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Abstract: Radio telescopes are important for the development of society. With the advent of China’s
Five-hundred-meter Aperture Spherical radio Telescope (FAST), adjusting the reflector panel to
improve the reception ability is becoming an urgent problem. In this paper, an active control model of
the reflector panel is established that considers the minimum sum of the radial offset of the actuator
and the non-smoothness of the working paraboloid. Using the idea of discretization, the adjusted
position of the main cable nodes, the ideal parabolic equation, and the expansion of each actuator
are obtained by inputting the elevation and azimuth angle of the incident electromagnetic wave. To
find the ideal parabola, a univariate optimization model is established, and the Fibonacci method is
used to search for the optimal solution h = −0.33018 (offset in the direction away from the sphere’s
center) and the focal diameter ratio f = 0.4671 of the parabolic vertex. The ideal two-dimensional
parabolic equation is then determined as x2− 555.25z− 166757.2 = 0, and the ideal three-dimensional
paraboloid equation is determined to be z =

(
x2 + y2)/555.25− 300.33018. Moreover, the amount of

the nodes and triangular reflection panels are calculated, which were determined to be 706 and 1325,
respectively. The ratio reception of the working paraboloid and the datum sphere are 9.434% and
1.3898%, respectively. The latter is calculated through a ray tracing simulation using the optical
system modeling software LightTools.

Keywords: radio telescope; least square method; univariate optimization model; the idea of discretization;
Fibonacci method

1. Introduction

“Radio astronomy”, an important branch of astronomy, is one of the “four major
discoveries” of astronomy in the 20th century [1]. Large radio telescopes are the basic
equipment used for radio astronomy and are mainly used to explore the origin of the
universe, discover pulsars, measure the hyperfine structure of celestial bodies, and detect
weak space signals [2]. To promote the development of Chinese astronomy, Rendong
Nan, a Chinese astronomer, put forward the plan of constructing the FAST—Five-hundred-
meter Aperture Spherical radio Telescope [3], in 1994, and finally chose the pit of the karst
landform in Ping-tang County, Guizhou Province as the site. In 2020, the project passed
national acceptance and was officially put into operation. The working frequency of the
telescope is between 70 MHz and 3 GHz, with a resolution of 2.9′ and a pointing accuracy
of 8′ ′ [4]. It is currently the largest and the most sensitive single-aperture radio telescope in
the world. The FAST radio telescope is mainly composed of four systems, which comprise
the active reflector system, the signal receiving system, namely the feed cabin, the control,
and measurement system as well as the receiver and terminal system. The active reflector is
a spherical crown with the aperture of 500 m and a radius of 300 m. It is mainly composed
of a main support structure, an actuator, a back frame structure, and a reflector panel
unit. The main supporting structure is composed of cable nets, lattice columns, and ring
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beams [5]. As the supporting structure of the back frame structure and the reflection panel,
the cable net includes the main cable net and the drawdown cable. Each main cable node
is provided with a radial downward pull cable, and the lower end of the pull cable is
connected to the actuator. There are 2226 main cable nodes in total, and 6525 main cables
are connected between the nodes. The back frame structure of the reflecting surface is a
unitary aluminum alloy grid structure, and the size of each unit is about 11 m, with each
unit being simply supported on the main cable network node [6]. Excluding the partial
reflector panels connected by the surrounding supporting structure, the total number of
reflector panels is 4300. In the signal receiving system, the center of the receiving plane of
the feed cabin has a concentric reference sphere and is located on the focal plane.

One of the main tasks of the radio telescope is to reflect the parallel electromagnetic
waves propagated straight from the object to be observed in the effective receiving area
of the feed cabin through the reflection plane in order to achieve the best receiving effect.
Because the position of the celestial body to be observed is uncertain, the reflector works in
an effective way. That is, active adjustment is carried out so that the electro-magnetic wave
that is reflected signal can be received by the signal receiving system [7]. When the radio
telescope observes a target object in a certain direction, the extension line of the center of
the object and the reference sphere intersects the focal plane at a point, and the center of
the feed cabin moves to this point. The actuator fixed on the ground changes the form
of the main cable network by driving the drawdown cable through the radial expansion
or contraction of its own top, thus adjusting the reflector panel. The change in multiple
reflector panels causes the active reflector surface to change from the reference sphere to a
working paraboloid with the connecting line between the celestial body and the spherical
center as the axis of symmetry and the receiving center of the feed cabin as the focus to
converge electromagnetic waves. The paraboloid can be continuously shifted on a 500 m
diameter sphere to achieve tracking observation [8].

Presently, research on “FAST”’s active reflection surface mainly focuses on displace-
ment fatigue analysis, cable structure construction [9], observation accuracy detection [10],
two-dimensional deformation control of the reflection surface [11], engineering detection,
and maintenance [12], etc. There are few numerical simulation studies on the active control
model of the reflector. The active control model of the FAST reflector that is proposed in
this paper can not only maximize the receiving ratio, but it can also ensure the working
sensitivity. The minimum sum of the radial offset of the actuator and the non-smoothness
of the parabola are considered comprehensively. According to the elevation and azimuth
angle of the incident electromagnetic wave, the main cable nodes that need to move, the
ideal parabolic equation, the expansion of each actuator, and the adjusted position of the
nodes can all be obtained through the discretization method. The model established in this
paper improves the working performance of the FAST radio telescope to a certain extent.
This paper puts forward innovative ideas for the research of large aperture radio telescopes
that current exist, which can be further studied by future researchers. Moreover, some
traditional and easy to understand algorithms are adopted, which not only improve the
accuracy of the results but are also convenient for calculation. Optical simulation software
is also used, which provides a reference for subsequent experiments.

2. Model Establishment
2.1. Active Reflector Control Model

The active reflecting surface of the FAST radio telescope has two forms, namely the
datum state and the working state. In the datum state, the reflecting surface is a reference
sphere, and all of the main cable nodes are located on it. The radius of the reflecting surface
is 300 m, and the aperture is 500 m [13]. The reflecting surface is a paraboloid with an
aperture of 300 m in the working state. The sphere radius on which the feed cabin is located
is 0.534 times the radius of the datum sphere, and the effective area of the received signal
is a disc of radius 0.5 m. The object’s orientation can be determined by azimuth angle
α and elevation angle β. The three-dimensional coordinates were established as seen in
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Figure 1. Taking the constraints of the reflector panels into account, due to the symmetry of
the paraboloid, the ideal working paraboloid was decided when the elevation and azimuth
angle of the object to be observed were α = 0◦ and β = 90◦ respectively.
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Figure 1. Diagram of azimuth and elevation angles for astronomical observations.

For a more general case, assuming that the object to be observed is located at α = 36.795◦,
β = 78.169◦, an active reflective surface adjustment model was developed to adjust the
reflective surface by controlling the radial expansion and contraction of the actuator to bring
it close to the defined ideal paraboloid [14]. The adjustment quantities were then calculated.
The reception ratio of the feed cabin under the working paraboloid state after adjusting the
reflecting panel was calculated and compared to that of the datum-reflecting sphere.

In the case of a three-dimensional coordinate system with the center of the datum
sphere as the origin, the ideal working paraboloid and the datum sphere in the same
coordinate system are both completely three-dimensional axisymmetrical in all directions,
so the problem can be reduced to two dimensions when analyzing the control strategy [15],
as shown in Figure 2 below. The main idea is to set the focal length P/2 as the optimization
variable and to establish a univariate optimization model [16].
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Figure 2. Schematic diagram of the overall system in two dimensions.

Figure 2 is a sectional diagram of the FAST during observation. Point C is the center
of the datum sphere. The center of the receiving plane of the feed cabin can only move on
one sphere (focal surface) that is concentric with the datum sphere. The radius difference
between the two concentric spheres is F = 0.466R, and R is the radius of the datum sphere.
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The effective area of the signal received by the feed cabin is a central disk with a diameter
of 1 m. When the FAST observes the target celestial body S in a certain direction, the center
of the receiving plane of the feed cabin moves to the intersection P of the straight line SC
and the focal surface, and part of the reflection panel on the reference sphere are adjusted to
form an approximate rotating paraboloid with the straight line SC as the axis of symmetry
and P as the focus in order to converge the reflection of the parallel electromagnetic waves
from the target celestial body to the effective area of the feed cabin.

2.2. Univariate Optimization Modeling

Since both the datum sphere and the working paraboloid of the FAST radio telescope
are symmetrical figures, the solution of the ideal paraboloid in a three-dimensional coordi-
nate system is simplified to the two-dimensional condition so that the equation of the ideal
parabola in a two-dimensional coordinate system can be obtained [17]. The equation of the
ideal working paraboloid can be calculated by the rotation of the ideal parabola around
the z-axis.

The arc of the datum sphere and the ideal parabola in the two-dimensional coordinate
system [18] can be expressed as:{

x2 + z2 = R2

x2 − 2P · z− 2P · (R− h) = 0
(1)

where h is the radial offset of the vertex point corresponding to the ideal parabolola from
the datum sphere in a two-dimensional coordinate system [19]. The value of h is positive
when it moves to the center of the sphere along the radial direction, and it is negative when
it moves away from the center of the sphere along the radial direction. In addition, in the
process of the reflectors changing from the datum sphere to the working paraboloid, the
outer loop of the aperture of the working paraboloid is always connected to the datum
sphere, that is, at the position of x = ±D/2 (D is the aperture of the paraboloid), Equation
system (1) holds. Moreover, since all of the points are located on the negative half axis of
the z-axis, the formula for z is expressed as z = −

√
R2 − x2. Thus, the expression of h can

be obtained as seen below:

h = R−

√
R2 −

(
D
2

)2
− D2

8 · P (2)

where D is the aperture of the paraboloid, R is the radius of the datum sphere, and P/2 is
the focal length.

The relationship between the focal length P/2 and the radial offset of the vertex h is
found, and then the optimization variable can be converted to P instead of h. In the actual
calculation, the analytical formula of P is derived from Equation (2), as shown below:

P =
D2

8

(
R−

√
R2 −

(
D
2

)2
− h

) (3)

Then, the focal–diameter ratio can be defined as:

f = (P/2)/D = P/2D (4)

where D is the aperture of the paraboloid.
Since the edge point of the working paraboloid is continuous with the datum sphere,

the x-coordinates and the z-coordinates of the edge points of the datum sphere and the
working paraboloid are the same, so the actuators corresponding to the boundary main
cable nodes located at the edge points would not expand or contract, and the displacement
is 0 [20]. Since the parabola’s focal point is fixed at the focal surface, different parabolas
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can be obtained by changing the offset h of the vertex. After changing into the working
paraboloid, the focal length (i.e., P/2) of the corresponding parabola changes from 0.466R to
0.466R ± h. To establish an objective function that is more realistic, the optimization
objective is to minimize the sum of the radial offsets of the points on the ideal parabola
from the datum sphere. Since the corresponding central angle of the working paraboloid
before adjustment is 60◦, assume that some radial lines in the range of 60◦ are emitted from
the center of the circle in the two-dimensional plane, which have an intersection with both
the circular arc and the ideal parabola. Thus, the parabola is segmented by these radial
lines to simulate the unsmooth situation caused by the fact that the working paraboloid is
composed of triangular reflectors.

Using the following system of equations:
z = tan α · x

x2 − 2P · z− 2P · (R− h) = 0
z2 + x2 = R2

(5)

Two kinds of expressions for the horizontal and vertical coordinates of the intersection
points on the arc can be found as:

xq(i) =


R ·
√

1(
tan2 α(i) + 1

)
−R ·

√
1(

tan2 α(i) + 1
)

α >
π

2
α ≤ π

2

(6)

zq(i) = −
√

R2 − xq(i)
2 (7)

The two kinds of expressions for the horizontal and vertical coordinates of the inter-
section points on the parabola can be found as:

xp(i) =


P · tan2 α + tan α ·

√[
P ·
(
2R− 2h + P · tan2 α

)]
tan α

P · tan2 α− tan α ·
√[

P ·
(
2R− 2h + P · tan2 α

)]
tan α

α >
π

2
α ≤ π

2

(8)

zp(i) =

(
x2

p(i)− 2P · (R− h)
)

2P
(9)

By varying the value of the offset h, different parabolas can be obtained. Among
these parabolas, the least squares method is used to establish the objective function. The
least squares method is used to optimize the sum of the radial offsets of the points on the
parabola to be the least, while both the Fibonacci method and the golden mean method are
used to search for the optimal solution for h for the sake of accuracy. The objective function
is shown below:

min
N

∑
i=1

√[
xq(i)− xp(i)

]2
+
[
zq(i)− zp(i)

]2 (10)

2.3. Modeling of Active Control of Reflective Panels
2.3.1. Determination of the Adjustment Area

Based on the general case mentioned above, the incident electromagnetic wave is
regarded as a ray passing through the origin with the elevation and azimuth angle of
α = 36.795◦, β = 78.169◦. As the working parabolic aperture is known to be 300 m, and
the ray intersects the focal point with the focal plane, the distance between the boundary
point of the ideal paraboloid and the focal point can be calculated, resulting in a distance
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of 180.0602 m as shown in Figure 3. The main cable nodes whose distance from the focal
point is less than this length is the part to be adjusted.

Symmetry 2022, 14, x FOR PEER REVIEW 6 of 21 
 

 

𝑥 𝑖 = ⎩⎪⎨
⎪⎧𝑃 ⋅ tan 𝛼 + tan𝛼 ⋅ 𝑃⋅ 2𝑅−2ℎ+𝑃⋅tan 𝛼tan𝛼𝑃 ⋅ tan 𝛼 − tan𝛼 ⋅ 𝑃⋅ 2𝑅−2ℎ+𝑃⋅tan 𝛼tan𝛼

𝛼 > 𝜋2𝛼 ≤ 𝜋2 (8) 

𝑧 𝑖 = 𝑥 𝑖 −2𝑃⋅ 𝑅−ℎ2𝑃  (9) 

By varying the value of the offset ℎ, different parabolas can be obtained. Among 
these parabolas, the least squares method is used to establish the objective function. The 
least squares method is used to optimize the sum of the radial offsets of the points on the 
parabola to be the least, while both the Fibonacci method and the golden mean method 
are used to search for the optimal solution for ℎ for the sake of accuracy. The objective 
function is shown below: 

min 𝑥 𝑖 −𝑥 𝑖 + 𝑧 𝑖 −𝑧 𝑖  (10) 

2.3. Modeling of Active Control of Reflective Panels 
2.3.1. Determination of the Adjustment Area 

Based on the general case mentioned above, the incident electromagnetic wave is re-
garded as a ray passing through the origin with the elevation and azimuth angle of 𝛼 =36.795°，𝛽 = 78.169°. As the working parabolic aperture is known to be 300 m, and the 
ray intersects the focal point with the focal plane, the distance between the boundary point 
of the ideal paraboloid and the focal point can be calculated, resulting in a distance of 
180.0602 m as shown in Figure 3. The main cable nodes whose distance from the focal 
point is less than this length is the part to be adjusted. 

 
Figure 3. Schematic representation of the principle of determining the adjustment area. 

The coordinates of the focal point of an ideal paraboloid are found using the follow-
ing equation: 𝑥 = − 𝑅−0.466𝑅 ⋅ cos𝛽 ⋅ cos𝛼𝑦 = − 𝑅−0.466𝑅 ⋅ cos𝛽 ⋅ sin𝛼𝑧 = − 𝑅−0.466𝑅 ⋅ sin𝛽  (11) 

The coordinates of the vertex of the ideal paraboloid before adjustment are: 𝑥 = −𝑅 ⋅ cos𝛽 ⋅ cos𝛼𝑦 = −𝑅 ⋅ cos𝛽 ⋅ sin𝛼𝑧 = −𝑅 ⋅ sin𝛽  (12) 

The coordinates of the vertex of the ideal paraboloid after adjustment are: 

Figure 3. Schematic representation of the principle of determining the adjustment area.

The coordinates of the focal point of an ideal paraboloid are found using the follow-
ing equation: 

x = −(R− 0.466R) · cos β · cos α
y = −(R− 0.466R) · cos β · sin α

z = −(R− 0.466R) · sin β
(11)

The coordinates of the vertex of the ideal paraboloid before adjustment are:
x = −R · cos β · cos α
y = −R · cos β · sin α

z = −R · sin β
(12)

The coordinates of the vertex of the ideal paraboloid after adjustment are:
x = −(R− h) · cos β · cos α
y = −(R− h) · cos β · sin α

z = −(R− h) · sin β
(13)

The critical distance is 180.0602 m. MATLAB software was used to search for the main
cable nodes whose distance from the focal point is less than the critical distance so as to
determine the nodes that need to be adjusted.

2.3.2. The Two-Dimensional Discrete Actuator Expansion and Contraction Model

For the solution of the actuator expansion and contraction, a two-dimensional dis-
crete actuator expansion and contraction solution model was developed using the idea
of discretization. As the corresponding three-dimensional coordinate system has been
established and the coordinates of each main cable node are known, the vector formed by
the line between the main cable nodes and the sphere center at each end of each main cable
was used to calculate the corresponding sphere center angle of all of the main cables [21].
In a coordinate system with the center of the sphere as the origin, let the coordinates of
the 2226 principal cable nodes be denoted as Ai = (xi, yi, zi), i = 1, 2, . . . , 2226. Then, the
spherical center angle between any main cable node and the z-axis can be obtained by the
following formulas: 

Ai = (xi, yi, zi)

Ai+1 = (xi+1, yi+1, zi+1)

|Ai| =
√

x2
i + y2

i + z2
i

|Ai+1| =
√

x2
i+1 + y2

i+1 + z2
i+1

cos θ =
Ai · Ai+1

|Ai| · |Ai+1|

(14)
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Then, obtain:

θj = arccos
(

Ai · Ai+1

|Ai| · |Ai+1|

)
, j = 1, 2, · · · , 6525 (15)

Then, the average of all spherical center angles θ =
(

∑6525
j=1 θj

)
/6525, and it can be

assumed that the corresponding spherical center angle of every triangular reflector panel is
θ, which is then used in the two-dimensional simplification as well. Since the corresponding
central angle of the two-dimensional working parabola is 60◦, the number of segments into
which the parabola is divided in the two-dimensional coordinate system by discretization
is N = 60◦/θ. Additionally, the number of nodes is n = N + 1.

Using the model established above for solving the offset of the actuators in the state of
the ideal parabola, the central angle 60◦ is discretized and is divided equally into N parts,
and each part has the central angle of θ. There is a total of n radial lines used to segment the
ideal parabola. For each segment of the discrete parabola, the expansion and contraction of
the actuator corresponding to this segment can be calculated later.

The focal coordinates of the ideal paraboloid are obtained from the formula mentioned
previously. Using the focal coordinates, find the coordinates of the main cable node closest
to the focal point and take it as the vertex of the parabola. This main cable node is then
regarded as the base point of the model, which is defined as loop 0. Since the number
of segments N of the parabola has already been found, starting from the vertex of the
parabola, there are N/2 segments for both its left and right sides. The max value among
the spherical center angles θj is defined as the unit angle. The following loop model could
be subsequently built.

2.3.3. The Three-Dimensional Working Paraboloid Loop Model

Using the symmetry of the ideal paraboloid, the discretized two-dimensional ideal
parabola is rotated around the z-axis to establish the discrete three-dimensional ideal
paraboloid model. Thus, there are N/2 loops in the working paraboloid in total. The main
cable node, which is regarded as the vertex of the idea parabola, is also the vertex of the
idea paraboloid, which is defined as loop 0 in this model. The vector formed by the line
between the 0-th loop and the center of the sphere is taken as the reference vector. Then,
calculate the vectors formed by the connecting line between the other main cable nodes
and the spherical center except the main cable node as the parabola vertex. After that, the
spherical center angles between the other main cable nodes and the main cable node as
the vertex around the spherical center are calculated according to the other vectors and the
reference vector. According to the unit angle defined above, it can be determined which
loop of the paraboloid each main cable node is located in. Starting from the vertex, the
main cable nodes that are i unit angles away from the vertex lie on the i-th loop of the
model. Due to the complete symmetry of the paraboloid, it can be considered that the
actuators corresponding to the main cable node on each loop in the model has the same
offset value. Therefore, the expansion or contraction amount of the actuators calculated in
the two-dimensional segment model can be applied to the three-dimensional loop model in
order to reasonably simplify the calculation as well as to obtain a more practical estimation
value. The flow chart of the calculation process of the loop model is as follows in Figure 4.

As the actuators expand and contract in the radial direction, the main cable nodes
also approach or move away from the center of the sphere in the radial direction [22]. The
distance between each main cable node and the center of the sphere after adjustment is
obtained as Ri

′ = R + hi. Using similar triangles, the coordinates of each main cable node
after adjustment are calculated as follows:
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x′i =
R′i
R
· xi =

(
1− hi

R

)
· xi

y′i =
R′i
R
· yi =

(
1− hi

R

)
· yi

z′i =
R′i
R
· zi =

(
1− hi

R

)
· zi

(16)
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2.4. Modelling of the Effective Area Reception Ratio of the Feed Cabin
2.4.1. The Model of a Single Triangular Reflective Panel

It was found that the shape of the working paraboloid is fixed in every case due to the
symmetry of the working paraboloid, and it is assumed that the triangular reflector panel is
uniformly distributed along the surface of the datum sphere [23], so the general incidence
problem can be transformed to solve the reception ratio of the feed cabin in the case where
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the incident light is α = 0◦, β = 90◦. Using the active adjustment model established for
the reflective surface, the main cable nodes to be adjusted and the coordinates of these
nodes can be obtained after adjustment. Assume that the triangular reflection panel is
an equilateral triangle since the coordinates of the three main cable nodes connected to
each triangular panel are known, the coordinates of the center of gravity of the triangular
reflective panel can be found from the three vertices of the triangle, which can be calculated
as follows. 

x0 =
x1 + x2 + x3

3

y0 =
y1 + y2 + y3

3

z0 =
z1 + z2 + z3

3

(17)

Using the calculated center of gravity coordinates (x0, y0, z0) to approximate the
position of the entire triangular panel. The reflection model for a single triangular reflective
panel is represented as follows in Figure 5:
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2.4.2. Reflection Validity Judgment Model

It was found that for the same triangular reflective panel, each incident light ray is
in the same plane as the reflected ray and that the corresponding elevation angle of the
straight line in the same vertical plane is the same. The flow chart of the reflection validity
determination model is as follows in Figure 6.

The system of equations are as follows:

γ =
π

2
− arcsin

(∣∣∣ z
R

∣∣∣)
φ =

π

2
− 2γ

α = arctan
(∣∣∣∣ y0

x0

∣∣∣∣)
∆x =

∆z
tan φ

cos α

∆y =
∆z

tan φ
sin α

(18)

Equation (18) can be used to determine the number of reflective plates that can ef-
fectively reflect the incident light into the plane of the feed cabin, which is denoted as
Ne. MATLAB software was used to perform a traversal search to find the total number of
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triangular reflective plates in the working parabolic plane N0. Let the ratio of the reflected
signal received in the effective area of the feed cabin to the reflected signal in the working

parabolic plane be denoted by η, then η =
Ne

N0
× 100%.
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3. Case Study
3.1. Solving the Univariate Optimization Model of the Idea Parabola

The parameters of the ideal paraboloid are easy to find.
The focal points are 

x = −(R− 0.466R) · cos β · cos α
y = −(R− 0.466R) · cos β · sin α

z = −R · sin β
(19)

In the case of α = 0◦ and β = 90◦, the point at the left edge of the aperture:
(
−150,−150

√
3
)

and the point at the right edge of the aperture:
(

150,−150
√

3
)

.
For a different vertex offset h, Figure 7 shows the corresponding relationship between

the abscissa of each point of the parabola and the radial offset.
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Figure 7 shows that the maximum value of the offset in the corresponding ideal
parabola is greater than the actuator adjustment limit when h = −0.4, 0, 0.2, 0.4, 0.6.
Additionally, when h lies between−0.4 and−0.2, the positive and negative offsets obtained
for each point of the ideal parabola are almost equal, that is, the adjusted ideal paraboloid
is closer to the original datum sphere to reduce the strain and fatigue of the structure.

It is known that the value of h is between −0.6 and 0.6. On the premise of meeting
the optimization objective, the offset reaches the minimum value. The Fibonacci method
is then used to search for the radial optimal offset of the ideal parabola vertex h, which is
h = −0.33018 after calculation with the direction that is radially away from the center of
the sphere. After that, use the formula f =

(
0.466R− h

)
/D to find the focal diameter

ratio f = 0.4671. The golden mean is used to search for the radial optimal offset h as well,
which provides the same answer as the Fibonacci method. These two methods are used to
search the univariate optimal solution in mathematics, and they only change the search
step in different ways. They produce the same answer, which shows that the mathematical
model established in this paper has a unique optimal solution.

The range of the x-coordinates of the ideal paraboloid is (−150, 150). Using the
optimal offset h, the focal length of the paraboloid is found using the focal length solution
formula P = D2

8
(

R+
√

R2−( D
2 )

2−h
) , which, in turn, leads to the ideal paraboloid expression.

An image of the radial offset versus the abscissa x at different points on the parabola in a
two-dimensional coordinate system should be plotted as follows in Figure 8:
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Figure 8. Offsets at points on an ideal parabola.

In the ideal parabolic case with h = −0.33018 (offset in the direction away from the
sphere’s center) and f = 0.4671, the point with horizontal coordinate ±52.1151 has an
offset of 0, and the maximum offset does not occur at the vertex.

Using the optimal focal length from the single-objective optimization model combined
with the boundary conditions and the focal point coordinates, the expression for the ideal
paraboloid in the x− z plane can be obtained based Equation (1).

Due to the symmetry of the ideal paraboloid, the 3D figure of the ideal paraboloid can
be obtained by rotating the 2D parabola around the z-axis, which is shown in Figure 9.
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The equation for the ideal paraboloid is:

z =

(
x2 + y2)

2P
− (R− h) (20)

where P = D2

8
(

R−
√

R2−( D
2 )

2−h
) (h = −0.33018, R = D = 300), which is substituted into

Equations (20) and (21) and can thus obtain the expressions for the two-dimensional
ideal parabola and the three-dimensional ideal paraboloid:

x2 − 555.25z− 166757.2 = 0 (21)

z =

(
x2 + y2)
555.25

− 300.33018 (22)
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3.2. Solution of the Active Control Model of the Reflective Surface

For a more general calculation case, the elevation and azimuth angle could be α = 36.795◦,
β = 78.169◦, respectively. Using the active adjustment model of the reflective surface
established before, the number of main cable nodes to be adjusted is calculated as 684. If
the incident light enters vertically, that is α = 0◦, β = 90◦, then the number of nodes that
need to be adjusted is 706. Combined with the optimal radial offset of the ideal paraboloid
of h = −0.33018 obtained above, the coordinates of the vertex of the ideal paraboloid could
be calculated as (−49.31,−36.88,−293.95), and D27 is determined as the number of main
cable node for the 0 loop. The position of the adjusted ideal paraboloid in 3D space is
represented in Figure 10.
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Using the two-dimensional discrete actuator expansion and contraction model, the
following parameters could be acquired: Since the average spherical center angle of the
main cable is θ = 0.0379rad and the circular center angle of the two-dimensional working
parabola is 60◦, the number of segments N = 60◦/θ = 27.6017 ≈ 28 and the number
of nodes n = N + 1 = 29 into which the parabola is divided in the discretized two-
dimensional coordinate system are found. This means that in the simulation case estab-
lished in this paper, taking the vertex of the working paraboloid as the starting point,
there are 14 segments to the left and right of the starting point in the two-dimensional
parabola, respectively, and each segment simulates a triangular reflector panel, while in the
three-dimensional parabola, it is considered that there are 14 loops of triangular reflectors
in total. In the two-dimensional coordinate system, the center angle 60◦ corresponding to
the working parabola is discretized and is divided equally into 28 parts. As mentioned
earlier, the connecting line between the main cable node as the vertex of the parabola and
the sphere center is defined as the reference vector, and the other vectors are the lines
formed by the connecting of other main cable nodes and the sphere center. The angle
between the reference vector and other vectors is the divergence angle that corresponds to
the relevant main cable nodes. For the idea working parabola, the relationship between
different divergence angles and the corresponding offset value of the relevant main cable
nodes are shown below:

It can be found that this figure is almost symmetrical, which is consistent with the
symmetry of an ideal paraboloid. The offset in Figure 11 is the radial displacement value of
the main cable nodes, which is also the expansion and contraction value of the actuators in
the two-dimensional coordinate system.

Each reflective triangular panel is composed of three main cables and three main cable
nodes. There are also three spherical center angles that are formed by connecting the main
cable nodes and the sphere center. For the whole reflection surface, it is known that there
are 6525 main cables needed to form the three sides of the triangular reflectors. Through
calculations, the range of all the spherical center angles vary from 0.0346rad to 0.0413rad.
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Based on the three-dimensional working paraboloid loop model established before with
the maximum spherical center angle 0.0413rad, which is the unit angle [24], the number of
loops to which each of the main cable nodes belong to can be obtained. It is also considered
that in the three-dimensional case, the expansion or contraction amount of the actuators
corresponding to the main cable nodes in each loop is the same, then the corresponding
radial displacement of all of the main cable nodes that need to be moved can be solved.
Finally, the coordinates of each of the main cable nodes after adjustment can be obtained
using similar triangles.
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The working paraboloid formed after the adjustment of the datum sphere and the
three-dimensional projection of the original datum sphere to the x− z plane are as follows
in Figure 12:
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mesh adjustment.

The trasversal search in MATLAB shows that with the total number of triangular
reflective panels N0 = 1325, the corresponding main cable node number can also be
determined. After active adjustment, the coordinates of the center of gravity of each
triangular reflector panel could all be calculated. Using the reflection validity judgment
model to determine the number of valid triangular reflective panels out of 1325, that is
Ne = 125, then η = Ne

N0
× 100% = 9.434%.
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3.3. Solution of a Baseline Reflective Spherical Simulation Model

Calculate the reception ratio of the reference reflecting sphere for a hypothetical in-
cident light line α = 36.795◦, β = 78.169◦, i.e., the ratio of the reflected signal received
in the effective area of the feeder compartment to the reflected signal from the reference
sphere within a 500 m aperture. Since the electromagnetic wave signal propagates in
a straight line parallel to the visible light propagation law, it was idealized by replac-
ing the electromagnetic wave signal with a light beam in the LightTools optical system
modelling software.

Firstly, during the modelling of the reference spherical reflecting sphere, a reflector
with a radius of 300 m and an aperture of 500 m was selected as the active reflecting panel
of the reference sphere.

During the modelling of the parallel electromagnetic wave source, the surface light
source was selected as the base component. The light path was set to the positioning area.
The angle distribution was set to uniform. The tracing direction was adjusted outward,
and the positioning angle of the positioning sphere was 0◦ both up and down to achieve
the setting of the parallel electromagnetic wave source. The practical receiving area of the
feeder compartment was then set to accommodate the receiver with a dimensional radius
0.5 m, thus establishing an ideal reflective spherical light simulation model.

It is also known that the effective receiving area of the feeder compartment is parallel
to the emission plane of the parallel electromagnetic wave source, so the plane B is parallel
to the above two planes. With α and β known, let the angle of plane B to the x-axis be Ω,
the angle to the y-axis be Ψ, and the distance from the origin where the center of the sphere
is located be OB. From the knowledge of three-dimensional geometry to find the angle
between a line and a plane in space, it follows that:{

Ω = arccosβ · cos α
Ψ = arccosβ · sin α

(23)

Substitute α = 36.795◦, β = 78.169◦ and obtain:{
Ω = 9.45◦

Ψ = 7.1128◦
(24)

The angle between plane B and the z-axis is also easily obtained as A. Therefore, the
effective receiving area of the feeder module is found to be in the plane and the azimuth of
the parallel electromagnetic wave source emission plane. Subsequently, according to the
spatial geometry relationship, the x, y, z coordinate expression of the feeder module is
determined to be 

x = 0.534R · cos β · cos α
y = 0.534R · cos β · sin α

z = 0.534R · sin β
(25)

Substitute to obtain x = 26.3018, y = 19.6727, z = 156.7968. The distance between the
emitting surface of the parallel electromagnetic wave source and the origin of the sphere
center is set to 50 m to obtain x = 8.209, y = 6.140, z = 48.937. The actual size is also
scaled to 10, 000 : 1 in the simulation software.

Finally, the total number of rays to be traced was set to 25 million in the simulation
input to perform the ray tracing simulation. The simulation is illustrated below. On the left
is a diagram where the rendering mode is transparent, and on the right is a diagram with
the intensity displayed. As the default reflective sphere needs to be built on a cylinder, a
sphere is cut out of the top surface of the cylinder to simulate the main reflective surface,
and an opaque material is applied to the surface of the cylinder.

LumViewer illuminance analysis of the effective receiving area of the feeder compart-
ment shows that the total number of reflected rays received in the effective area of the
feeder compartment is 183,370, and the spherical reflective surface with the surface receiver
set as the receiving area for illuminance analysis shows that the total number of reflected
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rays in the reference sphere is 13,193,834. Figure 13 shows the received intensity of the
reference sphere and the color of the diagram from blue to red, representing the increasing
intensity. The final ratio of the base reflecting sphere is 1.3898%.
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Figure 13. Schematic of Light Tools datum sphere simulation.

Compared to the working paraboloid acceptance ratio 9.434% found above, the working
paraboloid acceptance ratio is expanded by a factor of almost seven. Figures 14 and 15 show
the reception strength in the effective area of the deed cabin and datum sphere respectively.

3.4. Analysis of Structural Fatigue Damage Problems

Under the discrete loop model developed in this paper, it is considered that the
expansion or contraction of each node lying on the same loop is equal to each other from
the 1st loop to the 14th loop. However, the actual situation is more complex [25]. The
constant transformation between the datum paraboloid and the working paraboloid results
in a constant change in the distance between the main cable nodes. When the strain of the
main cable exceeds a certain value, generally assumed to be 0.17 ∼ 0.18%, the reflective
panel is in a fatigue working condition and the main cable network is at risk of fracture.
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From the previous calculation results, the distance change amplitude of each node
first becomes smaller and then larger and finally smaller, where a few points elongate
up to 0.1746%. However, the overall compression is only 0.1042% at most, the length
change amplitude is not significant, only 15.6% experience a length change amplitude up
to 0.17%, and no length change amplitude exceeds 0.715%, i.e., there is a risk of fracture
for very few main cables. The two-dimensional diagram shows that the spacing of the
adjacent nodes near the outermost loop may show large variation and may require special
reinforcement treatment, which is shown in Figure 16. Moreover, the three-dimensional
diagram in Figure 17 shows that the changed triangular plate basically conforms to the
shape of the ideal paraboloid, which shows that the simulation of the model established in
this paper is superior.
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4. Discussion
4.1. Advantages of the Model

1. The univariate optimization model established here aims to minimize the radial offset
between the ideal paraboloid and the reference paraboloid. Compared to some studies
in the literature that only calculate the vertical offset, the radial offset calculated in this
paper is more in line with the actual situation. The vertical offset refers to the displace-
ment of the active reflecting surface in the vertical direction. However, in practice, the
reflecting panel can only move along the radial direction, and the included angle be-

tween the moving direction and the horizontal plane is θ = arccos
(
|Z|
R

)
. Therefore,

only considering the vertical displacement will ignore the horizontal displacement,
that is R cos(θ), resulting in a deviation from the actual results.

2. In the univariate optimization model, the optimization variable is the vertex offset of
the ideal paraboloid, and the Fibonacci method and golden section method are used
to search for the optimal solution. The optimal solution obtained by the two methods
is h = −0.33018, and the error is less than 10−5, and the accuracy is high.

3. The active adjustment model of the reflective panel is established using the idea of
the discretization, the expansion, and contraction of each main cable node in the
two-dimensional case. Then, the working paraboloid was divided into 14 loops by
using the working paraboloid loop model, and then the expansion and contraction in
the three-dimensional case was obtained. This model considers the non-smoothness
of the active reflection panel, and the calculation results are more in line with the
actual situation. After adjustment, the receiving ratio of the active reflection panel
increased from 1.3898% in the reference state to 9.434% in the working state, which is
6.8 times that of the original.

4. In the established reflection effectiveness judgment model, the actual situation of the
working paraboloid was considered when calculating the reception ratio, that is, the
non-smoothness of the reflecting surface was not ignored, and the working paraboloid
was discretized into 1325 triangular reflection panels, which is more appropriate to
the actual situation than directly calculating the reception ratio with the smooth
ideal paraboloid.

5. In this paper, the optical system modelling software LightTools was used to model
the datum sphere to calculate the effective receiving ratio, which was 1.3898%, which
provides some reliable data for latecomers.
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4.2. Aspects That Need Further Study

When calculating the reflected signal from the working paraboloid, the effect of the
feed cabin on the incident EM wave signal was not considered and may somewhat bias
the results.

4.3. Generalization of the Model

FAST is a huge project that contributes to the development and application of as-
tronomy [26]. The active adjustment model of the reflector panel provided in the paper
considers the minimum radial offset, the non-smoothness of the datum sphere, and the
working paraboloid and uses the idea of discretization. The results obtained here are of
great reference value for the active control of the main reflecting surface of the FAST radio
telescope. This paper also uses the LightTools optical system modelling software to make
the results more intuitive.

The active adjustment model for the reflector proposed in this paper has important
reference value for the radio telescope, as it uses active reflector technology. By only
inputting the relevant dimensions and constraints of the radio telescope, the adjustment
scheme of each actuator of the active reflector and the working paraboloid equation can
be output.

Author Contributions: Conceptualization, Y.W. and Y.X.; methodology, Y.W.; software, Y.X.; val-
idation, Y.W.; formal analysis, Y.W.; investigation, J.H. (Jiaqi He); resources, Y.L.; data curation,
Y.W. and X.H.; writing—original draft preparation, Y.W. and X.H.; writing—review and editing,
J.H. (Jianming Hao) and X.H.; supervision, J.H. (Jianming Hao). All authors have read and agreed to
the published version of the manuscript.

Funding: This study was sponsored by the Fundamental Research Funds for the Central Universities
CHD (No. 300102210108), which is greatly acknowledged.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Zhang, T. Creation and application of digital twin model for the Five Hundred Meter Spherical Radio Telescope (FAST). Eng.

Technol. II 2020, 3, 154–196. (In Chinese)
2. Li, W.; Zhou, L. A preliminary study on photogrammetry for the FAST main reflector measurement. Res. Astron. Astrophys. 2021,

21, 156–164. [CrossRef]
3. Nan, R.; Li, H. Progress of FAST—Science, technology and equipment. Chin. Sci. Phys. Mech. Astron. 2014, 44, 1063–1074.

[CrossRef]
4. Li, Q.; Jiang, P.; Nan, R. Design and analysis of the adaptive connection mechanism of the 500 m aperture radio telescope cable

network and panel unit. J. Mech. Eng. 2017, 53, 62–68. [CrossRef]
5. Chen, R.; Zhang, H.; Jin, C.; Gao, Z.; Zhu, Y.; Zhu, K.; Jiang, P.; Yue, Y.; Lu, J.; Zhang, B.; et al. FAST VLBI: Current status and

future plans. Res. Astron. Astrophys. 2020, 20, 74–80. [CrossRef]
6. Zhu, Z.; Liu, F.; Zhang, L.; Wang, Z.; Liang, C.; Xue, Y.; Bai, G.; Deng, X. Primary supporting structure design of Five-hundred-

meter Aperture Spherical Telescope (FAST). Space Struct. 2017, 23, 4–8. (In Chinese)
7. Chen, Y.; Liu, W.; Zhang, Z.; Zhang, T. SETI strategy with FAST fractality. Res. Astron. Astrophys. 2021, 21, 178–185. [CrossRef]
8. Jiang, P.; Shen, Z.; Xu, R. Preface: Key technologies for enhancing the performance of FAST. Res. Astron. Astro-Phys. 2020, 20,

63–65. [CrossRef]
9. Kong, X.; Wang, Q. Research on Construction Process of the Cable-net Structure of FAST. IOP Conf. Ser. Mater. Sci. Eng. 2019, 521,

12006. [CrossRef]
10. Li, D.; Dickey, J.M.; Liu, S. Preface: Planning the scientific applications of the Five-hundred-meter Aperture Spherical radio

Tele-scope. Res. Astron. Astrophys. 2019, 19, 16–18. [CrossRef]
11. Li, H.; Jiang, P. An open-loop control algorithm of the active reflector system of FAST. Res. Astron. Astrophys. 2020, 20, 65–74.

[CrossRef]
12. Li, Q.; Jiang, P.; Li, H. Prognostics and health management of FAST cable-net structure based on digital twin technology. Res.

Astron. Astrophys. 2020, 20, 67–75. [CrossRef]

http://doi.org/10.1088/1674-4527/21/7/156
http://doi.org/10.1360/SSPMA2014-00153
http://doi.org/10.3901/JME.2017.07.062
http://doi.org/10.1088/1674-4527/20/5/74
http://doi.org/10.1088/1674-4527/21/7/178
http://doi.org/10.1088/1674-4527/20/5/63
http://doi.org/10.1088/1757-899X/521/1/012006
http://doi.org/10.1088/1674-4527/19/2/16
http://doi.org/10.1088/1674-4527/20/5/65
http://doi.org/10.1088/1674-4527/20/5/67


Symmetry 2022, 14, 252 20 of 20

13. Li, J.; Peng, B.; Jin, C.; Li, H.; Strom, R.G.; Liu, B.; Chai, X.; Liu, L. Adapting active reflector technology for greater sensitivity and
sky-coverage in FAST-like telescopes. Mon. Not. R. Astron. Soc. 2021, 501, 6210–6214. [CrossRef]

14. Li, J.; Peng, B.; Chai, X. Fast lighting aperture analysis. Astron. Res. Technol. 2021, 3, 301–306.
15. Wang, Z. Research on the Control. Strategy of FAST Whole Network Based on Iterative Learning Theory; Northeastern Univer-

sity: Shenyang, China, 2015.
16. Jiang, Q.; Xie, J.; Ye, J. Mathematical Modeling, 4th ed.; Higher Education Press: Beijing, China, 2016.
17. Lv, N.; Wu, D.; Cao, H.; Yang, L.; Fan, J. Deformation Localization of Reflector Antenna Based on Focal-Field Distribution with

CapsNet. In Proceedings of the 2020 IEEE International Symposium on Antennas and Propagation and North American Radio
Science Meeting, Montreal, QC, Canada, 17 February 2021; pp. 385–386.

18. Li, M.; Zhu, L. Optimization analysis of FAST transient paraboloidal deformation strategy. J. Guizhou Univ. 2012, 29, 24–28.
19. Li, J.; Peng, B.; Chai, X. Re-investigation of the Illuminated Aperture of the FAST. Astron. Res. Technol. 2021, 18, 301–306.
20. Peng, J.; Cao, H.; Wu, D.; Sun, Z.; Fan, J. A Novel Method of Surface Damage Localization for FAST Active-reflector. In

Proceedings of the 2020 IEEE International Symposium on Antennas and Propagation and North American Radio Science
Meeting, Montreal, QC, Canada, 17 February 2021; pp. 705–706.

21. Song, L.; Jiang, P.; Wang, Q.; Yang, L. Research on key technologies for installation and maintenance of reflector of FAST. Res.
Astron. Astrophys. 2020, 20, 66–72. [CrossRef]

22. Tang, W.; Zhu, L.; Wang, Q. Recognition of FAST reflector nodes based on Canny operator. Res. Astron. Astro-Phys. 2020, 20,
126–133. [CrossRef]

23. Yao, R.; Jiang, P.; Sun, J.; Yu, D.; Sun, C. A motion planning algorithm for the feed support system of FAST. Res. Astron. Astrophys.
2020, 20, 68–78. [CrossRef]

24. Yin, J.; Jiang, P.; Yao, R. An approximately analytical solution method for the cable-driven parallel robot in FAST. Res. Astron.
Astrophys. 2021, 21, 46–60. [CrossRef]

25. Yu, N.; Qian, L.; Zhang, C.; Jiang, P.; Xu, J.; Wang, J. HI detection of J030417.78+002827.4 by the Five-hundred-meter Aperture
Spherical Radio Telescope. Res. Astron. Astrophys. 2021, 21, 100–105. [CrossRef]

26. Zhao, Z.; Liu, M.; Song, L.; Wen, J.; Zhao, W.; Peng, Y. Creation of a digital model of the radio telescope feeder module. Mod.
Comput. 2019, 26, 12.

http://doi.org/10.1093/mnras/staa3973
http://doi.org/10.1088/1674-4527/20/5/66
http://doi.org/10.1088/1674-4527/20/8/126
http://doi.org/10.1088/1674-4527/20/5/68
http://doi.org/10.1088/1674-4527/21/2/46
http://doi.org/10.1088/1674-4527/21/4/100

	Introduction 
	Model Establishment 
	Active Reflector Control Model 
	Univariate Optimization Modeling 
	Modeling of Active Control of Reflective Panels 
	Determination of the Adjustment Area 
	The Two-Dimensional Discrete Actuator Expansion and Contraction Model 
	The Three-Dimensional Working Paraboloid Loop Model 

	Modelling of the Effective Area Reception Ratio of the Feed Cabin 
	The Model of a Single Triangular Reflective Panel 
	Reflection Validity Judgment Model 


	Case Study 
	Solving the Univariate Optimization Model of the Idea Parabola 
	Solution of the Active Control Model of the Reflective Surface 
	Solution of a Baseline Reflective Spherical Simulation Model 
	Analysis of Structural Fatigue Damage Problems 

	Discussion 
	Advantages of the Model 
	Aspects That Need Further Study 
	Generalization of the Model 

	References

