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Abstract: The present paper is concerned with an instance of automatic control for autonomous
vehicles based on the theory of virtual attractive-repulsive potentials (VARP). The first part of this
paper presents a review of the VARP control theory as developed specifically by B. Nguyen, Y.-L.
Chuang, D. Tung, C. Hsieh, Z. Jin, L. Shi, D. Marthaler, A. Bertozzi and R. Murray, in the paper
‘Virtual attractive-repulsive potentials for cooperative control of second order dynamic vehicles on
the Caltech MVWT’, which appeared in the Proceedings of the 2005 American Control Conference,
(Portland, OR, USA) held in June 2005 (pp. 1084–1089). The aim of the first part of the present paper is
to recall the mathematical and logical steps that lead to controlling an autonomous robot by a VARP-
based control theory. The concepts recalled in the first part of the present paper, with special reference
to the physical interpretation of the terms in the developed control field, serve as the starting point to
develop a more convoluted control theory for (second-order) dynamical systems whose state spaces
are (possibly high-dimensional) curved manifolds. The second part of this paper is, in fact, devoted
to extending the classical VARP control theory to regulate dynamical systems whose state spaces
possess the mathematical structure of smooth manifolds through manifold calculus. Manifold-type
state spaces present a high degree of symmetry, due to mutual non-linear constraints between single
physical variables. A comprehensive set of numerical experiments complements the review of the
VARP theory and the theoretical developments towards its extension to smooth manifolds.

Keywords: feedback control; path planning; Riemannian manifold; VARP control theory; virtual
potentials field

1. Introduction

Most control problems of interest in engineering and applied sciences concern posi-
tioning, path planning and obstacles avoidance. A noteworthy example is given by the
need of commanding a spacecraft in such a way that it avoids bright objects yet maintaining
communication with ground station, as discussed in [1]. Further noteworthy examples
are found in landing maneuvering of manned electric vehicles [2], interception of mobile
search vehicles [3], and manual guidance of robotic manipulators [4]. Virtual potentials
prove effective in solving non-linear control problems as they appear to be versatile and
widely applicable. In order to control a particular dynamical system, it is necessary to
build a virtual potential field. Such construction may be effected within a number of
mathematical frameworks. For instance, a virtual potential field may be constructed by the
use of harmonic functions and Laplace’s equations [5,6], artificial gyroscopic forces [7] and
stream functions from fluid dynamics [8].

The study of potential fields took originally its moves from physics, chemistry and
biology [9] although its versatility makes it advantageous in several different fields such as
vehicle coordination [10]. In fact, potential fields have been widely used to control different
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types of vehicles such as cylindrical robots [11], helicopters [12], road vehicles [13] and
unmanned ground vehicles [14].

A special acknowledgment should be paid to Koditschek and Rimon who, in a series
of papers, laid the foundation of the VARP theory. In particular, in the contribution [15],
the authors proposed “a methodology for exact robot motion planning and control that
unifies the purely kinematic path planning problem with the lower level feedback controller
design”. The innovative aspect of their work was to encode complete information about
a freespace and goal in the form of a special virtual potential function, termed navigation
function. Such navigation function gives rise to a feedback controller for the robot that
guarantees collision-free motion and convergence to the destination. The authors of [15]
developed a family of navigation functions that serve to guide a point-mass robot through
a generalized sphere world. The simplest member of such family of navigation functions
is obtained by puncturing a disk by an arbitrary number of smaller disjoint disks that
represent obstacles. More complex spaces (and obstacles) are obtained from this model
by suitable coordinate transformations. The study [15] was essentially devoted to planar
scenarios and appears as an application of more general results presented earlier in [16],
where the general problem of constructing navigation functions on arbitrary manifolds
(not only those obtainable as deformations of sphere words) was dealt with.

Over the years, potential fields have been applied to constrained attitude control, as
they enable to handle simultaneously a large number of forbidden and mandatory zones,
while guaranteeing computational tractability and convergence [17]. Potential fields have
also been applied to slew maneuver of satellites; see, e.g., the paper [18] that introduced
a ‘Sun avoidance potential’. The manuscript [19] introduced the notion of exponential
repulsive potential whose gradient returns a protection control field to prevent aircraft
accidents. The contribution [20] utilizes virtual potential functions to generate trajectories
to be used as initial guesses for a ‘general pseudospectral optimal control’ algorithm. The
research work published in [21] presents a real-time hybrid guidance method which fuses
the flexibility and robustness of harmonic potential functions with a rapidly-expanding
random-tree method; such research outcome allows to plan near-fuel-optimal trajectories
on cluttered environments. The paper [22] outlines a method based on the theory of
virtual potential fields combined with sliding mode control for spacecraft maneuvers in
the presence of obstacles; guidance and control algorithms devised in such manner were
validated through a six degree-of-freedom omorbital simulator. Guidance algorithms based
on artificial potential functions play an increasingly important role in hazard avoidance,
although local minima might cause a spacecraft to be unable to reach the desired target
landing point in complex terrains. In the paper [23], a novel hazard avoidance guidance
method was developed by improving the traditional virtual potential function structure.

Potential fields may also be utilized in conjunction with other control strategies.
For example, Cao et al. [24] suggested using potential fields in order to adjust the path
planned by a neural network in such a way that an autonomous underwater vehicle
avoids obstacles. Baxter et al. [25] developed a control method based on the exchange of
information regarding potential fields between robots belonging to the same local group of
vehicles. Huang [26] proposed a path and speed planning strategy based on the use of a
potential field for a robot located in a dynamic environment where obstacles and targets
are moving.

Potential function-based proportional-derivative as well as augmented-proportional-
derivative control laws were developed in [27] to govern the motion of an underactuated
autonomous underwater vehicle in an obstacle-rich environment; for obstacle avoidance, a
mathematical potential function was devised, which formulates the repulsive force between
the vehicle and the solid obstacles intersecting a vehicle’s desired path. The guidance and
control framework proposed in [28] integrates offline optimal path planning with a safety
distance constrained A* algorithm, and an online extended adaptively-weighted virtual
potential field-based path following approach with dynamic collision avoidance, based on
unmanned surface vehicles maneuvering response times. An adaptive potential function
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approach originally developed for ground robots was modified in [29] and employed as
a guidance law for a class of rotary-wing unmanned aerial vehicles that must also avoid
obstacles located in a three-dimensional workspace.

The use of potential fields has been extensively studied and some alternatives have
been proposed to overcome those difficulties that it might entail. An often encountered
difficulty is that a local minimum in the potential field might trap a controlled vehicle and
consequently prevent it from reaching the global minimum, which represents the actual
goal. Lee et al. [30] proposed a solution to such problem based on the placement of a virtual
repulsive obstacle in a local minimum to keep a robot adequately distant from it. A further
solution to the aforementioned problem is to invoke hybrid strategies based on virtual
potentials and BUG algorithms [31–35], as proposed by Wang et al. [36]. A further common
difficulty to be aware of in the use of potential fields is the oscillation of the controlled
vehicle around obstacles and targets. Several proposals have been presented to address
such problem. Ren et al. [37] proposed the use of a modified Newton’s method (MNM) for
robot navigation based on an approximation of a potential field function, which is often a
complicated non-linear function, by a quadratic form. Li et al. [38] presented a regression
search method, based on an improved artificial potential field, capable of mitigating local
minima as well as oscillations. Such solution consists in redefining potential functions
in order to delete local minima and in utilizing virtual local targets for a robot to escape
oscillations. Regression search was then used to optimize the path followed by a vehicle.

On the basis of the consistent literature accumulated on this subject, the authors
of [39] proposed a workable feedback control theory, termed VARP (that stands for virtual
attractive-repulsive potentials) that they applied to drive a simple robotic platform (named
‘Kelly robot’). The control algorithm developed by the authors Nguyen, Chuang, Tung,
Hsieh, Jin, Shi, Marthaler, Bertozzi and Murray was proven effective through experiments
conducted at the Caltech University’s multi-vehicle wireless testbed facility. One of the
main ideas developed in the paper [39] was to endow each element in the environment,
including the controlled robot as well as obstacles and targets, by both an attractive and a
repulsive potential to improve maneuverability and control flexibility.

Since such VARP control theory was specifically designed to control a simple robotic
platform with three degrees of freedom (two positional coordinates and an orientation
angle), it cannot be extended directly to more complicated dynamical systems such as
a six degree-of-freedom drone. The aim of the present paper is to design an artificial
control field based on the virtual attractive-repulsive potentials to be applied to a wide
class of dynamical systems. In fact, in the present paper, a VARP-based method will be
developed to control different dynamical systems whose state-space equations insist on
different mathematical spaces. In particular, manifold-type state spaces shall be dealt with,
which present a high degree of symmetry, due to mutual non-linear constraints that single
physical descriptive variables are subjected to. In order to formulate a VARP-on-manifold
control theory, a special branch of mathematics will be accessed, namely manifold calculus.
In addition, in order to implement the devised VARP-on-manifold control theory on a
computing platform, specific numerical algorithms have been developed, which are based
on manifold calculus. As a reference on coordinate-free (embedded) manifold calculus in
system theory and control, interested readers might consult the tutorial paper [40].

The present document is organized as follows.
Section 2 describes the theory of virtual attractive-repulsive potentials as introduced

in [9,39]. The aim of this section is to recall the main concepts related to the VARP theory
and its main theoretical features.

Section 3 presents a description of a prototypical wheeled robot, used at the Caltech
University for testing the devised VARP principle. This section also explains how to
implement the VARP control method on a computation platform in order to evaluate
numerically its effectiveness in controlling a small robot. In particular, in this section, results
of numerical experiments obtained by varying the parameters of the VARP method will be
presented and discussed, in order to illustrate its features. The numerical experiments were
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performed on purpose by a low-precision numerical scheme (the forward Euler method) to
recap this method that will be extended to manifold in the following section. The analysis
presented in this section is propaedeutic to the following development as the understanding
of details concerning the application of the VARP control theory to drive a small robot will
be beneficial in extending the VARP theory to control more complicated systems whose
state evolves on smooth manifolds.

Section 4 recalls generalities of Riemannian manifolds and recaps the theory of second-
order dynamical system whose state equations are formulated on the tangent bundle of
a manifold. This section then illustrates how the VARP method can be extended in order
to control a dynamical system whose state equations are formulated on a Riemannian
manifold (M-VARP). As a case-study, the M-VARP method will be illustrated on the
manifold S2 (a three-dimensional unit sphere). The numerical algorithms to implement
such control scheme will be shown to arise from a specifically-tailored version of a forward
Euler method on manifolds.

Section 5 completes the present document, focusing on conclusions and future works.

2. Introduction to the VARP Control Theory

The virtual attractive-repulsive potentials-based control theory stems from the con-
struction of a virtual potential field made of virtual points. To each point it will be assigned
both an attractive and a repulsive potential. The points on the virtual field may represent
obstacles, targets or different sorts of objects in a state space. In this document, we shall re-
call how the VARP control theory may be employed to control different dynamical systems
associated to different state spaces.

2.1. Virtual Potentials for Swarming Models in Biology

Virtual potentials provide a convenient framework for autonomous vehicle control
and path planning. Such potentials arise from swarming models in biology and may
be formulated as in the discrete particle model proposed by the Levine-Rappel-Cohen
group [9].

Given N particles labeled i = 1, 2, . . . , N, the model proposed in [9] that governs the
motion of each particle is described by:mi

d~vi
dt = α f̂i − β~vi − ~gradV,

d~xi
dt = ~vi,

(1)

where mi > 0 denotes the mass of each particle, ~xi ∈ R3 and ~vi ∈ R3 its position and
velocity, respectively. Each particle experiences a unit-norm self-propelling force f̂i ∈ R3

with fixed magnitude α > 0. To prevent the particles from reaching large speeds, a friction
force with coefficient β > 0 was introduced.

In addition, each particle is subjected to an attraction force (that depends only on the
distance from one particle to the others) which is characterized by an interaction range
`a > 0. This force is responsible for the aggregation of the particles. To prevent a collapse
of the aggregate, a shorter-range repulsive force was introduced with interaction range
`r > 0. The authors of [9] verified experimentally that qualitative results are independent
of the explicit expression of the interaction potential. Levine’s model is, in fact, based on
exponentially decaying interactions described by virtual potentials of the kind:

V := − ∑
j, j 6=i

Ca exp

(
−
∥∥~xi −~xj

∥∥
`a

)
+ ∑

j, j 6=i
Cr exp

(
−
∥∥~xi −~xj

∥∥
`r

)
, (2)

where Ca > 0, Cr > 0 determine the strength of the attractive and repulsive forces,
respectively. (The original potential has reversed sign with respect to the one reported
here: We have chosen the above form for consistency with the remainder of the paper.) We
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underline that Levine’s model is based on parameters whose values are identical for each
particle, while in the next sections we shall define specific parameters for each obstacle
and target.

2.2. VARP Control Theory

From Levine’s model, a VARP theory to control and coordinate a group of vehicles was
developed in [39]. Given an i-th vehicle and N concurrent agents labeled j = 1, 2, . . . , N,
the VARP control method is described by the following general coupled equations:

d~zi
dt = ~wi,

mi
d~wi
dt = αξ̂i − β~wi − ~grad~zi

N
∑

j=1
j 6=i

[
Vr

j (d(~zi,~qj))−Va
j (d(~zi,~qj))

]
,

(3)

where the notation used has the following meaning:

• the symbol ξ̂i denotes a unit vector in a reference frame attached to each i-th vehicle
rotated with respect to the inertial reference frame x̂− ŷ by an angle θ, as illustrated
in Figure 1;

• the symbol~zi = (zxi , zyi ) denotes the position of the i-th vehicle at time t;
• the symbol ~wi denotes the velocity of the i-th vehicle at time t;
• the constant mi denotes the mass of the i-th vehicle;
• the quantity d(~zi,~qj) = ‖~zi −~qj‖ denotes the Euclidean distance between the i-th

vehicle and the j-th agent that is located at ~qj = (qxj , qyj) at time t; in this context,
an agent could represent an obstacle, a target point or another vehicle; in the case of
multiple vehicle control, each vehicle other than the i-th one will be considered as an
obstacle for the i-th vehicle, therefore the position of the i-th vehicle is denoted as~zi
while the position of the j-th obstacle will be denoted as~qj;

• the constant α > 0 denotes the magnitude of the self-propelling force; the self-
propelling term determines a speed-up of the motion of a vehicle and helps escaping
unwanted plateaus of the potential function; the amplitude α of the self-propelling
term modulates these positive effects but may also cause instability in the system and
unwanted oscillations around the way-point;

• the constant β > 0 denotes a friction coefficient; viscous-type friction brakes the
motion of a vehicle and generally has the positive effect of stabilizing its motion;
friction has however the side effect of slowing down the navigation of a vehicle; the
friction coefficient β should hence be chosen sufficiently large to stabilize the system
and sufficiently small not to delay excessively reaching the way-point;

• symbols Va
j e Vr

j denote, respectively, the attractive and repulsive potential functions,
defined as:

Va
j (φ) := Ca

j e−φ/`a
j , Vr

j (φ) := Cr
j e−φ/`r

j , (4)

where constants Ca
j > 0, Cr

j > 0 denote the “magnitude of the potentials”, constants
`a

j > 0, `r
j > 0 their “characteristic lengths”, and φ denotes a real positive variable.

In the biology-inspired model proposed in [9], potentials serve to organize a group of
self-propelled particles into a mill-like formation. In the VARP theory, attractive potentials
are used to direct vehicles towards way points and attractive/repulsive potentials to keep
vehicles avoiding each other and stationary obstacles. Namely, a point-to-point control
strategy arises from the VARP theory.
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Figure 1. Schematic of Kelly robot’s geometry and of the reference systems used to model its dynamics,
as well as of the thrusts acting on Kelly robot’s body as generated by the fan-type propellers.

3. VARP Control Theory Applied to a Wheeled Robot Navigation on a Plane

In the present section, we shall recall how the VARP control theory was exploited to
control a small self-driven wheeled vehicle termed ‘Kelly robot’. Full mathematical details
are reported and commented, since these details are deemed interesting to understand the
meaning of each terms in Equation (3) in view of a successive extension of the plain VARP
theory to Riemannian manifolds.

3.1. Kelly Robot Description and Mathematical Model

The Kelly robot was developed at the Caltech University and it was taken as a prototyp-
ical model for testing the VARP feedback control principle. Such robot was realized as a
fiberglass structure that includes an onboard micro-controller (that implements the algo-
rithm for movement control), onboard sensors and a 802.11b wireless card through which it
may communicate. Further interesting characteristics are low-friction omnidirectional cast-
ers (which allow the Kelly robot to move over the floor) and two high-performance ducted
fans, each capable of producing up to 4.5 N of continuous thrust. Caltech tests have been
conducted at the Multi-Vehicle Wireless Testbed (MVWT), which is a platform designed for
validating theoretical advances in multiple-vehicle coordination and cooperative control.
The MVWT is equipped by a wireless network, an arena for multi-vehicle operations, a lab
positioning system based on overhead cameras, and a computer network. The smooth floor
where the vehicles maneuver has dimensions of approximately 6.5 m × 7.0 m. Vehicles
are marked with binary symbols on their hats, that the vision system uses to identify their
location and orientation.

The Kelly robot is modeled by a nonlinear dynamical system described by the follow-
ing equations: 

m du
dt = −µu + (FR + FL) cos θ,

m dv
dt = −µv + (FR + FL) sin θ,

J dΩ
dt = −ψΩ + (FR − FL) r f ,

(5)

where the symbols used take the following meanings:
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• the symbols FR and FL denote the magnitudes of the forces generated by, respectively,
the ducted fans located at the right-hand side and the left-hand side of the robot’s rear
end, which are separated by a distance 2 r f as shown in Figure 1, where r f = 0.124 m;

• the constant m denotes the mass of the Kelly vehicle, whose value is 5.15 kg;
• the constant µ denotes the linear friction coefficient, whose value, in the case of the

MVWT testbed, is 4.5 kg/s;
• the constant ψ denotes an angular friction coefficient, whose value, in the case of the

MVWT testbed, is 0.064 kg m2/s;
• the variables u = dzx

dt and v =
dzy
dt denote the components of the linear velocity of the

vehicle, where zx and zy denote the positional coordinates of the vehicle;
• the variable Ω = dθ

dt denotes the angular velocity with respect to the x̂− ŷ reference
frame, expressed in rad/s, and the angle θ denotes the orientation of the vehicle (with
respect to the same x̂− ŷ reference frame), expressed in radians;

• the constant J denotes the moment of inertia of the vehicle and its value is 0.5 kg m2.

The quantities µ, ψ, m, J and r f denote physical constants of the vehicle, while the
variables u, v, Ω and θ are the results of its dynamics and play the role of internal states of a
vehicle’s model. The quantities FR and FL may be regarded as inputs of the system and are
subjected to the action of a controlling algorithm, which may determine their amplitude
according to a desired control strategy.

The aim of the VARP-based design is to determine expressions of the forces FR and FL
in such a way that the mathematical model encoded by Equation (5) transforms into the
VARP Equation (3). Such development is detailed in the next section.

3.2. VARP Control Theory Applied to the Kelly Robot

Combining Kelly robot’s equations of motion (5) and the equations that describe the
VARP theory (3), it is possible to obtain a direct definition of the right-hand and left-hand
fan forces, which represent input/control variables in the mathematical model (5).

Plugging into the second equation of (3) the explicit expressions of the potential
functions leads to:

~fi := αξ̂i − β~wi − ~grad~zi

N

∑
j=1
j 6=i

[
− Ca

j e
−

d(~zi ,~qj)

`a
j + Cr

j e
−

d(~zi ,~qj)

`r
j

]
. (6)

Applying the gradient to the sum we obtain:

~fi = αξ̂i − β~wi −
N

∑
j=1
j 6=i

[(
Ca

j

`a
j

e
−

d(~zi ,~qj)

`a
j −

Cr
j

`r
j

e
−

d(~zi ,~qj)

`r
j

)
(zxi − qxj)x̂ + (zyi − qyj)ŷ

d(~zi,~qj)

]
. (7)

The vehicle-fixed ξ̂ − ζ̂ reference frame is obtained by rotating the inertial x̂ − ŷ
reference frame by an angle θ. Namely, the two reference frames are related by:{

x̂ = ξ̂i cos θi − ζ̂i sin θi,
ŷ = ξ̂i sin θi + ζ̂i cos θi.

(8)
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Plugging Equation (8) in Equation (7) gives:

~fi = αξ̂i − β~wi+

−
N

∑
j=1
j 6=i

[(
Ca

j

`a
j

e
−

d(~zi ,~qj)

`a
j −

Cr
j

`r
j

e
−

d(~zi ,~qj)

`r
j

)
(zxi − qxj) cos θi + (zyi − qyj) sin θi

d(~zi,~qj)
ξ̂i+

+

(
Ca

j

Ca
j

e
−

d(~zi ,~qj)

Ca
j −

Cr
j

`r
j

e
−

d(~zi ,~qj)

Cr
j

)
−(zxi − qxj) sin θi + (zyi − qyj) cos θi

d(~zi,~qj)
ζ̂i

]
.

(9)

The forcing term (9) may be decomposed in components along the ξ̂i and ζ̂i axes. From
the scalar product between both sides of the relation (9) and the unit vector ξ̂i we obtain, in
particular, the component of the forcing term ~fi along the direction of motion:

~f ‖i := αξ̂i − β~wi+

−
N

∑
j=1
j 6=i

[(
Ca

j

`a
j

e
−

d(~zi ,~qj)

`a
j −

Cr
j

`r
j

e
−

d(~zi ,~qj)

`r
j

)
(zxi − qxj) cos θi + (zyi − qyj) sin θi

d(~zi,~qj)

]
ξ̂i .

(10)

The component of the force along the ξ̂i direction, in turn, may be decomposed in
two components, one along the x̂ direction, and one along the ŷ direction, which read,
respectively:

f ‖i,x := α cos θi − β ui+

−
N

∑
j=1
j 6=i

[(
Ca

j

`a
j

e
−

d(~zi ,~qj )

`a
j −

Cr
j

`r
j

e
−

d(~zi ,~qj )

`r
j

)
(zxi − qxj ) cos2 θi + (zyi − qyj ) cos θi sin θi

d(~zi,~qj)

]
,

(11)

f ‖i,y := α sin θi − β vi+

−
N

∑
j=1
j 6=i

[(
Ca

j

`a
j

e
−

d(~zi ,~qj)

`a
j −

Cr
j

`r
j

e
−

d(~zi ,~qj)

`r
j

)
(zxi − qxj) cos θi sin θi + (zyi − qyj) sin2 θi

d(~zi,~qj)

]
.

(12)

In addition, from the scalar product between the force (9) and the unit vector ζ̂i, we
obtain the component of the total forcing term perpendicular to the direction of motion,
which reads:

~f⊥i := −
N

∑
j=1
j 6=i

[(
Ca

j

`a
j

e
−

d(~zi ,~qj)

`a
j −

Cr
j

`r
j

e
−

d(~zi ,~qj)

`r
j

)
−(zxi − qxj) sin θi + (zyi − qyj) cos θi

d(~zi,~qj)

]
ζ̂i. (13)

The above component of the total force acting on one side of the body of the vehicle is
responsible for the rotational motion of the vehicle which, in turn, determines its steering
ability.

It is instructive to devise a physical interpretation of the above terms. From the
Figure 1, it is noticed that the velocity ~w is directed along the ξ̂ direction while it is null
along ζ̂. The perpendicular component d~w

dt

∣∣
⊥ (projected into ζ̂) of the robot acceleration is

related to its rotation about a perpendicular axis sticking off the floor.
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It could be convenient to think of a inter-fan vector of length r f , with a direction
consistent to the fact that d~w

dt

∣∣
⊥ is directed along ζ̂. Multiplying d~w

dt

∣∣
⊥ by the robot’s mass,

one obtains a force along the ζ̂ direction, which is responsible for Kelly robot’s spinning
over the floor. Such force may be decomposed in two components, each of them taking half
of its magnitude. Consequently the two virtual forces, with a moment arm r f , establish a
torque that causes the rotation of the system.

Formally, since the force ~f⊥i is responsible for the change of the angular momentum of
the vehicle, it is sensible to define the mechanical torque magnitude as:

−r f f⊥i = −r f

N

∑
j=1
j 6=i

[(
Ca

j

`a
j

e
−

d(~zi ,~qj)

`a
j −

Cr
j

`r
j

e
−

d(~zi ,~qj)

`r
j

)
×

(
−(zxi − qxj) sin θi + (zyi − qyj) cos θi

d(~zi,~qj)

)]
.

(14)

The right-hand side of Equation (14) is the magnitude of the mechanical torque acting
on the vehicle’s body, which is computed as the product between the position vector of the
force r f and the component (13) of the force perpendicular to Kelly robot’s direction.

Now, the VARP-based control equations for a Kelly robot may be derived by matching
the above equations with Kelly robot’s equations of motion. In this way, one may obtain
the sought control relationships between VARP features and Kelly robot’s inputs and
parameters.

Specifically, by matching the first equation in (5) to Equation (11), we obtain:

− µui + (FR,i + FL,i) cos θi = α cos θi − βui

−
N

∑
j=1
j 6=i

[(
Ca

j

`a
j

e
−

d(~zi ,~qj)

`a
j −

Cr
j

`r
j

e
−

d(~zi ,~qj)

`r
j

)
(zxi − qxj) cos2 θi + (zyi − qyj) cos θi sin θi

d(~zi,~qj)

]
.

(15)

The parameter β may be chosen arbitrarily, hence we shall impose β := µ. Furthermore,
deleting the factor cos θi from both sides of the above equation, gives:

FR,i + FL,i = α−
N

∑
j=1
j 6=i

[(
Ca

j

`a
j

e
−

d(~zi ,~qj)

`a
j −

Cr
j

`r
j

e
−

d(~zi ,~qj)

`r
j

)
×

(
(zxi − qxj) cos θi + (zyi − qyj) sin θi

d(~zi,~qj)

)]
.

(16)

Then, comparing the third equation in (5) with the relation (14) and taking ψ = 0, gives:

FR,i − FL,i = −
N

∑
j=1
j 6=i

[(
Ca

j

`a
j

e
−

d(~zi ,~qj)

`a
j −

Cr
j

`r
j

e
−

d(~zi ,~qj)

`r
j

)
×

(
−(zxi − qxj) sin θi + (zyi − qyj) cos θi

d(~zi,~qj)

)]
.

(17)

Notice that the constant ψ does not match with any parameter in the VARP equations,
hence it must be assumed of zero value to retain consistency [39], which, in practice, is
equivalent to considering it of negligible value.
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From Equations (16) and (17) we may obtain the right-hand fan thrust as well as the
left-hand fan trust as:

FR,i =
α

2
− 1

2

N

∑
j=1
j 6=i

[Ca
j

`a
j

e
−

d(~zi ,~qj)

`a
j −

Cr
j

`r
j

e
−

d(~zi ,~qj)

`r
j

×
(
(zxi − qxj)(cos θi − sin θi) + (zyi − qyj)(sin θi + cos θi)

d(~zi,~qj)

)]
,

(18)

FL,i =
α

2
− 1

2

N

∑
j=1
j 6=i

[Ca
j

`a
j

e
−

d(~zi ,~qj)

`a
j −

Cr
j

`r
j

e
−

d(~zi ,~qj)

`r
j

×
(
(zxi − qxj)(cos θi + sin θi) + (zyi − qyj)(sin θi − cos θi)

d(~zi,~qj)

)]
.

(19)

Notice that the above expressions present a number of repeating terms. Collecting
such repeating terms from the Equations (18) and (19), we may define:

F1,i := −1
2

N

∑
j=1
j 6=i

[(
Ca

j

`a
j

e
−

d(~zi ,~qj)

`a
j −

Cr
j

`r
j

e
−

d(~zi ,~qj)

`r
j

)
(zxi − qxj)

d(~zi,~qj)

]
, (20)

F2,i := −1
2

N

∑
j=1
j 6=i

[(
Ca

j

`a
j

e
−

d(~zi ,~qj)

`a
j −

Cr
j

`r
j

e
−

d(~zi ,~qj)

`r
j

)
(zyi − qyj)

d(~zi,~qj)

]
. (21)

Ultimately, we obtain two equations for the right-hand fan and the left-hand fan thrusts:

FR,i =
α

2
+ (cos θi − sin θi)F1,i + (sin θi + cos θi)F2,i, (22)

FL,i =
α

2
+ (cos θi + sin θi)F1,i + (sin θi − cos θi)F2,i, (23)

which are in full accordance with those presented in [39].
In the present research work, we are mainly interested in the theoretical aspects that

allow one to match the equations in the mathematical model of a vehicle to the structure of
the general VARP control theory. In addition, we are especially interested in performing
numerical experiments on the basis of the devised equations in order to gain a sufficient
insight into the effects that the values of the parameters induce on the behavior of a vehicle.
The numerical aspects of the present analysis are covered in the following section.

3.3. Numerical Scheme to Simulate a Controlled Dynamical System

The aim of the present subsection is to recall, from the specialized literature, a nu-
merical scheme, namely the forward Euler method, to approximately solve the differential
equations that govern the motion of a Kelly robot. Although such method is standard
in numerical calculus, we deemed it appropriate to recall it in some details to set up a
common ground in view of its extension to manifolds in Section 4.

The forward Euler method (hereafter denoted as fEul) is a numerical integration
scheme used to approximate the solution of an ordinary differential equation starting
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from a known initial value, namely an initial value problem (IVP). A first-order IVP may be
expressed as: ẋ(t) = f

(
t, x(t)

)
, t ≥ t0,

x(t0) = x0.
(24)

The fEul method is based on two key ideas, namely, uniform time-discretization of the
state-variable and approximation of its first-order derivative by means of an incremental
ratio. To approximate the solution x(t) to the IVP (24), define a uniform succession of time-
steps, separated by a reasonably short interval h > 0 termed stepsize, which are denoted by
t1 = t0 + h, t2 = t1 + h and so forth. According to the fEul method, for reasonably small
values of h, the first time-derivative ẋ can be approximated by the incremental ratio:

ẋ(t) ≈ x(t + h)− x(t)
h

. (25)

Denoting by xn an approximated value of the exact solution x(tn) at the n-th step, the
IVP (24) for a generic time tn may be approximated by the difference equation:

f (tn, xn) =
xn+1 − xn

h
, (26)

from which the iterative fEul method arises:

xn+1 = xn + h f (tn, xn). (27)

The fEul method will be employed to approximate the solutions to the differential
Equation (5) for simulation purposes. In the following mathematical steps, we will only
show how to apply such method to the first equation of (5), because for the remaining
differential equations the procedure is similar.

For the sake of notation conciseness, hereafter we shall assume the presence of a single
Kelly robot, so as to drop the index “i” from the equations of motion. The first of the
differential Equation (5) is a second-order equation in the variable x. At time t = 0, the
Kelly robot presents an initial x-coordinate denoted as x0 and an initial velocity u0 along
the x-axis. The IVP (5) may be split into two IVPs:

IVP1 :=


u̇ = − µ

m u + (FR+FL) cos θ
m ,

u(0) = u0.
IVP2 :=

ẋ = u,

x(0) = x0.
(28)

For the second IVP, an application of the fEul method yields the iteration:

xn+1 = xn + h un, (29)

while for the first IVP, an application of the fEul method yields the iteration:

un+1 = un + h
[
− µ

m
un +

(FR,n + FL,n) cos θn

m

]
. (30)

Likewise, for the second equation of the system (5) we obtain:
yn+1 = yn + h vn,

vn+1 = vn + h
[
− µ

m vn +
(FR,n+FL,n) sin θn

m

]
,

(31)
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and for the third differential equation in the system (5) we obtain:
θn+1 = θn + h Ωn,

Ωn+1 = Ωn + h
[
− ψ

J Ωn +
(FR,n−FL,n)r f

J

]
.

(32)

By applying fEul iteration, the values of the robot’s location and orientation may be
approximated. The more the sampling step is small, the more such approximations will
result accurate.

It is important to recall that the forward Euler method is poorly-performing in com-
parison to higher-order methods such as the 4th order Runge–Kutta method. Nevertheless,
in the present paper we decided, in contrast to other papers on numerical methods on
manifolds written by the third author, to invoke only the forward Euler method because
usage of more accurate methods would have required a more extensive introduction on
higher-order methods on manifolds that would have hindered the main flow of discussion,
namely the extension of VARP method to smooth manifolds.

3.4. Simulations and Results of VARP Control Method

In the present subsection, results of numerical simulations will be discussed in order
to illustrate how the VARP method was employed to control a Kelly robot and how the
values of the VARP parameters, with special reference to constants Ca, `a, Cr and `r impact
on control outcomes. The value of the chosen numerical stepsize in every simulation in this
section is h = 0.01 (s).

Figure 2 shows the result of a numerical simulation referred to a single target point
and no obstacles. From the six panels of such figure it may be readily recognized that the
robot traverses the state space from the initial point directly to the target. After the Kelly
robot reaches the target, it keeps revolving around the way-point due to the action of the
self-propelling term. During vehicle’s journey, the thrusts generated by the left-hand fan
and by the right-hand fan look in sync, because the vehicle travels along a straight line, and
the orientation of the vehicle keeps almost constant until it reaches the target.

In the next two simulations, an obstacle between the initial location and the target
location was added. From Figure 3 it is readily observed how the robot could reach
the target and managed to avoid the obstacle. In particular, while the vehicle is located
sufficiently far away from the target to ignore its repulsive action, its trajectory resembles
a straight line. As soon as the vehicle enters the sphere of influence of the obstacle, its
trajectory bends to the left, which corresponds to a sudden increase of the thrust exerted by
the right-hand fan around t = 200 s, to get around the obstacle. After reaching the target,
both thrusts stabilize around a value giving rise to a forcing action necessary to counter-act
the self-propelling term. Figure 4 shows a result obtained under the same conditions of
Figure 3 except that the magnitude of the self-propelling term was increased. In this case,
the thrust is quite large, hence the vehicle approaches the target location quickly except
then starting to revolve around the target in a pronounced way. Such effect is well visible
because the self-propelling term prevails over the attraction pull of the target. Nevertheless,
despite the overly irregular movement of the vehicles, the robot draws circular revolving
trajectories around the target point.

The trajectory followed by a vehicle under the control action of a VARP-based al-
gorithm may be smoothed out by increasing the attractive magnitude of the target to
counteract the self-propelling term, as illustrated in Figure 5. Although the robot appears
to reach and then wander around the target point, with such a large value of the parameter
α, it is necessary to consider carefully the irregular trend of the thrusts generated by the
propellers. Experimental results show that the self-propelling term must range from 0.1
to 0.5 in order to induce a reasonable trajectory on the vehicle: the higher the value of the
self-propelling amplitude α, the higher the average thrust required to the ducted fans.
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(a)

(b)

Figure 2. Experiment: Single target and no obstacles. Self-propelling coefficient α = 0.2. Friction
coefficient β = 4.5 kg/s. Target attractive magnitude CT

a = 4 and target attractive range `T
a = 5.

Simulation time t f = 300 s. In the 3D potentials graph, the red line represents the trajectory of the
Kelly robot and the blue potential pit denotes the attractive influence of the target point: considering
the Kelly robot as a rolling ball, it will ‘fall’ into the potential pit. The orientation of the Kelly robot is
measured in radians (in the range [0, 2π]) hence, in the orientation graph, the spikes correspond to a
jump from 0 to 2π or vice versa. (a) Target approaching; (b) control figures.
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(a)

(b)

Figure 3. Experiment: Single obstacle and target. Self-propelling coefficient α = 0.2. Friction coefficient
β = 4.5 kg/s. Target attractive magnitude CT

a = 4 and target attractive range `T
a = 5. Obstacle

repulsive magnitude CO
r = 3 and obstacle repulsive range `O

r = 0.5. Simulation time t f = 300 s. In
the 3D potentials graph, it may be noticed a spike in the potential function surface that represents the
repulsive influence of the obstacle. (a) Target approaching; (b) control figures.
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Figure 4. Experiment: Single obstacle and target. Self-propelling coefficient α = 1 (i.e., five times larger
than in Figure 3). Friction coefficient β = 4.5 kg/s. Target attractive magnitude CT

a = 6 and target
attractive range `T

a = 5. Obstacle repulsive magnitude CO
r = 3 and obstacle repulsive range `O

r = 0.5.
Simulation time t f = 600 s. Even in this case, in the 3D potentials graph, it may be noticed the red
line proceeding toward the bottom of the potential pit and a spike in the potential function surface
that represents the obstacle .

Figure 5. Experiment: Single obstacle and target. Self-propelling coefficient α = 1. Friction coefficient
β = 4.5 kg/s. Target attractive magnitude CT

a = 10 and target attractive range `T
a = 5. Notice that the

target attractive magnitude CT
a has an higher value compared to the simulation in Figure 4, hence

the potential depression appears to be sharper. Obstacle repulsive magnitude CO
r = 3 and obstacle

repulsive range `O
r = 0.5. Simulation time t f = 300 s.

A further interesting experiment consisted in building a ‘barrier’ between the starting
point and the target location. A barrier, in this context, is constructed by placing a number of
obstacles represented by repulsive potentials. Figure 6 shows the results of such numerical
experiment. From the 3D potentials graph, it can be readily noticed a potential ‘bulge’ that
represents the repulsive influence of the obstacles in the barrier. Even in such a case, a
vehicle controlled by a VARP algorithm manages to reach the target location by getting
around the barrier.
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(a)

(b)

Figure 6. Experiment: Construction of a barrier. Self-propelling coefficient α = 0.2. Friction coefficient
β = 4.5 kg/s. Target attractive magnitude CT

a = 10 and target attractive range `T
a = 10. Obstacles

repulsive magnitude CO1,4
r = 2, CO2,3

r = 3 and obstacles repulsive ranges `O1,4
r = 1, `O2,3

r = 2, where
the footers denote obstacles indexes as illustrated in the target approaching panel. Simulation time
t f = 300 s. (a) Target approaching; (b) control figures.

It can be noticed from Figure 7 that, if a larger value of the parameter `O
r is set, the Kelly

robot tends to follow a wider trajectory since the obstacles result to be more cumbersome and
their influence, in terms of repulsive potentials, is perceived farther by the robot’s control
system. The 3D graph displayed in such figure shows how the virtual potential field influences
the vehicle in every point of its state space. Indeed, the areas where the repulsive potentials
are located correspond to a cumbersome ‘bulge’ in the 3D potentials graph. Compared to
Figure 6, the ‘bulge’ appears wider and taller since the repulsive range of obstacles takes a
larger value. Instead, the attractive potential corresponding to the target location may be
visualized as a depression/dip in the same 3D graph.
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(a)

(b)

Figure 7. Experiment: Construction of a barrier. Self-propelling coefficient α = 0.2. Friction coefficient
β = 4.5 kg/s. Target attractive magnitude CT

a = 10 and target attractive range `T
a = 10. Obstacles

repulsive magnitude CO1,4
r = 2 and obstacles repulsive ranges CO2,3

r = 3, `O
r = 3. Simulation time

t f = 300 s. (a) Target approaching; (b) control figures.

In general, the larger the value of the repulsive range, the wider the influence of the
obstacles, which could be visualized as wider ‘bulges’ in the potential surface.

Upon choosing, instead, lower values for the repulsive range of the potentials describ-
ing the barrier obstacles, a vehicle tends to approach the barrier while, being attracted
by the target and as well as being repelled from the obstacles, it might get trapped near
the barrier as testified by the numerical experimental result illustrated in Figure 8. It can
be noticed from the 3D potentials graph that the vehicle is trapped behind the ‘bulge’
which appears to be less tall than in the previous experiments, since the repulsive range of
obstacles takes a lower value. In this case, in order to make a robot be able to overcome
the barrier, it is advisable to choose a large value of the self-propelling term coefficient as
illustrated by the results displayed in Figure 9.
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(a)

(b)

Figure 8. Experiment: Construction of a barrier. Self-propelling coefficient α = 0.2. Friction coefficient
β = 4.5 kg/s. Target attractive magnitude CT

a = 30 and target attractive range `T
a = 10. Obstacles

repulsive magnitudes CO1,4
r = 7, CO2,3

r = 7 and obstacles repulsive ranges `O
r = 1. Simulation time

t f = 600 s. (a) Target approaching; (b) control figures.
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(a)

(b)

Figure 9. Experiment: Construction of a barrier. Self-propelling coefficient α = 1.4. Friction coefficient
β = 4.5 kg/s. Target attractive magnitude CT

a = 10 and target attractive range `T
a = 30. Obstacles

repulsive magnitudes CO1,4
r = 7, CO2,3

r = 7 and obstacles repulsive ranges `O
r = 1. Simulation time

t f = 600 s. (a) Target approaching; (b) control figures.

The previous simulations illustrated cases of study with a few obstacles and one
target point. Building a more complex virtual potential field on the basis of more obstacles
and/or more targets could lead to a more involved control algorithm yet to a more precise
control action on a moving vehicle. As an instance, Figure 10 illustrates how to make a
vehicle follow a previously planned path. In such numerical experiment, a vehicle reaches
the prescribed target by following a ‘guiding wall’ built through virtual potentials. It is
remarkable how, in such simulated experiment, the thrusts exerted by the propellers on the
vehicle’s body keep limited in amplitude until the vehicle reaches the target location.
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(a)

(b)

Figure 10. Experiment: Path planning by a guiding potential wall. Self-propelling coefficient α = 0.1.
Friction coefficient β = 4.5 kg/s. Target attractive magnitude CT

a = 5 and target attractive range
`T

a = 5. Obstacle repulsive magnitude CO
r = 2 and obstacle repulsive range `O

r = 0.3. Simulation
time t f = 300 sec. In the 3D potentials graph, potential spikes–representing obstacles–that drive a
Kelly robot towards the target point are clearly visible. (a) Target approaching; (b) control figures.

Further simulations were performed by considering different initial orientations of a
moving vehicle. Even in these cases, the control algorithm is able to steer the robot towards
the prescribed target. Results of numerical simulations are illustrated in Figures 11–14.
From the results illustrated in Figure 11, in particular, it may be noticed that the Kelly
robot reaches the prescribed target without any difficulty and without any particular effort
required to the propellers, as testified by the results shown in the panels about the thrusts
exerted by the fans, which exhibit a rather regular course over time. In addition, the results
displayed in Figure 14 may be compared to the simulation results shown in Figure 13; it is
interesting to notice that, in this case, the Kelly robot will turn counterclockwise in order to
steer towards the target. This aspect could also be noticed from the Kelly robot orientation
graph where the plot reaches 2π and suddenly drops to 0.
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The numerical simulations presented in this section are meaningful in view of an
extension of the standard VARP control theory to state manifolds and serve as a guide
in the development of illustrative numerical experiments concerning the next part of the
paper. In fact, the large number of numerical results were designed to gain (and to guide
readers through) a deeper understanding about the effects of the values of the parameters
on the control outcomes.

As mentioned in the Introduction, the pursued extension of the VARP theory to
state manifolds was partially inspired by the earlier work of Koditschek and Rimon [16],
which however considered simpler gradient systems and was more theoretical-oriented
(in particular, the work [16] is notable for the use of topological arguments to prove the
existence of navigation functions on a large class of manifolds).

Notice that all the obstacles located in have been supposed to be stationary, although
this is not a strict requirement for the devised theory to hold.

Figure 11. Experiment: Single target, no obstacles, initial orientation θ(0) = 0. Self-propelling coefficient
α = 0.2. Friction coefficient β = 4.5 kg/s. Target attractive magnitude CT

a = 4, target attractive range
`T

a = 5. Simulation time t f = 300 s.

Figure 12. Experiment: Single target, no obstacles, initial orientation θ(0) = π
2 . Values of the parameters

as in Figure 11.
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Figure 13. Experiment: Single target, no obstacles, initial orientation θ(0) = π. Values of the parameters
as in Figure 11.

Figure 14. Experiment: Single target, no obstacles, initial orientation θ(0) = 3
2 π. Values of the parameters

as in Figure 11.

4. Extension of the VARP Control Theory to Riemannian Manifolds

The aim of the present section is to design a VARP-like principle to control second-
order dynamical systems whose state space is a Riemannian manifold. This method will be
referred to as M-VARP as it represents an extension of the original VARP control method to
a generic Riemannian manifold.

A number of real-world dynamical systems may be framed as systems on manifolds.
An example is a flying drone or an orbital gyrostat whose attitude is represented by a
special orthogonal matrix belonging to a manifold denoted as SO(3) as illustrated, for
example, in [41–43].

Successively, the devised M-VARP principle will be implemented and simulated for
the case of study where it controls an abstract dynamical system whose state space is the
sphere S2 (which will be denoted as S2-VARP). As in the previous experiments, we shall
consider the presence of a single agent (as a matter of fact, in this paper we do not deal
with ‘cooperative control’). As a general reference to manifold calculus, interested readers
might want to refer to the Symmetry tutorial paper [40].
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4.1. Generalities on Riemannian Manifolds

Let M denote a smooth manifold. At a point x ∈M, the tangent space to the manifold
M is denoted as TxM. The symbol TM denotes the tangent bundle associated to the
manifold M defined as TM := {(x, v) | x ∈M, v ∈ TxM}.

A Riemannian manifold M is endowed with a bilinear, positive-definite form 〈·, ·〉x :
TxM× TxM→ R that associates a scalar (or inner) product to each tangent space TxM. A
local metric 〈·, ·〉x also defines a local norm ‖v‖x :=

√
〈v, v〉x, for v ∈ TxM.

The Riemannian gradient of a scalar-valued function ψ : R→ M evaluated at a point
x ∈M is denoted as gradxψ. The Riemannian gradient is associated to a specific metric.

A manifold exponential map exp : TM → M maps a pair (x, v) ∈ TxM to a point
y = expx(v) on the manifold. The exponential map ‘shifts’ a point x along a geodesic curve
in the direction of v to get to the point y. Its inverse ‘log’ is defined only locally and is
termed manifold logarithm. Given points x, y ∈M, a manifold logarithm computes a tangent
vector v = logx(y) ∈ TxM such that expx(v) = y.

Given two points x, y ∈M connectable by a geodesic arc, their Riemannian distance is
denoted by d(x, y). On a Riemannian manifold, the distance between two nearby points
may be evaluated by:

d(x, y) = ‖ logx(y)‖x. (33)

A fundamental result of the calculus on manifolds states that the Riemannian gradient
of a squared distance function reads:

gradxd2(x, y) = −2 logx(y), (34)

wherever the logarithm is defined (for a proof, see, e.g., [40]).
The covariant derivative, a generalization of directional derivative of calculus, of a

vector field wx ∈ TxM in the direction of a vector v ∈ TxM is denoted as ∇vw. We assume
M to be endowed with a metric connection (namely, that the covariant derivative of the
metric tensor is identically zero).

The parallel transport operator P : TM2 → TM maps a tangent vector v ∈ TxM at a
given point x ∈ M into a tangent vector w ∈ TyM at another given point y ∈ M, which
is denoted as w = Px→y(v). Parallel transport moves the tangent vector v from TxM to
TyM along the geodesic curve that connects the point x to the point y (if any) preserving
its tangency along the geodesic arc and the angle formed to the tangent to the geodesic, in
such a way to realize a conformal isometry.

Parallel transport and covariant derivation are closely related to one another, in
particular, covariant derivation may be expressed in terms of parallel transport as follows:

(∇vw)x = lim
h→0

Pγ(h)→x(wγ(h))− wx

h
, (35)

where γ denotes any smooth curve with prescribed foot-point and direction, namely
such that γ(0) = x ∈ M and γ̇(0) = v ∈ TxM. For practical/computational purposes,
such smooth curve is often taken as a geodesic arc. Such relationship leads to a numerical
approximation of the covariant derivative at a point x, as it will be pointed out in Section 4.3.

4.2. Extension of the VARP Principle to Riemannian Manifolds

In order to extend the VARP principle to control dynamical systems whose state spaces
are Riemannian manifolds, it is necessary to recall a fairly broad class of second-order
dynamical systems. In the present context, it is sufficient to take into account a class of
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second-order dynamical systems whose state-transition equations are formulated on the
tangent bundle of a manifold M, described by:ẋ(t) = v(t),

∇v(t)v(t) = −µ v(t) + u(t).
(36)

In such equations, the following notation has been used:

• the function x(t) ∈M denotes the state of the dynamical system (it could be thought
of as the position of a pointwise mass on the manifold at time t);

• the function v(t) ∈ Tx(t)M denotes the tangent vector to the trajectory x(t) at the time
t (it could be thought of as the velocity of a pointwise mass on the manifold);

• the vector field ∇vv represents the covariant derivative of the vector field v with
respect to itself (it could be thought of as the acceleration of the pointwise mass on the
manifold); if ∇vv = 0 the acceleration is zero, thus the pointwise mass will follow a
uniform geodesic trajectory (which represents the counterpart, in the ordinary space,
of a straight uniform motion);

• the constant µ > 0 denotes a ‘viscous’ friction coefficient (therefore, the term −µ v
could be thought of as a friction force which brakes the motion of a pointwise mass
sliding over the manifold);

• the function u(t) denotes a control action at time t (it could be thought of as a force
whose purpose is to make a pointwise mass move on a manifold and deviate with
respect to a purely geodesic trajectory); such control action is a vector field which is
tangent to the manifold at the state x(t).

On the basis of the above formulation of a dynamical system on manifold, it is viable
to extend the VARP control principle recalled in Section 2. In fact, an extension to manifold-
type state-space systems of the type (36) consists in setting the control action u according
to a manifold-consistent translation of the terms in the VARP principle (3). The proposed
extension is outlined in the following:

ẋ(t) = v(t),

∇v(t)v(t) = −µ v(t) + α v̂(t)− gradx(t)V,

V(x) =
N
∑

j=1

(
Vr

j (d
2(x, qj))−Va

j (d
2(x, qj))

)
.

(37)

The terms appearing in the above equations may be explained as follows:

• the term α v̂, with α > 0, represents a self-propelling term, where v̂ := v/‖v‖ if v 6= 0
otherwise v̂ = 0;

• the function V(x) denotes the total potential which depends on the state x; the func-
tions Vr

j and Va
j denote, respectively, the repulsive and attractive components of the

potential function, as they were already defined for Euclidean spaces in Section 2.2;
note that the components are indexed by the index j: this indexing does not appear
explicitly in [39] while, in the present case, each obstacle and target has its own
coefficient;

• the N terms labeled qj represent obstacle-associated and target-associated locations on
the manifold M;

• the function d2(·, ·) denotes the squared Riemannian distance between two points on
the state manifold M; notice that, in the equations, it appears squared because such
choice, generally, simplifies the calculation of derivatives.
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Combining together the Equations (36) and (37), it can be readily seen that the control
field u takes the expression:

u := α v̂− gradx

N

∑
j=1

(
Vr

j (d
2(x, qj))−Va

j (d
2(x, qj))

)
=

= α v̂−
N

∑
j=1

(
V̇r

j (d
2(x, qj))− V̇a

j (d
2(x, qj))

)
gradxd2(x, qj).

(38)

Recalling the relationship (34) for Riemannian manifolds leads to the expression:

u = α v̂− 2
N

∑
j=1

(
V̇a

j (d
2(x, qj))− V̇r

j (d
2(x, qj))

)
logx(qj), (39)

where V̇a
j :=

dVa
j (φ)

dφ and V̇r
j :=

dVr
j (φ)

dφ .
Coherently with what was expected, the results show that u ∈ TxM.
In analogy to the VARP principle formulated on Euclidean spaces (see Equation (4)),

exponential-type attractive and repulsive potential functions have been chosen as:

Va
j (φ) := Ca

j e−
√

φ/`a
j , Vr

j (φ) := Cr
j e−
√

φ/`r
j , (40)

where Ca
j and Cr

j denote the ‘magnitude of the potentials’, `a
j and `r

j their ‘characteristic
lengths’ and φ denotes a real positive variable. Their derivatives with respect to φ take the
expressions:

dVa
j (φ)

dφ
= −

Ca
j

2`a
j
√

φ
e−
√

φ/`a
j ,

dVr
j (φ)

dφ
= −

Cr
j

2`r
j
√

φ
e−
√

φ/`r
j , (41)

therefore the control field (39) ultimately reads:

u(t) = α v̂(t)−
N

∑
j=1

(
Cr

j

`r
j

e−d(x(t),qj)/`r
j

d(x(t), qj)
−

Ca
j

`a
j

e−d(x(t),qj)/`a
j

d(x(t), qj)

)
logx(t)(qj). (42)

The M-VARP-controlled dynamical system (in analogy to a VARP-controlled Kelly
robot described in Section 3.2) is hence described by the following system of equations:

ẋ(t) = v(t),

∇v(t)v(t) =− µ v(t) + α v̂(t)

−
N

∑
j=1

(
Cr

j

`r
j

e−d(x(t),qj)/`r
j

d(x(t), qj)
−

Ca
j

`a
j

e−d(x(t),qj)/`a
j

d(x(t), qj)

)
logx(t)(qj).

(43)

The first equation governs the evolution of the state x of the dynamical system on
the basis of its (tangent) velocity v, while the second equation governs the evolution of
the velocity on the basis of the chosen potentials, of the state and of the state-velocity
itself. Notice that again all the obstacles located in qj have been supposed to be stationary,
although this is not a strict requirement for the devised theory to hold.

4.3. Extended Euler Scheme for the Numerical Simulation of the M-VARP Control Method

In the preset subsection, we shall illustrate an extension of the previously-recalled
forward Euler method to numerically simulate a controlled system on manifold.



Symmetry 2022, 14, 257 26 of 34

The system (43) to be simulated numerically may be recast in compact form as:
ẋ(t) = v(t),

∇v(t)v(t) = σ(x(t), v(t)),

x(0) = x0, v(0) = v0 (initial conditions),

(44)

where σ : TM→ TM is the function on the right-hand side of the second equation in (43)
that maps a point x and a tangent vector v ∈ TxM into a tangent vector in TxM.

To solve numerically the system of differential Equation (44), namely to simulate the
controlled system (43), we introduce three discrete-time sequences that arise from time
discretization with a step size h > 0:

• the sequence xk ∈ M, with k = 0, 1, 2, 3, . . ., represents a time-discretized version of
the state x(t), namely xk denotes a numerical approximation of the exact state x(kh);

• the sequence vk ∈M, with k = 0, 1, 2, 3, . . ., represents a time-discretized version of the
velocity v(t), namely vk denotes a numerical approximation of the exact state-velocity
v(kh);

• the sequence uk ∈ M, with k = 0, 1, 2, 3, . . ., represents a time-discretized version of
the control field u(t), namely uk denotes a numerical approximation of u(kh), that is:

uk := α v̂k −
N

∑
j=1

Cr
j

`r
j

e−d(xk , qj)/`r
j

d(xk, qj)
−

Ca
j

`a
j

e−d(xk , qj)/`a
j

d(xk, qj)

 logxk (qj). (45)

Notice that the discrete-time index is denoted by a superscript (k) to avoid confusing it
with the obstacle/target index which is denoted by subscript (j). Once a time discretization
of the variables that describe the state of a dynamical system has been performed, an
extension of the forward Euler method (fEul) to manifolds may be devised. To express
such fEul-like method, the exponential map and the parallel transport operators recalled in
Section 4.1 shall be invoked.

As a further consideration that motivates the usage of a simple numerical scheme,
such as the forward Euler one, when more precise schemes are available (such as the
ones in the Runge–Kutta class), we notice that such higher-order schemes would require
evaluating the control field in points of the trajectory that are not available within the
numerical schemes, hence causing additional computational efforts and accumulation of
additional numerical errors.

It is important to remind that the parallel transport operator is fundamental in the
calculation of the covariant derivative. Let us denote by wx a vector field on TM (in each
point x of the manifold, wx defines a tangent vector at x) of which the covariant derivative
is sought, and by vx another vector field along which such covariant derivative needs to be
calculated. The sought covariant derivative is then defined as:

(∇vw)x = lim
h→0

wexpx(hvx) − Px→expx(hvx)(wx)

h
. (46)

Indeed, the covariant derivative (∇vw)x represents the rate of change of the vector
field w along the direction prescribed by the vector field v, namely, moving away from x
toward a direction v.

Let us consider numerical resolution of the first equation in (44) that is:

dx(t)
dt

= v(t), x(0) = x0 ∈M, (47)
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which is an IVP on the tangent bundle TM. An algorithm that implements the numerical
solution in a fEul-like fashion reads:

xk+1 = expxk (h vk), k = 0, 1, 2, 3, . . . , (48)

with x0 and v0 known from the initial conditions.
Let us consider now numerical resolution of the second equation of (44), that is:

∇v(t)v(t) = σ(x(t), v(t)), v(0) = v0 ∈ Tx0M, (49)

which represents a further IVP on the tangent bundle TM.
The relation (46), applied to the vector field v with respect to itself, could be numeri-

cally approximated as:

∇v(hk)v(hk) ≈ vk+1 − Pxk→xk+1
(vk)

h
. (50)

(We notice that the above relationship is somewhat arbitrary, albeit natural. In fact,
the quantities xk+1 and vk+1 are not related to the quantities xk and vk as much as in the
exact relationship (46) and, in particular, are not related to h by a straighforward relationsip,
hence the division by h may appear somewhat arbitrary.) Therefore, an algorithm that
implements the numerical solution of (49) in a fEul-like fashion reads:

vk+1 = Pxk→xk+1
(vk + h σ(xk, vk)), k = 0, 1, 2, 3, . . . , (51)

with x0 and v0 known from the initial conditions.
In summary, the numerical iteration that will be made use of in order to simulate a

controlled second-order system on manifold reads:

xk+1 = expxk (h vk),

uk = α v̂k −∑N
j=1

(
Cr

j
`r

j

e
−d(xk , qj)/`

r
j

d(xk , qj)
−

Ca
j

`a
j

e
−d(xk , qj)/`

a
j

d(xk , qj)

)
logxk (qj),

vk+1 = Pxk→xk+1
(
(1− hµ)vk + h uk

)
,

k = 0, 1, 2, 3, . . . ,

(52)

with x0 and v0 known from the initial conditions.
In the following section, numerical results will illustrate a number of features of the

devised control strategy on manifold, with reference to the unit hyper-sphere as exemplary
case. Let us recall that, in the case of hyper-sphere (M := Sn−1), the canonical operators
and the Riemannian distance required for the numerical implementation take the following
expressions: 

expx(v) =

x cos(‖v‖) + v‖v‖−1 sin(‖v‖), if v 6= 0,

x, otherwise,

d(x, y) = | arccos(x>y)|,

logx y = d(x,y)
sin d(x,y) (In − xx>)y,

Px→y(v) =
[

In − (y+x)y>

1+x>y

]
v.

(53)
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The expression given about the logarithmic map is continuous in x = y, in fact it is
easily seen that:

lim
d(x,y)→0

d(x, y)
sin d(x, y)

(In − xx>)y = 0.

In the expression of parallel transport, it is understood that points x and y need not be
antipodal, namely x>y 6= −1.

4.4. Simulations Results about the S2-VARP Method

In the present subsection, results of numerical simulations will be reported in order
to illustrate salient features of the M-VARP control method on the unitary sphere S2. The
values of the parameters displayed in the figure captions were determined on the basis of a
trial-and-error procedure, since the non-linear control algorithm is not prone to theoretical
determination of optimal coefficients in any analytic way. Notice that in an abstract system
the ‘temporal’ parameter t is immaterial, hence the duration of each numerical simulation
is expressed in terms of computing steps. The value of the chosen numerical stepsize in
every simulation in this section is h = 0.01 (s).

The first five numerical simulation results concern a case study where a single target
is present while no obstacles were placed over the sphere. Figure 15a shows the state
trajectory followed by an abstract second-order dynamical system on the sphere and, as
expected, the system state reaches the prescribed target. Across the following subfigures,
the self-propelling coefficient was gradually increased, which explains why the system
gradually follows a wider path, as illustrated in Figure 15b,c. With an higher value of the
coefficient α, self-propulsion is stronger than the attractive influence of the target, hence the
system state will wander around the sphere without ever reaching the target, as displayed
in Figure 15d. However, by increasing the attractive magnitude of the target (CT

a = 7),
the attractive potential is able to counteract the self-propelling term in order to make the
system state reach the target again, as shown in Figure 16.

A further set of experiments were designed that include one obstacle between the
start location and the target location. The state trajectory of the system looks interesting,
and aligned to the corresponding behavior seen in Section 3. In fact, the state trajectory
of the system at the beginning of the simulation takes the shortest path to reach the target
but, when the state gets close enough to the obstacle, it gets repelled and takes a detour to
reach the target. As soon as the system approaches the target, its state trajectory reveals an
interesting aspect of the VARP control method: since each location in the virtual potential
field (that could represent an obstacle or a target) may be associated with both an attractive
and a repulsive action, the system will not turn around the target since it is repelled by
both the target and the obstacle, as illustrated in Figure 17. Reducing the magnitude of the
repulsive potential of the target and of the obstacle, the system state would keep go round
the target as shown in Figure 18. From such simulation, we can also notice that, before
being repelled, the system state comes closer to the obstacle since its repulsive action was
diminished.

Setting suitable parameters values, the controlled system is able to reach the target
also in the presence of two (or more) obstacles, by avoiding the virtual potential bump, as
illustrated in Figure 19.
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(a) (b)

(c) (d)

Figure 15. Experiment by the S2-VARP method: Single target, no obstacles. Simulation parameters:
Ca = 3, `a = 0.2, Cr = 0.5, `r = 0.2. (a) Parameter α = 1. steps = 500; (b) parameter α = 2.5.
steps = 500; (c) parameter α = 3, steps = 500; (d) parameter α = 4, steps = 5000.

Figure 16. Experiment by the S2-VARP method: Single target, no obstacles. Simulation parameters:
α = 4, Ca = 7. Steps = 500.
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Figure 17. Experiment by the S2-VARP method: Target and one obstacle. Simulation parameters:
CT

a = 5, CT
r = 0.3, CO

r = 2 (where T stands for Target and O stands for Obstacle).

Figure 18. Experiment by the S2-VARP method: Target and one obstacle. Simulation parameters:
CT

a = 5, CT
r = 0.1, CO

r = 1 (where T stands for Target and O stands for Obstacle).

Figure 19. Experiment by the S2-VARP method: Target and two obstacles. Simulation parameters:
CT

a = 5, CT
r = 0.1, CO

r = 1 (where T stands for Target and O stands for Obstacle).

Even in the present set of experiments concerning the M-VARP control method, it is
interesting to observe how the controlled system behaves when a barrier made of pointwise
obstacles is placed between the starting location and the target. Figure 20a illustrates how
the controlled dynamical system is able to get around a barrier in order to reach the target.
From this figure it is readily appreciated how the controlled agent is unable to get close
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to the target since the range of influence of the obstacles and their repulsive potentials
exert a strong action. By setting lower values for both the repulsive range parameter and
the repulsive magnitude of the obstacles makes the controlled system get closer and turn
around the target, as illustrated in Figure 20b.

By increasing both the repulsive strength of the obstacles and the self-propelling
coefficient, the system will loose control and will start a rapid oscillatory behavior around
the barrier and the target, as it can be observed from Figure 20c. It is interesting to notice
that, despite the system propulsion induced by the self-propelling term is way stronger than
necessary and the system’s state wanders all over the sphere, yet the agent will never hit
the barrier. To make the trajectory smoother and bound to the target, it pays to set a higher
attractive magnitude for the target in order to counteract the self-propelling term. Such a
conclusion may be drawn by observing the simulation result presented in the Figure 20d.

(a) (b)

(c) (d)

Figure 20. Experiment by the S2-VARP method: Potential wall (or ‘barrier’). (In the subcaptions,
superscript T stands for Target while superscript O stands for Obstacle). (a) Parameters: CO

r = 4,
`O

r = 0.1, CT
a = 5, α = 2; (b) parameters: CO

r = 2, `O
r = 0.07, CT

a = 5 α = 2; (c) parameters: CO
r = 4,

`O
r = 0.1, CT

a = 5, α = 4; (d) parameters: CO
r = 4, `O

r = 0.1, CT
a = 10, α = 4.

5. Conclusions and Future Work

The VARP theory developed in [39] was originally designed to control a dynamical
system whose state equations were formulated on a Euclidean space. The first part of the
present contribution aimed at presenting a review of such an instance of VARP control
methods as well as a comprehensive set of numerical experiments to illustrate its features
in controlling a simple robot with three degrees of freedom. A limited portion of such
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review was devoted to recall a numerical method to simulate a controlled system as well as
to implement the VARP control method on a computing platform.

Based on the understanding acquired on the VARP theory and on its numerical
implementation, the second part of the present paper introduced an extension of the VARP
control method to regulate the dynamics of second-order systems whose state space takes
the form of Riemannian manifolds. Extensive numerical experiments conducted on the S2

manifold proved the effectiveness of the introduced M-VARP theory to control the motion
of a dynamical system presenting holonomic constraints in its state-variables. Besides of
the present proof-of-concept, applications of the devised theory to realistic engineering
cases are currently being pursued.

From a methodological viewpoint, the encouraging results displayed within the
present paper suggest a number of further investigations, which are briefly outlined in
the following:

• the control method termed M-VARP has been shown effective through numerical
experiments; it would be interesting to conduct a theoretical analysis (i.e., Lyapunov-
like) about its effectiveness and about its applicability;

• the displayed experiments confirmed that the construction of a potential barrier
represents a viable method to guide a dynamical system toward a predefined target;
the notion of potential barrier might be extended by the notion of potential corridor that
might afford better control of a systems’ trajectory;

• the original VARP control theory was developed to achieve cooperative control; such
important feature has not been exploited in the present study, since it has been as-
sumed the presence of a single controlled agent; nevertheless, the M-VARP theory
itself inherits cooperative control ability from the VARP method; it would hence be
interesting to apply the M-VARP method in a multi-agent environment;

• the M-VARP theory holds in general for Riemannian manifolds and might therefore be
applied seamlessly to Lie groups; such observation implies that the devised M-VARP
control theory may be applied to complex systems presenting a roto-translational
dynamics, such as quadcopter drones.

Such interesting research challenges might be tackled in forthcoming endeavors.
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