002972 6.46 0.168841
LF3 LFCC + RLFCC 1.01 0.032072 5.3 0.153161
LF4 CQCC + RCQCC 0.16 0.003633 5.92 0.15229
LF5 LF1 + LF2 0.04 0.000628 4.57 0.118691

LF5-1 LF5 + HNSR 0.04 0.000493 4.49 0.118943
LF6 LF3 + LF4 0.08 0.000897 4.53 0.119633

LF6-1 LF6 + HNSR 0.07 0.001121 4.5 0.120528

LF7 LCNN LogSpec + RLogSpec 0.12 0.002854 9.67 0.180001
LF8 - bestGMM + LF7 0 0 2.57 0.073931

5.5. Results on PA Task

As the above experimental investigations for the LA task, results for the PA task are as
follows. The same acoustic features, system fusion strategies are validated.

5.5.1. Detection Results of Single Systems

Results for the PA task of ASVSpoof 2019 are shown in Table 5. As in Table 3, here, P1
and P3 are the official GMM-based baselines, and P6 is the LCNN baseline. Results on the
LA and PA tasks in Tables 3 and 5, show consistent performance on the behavior of residual
acoustic features, such as, the RLFCCs achieve better results than LFCCs, while RCQCCs
are not better or even worse than baselines, a single GMM system using HNSRs is still very
bad, and the RLogSpec features are also very effective for the PA spoofing detection.

Table 5. The t-DCF and EER% results for the PA task on the development and evaluation sets. The
lower the values of t-DCT and EER, the better is the performance.

ID Classifier Features
Dev. Eval.

EER t-DCF EER t-DCF

P1 GMM CQCC 10.57 0.2103 12.64 0.2916
P2 RCQCC 16.96 0.3601 19.34 0.4463

P3 LFCC 9.97 0.2089 11.24 0.2494
P4 RLFCC 8.54 0.1921 10.45 0.2567

P5 HNSR 23.72 0.5839 29.54 0.6869

P6 LCNN LogSpec 5.44 0.1795 6.59 0.1908
P7 RLogSpec 2.96 0.0913 4.25 0.1345

This experiment shows the efficiency of residual signals compared to their respective
baseline features for the ASVSpoof PA task. But the performance of RCQCCs and RLFCCs
for the LCNN model and RLogSpecs for the GMM model are missing. The efficiency of the
proposed features for other ASVSpoof PA tasks needs further evaluation in the future.
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5.5.2. System Fusion

Table 6 presents the score-level system fusion results for the PA task of the ASVspoof
2019 Challenge. As in Table 4, the same fusion strategies are examined, and not as LA task,
the best fusion results are achieved from system PF6 + HNSR, whose EER and t-DCF are
much lower than the official baseline system fusion (PF1) results, by introducing the com-
plementary information of the proposed residual acoustic features RCQCCs and RLFCCs.

Table 6. The score-level system fusion results (EER% and t-DCF) for the PA task on the development
and evaluation sets.

ID Classifier Features
Dev. Eval.

EER t-DCF EER t-DCF

PF1 GMM LFCC + CQCC 9.22 0.180252 10.17 0.234929
PF1-1 PF1 + RLFCC 8.22 0.175117 9.51 0.239068
PF1-2 PF1 + RCQCC 9.26 0.181334 10.18 0.236621
PF1-3 PF1 + HNSR 9.02 0.176851 10.11 0.235087
PF2 RLFCC + RCQCC 8.29 0.185531 10.38 0.267975
PF3 LFCC + RLFCC 8.17 0.191823 9.96 0.256397
PF4 CQCC + RCQCC 10.56 0.218662 11.56 0.286208
PF5 PF1 + PF2 8.7 0.175911 9.55 0.238543

PF5-1 PF5 + HNSR 8.63 0.17278 9.54 0.238543
PF6 PF3 + PF4 8.73 0.172954 9.51 0.23673

PF6-1 PF6 + HNSR 7.97 0.16983 9.51 0.236967

PF7 LCNN LogSpec + RLogSpec 2.69 0.084703 3.93 0.13176
PF8 - bestGMM + PF7 1.85 0.058915 2.47 0.073727

For the LCNN systems, the fused system PF7 further reduces the EER from 5.44%,
6.59% to 2.69%, 3.39%, the t-DCF from 0.1795, 0.1908 to 0.104703, 0.13176 on the develop-
ment and evaluation set, respectively. Moreover, system fusion between the best GMM-
based system (PF6 + HNSR) and PF7 further improves the final system performances,
e.g., PF8 achieves relative 31.2% and 37.1% EER reductions over PF7 on the development
and evaluation sets, respectively. All these improvements are consistent on both the LA
and PA tasks. And from the performance gap between development and evaluation sets
in Tables 5 and 6, we also see that system fusion can reduce the performance gap between
different test conditions, and improve the system robustness under PA task.

6. Conclusions

In this paper, we investigate two types of new acoustic features to improve the detec-
tion of synthetic and replay speech spoofing attacks. One is the residual CQCCs, LFCC,
and LogSpecs, the other is the HNSR interaction feature. From the experimental results, we
find that the acoustic features extracted from residual signals behave much better than those
extracted from source speech signals. Although the single system built from HNSR features
get bad results, they still show a little bit of complementary information at the score-level
system fusion. Furthermore, we investigate different score-level fusion strategies and find
that all of the proposed residual features can provide significantly complementary infor-
mation to official baselines, and the GMM-based and LCNN-based systems have further
complementary information (more than 30% relative EER reduction) to improve the final
system performances.

Though the experiment results show the efficiency of proposed features, these features
may not outperform all other acoustic features for the ASVSpoof task. Future works will
focus on evaluating other acoustic features to conduct a comprehensive feature level com-
parison for the ASVSpoof task, and improving the generalization ability of anti-spoofing
countermeasures under different conditions.
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