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Abstract: AI has been implemented in many sectors such as security, health, finance, national defense,
etc. However, together with AI’s groundbreaking improvement, some people exploit AI to do harmful
things. In parallel, there is rapid development in cloud computing technology, introducing a cloud-
based AI system. Unfortunately, the vulnerabilities in cloud computing will also affect the security
of AI services. We observe that compromising the training data integrity means compromising the
results in the AI system itself. From this background, we argue that it is essential to keep the data
integrity in AI systems. To achieve our goal, we build a data integrity architecture by following the
National Institute of Standards and Technology (NIST) cybersecurity framework guidance. We also
utilize blockchain technology and smart contracts as a suitable solution to overcome the integrity
issue because of its shared and decentralized ledger. Smart contracts are used to automate policy
enforcement, keep track of data integrity, and prevent data forgery. First, we analyze the possible
vulnerabilities and attacks in AI and cloud environments. Then we draw out our architecture
requirements. The final result is that we present five modules in our proposed architecture that
fulfilled NIST framework guidance to ensure continuous data integrity provisioning towards secure
AI environments.

Keywords: data integrity; AI systems; cloud computing; blockchain

1. Introduction

Artificial Intelligence (AI) is one of the most disruptive technologies in recent years.
AI started in 1956 and has had rapid development since then [1]. In 2016, an AI named
AlphaGo defeated the world Go champion over five matches [2]. Then, in 2018, Google
launched spin-off Waymo’s self-driving taxi service in Phoenix, Arizona [2]. Applications
of AI also transform other sectors such as national security, finance, health care, criminal
justice, transportation, and smart cities [3]. Meanwhile, we have already seen some people
use AI to do harmful things. For example, attacks in self-driving cars with adversarial
examples. Changing a few pixels of a stop sign’s image might be misclassified as something
else by an AI system and could lead to a car accident [4]. Another example is that if an
adversary attacking multiple robots controlled by a single AI system on a centralized server
could produce fatal failures on a massive scale [4]. AI systems and the knowledge of how to
design them can be put toward beneficial and harmful ends [5]. IT systems and applications
are susceptible to attacks, and AI is no exception. Therefore, we need to put more effort
into securing AI systems as much as we develop them.

The expense of constructing an AI system with excellent precision is not cheap. Train-
ing data necessitates a vast number of datasets and a lot of computing power. Fortunately,
rapid development in cloud computing technology brings advantages to AI researchers
and developers. This advanced improvement introduced a cloud-based AI system. So,
instead of building an AI system from scratch, users might employ Cloud Service Provider
(CSP) capabilities and resources to train and deploy machine learning applications. They
can also access their data anytime from anywhere using their laptop or personal computer.
Cloud computing can save users money and time. However, it is more important to trust
the system since the vital asset in machine learning (ML) is the data. Cloud-based AI
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systems have various drawbacks that users should be aware of. First, data integrity and
privacy are in doubt. In cloud computing, users must migrate their assets and resources
from their safe zone to the CSP in order to access their services in an unfamiliar security
environment. Let assume it is an untrusted environment due to the fact that CSP could be
compromised. If this occurs, it may result in data integrity breaches or, worse still, data
leakage and loss. Second, cloud computing vulnerabilities will impact the security of AI
services, potentially compromising user data or training results. These concerns should
be a significant problem that researchers and developers should pay special attention to.
Based on the article from [6], they show that there have been instances of data misuse and
data loss to hackers, resulting in the user’s loss of trust in the CSP. They also provided a
survey about the respondents’ trust in seven tech giants; the most trusted was Amazon at
28%, followed by Microsoft at 24%, Apple at 22%, Facebook at 19% Google at 13%, Dropbox
at 9%, and Instagram at 7%. Even the tech-giants can be compromised, and as a result, their
customers’ data are at risk. Numerous researchers also conducted a research about trust
issue problems and auditing protocol in cloud computing [7–12]. Therefore in this paper,
we propose an architecture to tackle the data integrity issues in cloud-based AI systems.

Besides the integrity problem, according to the security triad, a cloud-based AI system
is also exposed to vulnerabilities related to confidentiality and availability. First, in terms of
confidentiality, the data utilized for training may contain classified or sensitive information.
For example, patients’ medical data is sensitive information in the health industry. Similarly,
the financial industry has much secret information that is not accessible to the general
public. If the data are kept in an unencrypted format and stolen by enemies, they can
exploit it to their advantage. Secondly, the adversary could poison as much as training
data in terms of availability so that the predicting results will be useless. Another case
in availability is the expected attack, Denial of Service (DoS), that could make the system
unavailable to be accessed. However, those two aspects are out of the scope of our paper.
We solely focus on protecting data integrity in cloud-based AI systems by designing the
system architecture. We remark that training data is a crucial asset in machine learning to
ensure that the AI system acts as intended. When the training data integrity is compromised,
the AI outcomes are also compromised. These results might lead to more significant issues,
as described before. From this background, we argue that it is essential to keep the data
integrity in AI systems. So, we propose an architecture to enhance data integrity and make
data falsification more difficult.

In [13], stated that it is vital to build a software architecture that is secure by design.
Since the design stage, we must identify the threat model, establish a mitigation strategy,
reduce vulnerabilities, and improve security. The National Institute of Standards and
Technology (NIST) published the Cybersecurity Framework (CSF) in 2014 to help enter-
prises construct safe computer systems. It offers a flexible basis that all firms may build
upon and shape to meet their own needs [14]. This framework is divided into five parts:
identifying capabilities and vulnerabilities, protecting and securing critical infrastructure,
detecting security threats as soon as feasible, responding to breaches appropriately, and
recovering swiftly and effectively with as little downtime as possible. Until now, there are
many companies worldwide that have embraced the use of the framework, including JP
Morgan Chase, Microsoft, Boeing, Intel, Bank of England, Nippon Telegraph and Telephone
Corporation, and the Ontario Energy Board [15].

The rise of blockchain technology becomes a suitable answer to solve data integrity and
trust issues in cloud-based AI systems between users and CSP. Blockchain is a decentralized
and distributed ledger system. The history and transaction are recorded permanently.
Anyone in the blockchain network can verify and monitor the transactions through a
consensus system. In addition, smart contracts in the blockchain allow us to write and run
some codes that have deterministic results. Smart contracts make blockchain programmable
that could bind the trust between users and CSP. Therefore we utilize blockchain and
smart contracts in our proposed system architectures to ensure continuous data integrity
provisioning towards secure AI environments.

The contributions of our paper are:



Symmetry 2022, 14, 273 3 of 41

• Proposing a system architecture to ensure continuous data integrity provisioning in
cloud-based AI systems based on the NIST cybersecurity framework.

• Providing modules that implement five main points from NIST cybersecurity frame-
work guidance.

• Integrating our architecture based on blockchain and smart contracts to enhance
integrity throughout ML pipeline in cloud-based AI system. The identity manage-
ment and access control module to prevent adversaries from entering the system by
impersonating real users. API token management module to prevent unauthorized
users calls the API of AI services. Integrity module to keep track of data integrity and
prevent data manipulation. Each module is connected to the smart contracts to ensure
automation and policy enforcement.

We organize the rest of the paper as follows. Section 2 provides information about
existing vulnerabilities and threats in AI and cloud environments. In Section 3, we present
other researchers’ works that are related to our paper. The proposed architecture described
in Section 4 followed by evaluation and discussion in Section 5. Finally, we conclude in
Section 6.

2. Background
2.1. AI Environment

There are three potential adversarial interferences in the AI data pipeline [4]:

• Attacks against the data used for training and decision-making.
• Attacks against the classifier in the training environment.
• Attacks against models in the deployment environment.

These three potential attacks might happen inside the machine learning pipeline.
Therefore, this section identifies and analyzes possible vulnerabilities and challenges in AI
and cloud environments.

First, we will discuss the typical AI’s data pipeline and integrity issues in each phase
as shown in Figure 1 along with its possible attacks method in Table 1.

Figure 1. Common AI’s data pipelines.

Table 1. ML pipeline’s challenges.

Phase Vulnerabilities and Attacks Integrity Issues

A1. Data acquisition and
curation Data poisoning [16–19] Adversary alter the datasets, so the results will be in a way that

attacker desires.

A2. Model design No specific issue related to ML Generic issues related to choices of hardware/software deployment,
or external services.

A3. Implementation Data Poisoning [16–19], Back-
door attack [20,21]

Such as phase A1, adversary attempts to corrupt the training
datasets. Furthermore, this phase could be an entrance to back-
door attack.

A4. Inferences Adversarial examples [22–26] Adversary try to manipulating the inputs that cause AI system to
misclassify it and behave incorrectly.

A5. Check and updates Backdoor attack [20,21] This attack is being triggered if the adversary successfully manipu-
lated the training datasets at training phase.
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2.1.1. A1. Data Acquisition and Curation

Large datasets are required before an AI system can learn a model that solves a specific
task. In the data acquisition phase, the user prepares the training datasets that are used
for expected results. For example, if the system is designed for image classification or
specific image detection, their datasets are collections of images. Users can obtain data
from numerous resources. It might come from their own or well-known datasets (e.g.,
CIFAR10, MNIST, etc.). In the data curation phase, the user activities include converting
data to specified formats, removing noise, or labeling the data. This step is critical as it
determines the accuracy of the results.

Vulnerabilities and attacks—Data poisoning. Occurs when attackers use erroneous and
mislabeled data to train an AI model. Pictures of stop signs are labeled as something else so
that the algorithm will not recognize them when they appear on the road. These risks show
the need for careful control of both training datasets and inputs used to build AI models
to ensure the security of AI decision-making processes [4,22,23,27]. Another example is
there are various studies of data poisoning in recommender systems [16–19]. The adversary
injects various data into the systems, causing the systems to make suggestions based on
the adversary’s desires.

Issues—Integrity of the training data is taking a crucial part in the ML pipeline as
it defines the result’s accuracy. Therefore, we need to guarantee that the data is not
compromised. For example, in supervised learning, the data must get the correct label to
achieve maximum results. Poisoning is a type of threat that can jeopardize data integrity.
However, it can be accidentally poisoned when the user inputs the inconsistent data that is
unfit for the purpose [28].

2.1.2. A2. Model Design

In this step, users decide what AI algorithms they want to use and set the hyperpa-
rameter (e.g., number of nodes and layers, learning rate, bias, activation function).

Issues—There are no specific issues related to ML systems in this phase. However,
we should consider the general issues. For instance, it is related to hardware/software
deployment or external services choices. Furthermore, there is a possibility of human error
that can cause a mistake in algorithms.

2.1.3. A3. Implementation

There are two parts in the implementation phase: training and testing. Training is one
of the most critical steps because it establishes the baseline behavior of the systems [28].
In this phase, we train the model with datasets as the input and predict the output with
the lowest error as possible [29]. If this stage is compromised, the model will behave
incorrectly. The training phase consists of running the algorithms iteratively and adjusting
the parameters in each iteration. It will stop when the results converge and give the desired
level of accuracy. In the testing part, datasets not used in the training phase are applied to
validate the model’s performance and ensure the parameters configuration is correct.

Vulnerabilities and attacks— Backdoor attack. This attack was first proposed in [20,21].
The training phase is most likely to become an entrance to backdoor attacks. It relies on
data poisoning since the adversary needs to manipulate the training dataset to include
examples with the triggers. As a result, it will correlate the trigger with the target class.
When receiving the normal images as input during the inference phase, it will behave as
expected. However, when it sees the trigger’s images, it will return the target class as a
result instead of the correct label [28].

Issues—In this phase, the integrity challenge is when the adversary tries to influence,
corrupt, or alter the training data itself. It can be done either by inserting adversarial
inputs into existing training data or altering training data directly [22]. If successful, it can
affect the accuracy results. Furthermore, the training phase can be an entrance gate to the
backdoor attack triggered in the last phase.
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2.1.4. A4. Inferences

After the model is ready, it will be applied to the applications/systems. The input is in
the image format if the system is for image classifications or detection. Then, the systems
will classify the image according to the trained model and give the result.

Vulnerabilities and attacks— Adversarial examples are a constant problem and the
most well-known attack in the AI environment. Attackers cause the AI system to make
mistakes by manipulating inputs. Tiny perturbations to digital images undetectable to the
human eye can be sufficient enough to cause AI algorithms to misclassify those images
completely [4,22,23]. We present some types of adversarial examples below:

• Fast Gradient Sign Method (FGSM) was introduced by Goodfellow et al. [30] to set
up an effective adversarial training. FGSM is fast in generating adversarial examples
since it only involves calculating one back-propagation step [31].

• DeepFool. Moosavi-Dezfooli et al. [32] proposed to find minimal L2 adversarial
perturbations on both an affine binary classifier and a general binary differentiable
classifier in an iterative manner. Their experiments show that the DeepFool algorithm
can generate perturbations more minor than FGSM.

• Jacobian-based Saliency Map Attack (JSMA). Papernot et al. [33] introduce an efficient,
targeted attack based on calculating the Jacobian matrix of the score function. It can
fool the classifier by restricting the small L0 perturbations.

• Basic Iterative Method (BIM) was proposed by Kurakin et al. [34] to improve the
performance of FGSM by running an iterative optimizer for multiple iterations [35].

• Universal perturbations. All adversarial examples above are working on a specific
network. In contrast, universal perturbations can fool the classifier at ’any’ image with
high probability [23]. Moosavi-Dezfooli et al. [36] successfully find a perturbation
that can attack 85.4% of the test samples in the ILSVRC 2012 dataset under a ResNet-
152 classifier.

Issues—Integrity challenges here are threatened by various adversarial examples, as
explained earlier. The adversary goal is to try to disrupt the model. In this phase, the
adversary cannot poison the training data or tamper with the model parameters but still
can access the deployed models.

2.1.5. A5. Check and Updates

Admin will check the accuracy and performance of the systems. If necessary, the
systems will retrain to update the models.

Vulnerabilities and attacks— Backdoor attack. As mentioned in phase A3, if the ad-
versary successfully plants the trigger, it can be triggered in this phase when the system
detects the trigger’s images. The system will give the targeted class as the output instead
of the correct label.

Issues—The integrity issue can emerge as backdoor attacks that were deployed during
training data at the implementation phase being triggered when updating the parameters
or the models.

2.2. How to Defend AI System

The aforementioned issues revealed that the AI system is sensitive to data alter-
ation/modification. When poorly classified data is used, the accuracy results will be
decreasing, and the system will behave wrongly. Thus, there are various approaches to
protect AI systems from such threats. We classify it into two defense mechanisms: AI-
algorithm-based and architecture based. The first approach attempts to strengthen the
AI system to be more robust against ML attacks. The second approach aims to design an
architecture to prevent the adversary from entering the system in the first place. Doing so
will reduce the possibility of an adversary modifying the ML datasets.
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2.2.1. AI-Algorithm-Based

Many researchers are trying to find a defense mechanism against attacks in AI systems.
Hence, the attacker always finds ways to break it. We present several examples of AI-
algorithm-based defense mechanisms in Table 2 along with the attacks it is effective against.
We divided it into two categories, complete-defense and detection-only. Complete-defense
aims to enhance the AI system to classify the label even if the adversary perturbed it. In
comparison, detection-only aims to raise a warning on suspicious inputs or even reject
them to be processed.

Adversarial training is the most popular defense mechanism. It is effective against
adversarial examples in the inference phase. This method works by retraining the model
with adversarial examples, but given the correct labels [37]. By doing so, the model will
learn to ignore the adversarial examples and increase accuracy results. However, a problem
with adversarial training is that the model will only be ‘immune’ to the attacks already
trained before [38–40].

Data compression. Image classification datasets are most likely to compress the JPEG
images. Authors in [41] show that JPEG compression can work effectively to counter
adversarial attacks (e.g., FSGM, DeepFool) and highly reduce their effects. Their technique
can remove high-frequency components inside the square block of an image. However,
the limitation of this technique is that the larger the compression caused loss of accuracy
results, and the smaller the compression insufficiently removes the perturbations.

Randomization. Xie et al. [42] added two-layer of randomization operations to mitigate
adversarial effects at the inference phase, random resizing and padding. The first operation
resizes the input images to a random size, while the second operation pads zeros around
the input images randomly.

Gradient regularizations and adversarial training. The authors [43] show when gradient
regularization combined with adversarial training can have good results and robustness
against attacks like FGSM and JSMA. However, these methods double a network’s training
complexity, which is already prohibitive in many cases.

SafetyNet. This method was proposed in [44] based on a hypothesis that adversarial
examples work by producing different patterns of ReLU activations in its late-stage than
produced by original data. They used a Radial Basis Function SVM classifier to detect
adversarial examples on binary or quaternary codes activation patterns. Then compared its
code with training samples using the SVM. In their demonstration, this detector effectively
detects adversarial examples generated by FGSM, BIM, and DeepFool.

Convolution filter statistics. This approach aims to detect adversarial examples using
statistics on convolutional layer output in CNN-based neural networks. Li and Li [45]
designed a cascade classifier based on these statistics and shown its capability to detect
more than 85% of adversarial examples.

Perturbation Rectifying Network (PRN). This method aims to defend the AI system
against adversarial examples generated using universal perturbations. The authors [46]
added additional ’pre-input’ layers, named PRN, to the targeted model without modifying
the model. A separate detector is trained on Discrete Cosine Transform by extracting
features of input-output difference of the PRN. First, an image is passed through the PRN
to be verified. If it detects a perturbation, use the output of the PRN to classify the image.

GAN-based. There are plenty of works that utilize GAN to improve the robustness
against adversarial perturbations. In [47], the authors train a generator and classifier. The
generator network generates adversarial perturbations to fool the classifier. At the same
time, the classifier is trained to classify correctly both original and adversarial examples
generated by the generator. Another GAN-based example is APE-GAN [48], the authors’
trained generator network to cleanse the perturbed image. They also claimed that APE-
GAN could be combined with other defenses, such as adversarial training.

Denoising/Feature squeezing. Xu et al. [49] observed that feature input spaces are
often unnecessarily large. Therefore, they reduce the available options to the adversary
by ‘squeezing’ out unnecessary input features. They added two squeezing methods to
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reduce the color bit depth of each pixel in the image and utilize spatial smoothing over the
image. If the original and squeezed images show extensively different output, the image
is considered an adversarial example. In further work [50] shows that feature-squeezing
methods proposed in reference [49] effective to mitigate C&W attack.

Table 2. Examples of AI-Algorithm-based defense mechanisms.

Defense Mechanisms Effective to Category

Adversarial training Adversarial examples Complete-defense

Data compression FGSM, DeepFool Complete-defense

Randomization Adversarial examples Complete-defense

Gradient regularizations + adversarial
training FGSM, JSMA Complete-defense

SafetyNet FGSM, BIM, DeepFool Detection-only

Convolution filter statistics Adversarial examples Detection-only

Perturbation Rectifying Network (PRN) Universal perturbations Complete-defense

GAN-based Adversarial perturbations Complete-defense

Denoising/Feature squeezing Adversarial perturbation to
an image Detection-only

Each of these defenses mechanisms has its strength, weakness, and something to trade-
off. Nevertheless, it is worth noting that researchers and developers keep investigating
these algorithm-based defense mechanisms to achieve better results.

2.2.2. Architecture-Based

Architecture-based works by building an architecture to prevent the adversary from
entering the system in the first place to reduce the possibility of an adversary modifying
the ML datasets. Some features can be established inside the architecture to enhance the
architecture’s robustness against data integrity violation.

• Strengthen the authentication mechanism so the fake user cannot impersonate the
real one.

• Enhance authorization mechanism by limiting the user’s permissions according to
their given role. So, it can prevent malicious users from behaving arbitrarily, and only
authorized users can interact with the services.

• Keep track of datasets’ integrity through the ML lifecycle phase using a hash algorithm.
So, if an attacker alters the datasets, we can compare the hash of the datasets. If the
result is different, it means the data has been compromised.

• Logging and monitoring data flow and user activities are necessary in order to detect
suspicious actions.

As shown in Table 3, we conclude the merit and weakness of these two defense
mechanisms by giving a plus (+) sign to show the phase that the mechanism can cover.
Otherwise, we give the minus (−) sign. Since AI-algorithm-based works at the algorithm
level, we conclude that this method can cover the ML lifecycle from implementation (A3) to
check and updates (A5). Unfortunately, this method could not assure data integrity when
users collect and curate the training datasets (A1) and configure the algorithm they want to
use (A2). Unlike architecture-based, implementing examples mentioned earlier will make
this method cover phase A1–A5.

Nevertheless, in our perspective, it is better if cloud-based AI systems have both
defenses since they have their strength and weaknesses points that can complement each
other. We will explain more about our proposed idea for the architecture-based method in
Section 4.
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Table 3. AI-Algorithm-based vs. Architecture-based in ML pipeline.

Phase AI-Algorithm-Based Architecture-Based

Data acquisition and curation − +
Model design − +
Implementation + +
Inferences + +
Check and updates + +

2.3. Cloud Environment

Cloud computing technology brings advantages for its customers. For example, it
offers simplicity because it is easy and fast to deploy [51]. Instead of building infrastruc-
ture with their resources, users can conveniently utilize cloud service providers’ services
(CSP). However, in cloud computing, customers outsource a third party to manage their
systems and data, so they need a high level of trust in the entity with whom they will be
partnering [52]. Besides, they need to be aware of vulnerabilities and threats that follow.
When users employ cloud services, they must migrate the resources from their secure
perimeter to CSP that they do not know how secure it is. Not to mention existing threats
when transmitting the data. In the case of cloud-based AI systems, users need to migrate
confidential data such as training data, models, parameters, and configurations to CSP. If
these data are compromised, it will lead to unintended systems behavior. Therefore, based
on the list of risks from the Open Web Application Security Project (OWASP), we identify
potential vulnerabilities and threats in the cloud environment. OWASP presents ten possi-
ble risks in the cloud computing [53], and we select some risks that are related to the data
integrity to follow our paper scope. We present two categories of challenges in the cloud
environment, system access and cloud infrastructure. In the first category, risks that follow
are about accountability and data ownership, service, and data integration. Both risks are
about the credibility and safety of data when users store and transmit it to the CSP. Since
users considered using a third party means they add a new layer of risk [54]. In the second
category, risks that follow are about multi-tenancy and infrastructure security. A point that
distinguishes cloud computing from on-premises systems lies in its infrastructure. In cloud
computing, the tenant is shared the cloud resources and services with other tenants. If there
is a failure in the multi-tenancy system, there is a potential risk that other users in the same
host mistakenly access other users’ data. Further details description is shown in Table 4.

Table 4. Cloud Environment’s Challenges.

Category Risks [53] Vulnerabilities Issues

System
Access

R1. Accountability
and Data Ownership,
R6. Service and Data
Integration

C1. Account and service hijacking Adversary could gain access to the cloud resources
and services

C2. Malicious insiders Leaked important data to adversary

C3. Lack of authentication and au-
thorization mechanisms

Impersonate real user to compromise the data, re-
sources, and services

Cloud
Infrastructure

R7. Multi-tenancy,
R9. Infrastructure
Security

C4. Insecure API gateway Exposed to unauthorized data access that could
lead to a black-box attack

C5. Security misconfiguration Breach in API, account and service hijacking

C6. Multi-tenancy failure One tenant can access neighbor’s data or resources.
Adversary could use it to harm data integrity

2.3.1. System Access

C1. Account and service hijacking. This threat occurs due to phishing, fraud, exploitation
of software vulnerabilities, and reuse of credentials and passwords. The results are that
attackers can steal user credentials and gain access to the service [55–57].
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C2. Malicious insiders. This is a well-known threat for most organizations. The
repercussion depends on the level of access owing to the higher the level, the loosen the
policies. People with high-level access can access confidential data and services. Malicious
insiders can cause a considerable impact on the organization, such as stealing confidential
data, doing brand damage, financial losses, and productivity losses [55–57].

C3. Lack of authentication and authorization mechanisms. These two mechanisms are the
front-line defenders before someone enters the cloud environment. Authentication is a
mechanism to identify who wants to enter, authenticated user or the adversary. At the same
time, authorization aims to control the access of the data. It determines the access level
of each authenticated user has to maintain the system’s resource control. Authorization
is crucial to ensuring that only authorized users can interact with the data. Lack of both
mechanisms could lead to compromising the data in many ways, such as unauthorized
access to personal information and cloud services, loss of data privacy, data loss, and
leakage [55–57].

2.3.2. Cloud Infrastructure

C4. Insecure API gateway. The client uses API to interact with cloud services. If no
security function is implemented, it may expose organizations to various threats, such
as anonymous access and authorization, reusable password, and non-encrypted data
transmission. Furthermore, it will lead to another threat: account and service hijacking,
data loss, and leakage, [55–57]. The insecure API gateway can be vulnerable to black-box
attacks in cloud-based AI systems since the adversary could utilize insecure API to query
the ML model.

C5. Security misconfiguration. The misconfiguration could happen at the framework,
web server, application stack, or browser. For example, using a browser with weak se-
curity could lead to security misconfiguration. Furthermore, it could lead to a breach in
interface API or account and service hijacking issues. It is important to check the security
configuration and use a browser or framework that enforces security policy [55].

C6. Multi-tenancy failure. Multi-tenancy in cloud computing is a crucial component. It
enables the cloud vendor to share resources between multiple customers/users. However,
multi-tenancy failure could jeopardize their system and especially users’ data. For instance,
one user can wrongly access a neighbor’s data [55]. As a result, the adversary could use
this vulnerability to tamper with the data integrity.

3. Related Work

Although cloud-based AI system brings advantages, we should be aware of the
possible breach of the systems. Several works from researchers and academia give solutions
to overcome cloud and AI environments problems.

Ref. [58] developed a cloud-based machine learning service with a focus on healthcare
services. However, the focal point of this work is about the optimization selection of
Virtual Machines (VMs) to process medical requests based on cloud environment rather
than providing a security architecture for machine learning development and specific to
healthcare applications. Álvaro et al. in [59] proposed a cloud-based framework based
on DEEP-Hybrid-DataCloud [60]. They create tools for effectively sharing of machine
learning models, metadata, and knowledge exchange between clients. However, they do
not mention the data integrity assurance inside their framework.

Ref. [61] aims to ensure training data’s integrity by proposing a verification scheme
called DML-DIV. The authors combine a Provable Data Possession (PDP) sampling auditing
algorithm and Discrete Logarithm Problem (DLP) in this scheme. Another paper [11] also
proposes a data integrity auditing protocol that relies on the stability of the Computational
Diffie Hellman Problem (CDHP) in a Random Oracle Model (ROM). The similarity of these
two papers is that in their protocol, they use a third-party auditor (TPA) in the process of
data integrity verification/auditing. However, both papers assume that TPA is credible
and faithful. If adversaries successfully compromise TPA, the data integrity verification
process is at the fence. As a result, trust issues arise between the client, CSP, and TPA.
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Therefore, blockchain technology could be a reasonable solution for ensuring data integrity
and building trust between clients and CSP instead of TPA.

In [62], the authors proposed an architecture to keep the data integrity for cloud storage
services. They created an Integrity Management Service (IMS) as a third-party verifier.
The hash algorithm verifies the data integrity exchanged between the client application
and the cloud storage service. Zhongshu Gu et al. [63] proposed an idea to secure the
input data for image classification service using DeepEnclave. They utilize symmetric
cryptography algorithms in their system before and after training data to secure the input
data. However, they do not ensure the integrity of the datasets in their proposed idea.
Different from our proposed architecture. Our paper proposes an architecture that provides
a hash algorithm to ensure no data integrity violation and digital signature to verify the
sender and provide non-repudiation. Furthermore, to automate and guarantee those
processes work as expected, we use smart contracts on the top of the blockchain network
as a trusted Service Level Agreement (SLA).

The proposed idea in [64] has the same goal as our proposal. They proposed a
blockchain-based method to keep the integrity of AI learning data in IoT service environ-
ments. Their integrity verification process works by comparing the data hash stored in
the blockchain. This part is similar to our proposal. However, in our research, we also
propose a whole architecture based on the NIST cybersecurity framework to preserve the
data integrity through the ML lifecycle. There are identity and access control management
in our work to prevent adversaries from entering our system, integrity management to
protect and detect data integrity violations. On top of that, we bind the trust between users
and CSP using smart contracts.

Another work that was developed to preserve data integrity is an immutable database.
This kind of database only permitted insert data queries but restricted update and delete
methods. This policy aims to prevent adversaries from altering or deleting data stored
in a database. Furthermore, like blockchain, this immutable database relies on crypto-
graphic methods to verification mechanisms. Several examples of immutable database
are immudb [65], Amazon Quantum Ledger Database (QLDB) [66], Azure append-only
ledger [67]. We present the differences between the immutable databases/append-only
databases and blockchain technology in Table 5.

Table 5. Comparison of immutable databases and blockchain technology.

Immutable/Append-Only Databases Blockchain

System Access Centralized Decentralized
Agreement
mechanism Do not have agreement mechanism Have consensus protocol as an agree-

ment mechanism
Throughput High throughput Depends on the consensus protocol

First, immutable databases are centralized. It means there is still a central author-
ity/control behind the database system. So, immutable databases are suitable in an envi-
ronment with high trust between parties involved (i.e., central authority and the users).
In a cloud-based system, we see a trust issue problem exists between the client and CSP
as mentioned previously. Blockchain technology comes with a decentralized system that
removes the existence of the intermediary and enables peer-to-peer interactions between
nodes, thus enhancing trust.

Second, it is shown that the immutable databases trade the role of consensus protocol
to achieving high throughput transactions. Hence, immutable databases are suitable for
the system that needs high throughput data while preserving data integrity. However,
there is no control over who can append the data to the database due to the absence of a
consensus protocol. If the adversary successfully impersonates the user, appends fabricated
data in a database as a correct value, the effect will threaten the data integrity. Unlike
blockchain with a consensus protocol, before the data can be stored in the blockchain,
nodes in the network are required to reach a consensus. Doing so can prevent a node from
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behaving arbitrarily. However, the consensus protocol becomes a bottleneck for blockchain
networks to achieve high throughput. The number of transactions per second (TPS) varies
depending on the consensus algorithm used. For example, the widely used blockchain
supports smart contract implementation, such as Ethereum, with Proof-of-Work (PoW) as
the consensus algorithm has around 15 TPS in the public network. Fortunately, Ethereum
developers are in the progress of migrating their consensus protocol to Proof-of-Stake
(PoS) that claimed to have higher throughput because there are shard chains that allow
Ethereum to create multiple blocks at the same time [68]. Based on those comparison,
we conclude that blockchain is a suitable technology for preserving data integrity in our
proposed architecture.

4. Proposed Architecture
4.1. Architecture Requirements

Based on our analysis in Section 2, we draw out several requirements that are needed
to build a data integrity architecture for cloud-based AI systems as shown in Table 6.
Furthermore, we also present our proposed solutions that meet the requirements and
describe them as follows.

• Identity and Access Control Management. It is important to identify who accesses
our system and what role he/she has before entering and using the cloud services.
The cause of adversary can mostly compromise the data integrity because of lack of
proper authentication and authorization mechanisms. This requirement aims to cover
AI pipeline phase A2; also cloud vulnerabilities points C1 and C3–C5. Phase A2 is
related to generic issues specifically associated with cloud services vulnerabilities in
our paper. This case could lead to C1 and C3–C5, which explain the lack of identity
and access control management. However, a small flaw like this will expose data
integrity at risk. Our solutions—We use a digital signature to verify the user’s identity
every time they enter the system and use services.

• Consistency and completeness. Consistency in our context is related to ML datasets.
For instance, there are ten categories in image classification, and each category should
have the same amount of images to be trained to achieve accurate results. If the
adversary poisons the training data by adding or erasing some training images on one
category, the datasets become unbalanced. Then, the decisions made by the AI system
would be biased and compromised. Completeness. The adversary tries to compromise
the training data by altering or tampering with the label of the data. So, the system
will give the wrong results with high accuracy. Therefore, it is important to preserve
the consistency and completeness of the AI system. This requirement aims to cover
AI pipeline phases A1 and A5. The goal is to prevent falsifying data integrity as
explained in Section 2.1. Our solutions—We use a hash function to ensure no violation
of data integrity and record it in the blockchain. In the blockchain, there is no central
record-keeping. It is decentralized to all nodes. Each block is chaining with the hash
of the previous block. So, changes of one data reflect the hash changes and break this
chain. Users or CSP will notice this as a signal of data alteration.

• Non-repudiation. One of the well-known threats to a system is malicious insiders.
We do not expect that people inside the system will do such a thing. When the
actual user becomes an imposter and depends on their access level, they can leak the
information to the adversary or modify it undetected. Therefore, this requirement
aims to cover AI pipeline phase A2 and cloud vulnerabilities point C2. These two
vulnerabilities are related. In C2, we explained malicious insiders that could threaten
the cloud environment. It means this vulnerability will also be a threat to the ML
pipeline, specifically in phase A2. This person could leak essential information such
as the algorithm we used, ML datasets, ML models, or even alter the data. Our
solutions—User needs to sign the data whenever they change it to verify their identity.
Furthermore, there is a module for logging and monitoring unusual user activities in
the system.
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• Trusted Service Level Agreement (SLA). SLA is a contract between customers and the
CSP. It binds the trust of both parties. However, there is a possibility that one side
breaks the agreement and causes a trust issue. State-of-the-art SLA required another
third party as an auditor. Nevertheless, it does not fix the problem but raises another
trust issue if the third party is compromised. This requirement aims to cover AI
pipeline phases A1–A2, A5. Furthermore, cloud vulnerabilities C1–C6 by enhancing
policy enforcement as well. By maintaining policy enforcement through trusted SLA,
we can minimize exposed vulnerabilities to an unauthorized party. Our solutions—We
use smart contracts to bind the trust between users and CSP that can automate the
SLA process.

Table 6. Requirements for data integrity architecture for Cloud-based AI Systems.

Requirement Covered
AI Pipeline

Covered Cloud
Vulnerabilities Description Our Proposed Solutions

Identity and Ac-
cess Control Man-
agement

A2 C1, C3, C4, C5
Prevent adversary to impersonate the
real user to login to cloud environ-
ment and gain control over the data.

We use a digital signature to verify
the user’s identity every time they
enter the system and use services.

Consistency and
Completeness A1, A5

Prevent adversary to alter the training
data, mislabelled the training data to
another value, and disrupt the consis-
tency in datasets.

We use a hash function to keep
track to ensure no violation of
data integrity and record it in the
blockchain.

Non-repudiation A2 C2

Prevent malicious insiders that has di-
rect access to services and data to leak
the information to the adversary or
even modify it undetected.

Whenever users changes the data,
they need to sign it to verify their
identity.

Trusted SLA A1, A2, A5 C1–C6 Trust issues between user and CSP.
We use smart contracts to bind the
trust between users and CSP that
can automate the SLA process.

4.2. Architecture Details

We present our proposed architecture that meets the four requirements mentioned
above in Figure 2.

Figure 2. Proposed data integrity architecture in cloud environment.

There is a user on the client-side, smart contracts in the blockchain network, and the
cloud platform/CSP (we assume that CSP is not trustable). Users will interact with the
cloud platform, such as uploading ML datasets from their secured environment, training
the ML system on the cloud platform, and calling the cloud’s API to use AI services.
To ensure there is no data integrity violation throughout the ML lifecycle in the cloud
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environment, we propose an architecture based on the NIST cybersecurity framework by
developing several modules that will collaborate with the blockchain network. Mapping
of our modules to NIST framework guidance is depicted in Figure 2 and the analysis of
the mapping is discussed in Section 5. There are five modules, Identity Management and
Access Control (IDMA), API Gateway, Integrity Module (IM), Logging Monitoring, and
Storage Management. In addition, we design six protocols for our first three modules,
IDMA, API gateway, and IM.

• The IDMA module is responsible for managing the user registration (Protocol I) and
login (Protocol II) process. Each user will be assigned a role limiting their activities
and preventing arbitrary behavior. Furthermore, the IDMA module will provide the
user with a credential that will be a token for authentication. Every time users want to
log in to the cloud system, it is required. In addition, this module collaborates with
smart contracts to validate information sent from both parties.

• API Gateway is designed to handle API requests from users wanting to use cloud
services. Before utilizing cloud services, users must invoke a token from the API
gateway (Protocol III). The API gateway also cooperates with smart contracts to record
the user’s request for an API token and the token value. Both user and cloud systems
can verify the token’s legitimacy to smart contracts. The token value is required every
time user want to call an API for cloud services to the API gateway (Protocol IV).

• Integrity Module aims to preserve the integrity of ML training data (Protocol V) and
model (Protocol VI) by leveraging blockchain. So, the user and cloud system can
verify the data integrity to the smart contracts.

• Logging and Monitoring aims to record data flows and user activities. Furthermore, it
will continuously monitor the system and raise a warning if there is malicious behavior.

• Storage Management aims to maintain the systems backup data process regularly. The
data will be stored in an encrypted form to keep the confidentiality.

4.2.1. Notations

We present the notations that will be used in the proposed architecture details.

1. Addrx is refers to x′s blockchain address.
2. SKx, Addrx are a pair of secret key and public key of x.
3. SignSKx(Y) generates a digital signature for data Y using secret key of x.
4. PKVerAddrx (M, N) is a function to verifies whether blockchain address Addrx signs

data N by generates digital signature M.
5. EPKx(Y) is a asymmetric encryption of data Y using public key of x.
6. DSKx(Y) is a asymmetric decryption of data Y using secret key of x.
7. H(Y) is generates a hash of data Y.
8. SCz is the smart contract for module z. It is resides in the blockchain network and act

as trusted SLA to bind the trust between users and CSP.
9. JWTVer(O, SKx) is a function to verifies the access token O using secret key of x.

4.2.2. Identity Management and Access Control Module (IDMA)

This module will manage authentication and access control by defining who (identity)
has what access (role) for which resources [69]. Before accessing the cloud services, the
user must prove that they are the authentic user registered in the cloud system. It is used
to prevent adversaries from impersonating the actual user. When new users sign up to
the cloud system, this module will also ensure they get the roles and permissions. We
utilize Role-Based Access Control (RBAC) as a policy enforcement mechanism that limits
the system access. In RBAC, we assign a role to every user registered in the cloud system.
This role will determine the user privileges about what cloud services they can access. We
define three roles that are suitable with the scope of our system architecture as presented in
Table 7.

1. General user. This role authorizes the users to access only their personal data, such as
their training data and model. In addition, they can access the cloud services (e.g., AI
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service) through API calls, but users need to invoke an additional token to the API
gateway.

2. Log admin. This role authorizes the users to access only the logging data because this
role is specified for the user who is in charge of analyzing the system (e.g., data flow,
network traffic, etc.).

3. System admin. This role has higher privilege than the previous two. It authorizes a
user to access user information and logging data. A system admin will manage the
user’s role and have the authority to revoke the user’s role if the user is compromised.

Table 7. User’s role and permission in the proposed protocol.

Role Personal Data (Training Data & Model) Logging Data Detail User Info Cloud Services

General-user
√

× × 4
Log-admin ×

√
× ×

System-admin ×
√ √

×
√

: permitted ×: prohibitted4: Additional token required.

The details of the user’s role and permission in JSON format are depicted in Figure 3.
In the user-role there are three values, role, scope and access. The enumeration is as follows.

• Role has three options, 1 is for a general user, 2 for log admin, and 3 for system admin.
• Scope limits what data users can access. This parameter also has three options, 1 for

personal data (e.g., training data and model), 2 for logging data, and 3 for user
information details.

• Access defines what the user can do to the data. It is filled with 3 bits. If the last digit
is one (001 = 1), the user can edit the data. If the second digit is one (010 = 2), the user
can delete the data. Lastly, users can view the data if the first digit is one (100 = 4). So,
if all three digits are one (111 = 7), users can edit, delete, and view data.

Figure 3. User information details.

We present two use cases protocol for IDMA module design, the user registration
and user login process as shown in Figure A1 (Appendix A) and Figure A2 (Appendix B),
respectively.

• Protocol I: User Registration
Before using the cloud services, new users need to go through the registration process.
However, users cannot directly register themselves to the IDMA module. They need
to send a transaction that contains their registration request to the smart contract
(Steps 1–2). After their transaction is recorded to the blockchain, they can send reg-
istration data to the IDMA module (Steps 5–6). If the IDMA module cannot find
the user’s data in the smart contract when the user sends a registration request, it
will reject the request. The IDMA module can easily verify the corresponding user
registration request by comparing the hash of registration data sent by user and the
blockchain (Step 7). Subsequently, it also verify the message signature. If the user’s
request is verified, the IDMA module will assign the user’s role and generate the user
credential (Ucred) in Steps 8–9. Ucred is required every time users want to log in to the
system. IDMA module will also record the Ucred to the SCidma (Step 10). Then, the
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IDMA module will send Ucred and the user’s role value to the user together with its
signature (Step 13). Users can verify the integrity of Ucred from the IDMA module
by comparing it with the value from the blockchain. The user will also verify the
message signature to ensure the sender is the IDMA module and not an adversary
impersonating the IDMA module. By the end of this process, users will know their
role and have a user credential in their local storage. Details description of each step
is provided in the Appendix A.

• Protocol II: User Login
After a new user successfully registered to the cloud system, he owned a user credential
(Ucred) in their local storage. Later, he will use this credential every time he log in to
the cloud system.
First, the user prepares the login data and send to the IDMA module as shown in Steps
1–2. Upon receiving the login request, the IDMA module begins the authentication
and verification process (Step 3). First authentication step is by checking the email,
password, and user credential to see whether it matches the recorded data in the local
DB. After that, additional authentication process in IDMA module is by comparing
Ucred value from user and the one existed in blockchain. This second authentication
step is required to ensure that the sender is the authentic user. So, IDMA module will
query the user credential from SCidma (Steps 4–5). Then, the IDMA module compares
Ucred value from the user and the blockchain (Step 6). Subsequently, the IDMA module
checks the user’s role and verify the message signature. This signature verification
step is crucial to prove that the sender of R′5 is the same user who has sent a transaction
to the smart contract. Furthermore, it will prevent the adversary from impersonating
the user. If return true, send a signed message to the user that login is successful (Steps
7–8). In the last step, the user verifies the reply message to ensure that the sender is
IDMA module and not altered on the transmission process. Details description of each
step is provided in the Appendix B.

4.2.3. API Gateway

The user uses API in order to call cloud services through a web browser. The API’s
lack of security will expose the system to unauthorized resource access. Therefore we
provide an API key/token generated by the API gateway. It acted as a guard to limit
whoever wanted to access cloud resources and services. The user must attach the token as
a parameter every time calling the API. However, if CSP is compromised, the adversary
could steal the token to access our services undetected. Thus, we build a trustable API
gateway by leveraging smart contracts. Furthermore, there is a token expiration time in
our system. If a token is expired, the user needs to invoke a new token to the API gateway.
For a token generation, we utilize JWT (JSON Web Token). JWT is a group of JSON objects
that are base64url-encoded and combined as a string separated by a dot [70]. We present
two use cases protocol for API token management, invoke token and API call process as
depicted in Figure A3 (Appendix C) and Figure A6 (Appendix D), respectively.

• Protocol III: Invoke Token
Before requesting a token to the API gateway, we assume that the user has already
login to the cloud system.
First, the user needs to know a list of services that they can use. So, Steps 1–11 are
when users request a list of services to the API gateway. Every time user or API
gateway receives a request, they will verify the message first to ensure the message
is not from the adversary and the message is not altered in the transmission. Before
API gateway can give the list of services, it will check the user’s role beforehand to the
IDMA module. At the end of Step 11, users receive the list of services they can access
from the API gateway and choose what services they want to use. In Steps 12–26, there
are some interactions with API Token smart contract (SCapi). Similar to Protocol I, the
user needs to send a transaction to the SCapi that contains a list of services that the
user wants to access. If the user sends a services request to the API gateway without
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sending a transaction to the smart contract beforehand, the API gateway will reject
this request. The services request must be recorded in the smart contract so the API
gateway can verify the integrity of the request. After the API gateway verifies the
user’s service request, it will generate an API token (Utoken) based on the user’s list of
services (O) that is shown in Step 18. Utoken is a required parameter to be sent every
time users call the corresponding API services. API gateway also stores this value to
the smart contract and will be used later in the token verification process. By the end
of Step 26, the user will possess the API token and store it in the local storage. Details
description of each step is provided in the Appendix C.

• Protocol IV: API Call
The user needs an API token to access cloud services through the API gateway. We
assume that the user already invoked the token and has it in their local storage for this
process.
A user needs to prepare the request data to call the API service, as shown in Step 1.
The process of API gateway verifies the user’s API call is presented in Steps 3–6. API
gateway will verify this request by checking the signature (Step 3). Subsequently, it
will get the Utoken value stored in SCapi (Step 4). Then, SCapi will send a hash of Utoken
in a variable called H10 as mentioned in the previous protocol (Step 5). The next step
is necessary to prove the data integrity stored in the local DB and the value sent by
the user. First, the API gateway gets the expiration time of the token (Timeexp) from
the local DB. Then, computes Utoken by hashing AccessToken′ and Timeexp. After that,
it will compare the value from the smart contract and the hashing computation result.
If equal, continue next process; otherwise, reject. It means either Timeexp value from
DB or AccessToken′ from the user was altered. Next, it checks whether the Q′ value is
a member of O or not. If the token is not expired, and the previous condition is true,
API gateway will validate the token using JWTVer function with AccessToken′ and
SKgw as the inputs (Step 6). If this step is true, the API gateway will relay the request
to the corresponding service in the system. Details process of the service is present in
Protocol VI. At the end of this protocol, the user receives the corresponding service
from the API gateway. Details description of each step is provided in the Appendix D.

• Token revoke. In our system, a token can be revoked because (i) Token expired.
(ii) System detects a malicious activity such as user verification failed several times
when using the Token.

4.2.4. Integrity Module (IM)

The Integrity Module aims to keep the integrity of training data and the models in
cloud-based AI systems. Specifically before stored in cloud storage, before AI service use
the data, and when the data-at-rest in the cloud database. Our IM will collaborate with a
smart contract as a trusted SLA. Before storing the data in the cloud, the user will store the
data’s hash to the smart contract. It makes the IM easily verify the data integrity because
of the transparency nature of the blockchain. Besides, there are two components in the
Integrity Module:

1. The hash algorithm, such as SHA256, ensures no data integrity violation.
2. Digital signature to verify the sender and provide non-repudiation.

We know that it is expensive to record an enormous amount of data in the blockchain
in terms of storing data. Training data obviously consume a large amount of storage. The
alternatives is utilize a storage that based on distributed hash tables (DHTs). There are
several instances, IPFS (InterPlanetary File System) [71], Ethereum Swarm [72], Storj [73],
and MaidSafe [74]. In our proposed protocol, we choose IPFS to store the ML training data
and model. IPFS offers a decentralized system for storing and accessing files, websites,
applications, and data [71]. When someone stores data in IPFS, it will generate a hash of
data that points to the file location in return. So, instead of storing an extensive amount of
data, the user will store this file location value to the blockchain. The details of our integrity
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management protocol when the user wants to store the training data is shown in Figure A7
(Appendix E).

• Protocol V: Store training data
First, the user will store the training data, metadata, and its hash to the IPFS (Steps 1–2).
After IPFS receive and store the data, it will return the path of the stored data in the
form of hash (Hip f s) in Step 4. Subsequently, the user prepares the hash of these values,
user blockchain address, user credential, IPFS hash, and current timestamp. So, the
user will store this hash to the IM smart contract (SCIM). After SCIM successfully
stores the user’s transaction in the blockchain, the user will store the dataset saved
in variable R17 to the IM module (Step 10). IM module will verify the integrity of
the data to the smart contract first before storing it to the local DB. This process is
shown in Steps 11–16. IM module compares the hash received from the user and the
blockchain. This part is crucial to ensure that the adversary has not corrupted data
integrity. If the data is not equal, there is a chance that the adversary has altered data.
Then, the IM module will reject the data; otherwise, data integrity is assured, and the
process continues. Furthermore, it also checks the user’s role in the IDMA module
to assure whether the user has permission to store data or not. The IM module will
stop the process if the user does not have permission. This part aims to strengthen
access control in the cloud system and prevent users’ arbitrary behavior that can
threaten data integrity. At the end of Step 16, data will be stored in the cloud storage.
Furthermore, the IM module will notify the user that the data is stored (Steps 17–19).
Details description of each step is provided in the Appendix E.

• Protocol VI: Store ML model
The second protocol of our integrity module is depicted in Figure A8 (Appendix F). It
is the case when the user wants to store the ML model after the training process. We
assume that:

– User already past the previous protocol process then uses the AI service to start
ML training step and store the model.

– User receives param variable that relayed from API gateway (see Figure A6).
Specific to this protocol, param contains parameters for training the data in the
cloud system, such as the IPFS hash (Hip f s) that shows the location of training
data and hyperparameters for training the AI system (e.g., number of nodes and
layers, learning rate, bias, weight, activation function).

After the AI service receives Hip f s from the previous step, it will check whether the
same hash value recorded in the IM smart contract SCIM (Steps 1–2). Then, it also
gets the IPFS hash from the local DB. Finally, it compares three values: IPFS hash
relayed from API gateway, smart contract, and local DB. If the comparison does not
match, there is a possibility that either data relayed from the API gateway or local DB
has been altered. Therefore, it will reject the request. Otherwise, it means there is no
alteration of the data, and the data integrity is assured. AI service continues to get the
training data from IPFS and start the training process (Steps 4–7). At the end of the
training process, there will be an ML model that needs to be stored and preserve the
model integrity. Then, the AI service will store the ML model to the IPFS and get the
path of the stored ML model in hash form (HMip f s) (Steps 9–11). To guarantee the data
integrity, the AI service will also record ML model IPFS hash to the SCIM (Steps 13–14).
Then, when the AI service stores the ML model to the IM module, the IM module
can verify the data by comparing the hash from the AI service and the blockchain
(Steps 18–19). If the hash is not matched, there is a chance that the data received was
altered; then, the IM module will reject the request. Otherwise, the IM module stores
data received to local DB. Lastly, the IM module sends a message notification to the AI
service that data is successfully stored (Steps 20–22). Details description of each step
is provided in the Appendix F.
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4.2.5. Logging and Monitoring

This module will record activities from three previous modules, IDMA, API gateway,
and IM module. We enforce an access control policy from the IDMA module that only the
user with the admin role can access the log.

• First, from the IDMA module, it will monitor the registration and login activities.
For example, if a user has a high number of failed authentication attempts in a row,
it can be a sign of malicious activity. Then, this module will notify the IDMA to
suspend the corresponding user from login for several amounts of time. If the same
case happens again from the same user, this module will notify the IDMA to revoke
the user credential.

• Second, this module will monitor the invoke token and API call activities from the API
gateway. Use case example, if one API token has been called from a different location
simultaneously, it is considered suspicious activity. So, this module will notify the API
gateway to suspend/revoke the corresponding API token.

• Lastly, from the IM module, it will also monitor the storing training data and ML model
activities. Use case example, when storing the ML training data/model, the IM module
needs to verify the message signature. However, if there is a high number of failed
verification, there is potential that someone alters the message. Then, the logging and
monitoring module will notify the IM module to stop the corresponding process.

4.2.6. Storage Management

Storage Management maintains the system to back up the data periodically. In addi-
tion, the data will be stored in encrypted form to keep confidentiality. The user needs to
configure it once to set the automation backup system. People often underestimate this
step, even though backup data is vital to enabling the recovery process after an attack. The
data will be restored to replace tainted or lost data with the original one.

5. Evaluation and Discussion
5.1. Off-Chain Computational Complexity

This part presents an evaluation of off-chain computational complexity for six proto-
cols, User Registration, User Login, Invoke Token, API Call, Store ML Training Data, and
Store ML Model protocol. We calculate the total cryptographic algorithm and estimation
average processing time in each protocol performed by user and cloud modules on Table 8
and Table 9, respectively. In Table 9, we combine protocol for API call and Store ML model
because the latter process is the continuation from the former protocol.

Table 8. Number of cryptographic algorithm execution and estimation average time for five protocols
performed by user. U = User, AT = Average Time.

Cryptographic
Algorithm AT (ms)

User Registration User Login Invoke Token API Call Store ML Training Data

U U × AT (ms) U U × AT (ms) U U × AT (ms) U U × AT (ms) U U × AT (ms)

Asymmetric-Enc 0.027 1 0.03 1 0.03 2 0.05 1 0.03 1 0.03

Asymmetric-Dec 0.823 0 0.00 0 0.00 1 0.82 0 0.00 1 0.82

Signature 0.041 1 0.04 1 0.04 2 0.08 1 0.04 2 0.08

Verify 0.117 1 0.12 1 0.12 2 0.23 0 0.00 1 0.12

Total 3 0.19 3 0.19 7 1.19 2 0.07 5 1.05

Table 9. Number of cryptographic algorithm execution and estimation average time for six protocols
performed by cloud modules. CM = Cloud Module, AT = Average Time.

Cryptographic
Algorithm AT (ms)

User Registration User Login Invoke Token API Call + Store ML Model Store ML Training Data

CM CM × AT (ms) CM CM × AT (ms) CM CM × AT (ms) CM CM × AT (ms) CM CM × AT (ms)

Asymmetric-Enc 0.027 0 0.00 0 0.00 2.00 0.05 1 0.03 1 0.03

Asymmetric-Dec 0.823 1 0.82 1 0.82 3 2.47 2 1.65 1 0.82

Signature 0.041 1 0.04 1 0.04 4 0.16 3 0.12 3 0.12

Verify 0.117 1 0.12 1 0.12 4 0.47 5 0.59 3 0.35

Total 3 0.98 3 0.98 13 3.16 11 2.38 8 1.32
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The associated cryptographic algorithms consist of asymmetric encryption, asym-
metric decryption, signature generation, and signature verification. To get the average
processing time for each cryptographic algorithm, we run a cryptographic benchmarking
tool called wolfCrypt [75]. Benchmarking process is run on Ubuntu Linux 16.04 under
the Oracle VM VirtualBox environment. The virtual environment was installed on a
Windows 10 host machine with Intel Core i5-7200U @2.50 GHz CPU and 4 GB memory.
We measure the average processing time of RSA-2048 for encryption and decryption and
ECDSA-256 for signing and verification.

Then, to get the estimation average processing time of each protocol, we multiply this
number by the total value of each associated algorithm. Finally, we can get the estimation
request per second that cloud modules can process. For a bigger picture, we present the
estimation numbers of requests per day that cloud modules can process for each protocol
in Figure 4. These results show that the highest request is achieved by user registration and
user login protocols, with around 88 million requests per day. This value is 3.2 times higher
than Invoke API Token, with 27 million requests per day. The other protocols produce low
requests per second due to the number of cryptographic algorithms needed to perform.
For example, the number of cryptographic algorithms in the Invoke API token protocol is
three times higher than user registration and login. However, even the number of requests
per day of this protocol is lower, the performance is still acceptable because users only need
to invoke API tokens once and last for a period of time.

Figure 4. Estimation average request per second that can performed by cloud modules for six
protocols.

Figure 5 shows the percentage of the total heavy cryptographic algorithm performed by
user and cloud modules. Cloud modules perform the most cryptographic algorithms in our
protocol with a value of 66%. By these amount of percentage, the cloud system should be
aware of the burden of computational cost since it will computed centrally, while users only
perform 34%. Overall, it shows that our protocols serve low computational requirements
for the users. Lastly, it is worth noting that our evaluation does not include pre-processing
data preparation and the transmission time, only for performing cryptographic algorithms.
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Figure 5. Percentage comparison of total cryptographic algorithms in six protocols performed by
user and cloud modules.

5.2. Smart Contracts’ Complexity

This part presents the evaluation of our smart contracts’ complexity by calculating
the gas consumption of each function in our smart contracts. We choose Ethereum as our
blockchain platform because it supports smart contracts which have been widely used.
In Ethereum, gas is a unit of measurement for the amount of computing effort necessary
to perform specified functions [76]. Based on this gas, we can calculate the transaction
fee (Tx fee) that users need to pay every time they call a smart contract function that will
change the storage state. The user needs to be aware that the Tx fee depends on the smart
contract code complexity. The more complex the code, Tx fee will become higher. The gas
price in Ethereum is measured in Gwei. Then, to calculate the Tx fee, we must multiply
the gas used by the current gas price. The result in Gwei can be converted to ether (ETH),
so we can get the value in USD fiat money. The other important thing is, in Ethereum, the
total amount of gas in one block is restraint by the block gas limit [76]. In other words,
it determines the number of transactions fitting into a block. Therefore, smart contracts’
complexity evaluation is essential to measure the implementation of the feasibility of our
proposed protocol.

Our smart contracts were developed on the same specification as mentioned in
Section 5.1. The blockchain network is based on Ganache. Ganache is a rapid Ethereum,
and Corda distributed application development [77]. Solidity is used as the programming
language to write a smart contract. Furthermore, we use Truffle for the smart contracts
development environment. It supports an easy compilation, management, and deployment
of the smart contracts [78].

We present our measurement of the gas used for each function in our smart contracts
and the Tx fee in Table 10.

Table 10. Gas used of writable functions in our smart contracts. * Data calculated from ETH Gas
Station [79] on 15 January 2022. The average gas price at that time is 111 Gwei.

Function Description Caller Gas Used Tx Fee (USD) *

StoreRegData 1 Store hash of registration data from user User 45,811 16.72

StoreUcred 1 Store user credential from IDMA Cloud 45,833 16.73

StorelistServices 2 Store hash of list services requested by user User 45,811 16.72

StoreUtoken 2 Store user token from API gateway Cloud 45,789 16.72

StoreTdataHash 3 Store training data store message hash + IPFS hash of training data User 79,260 28.94

StoreMdataHash 3 Store model data store message hash + IPFS hash of model Cloud 79,260 28.94
1: IDMA smart contract, 2: API token management smart contract, 3: IM smart contract.
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We only put functions that change the smart contract’s state because the read/call
function runs without gas. Our proposed architecture has three smart contracts: IDMA,
API token management, and Integrity Management smart contract. The first smart contract
has two functions, StoreRegData and StoreUcred. StoreRegData aims to store payload
hash of registration data from user, while StoreUcred is to store user credential value
generated by IDMA. Our second smart contract has two functions, StorelistServices
and StoreUtoken. The former is a function to store payload hash that contains the list of
services requested by the user, and the latter is a function to store user API token value
generated by API gateway. The last smart contract also has two functions, StoreTdataHash
and StoreMdataHash. The first function aims to store training data payload hash and the
IPFS hash of ML training data, while the second has the same function, the data stored is
the payload hash of the ML model and its IPFS. From all functions, the highest gas used is
79,260 each for two functions storing the payload hash of store training and model data
request, respectively. These functions cost higher because they store two parameters to the
smart contract, while the other only store one parameter. The gas consumption of the rest
functions is similar, around 45,800 gas. We also present the comparison of gas consumption
by user and cloud module for every protocol in Figure 6. It shows that both user and cloud
module have the same total gas consumption. The absence of two protocols is because in
those protocols do not involve smart contract call function that change the storage state.

Figure 6. Comparison gas consumption for each protocol.

Additional measurement of blockchain implementation is the throughput. It shows
the number of transactions per second (TPS) processed. In Ethereum, total transactions
per block are restrained by the block gas limit, as mentioned earlier. So, a higher block
gas limit means higher throughput. Another factor that affects the throughput is block
creation time. It determines how long one block is produced. So, a longer time means lower
throughput. Therefore, based on gas used values, block gas limit, and block creation time,
we create two scenarios to measure the estimation throughput for each function. Scenario
A is for private Ethereum, and scenario B is for public Ethereum. In scenario A, we refer to
truffle development configuration [80], the default block gas limit is 6,721,975, and block
creation time is every 1 s. In scenario B, based on this reference [76] block gas limit in
public Ethereum is 15 million, while average block creation time is every 15 s [81]. So, we
present the estimation TPS of these two scenarios in Figure 7. In the estimation, the first
four functions in scenario A can achieve around 147 TPS that 6.7 times faster than scenario
B that achieves around 22 TPS. The former scenario can achieve around 85 TPS for the
last two functions and the latter 13 TPS. So, if 10,000 users want to run our smart contract
function with the highest TPS, it takes 1 min with scenario A and 7 min with scenario B.
For the smart contract function with the lowest TPS, the former scenario takes 2 min, and
the latter takes 13 min.
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Figure 7. Estimation transaction per second of two scenarios for each smart contract function.

In scenario B, because it is public Ethereum, the callers of the smart contract functions
also have to pay a Tx fee that is presented in Table 10. Furthermore, the gas price may
vary over time depending on the market situation. Furthermore, when we see Figure 6 at
a glance, the total gas consumption for both user and cloud are the same. However, the
Tx fees are a different case. Cloud systems should be aware of Tx fees because the more
users they have, the more they need to call the smart contract function frequently. In other
words, it means higher Tx fees. Fortunately, the frequency of three smart contracts that the
cloud needs to call is low. For example, user registration will only be called once every user.
Nevertheless, cloud systems should be aware of this problem. However, there is a benefit
about the Tx fees. If users/cloud systems successfully validate a transaction in Ethereum,
they will also get the Tx fees paid by the caller as an incentives reward [76].

The public Ethereum uses Tx fees systems to secure the network from bad actors
spamming the network and to avoid accidental infinite loops or another computational
wasting in code [76]. Besides, Ethereum developers keep improving their systems to
decrease Tx fees. They introduce Layer 2 Rollup that claimed can decrease the user Tx
fees. Rollup performs transaction execution outside the main Ethereum chain but posts
transaction data on layer one [82]. Thus, the Tx fee will be cheaper because decreasing the
burden of gas consumption for transaction execution. Another alternative is implementing
our protocol in a private blockchain where the Tx fee does not exist. However, there are
also no incentives given to the transaction validator. Subsequently, there is a chance for bad
actors spamming the network because of the absence of Tx fees. Fortunately, Ethereum
is now working on developing Ethereum 2.0. At present, Ethereum uses Proof-of-Work
as their consensus protocol that becomes a bottleneck for achieving high TPS. However,
in Ethereum 2.0, they will migrate their consensus protocol to Proof-of-Stake (PoS) that
claims to have higher throughput because there are shard chains that allow Ethereum to
create multiple blocks at the same time [68]. Finally, based on this evaluation, our proposed
protocols are feasible to be implemented in both private and public Ethereum, with all pros
and cons discussed.

5.3. NIST Framework Mapping

NIST created guidance to consider when an organization wants to build a secure
architecture to overcome a cyber attack. There are five main points: Identify, Protect,
Detect, Respond, and Recover. These points are not a checklist of actions to perform.
Nevertheless, it helps organizations manage their cybersecurity risks. It is flexible so that
organizations can adjust it based on their need. In our scope, we adopt it to build our
proposed architecture that ensures continuous data integrity provisioning in cloud-based
AI systems. We present the mapping of our proposed architecture to these five main points
based on the expected outcomes of several sub-points from reference [83] and the NIST
related sub category [84] in Table 11. We modified some sub-points to fit our proposed
architecture.
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Table 11. Mapping our proposed architecture to the NIST framework that associated with data
integrity.

Sub Points NIST Expected Outcomes NIST Related Sub Category Our Proposed Architecture

N1-1 Document information flows

ID.AM-4, ID.GV-1,
ID-RA-1, ID-RA-3,

ID-RM-2

Logging and monitoring

N1-2 Maintain inventory access IDMA, API gateway
+ smart contracts

N1-3
Establish policies for

cybersecurity that include
roles and responsibilities

Blockchain smart contracts
as trusted SLA

N2-1 Manage access to
assets and information PR-AC-1, PR-AC-4, PR-AC-6-7,

PR-DS-1-2,PR-DS-5-6, PR-IP-3-4,
R-IP-9,PR-MA-1, PR-PT-1, PR-PT-3

IDMA, API gateway
+ smart contracts

N2-2 Conduct regular backups Storage Management

N2-3 Data Integrity Protection IM + smart contracts

N3-1 Maintain and monitor logs DE.AE-3, DE-AE-5, DE-CM-3,
DE-CM-7, DE-DP-1, DE-DP-4

Logging and monitoring,
IDMA, IM, API gateway

+ smart contracts

N4-1 Maintain Response plan RS-RP-1, RS-CO-2, RS-AN-1-2,
RS-MI-1-2

IDMA, IM, API gateway,
Logging and monitoring

N5-1 Maintain recovery plan RC-RP-1 Logging and monitoring,
Storage management

• N1. Identify: We need to identify and manage resources that enable the organization
to focus and prioritize its efforts to finish the goal. In our case, the goal is to ensure
no violation of data integrity in cloud-based AI systems. In order to do that, we have
identified threats and vulnerabilities in Section 2 along with the integrity issues in AI
and cloud environments. We use these data to identify which assets and resources
need protection to achieve our goal.
N1-1. Document information flows. It is necessary to understand the information stored
in the cloud storage and its flows. Therefore, our proposed architecture’s logging and
monitoring module will continuously record information, including the data flow.
N1-2. Maintain system access. It is crucial to define and monitor who can access the
system because it is most likely the adversary’s entrance. In our proposed architecture,
there are Identity Management and Access control (IDMA) and API gateway modules
connected to two smart contracts for each module, respectively, to guard the system
access.
N1-3. Establish policies for cybersecurity that include roles and responsibilities. There are two
or more parties that have interaction in a cloud-based AI system. They do not know
whether they can trust each other or not. Therefore policies are needed to increase the
trust between parties and prevent arbitrary actions. Our proposed architecture utilizes
blockchain smart contracts to enforce the policy as a trusted Service Level Agreement
(SLA).

• N2. Protect: Based on our analysis in Section 2, the system access and cloud in-
frastructure category need protection from the existing vulnerabilities in the cloud
environment. Besides, we need to protect the data transmission from the user to the
cloud storage to ensure the data integrity of training data in the ML pipeline.
N2-1. Manage access to assets and information. IDMA module and its smart contracts will
manage authentication and authorization for each user to log in to the right account
and get the corresponding access control. At the same time, the API gateway and its
smart contract verify the users’ permission when they call queries to request the AI
service.
N2-2. Conduct regular backups. Backup data has a significant impact, yet users often
neglect maintaining it regularly because they underestimate its purpose. Therefore, in
our proposed architecture, there is storage management to automate regular backups
in a secure form.
N2-3. Data integrity protection. It is the vital part since it is the goal of our paper,
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manage data integrity. Therefore, we append an Integrity Management (IM) module
to achieve it in our proposed architecture. This module collaborates with smart
contracts to increase the difficulty of falsifying the data and further enhances data
integrity. By recording the data in the blockchain, both parties, users and CSP, can
verify the received data integrity. It is difficult and expensive for adversaries to alter
blockchain data since it is required to overcome more than 50% computing power.

• N3. Detect: In order to detect malicious activities, continuous logging and monitor-
ing are needed. So, for instance, if there are unusual activities in login, writing, or
executing the file, the system can send a warning to the user.
N3-1. Maintain and monitor logs. There are four modules in our proposed architecture to
ensure the success of anomaly behavior detection, IDMA, IM, API gateway, Logging
and monitoring. Furthermore, three smart contracts will cooperate with the first
three modules as a trusted SLA. The data flow from the first three modules will be
recorded in the logging and monitoring module. Consequently, this module will
continuously monitor the user activities whether there is malicious behavior or not.
Besides recording and monitoring the data flow, this module also monitors system
errors, network traffic, and statistics. By analyzing those data, the system can warn
the user of suspicious behavior.

• N4. Respond: The response plan should be prepared prior to the attack happens.
For instance, user and system can have their responsibility to mitigate the attack,
respectively.
N4-1. Maintain response plan. There are four modules included in the response plan,
IDMA, IM, API gateway, Logging and monitoring.

– IDMA secures the entrance point of the system. It authenticates the user that
wants to log in to the system. If failed prove their identity several times, IDMA
will reject the user from entering the system. This activity will be recorded by
logging and monitoring module.

– IM preserves the integrity of training data and model by leveraging smart con-
tracts as a trusted SLA. If training/model data has been compromised in the
process, IM will cancel the store data process. This activity will be recorded by
logging and monitoring module.

– API gateway guards the system against an unauthorized API call. Each user
has a unique token to access a specific cloud’s services/resources. If the user
accessed the system with the wrong token several times, the system will reject
the request and revoke the token used. This activity will be recorded by logging
and monitoring module.

– The logging and monitoring module will analyze IDMA, API gateway, and IM
data. If it finds suspicious behavior, it will warn the user and limit access to the
system. Details explained in Section 4.2.

• N5. Recover: The recovery plan also should be prepared previously and communi-
cated to the members inside organizations. For instance, maintain backup regularly,
so if an incident happens, the user already has the last data before it is compromised.
N5-1. Maintain a recovery plan. For this point to work, sub-points N2-2 needed to be
done beforehand. If the backup data exists, the Storage management module could
conduct a recovery plan to restore the last backup data after attacks.

In summary, the collaboration of our modules enables the system to identify and
protect the data integrity when someone attempts to log in, access files, access API services,
and use AI services. In addition, all those activities will be recorded, and the data is used to
detect anomaly behavior and execute the response plan. Furthermore, after the incident
happens, the system will run a recovery plan by restoring the last backup data from the
secured storage. However, our proposed architecture is only complete NIST points that are
related to preserving data integrity architecture designing point of view. There are NIST
points that are related to such as the organizational procedure, communication, training,
and also their stakeholders. These parts are outside our proposed architecture relevance.
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5.4. Architecture Analysis

In our proposed architecture, blockchain is our strong point but there are also other
technologies that support our architecture. First, we design our architecture by following
NIST framework guidance. Second, we utilize cryptographic algorithms such as digital
signature to prove the sender identity and hash function to verify the data integrity. Lastly,
blockchain and smart contracts are used to record our data, such as user registration
and login, invoking API token, ML training data, and model. We record that data in the
blockchain because it is a shared and immutable ledger. Once data enters the blockchain, it
cannot be erased. It is difficult to tamper with data that has been recorded in the blockchain.
In addition, all nodes that join blockchain networks have the same data and can monitor the
data. So, a CSP or user can easily ensure data integrity by comparing data hashes with the
one that has been stored in the blockchain. Although, there are threats to blockchain-based
technology. For example, if adversaries successfully gain more than 50% computing power
in a blockchain network, they could have control of the blockchain network itself. However,
for now, gaining such computing power is very difficult and costly to achieve. Thus,
blockchain is a promising technology for tracing and ensuring continuous data integrity
provisioning in the ML lifecycle. We do not use other technology because there is a chance
that an adversary can compromise it. Finally, we argue that the synergy between the three
points above that built our proposed architecture can ensure data integrity in cloud-based
AI systems.

The next part of this section is that we will analyze our proposed architecture by
comparing it with three other works [11,59,61,62,64] as shown in Table 12.

• For our first requirement, identity and access control management, only our proposed
idea covers this part; the other five are not. Sometimes we diminish the importance of
authentication and authorization, even though we know it is essential for the system.
The lack of these two functions could expose our data integrity to the edge. Our
proposed architecture enhanced our identity management and access control module
by utilizing the smart contract.

• For our second requirement, consistency and completeness, four out of five satisfy
this requirement. So, most of other works fulfilled this requirement. Although, there
are different approach from ours that we already explained in Section 3.

Table 12. Proposed architecture analysis.

Reference Identity and Access
Control Management

Consistency
and Completeness Non-Repudiation Trusted

SLA

[59] × × × ×
[61] ×

√ √
×

[11] ×
√ √

×
[62] ×

√ √
×

[64] ×
√

×
√

Ours
√ √ √ √

• For our third requirement, non-repudiation, three out of five cover this part. Non-
repudiation is required to prove who is in charge of some actions inside the systems.
Furthermore, it could prevent malicious insiders from leaking or modifying the data
because we could track their signatures.

• For the last requirement, trusted SLA, one out of five ideas meet this requirement. In
[64], they also use blockchain to bind the trust between client and server. However,
they only implement it to cover the second requirement since our trusted SLA will
cover the first to third requirements.

Besides the above analysis, our proposed idea has one merit point not implemented in
three other works. We built our architecture based on the NIST cybersecurity framework.
It means our architecture will be able to identify and detect a threat and respond to protect
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the system. Lastly, if an incident happens, our system will be able to maintain a recovery
arrangement.

6. Conclusions

We propose an architecture-based defense mechanism that aims to ensure continuous
data integrity provisioning towards secure AI environments that follow NIST Cybersecurity
Framework guidance. After analyzing the vulnerabilities throughout the AI pipeline and
the cloud environment, we drew out several requirements. There are identity and access
control management, consistency and completeness, non-repudiation, and trusted SLA.
We designed six protocols for three modules, Identity Management and Access Control,
API token management, and Integrity management module. Then, we connect those
modules to the smart contracts as a trusted SLA to automate and guarantee the processes
work as expected. Doing so will increase the difficulty of falsifying the data and further
enhance data integrity. Furthermore, there are two other modules, a logging module will
log all activities in the system. These records will help to detect unusual behavior. Lastly,
the recovery system provides a storage management module that maintains backup data
periodically in encrypted form. However, the architecture-based mechanism is designed to
prevent adversaries enter the system in the first place before they corrupt the data. So, if an
adversary has already entered the system and corrupted the ML datasets, it is not easy to
mitigate. Therefore, our future work will combine architecture-based and algorithm-based
defense mechanisms to overcome this problem. We also evaluate and analyze our protocols’
feasibility by evaluating off-chain and on-chain code. We get the estimated average requests
processed by cloud modules for every six protocols from the off-chain analysis. On-
chain evaluation measures our smart contracts’ complexity by calculating the gas used,
transaction fees, and transaction per second. We calculate the throughput/transaction per
second (TPS) with two scenarios, private and public Ethereum blockchain, based on gas
consumption, block gas limit, and block creation interval. Furthermore, we presented both
scenarios’ pros and cons.
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Appendix A. Protocol I: User Registration

Figure A1. Proposed Protocol for User Registration.

1. New user prepares data:

• t, current timestamp
• pass, user’s password
• R1 = Addru||name||H(pass)||email||t
• H1 = H(R1)

R1 contains new users’ information that will be registered to the cloud system. Whilst
H1 is the corresponding hash. It plays a vital role in the authentication process.

2. New user send a registration request Tx1 that contains their blockchain address
(Addru) and H1 to the SCidma.

3. SCidma then will record the request to the blockchain with Addru as the key and H′1
as the value. We use the variable H′1 instead of H1 to differentiate the original value
from the sender and the current value that was received. There is also one parameter,
Ucred, that is set as NULL by default in this smart contract. This value stores the
authorization token for registered users and will be needed every time they log in to
the system. After the transaction is stored in the blockchain, SCidma will broadcast
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this event to blockchain network, so every node in the same network will get this
broadcast, including the IDMA module and user.

4. After receiving the broadcast event, IDMA module stores the corresponding informa-
tion (Addru and H′1) to its local database.

5. A new user also receives the broadcast event of request Tx1 from Step 3, it indicates
that their request was successfully inserted into the blockchain. Then, he will compute
values as follows.

• S1 = SignSKu(H1)
• R2 = EPKidma(R1||S1)

R2 consists of encrypted form of R1 and its signature (S1) and will be sent off-chain.
6. User send R2 to the IDMA module.
7. After receiving R′2, IDMA module begins the verification process.

(a) First, it will decrypt R′2 to get R′1||S′1.
(b) Compute H′′1 from R′1.
(c) Compare value H′′1 and H′1 to ensure no alteration during the transmission

process. If equal, then continue to the signature validation process; otherwise,
reject it.

(d) To validate the signature, IDMA module use function PKVerAddru with S′1
and H′′1 as the input values. This step is crucial to prove that the sender of
R′2 is the same user who has sent a registration request to the smart contract.
Furthermore, it will prevent the adversary from impersonating the user.

8. If the verification result is true, the IDMA module will set the role (Url) for the
new user. Url filled with role, scope, access which each value of those parameters has
explained before. Url will determine the user’s privileges in the cloud system to
prevent arbitrary behavior. Then, it stores both R1 and Url to the local database.

9. Next, IDMA module will prepares user credential (Ucred) by compute hash of R′1 and
Url . Subsequently, store Ucred to the local database.

• R3 = (R1||Url)
• Ucred = H(R3)

10. IDMA module sending Tx2 that contains Addru and Ucred to the SCidma.
11. Upon receiving Tx2, SCidma stores U′cred. Then, it will broadcast an event to the

blockchain network.
12. New user receiving a broadcast event from Step 11 contains U′cred value. Then, he

stores it in the local storage.
13. IDMA module also receives Tx2 it means the Ucred value has successfully been stored

in the blockchain. Next, the IDMA module will send Ucred and Url to the user along
with its digital signature signed by IDMA module secret key (SKidma).

14. New user will verify the value received. First, compare the U′′cred value from IDMA
module and from the SCidma. If the value does not equal, there is a chance that
someone alters the value when it is on transmission. Then the user will reject this
value; otherwise, the user will continue the signature verification process. He validates
the signature using PKVerPKidma function with the digital signature and hash of the
U′′cred and U′rl as the inputs. If the function’s output is true, it means the actual sender
is the IDMA module, so the user keep the U′cred value received from the smart contract
earlier. He will use it every time he wants to log in to the cloud system.
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Appendix B. Protocol II: User Login

Figure A2. Proposed Protocol for User Login.

1. User prepares data for login:

• pwd = H(pass)
• R4 = email||pwd||Ucred||t
• H2 = H(R4)
• S2 = SignSKu(H2)
• R5 = EPKidma(R4||S2)

R4 contains data for user login along with its corresponding hash H2, while R5
contains encrypted R4 and S2 using IDMA module public key (PKidma).

2. Then user submits a login request to the cloud through the IDMA module by sending
R5 to the IDMA module.

3. IDMA module receive R′5 and begins the verification process. First, decrypt R′5 with
its secret key (SKidma) to get R′4 and S′2. Then, it will check two things:

• Whether the user information already registered in database or not.
• Compare the user information (email, password, user credential) from the user

and from database match or not.

If one of those two conditions is false, reject the user login request; otherwise, continue
the process.

4. Additional authentication process in IDMA module is by comparing Ucred value from
user and the one existed in blockchain. This multi-authentication is required to ensure
that the sender is the authentic user. So, IDMA module will query Ucred value by user
blockchain address Addru to the SCidma.

5. SCidma reply the query by sending U′′cred.
6. Then IDMA module will compare Ucred value from the user and from the blockchain.

We want to ensure that Ucred in local DB is not compromised by adversary. If the
value is equal, we can assured that the data in local DB is authentic and unaltered.
Next, ensure the user’s role and privilege in DB. If user has permission, continue to
signature validation process; otherwise, reject it. To validate the signature, the IDMA
module use function PKVerAddru with S′2 and H′′2 as the input values. This step is
crucial to prove that the sender of R′5 is the same user who has sent a transaction to
the smart contract. Furthermore, it will prevent the adversary from impersonating
the user.
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7. If Step 6 is true, the IDMA module computes a message containing a ‘Login Success’
notification.

8. IDMA module sends a signed message (Msg) to the user to notify that he successfully
logged in to the cloud system.

9. User verifies this message by checking the digital signature with the PKVerPKidma
function.

Appendix C. Protocol III: Invoke Token

Figure A3. User invoke API token to the API gateway.
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Figure A4. Continue: User invoke API token to the API gateway.

1. User prepares data:

• R7 = Ucred||t
• H5 = H(R7)
• S5 = SignSKu(H5)
• R8 = EPKgw(R7||S5)

The user needs to include their credential to prove that he has the privilege to request
a token to the API gateway. So, the user prepares a message containing Ucred, current
timestamp (t), and its signature to prove the sender’s authenticity. Then, encrypt it
because the user will send it off-chain.

2. User gets the list of services they can use by sending Addru and R8 to the API gateway.
3. Upon receiving R′8, the API gateway begins the verification process.

(a) First, it will decrypt R′8 to get R′7 and S′5.
(b) Compute H′5 from R′7.
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(c) To validate the signature, API gateway use PKVerAddru function with S′5 and
H′5 as the inputs. This step is crucial to prove that the sender of R′8 is not an
adversary impersonating the authentic user.

4. If the previous step is true, then the API gateway computes some values to check the
user’s permission to the IDMA module.

• R9 = Addru||U′cred
• H6 = H(R9)
• S6 = SignSKgw(H6)

• R10 = EPKidma(R9||S6)

5. API gateway sends R10 to the IDMA module off-chain.
6. IDMA module receive R10 and begin the verification process.

(a) First, it will decrypt R′10 to get R′9 and S′6.
(b) Compute H′6 from R′9.
(c) To validate the signature, the IDMA module use PKVerPKgw function with S′6

and H′6 as the input values.

If the signature is valid, then the IDMA module will get the user’s role (Url) from DB
by sending U′′cred. After that, it will sign the hash Url with IDMA module’s secret key
(SKidma).

7. IDMA module reply the user’s role request by sending Url and the signature.
8. Upon receiving the reply message, the API gateway begins to verify it.

(a) Compute hash of user’s role (H′7).
(b) To validate the signature, API gateway use PKVerPKidma function with S′7 and

H′7 as the inputs.

If verification success, check the user permission in U′rl . If the user has a permission
to request an API token, then API gateway will computes:

• N = {n1, n2, n3, . . . , nn}
• H8 = H(N)
• S8 = SignSKgw(H8)

9. API gateway reply user’s request by sending the list of services (N) and its signature
(S8).

10. After receiving the reply message from the API gateway, the user starts the verification
process.

(a) Compute the hash of the list of services (H′8).
(b) To validate the signature, API gateway uses PKVerPKgw function with S′8 and

H′8 as the inputs.

11. If the previous step is true, then the user prepares the list of services he wants to
access.

• O = {o1, o2, o3, . . . , on}, where O ⊂ N′

• R11 = O||t
• H9 = H(R11)

12. User send Tx3 that contains Addru and H9 to the API token smart contract (SCapi).
13. SCapi then stores H′9 to the blockchain with Addru as the key. Then, it will broadcast

an event to the blockchain network.
14. API gateway receiving the broadcast event of Tx3 from Step 13 then stores Addru and

H′9 to the local database.
15. User also receiving the broadcast event of Tx3 from Step 13, indicates that their request

was successfully stored in the blockchain. Then, he prepares values:

• S9 = SignSKu(H9)
• R12 = EPKgw(R11||S9)

R12 is encrypted message that contains list of cloud services that user want to access
and its signature.



Symmetry 2022, 14, 273 33 of 41

16. User sends a services request (R12) to the API gateway off-chain.
17. Upon receiving R′12 from the user, the API gateway starts the verification process.

(a) First, it will decrypt R′12 to get R′11||S′9.
(b) Compute H′′9 from R′11.
(c) Compare value H′′9 and H′9 to ensure no alteration during the transmission

process. If equal, continue to signature validation process; otherwise, reject it.
(d) To validate the signature, API gateway use function PKVerAddru with S′9 and

H′′9 as the inputs. This step is crucial to prove the sender of R′12 is the same user
who has sent the payload to the smart contract. Furthermore, it will prevent
the adversary from impersonating the user.

18. If the previous step is true, then API gateway stores R′11 to the local database. Next, it
will generate an AccessToken with JWT format based on the list of services requested
by the user (O′). This value is combined with Timeexp into Utoken variable. Timeexp
shows the time that token will be valid. The user cannot use a token that is expired.
We present the example of Utoken in Figure A5.

Figure A5. User’s access token details.

19. API gateway compute hash of the Utoken value.
20. Then, API gateway store it to the SCapi by sending Tx4 = Addru, H10.
21. After SCapi receiving this request, it will store H′10 to the blockchain with Addru as the

key. Then, it will broadcast an event to the blockchain network.
22. After user receiving a broadcast event of Tx4, he store H′10 value to their local storage.
23. API gateway also receiving the broadcast event of Tx4. After that, it will computes:

• S10 = SignSKim(H10)
• R13 = EAddru(Utoken||S10)

24. API gateway sends R13 that contains the encrypted Utoken and its signature to the user
off-chain.

25. Upon receiving R13 from API gateway, user begin the verification process.

(a) First, it will decrypt R′13 to get U′token||S
′
10.

(b) Compute H′′10 from U′token.
(c) Compare value H′′10 and H′10 to ensure that there is no alteration during the

transmission process. If equal, continue to signature validation process; other-
wise, reject it.

(d) To validate the signature, API gateway use function PKVerPKim with S′10 and
H′′10 as the input values.

26. If previous step true, then user stores U′token to their local storage.
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Appendix D. Protocol IV: API Call

Figure A6. Proposed protocol for API calling.

1. User will prepares data before call the API as follows:

• R14 = AccessToken||Q||param||t, where Q ∈ O
• H11 = H(R14)
• S11 = SignSKu(H11)
• R15 = EPKgw(R14||S11)

R15 is an encrypted message that consists of the user’s access token (AccessToken), the
cloud service (Q), specific parameters for the corresponding cloud service (param),
current timestamp (t), and also the signature (S11).

2. User sends an API request to the API gateway by sending R15.
3. After receiving R15, API gateway begins the verification process.

(a) Decrypt R′15 to get R′14||S′11.
(b) Compute H′11 from R′14.
(c) To validate the signature, API gateway use function PKVerAddru with the input

S′11 and H′11.

4. If the previous step is true, then API gateway will query Utoken value from smart
contract by sending Addru as parameter.

5. SCapi will send the hash of Utoken which is H10.
6. API gateway get the expiration time of the token (Timeexp) first to the local DB. Then,

computes Utoken by hashing AccessToken′ and Timeexp. After that, it will compare
the value from the smart contract and from the result of hashing computation. If
equal, continue next process; otherwise, reject. It means either Timeexp value from
DB or AccessToken′ from the user was altered. Next, it checks whether the Q′ value
is a member of O or not. If token is not expired and previous condition is true, API
gateway will validate the token using JWTVer function with AccessToken′ and SKgw
as the inputs.

7. If the verification result is true, then API gateway will relay the user’s request to the
corresponding cloud service along with the param. Detail process in the cloud service
is explained in Protocol VI that depicted in Figure A8.
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8. The related cloud service will return the result (res) to the API gateway.
9. Lastly, API gateway relay the service back to the user (res).

Appendix E. Protocol V: Store Training Data

Figure A7. Data integrity management when storing the ML training data.

1. User prepares three data, metadata of training data (Mt), the training data (d), and
the signature of two previous data (SMd). Mt contains the name of the dataset, size,
and source URL to download the original dataset.

2. User stores Mt, d, Sd to the IPFS.
3. IPFS then stores Mt′, d′ and S′d to its storage. Subsequently, it computes a unique

fingerprint called content identifier (CID). This CID act as a permanent record and a
URL of the files.

4. IPFS sends the CID, that denoted as Hip f s in our protocol, to the user.
5. After that, user computes R16 that contains Addru, Ucred, H′ip f s, t and the hash (H12).

6. Continuously, user sends transaction Tx5 that contains Addru, H12, H′ip f s to the IM
smart contract (SCIM).
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7. SCIM then store those three values (Addru, H12, H′ip f s) to the blockchain. After that, it
broadcast an event to the blockchain network.

8. Upon receiving a broadcast event of Tx5, the IM module stores three values in the
local DB.

9. User also receives a broadcast event Tx5, which means their request is successfully
stored in the blockchain. So, he computes R17 that is an encrypted message of R16 and
its signature.

10. User submits a request to the IM module to store the training data information by
sending R17.

11. Next, the IM module will verify the message.

(a) Decrypt R′17 to get R′16||S′12.
(b) Compute H′′12 from R′16.
(c) Compare value H′′12 and H′12 to ensure that there is no alteration during the

transmission process. If equal, continue to the next process; otherwise, reject it.
(d) In this case, the IM module also compares the IPFS hash (H′′′ip f s) from the

user and the one that received from blockchain (H′′ip f s). If equal, continue to
signature validation process; otherwise, reject it.

(e) To validate the signature, API gateway use function PKVerAddru with the input
S′12 and H′′12.

12. If the previous step is true, the IM module needs to check the user’s role to the IDMA
module whether he has the permission or not. Therefore, it will compute R19 that is
an encrypted message consists of Addru, U′cred and its signature.

13. IM module send R19 to the IDMA module.
14. IDMA module begins to verify R′19.

(a) First, it will decrypt R′19 to get R′18 and S′13.
(b) Compute H′13 from R′18.
(c) To validate the signature, IDMA module use PKVerPKim function with S′13 and

H′13 as the inputs.

If the signature is valid, then, IDMA module will get the user’s role (Url) from DB
by sending U′′cred. After that, it will sign the hash Url with IDMA module’s secret key
(SKidma).

15. IDMA reply the user’s request by sending Url , S14.
16. Upon receiving the reply message, IM module begin to verify it.

(a) Compute hash of user’s role (H′14).
(b) To validate the signature, API gateway use PKVerPKidma function with S′14 and

H′14 as the inputs.

If signature validation is true, IM checks the user’s permission in U′rl . If the user has
permission, stores R′16 to the local database.

17. After the training data is successfully stored, the IM module computes a message
(Msg) that contains a notification to the user about the status of their request.

18. IM module gives notification to the user by sending Msg and its signature.
19. Upon receiving the reply from the IM module, the user verifies the message first. He

computes PKVerPKim function with the signature and hash of Msg as the inputs.



Symmetry 2022, 14, 273 37 of 41

Appendix F. Protocol VI: Store ML Model

Figure A8. Data integrity management when storing the ML model.

1. AI service receives Hip f s from the user through the API gateway and wants to verify
this value. First, it will get the IPFS hash value from SCIM.

2. If the value exist, SCIM sends the corresponding IPFS hash to the AI service.
3. Then, AI service will check is it recorded in DB or not. If recorded, then compare the

IPFS hashes values from the user (Hip f s), from the smart contract (H′ip f s), and from
the DB (H′′ip f s).

4. If the hashes comparison matches, then the AI service gets the training data to IPFS
by sending Hip f s as a parameter.

5. IPFS will give the corresponding training data, metadata, and signature to the AI
service (Mt, d, Sd).

6. AI service will verify the training data by using PKVerAddru function with S′d and
H(Mt′)||H(d′) as the inputs.
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7. If the previous step is true, then the AI service starts the training process with training
data (d′) and hyperparameter as the inputs.

8. After the training process is finished, the AI service will prepare ML model to be
stored (M). ML model also will be stored in IPFS. Therefore, the AI service computes
a hash of the model (HM) and its signature (SM).

9. AI service sends the ML model (M) and the signature (SM) to the IPFS.
10. IPFS then store these two values (M′ and S′M).
11. Subsequently, IPFS generates the IPFS hash of the ML model denoted as HMip f s and

sends it to the AI service.
12. Next, AI service will prepare data to be stored in the SCIM which are R20 and the

corresponding hash H16.
13. AI service sends transaction Tx6 to the SCIM that contains Addru, H16, H′Mip f s.

14. Upon receiving Tx6 from AI service, SCIM then stores those values to the blockchain.
Then, it will broadcast an event to the blockchain network.

15. IM module that receiving broadcast event of Tx6 will also store Addru, H16, H′Mip f s to
the local DB. These values will later be used for the verification process.

16. AI service also receives a broadcast event of Tx6, which means their request is suc-
cessfully stored in the blockchain. So, it will compute an encrypted message of R20
and the corresponding signature (S16).

17. Next, the AI service sends R21 to the IM module in order to store the ML model.
18. Then, the IM module will begin to verify R′21.

(a) Decrypt R′21 to get R′20||S′16.
(b) Compute H′′16 from R′20.
(c) Compare value H′′16 and H′16 to ensure that there is no alteration during the

transmission process. If equal, continue to the next process; otherwise, reject it.
(d) Continuously, the IM module also compares the IPFS hashes of the ML model

from the AI service (H′′′Mip f s) and from the blockchain (H′′Mip f s). If equal,
continue to the signature validation process; otherwise, reject it.

(e) To validate the signature, API gateway use function PKVerPKas with the input
S′16 and H′′16.

19. If the previous step is true, then the IM module stores the model (R′20) to the local
database.

20. Subsequently, it prepares a reply message (Msg) to notify the AI service that the model
is successfully stored.

21. IM module sends Msg and its signature to the AI service.
22. Upon receiving the reply from the IM module, the AI service verify the message first.

It computes PKVerPKim function with the signature and hash of Msg as the inputs.
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