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Abstract: Clustered data arise frequently in many practical applications whenever units are repeatedly
observed under a certain condition. One typical example for clustered data are animal experiments,
where several animals share the same cage and should not be assumed to be completely independent.
Standard methods for the analysis of such data are Linear Mixed Models and Generalized Estimating
Equations—however, checking their assumptions is not easy, especially in scenarios with small
sample sizes, highly skewed, count, and ordinal or binary data. In such situations, Wilcoxon–Mann–
Whitney type effects are suitable alternatives to mean-based or other distributional approaches.
Hence, no specific data distribution, symmetric or asymmetric, is required. Within this work, we
will present different estimation techniques of such effects in clustered factorial designs and discuss
quadratic- and multiple contrast type-testing procedures for hypotheses formulated in terms of
Wilcoxon–Mann–Whitney effects. Additionally, the framework allows for the occurrence of missing
data: estimation and testing hypotheses are based on all-available data instead of complete-cases. An
extensive simulation study investigates the precision of the estimators and the behavior of the test
procedures in terms of their type-I error control. One real world dataset exemplifies the applicability
of the newly proposed procedures.

Keywords: clustered data; non-parametric statistics; rank-based procedures; repeated measures;
missing data

1. Introduction

Clustered data are commonly encountered in medical research and various disciplines
and occur whenever a subject is not only observed once under a certain condition, but
multiple times. For instance, animals sharing the same cage, students in classes, skin
irritations, etc., are different examples of clustered data. In these situations, subjects
provide multiple possibly dependent observations (not necessarily equally sized). Standard
methods for the analysis of independent observations (e.g., t-test, linear regression, Analysis
of Variance (ANOVA), etc.) are not applicable in such scenarios. Ignoring that structure
might result in bias (such as inflated type-I error rates and estimation bias) and therefore
appropriate models are necessary for making inference. Reducing the clusters to a single
point by, e.g., computing their mean or median, typically results in a loss of power and
decreased precision of point estimates [1–3]. Furthermore, estimation of treatment effects
becomes an issue because of presence of intra-cluster correlations and unequally sized
clusters, see, e.g., Gao [4]. Under certain assumptions such as multivariate normality
and linear relationships, Linear Mixed Models and Generalized Estimating Equations
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can be used. However, testing these assumptions is difficult in practice as noted by
Fitzmaurice et al. [5] and Johnson and Wichern [6], especially when dealing with small
sample sizes. Further, if count, ordinal, or highly skewed data are present, mean-based
approaches are not applicable and thus, another type of measure is needed. On the
contrary, Wilcoxon–Mann–Whitney-type effects p = P(X < Y) + 1

2 P(X = Y) [7] are purely
non-parametric quantities, which can be used for the definition of a treatment effect for
metric, discrete, ordinal, and even dichotomous data in a unified way. Thus, the response
variable is not assumed to be symmetrically distributed. Here X and Y represent two
independent random variables coming from different populations. In the literature, p is
also called relative effect [8] or probabilistic index [9,10], see Brunner et al. [11] for an overview.
It is the aim of this paper to discuss different estimation techniques of such effects in
factorial repeated measures designs with a clustered structure. We hereby differ between
non-informative and informative cluster sizes by presenting weighted and unweighted
estimators. Here, informative cluster sizes mean that the cluster sizes might be related to
the outcome. In addition to estimation, we further introduce different statistical inference
methods for testing hypotheses formulated in terms of these effects. All methods allow for
the occurrence of missing data and take all-available data into consideration, which is a
novelty since previous methods by Akritas et al. [12], Fong et al. [13], Domhof et al. [14] and
Amro et al. [15] can only be used for testing hypotheses in terms of distribution functions in
scenarios with missing data and do not allow for clustered data. Akritas and Brunner [16]
and Brunner et al. [17] propose ranking procedures for testing hypotheses green formulated
in terms of distribution functions in clustered data designs, see Brunner et al. [18] for an
excellent overview. Thus, the aim of this work is to provide a framework for estimating
Wilcoxon–Mann–Whitney-type effects, as well as to present test procedures for hypotheses
formulated in terms of these effects in factorial repeated measures designs with clustered
data. The paper is organized as follows. First, a real world example is introduced in
Section 2 that motivates the development of the methods. Next, in Section 3 the factorial
repeated measures model with a clustered data structure is introduced. Subsequently, point
estimators and their asymptotic distributions are derived in Sections 4 and 5. Further, test
procedures and multiple hypotheses in this framework are presented in Sections 6 and 7.
The results of extensive simulation studies are presented in the following Section 8. Finally,
the motivating example is analyzed by using the newly proposed methods in Section 9 and
a discussion and conclusion about the findings is given in Section 10. All proofs can be
found in the Appendix A.

2. Motivating Example

In order to motivate the development of methods for factorial repeated measures data
with a clustered structure, we consider the secondary/exploratory outcome analysis of
retinal thickness in the ’Sunphenon in progressive forms of multiple sclerosis’ (SUPREMES)
trial by Klumbies et al. [19], which was a relatively small clinical trial in progressive
multiple sclerosis (MS) patients. MS is the most common autoimmune disorder of the
central nervous system, affecting approximately 2.8 million people worldwide [20]. In MS,
immune cells attack the myelin sheaths of nerve fibers, often resulting in neurodegeneration
and thus permanent disability. In most cases, the disease starts with a relapsing–remitting
course, followed by a progressive course around 15–20 years after diagnosis. Around 15%
of patients feature a progressive course from onset of the disease [21]. MS is associated with
visual impairment caused by optic nerve and posterior visual pathway damage, which
can be quantified with optical coherence tomography based thickness measurements of
the retinal nerve fiber layer, the combined ganglion cell, and inner plexiform layer (GCIP)
and inner nuclear layer (INL) [22]. Retinal thickness analysis has been suggested as an
outcome parameter in MS clinical trials [23]. In animal models of MS, epigallocatechin
gallate (EGCG), which is an anti-inflammatory agent, indicated neuroprotective properties.
The recent paper of Klumbies et al. [19] investigated the effect of EGCG on retinal thickness
as an indicator for treatment response in progressive MS. For this motivating example,
only the parameter peripapillary retinal nerve fiber layer (pRNFL) will be investigated.
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Longitudinal OCT data were available from 31 patients, from which 15 patients were
assigned to the intervention group and 16 to the control group, respectively. For most
patients, both eyes were investigated, thus leading to possibly dependent observations,
since assuming independence of the eyes from the same patient would be dubious. Further,
missing values occur: From 61 patients in the SUPREMES trial, only 31 contributed to
the final analysis and at 3-year follow-up, only 8 patients remained in the study. Table 1
displays the numbers of patients with pRNFL measurements in each group at each time
point. Due to the extremely small number of measurements after 3 years, this time point
was discarded from the analysis.

Table 1. Number of patients with pRNFL measurements in each group at baseline, 1-year follow-up,
2-year follow-up, and 3-year follow-up.

Group First OCT 1-Year F/U 2-Year F/U 3-Year F/U

Verum 15 14 7 3
Placebo 16 16 11 5

Since the sample size was quite small and many missing values occurred, the authors
tested—besides other hypotheses—whether there exists a statistical interaction of treatment
and time using non-parametric analysis of longitudinal data in factorial experiments, as
proposed by Brunner et al. [18]. One disadvantage of this procedure is that it cannot handle
missing values and a clustered data structure. Therefore, Klumbies et al. [19] conducted
a complete-case analysis and modeled the eyes as a second sub-plot factor besides the
sub-plot factor time. In order to close this methodological gap, a general factorial model
with repeated measurements, allowing for possibly correlated dependent replicates will be
introduced in the next section.

3. The Factorial Repeated Measures Model with Missing Values

First, we study the general factorial repeated measures model without a clustered
structure with independent random vectors

X ik = ((λi1k, Xi1k), . . . , (λidk, Xidk))
′, i = 1, . . . , a; k = 1, . . . , ni, with

λisk =

{
1, Xisk is observed
0, Xisk is missing.

(1)

Here, the random variable Xisk ∼ Fis, i = 1, . . . , a; s = 1, . . . , d; k = 1, . . . , ni represents
the s-th repeated measurement of the k-th subject in group i.

To account for metric, discrete, ordinal and ordered categorical data in a unified way,
we use the normalized version of the distribution function

Fis(x) = P(Xisk < x) +
1
2

P(Xisk = x),

which is the average of the left and the right continuous version of the distribution function
F−is = P(Xis1 < x) and F+

is = P(Xis1 ≤ x), which was first introduced by Ruymgaart [24].
In model (1), the numbers of non-missing observations under time-point s in group i,

the overall sample size and the minimal number of observations over all groups and time
points are given by

λis =
ni

∑
k=1

λisk , N =
a

∑
i=1

ni and λmin = min(λ11, . . . , λad).
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We propose to use unweighted relative effects

pis =
∫

GdFis = P(Z < Xis1) +
1
2

P(Z = Xis1), i = 1, . . . , a; s = 1, . . . , d, (2)

with G = 1
ad ∑a

i=1 ∑d
s=1 Fis being the unweighted mean distribution function and Z ∼ G,

independent of Xisk. The relative effect pis models the relationship of the distribution Fis to
the average distribution G. If pis > pjt, then data coming from Fis tend to be larger than
data coming from Fjt. If pis = pjt, then there is no tendency to greenlarger nor smaller
values between the two distributions. For more information on unweighted and weighted
relative effects, we refer to Brunner et al. [25] and Brunner et al. [26]. In the following, we
always refer to unweighted relative effects, if relative effects are mentioned.

General Factorial Model with Clustered Data

In the following we introduce a general factorial longitudinal model with clustered
data. In comparison with model (1), we observe random vectors X ik = (X i1k, .., X idk)

′ with

X isk =
(
λisk,

(
Xisk1, . . . , Xiskmisk

))′, where

Xisku ∼ Fis, u = 1, . . . , misk, (3)

and misk denotes the number of possibly dependent replicates of subject k in group i at
time s and mis = ∑ni

k=1 miskλisk denotes the total number of possibly dependent replicates
in group i at time s. Thus, the number of dependent replicates may vary for each subject
and may not be under experimental control. Note, that we do not assume any correlation
structure of the dependent replicates. Similarly as in (2), we define the relative effect as

pis =
∫

GdFis = P(Z < Xis11) +
1
2

P(Z = Xis11)

with
Fis(x) = P(Xisku < x) +

1
2

P(Xisku = x).

Note, that model (1) is contained within this model as a special case with misk ≡ 1. In
order to derive asymptotic results, we impose the following model assumptions:

Assumption 1. • A1.1: ni
N → κi ∈ (0, 1];

• A1.2: N → ∞ such that N
λmin

< N0, N0 being a fixed constant;
• A1.3: N → ∞ such that mis < M0, M0 being a fixed constant.

Assumption A1.1 ensures that none of the groups vanishes asymptotically, whereas
Assumptions A1.2 and A1.3 ensure that the total sample size N and number of clustered
observations mis is bounded. In the following section, estimators for the relative effect p
will be derived.

4. Estimators and Their Asymptotic Distributions

We will first study estimators of relative effects in factorial repeated measures designs
without clustered data (i.e., misk ≡ 1). In order to account for possible missing values, we
define the empirical distribution function of the data under time point s in group i as the
average of the all-available data by

F̂isk(x) = c(x− Xisk)λisk resulting in F̂is(x) =
1

λis

ni

∑
k=1

F̂isk(x).
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Here, c(u) = 0, 1
2 , 1, if u <,=,> 0. By plugging in the empirical counterparts F̂is, we obtain

Ĝ(x) =
1
ad

a

∑
i=1

d

∑
s=1

F̂is(x),

p̂is =
∫

ĜdF̂is =
1

λis

ni

∑
k=1

λisk
ad

a

∑
j=1

d

∑
t=1

nj

∑
`=1

λjt`

λjt
c(Xisk − Xjt`) (4)

and define
p̂ = ( p̂11, . . . , p̂1d, p̂21, . . . p̂ad)

′.

4.1. Effect Estimation in Factorial Designs with Clustered Data

To generalize the estimation of empirical distribution functions and relative effects
to the case of clustered data, we follow the idea of Roy et al. [1] who proposed two
different approaches for estimating the distribution functions by using the cluster sizes
as weighting schemes. In the first version of the estimator of the relative effect p, larger
clusters add more weight to the estimation than smaller ones and in the second version,
all clusters add the same weight to the estimation, disregarding their size. Analogously
to Roy et al. [1] the estimators are called unweighted and weighted estimators, respectively.
Note that Obuchowski [27] also used the weighted version in the two-sample case.

The two different versions of the empirical distribution functions (unweighted and
weighted) are defined as follows:

F̂(υ1)
is (x) =

1
λis

ni

∑
k=1

1
misk

misk

∑
u=1

c(x− Xisku)λisk

F̂(υ2)
is (x) =

1
mis

ni

∑
k=1

misk

∑
u=1

c(x− Xisku)λisk.

F̂(υ1)
is (x) is the unweighted estimator of Fis(x), where the average of the count function is

calculated separately for each cluster and these averages are then again averaged. F̂(υ2)
is (x)

is the weighted estimator of Fis(x) where the counts are averaged over all observations.
In order to write the estimators in a unified way, we define weights

wυ1
isk =

1
λismisk

and wυ2
isk =

1
mis

,

then an estimator for Fis(x) and G(x) is given by

F̂∗is(x) =
ni

∑
k=1

misk

∑
u=1

w∗iskc(x− Xisku)λisk, ∗ ∈ {υ1, υ2}

and

Ĝ∗ =
1
ad

a

∑
i=1

d

∑
s=1

F̂∗is =
1
ad

a

∑
i=1

d

∑
s=1

ni

∑
k=1

λisk

misk

∑
u=1

w∗iskc(x− Xisku).

It then follows that an estimator of pis is given by

p̂∗is =
∫

Ĝ∗dF̂∗is =
1
ad

a

∑
j=1

d

∑
t=1

ni

∑
k=1

misk

∑
u=1

λiskw∗isk F̂∗jt(Xisku) (5)

=
1
ad

ni

∑
k=1

a

∑
j=1

d

∑
t=1

nj

∑
`=1

misk

∑
u=1

mjt`

∑
v=1

λiskλjt`w∗iskw∗jt`c(Xisku − Xjt`v). (6)

Note that in order to derive the theory of these estimators, the weights need to fulfill
the following properties
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Proposition 1. If Assumption A1.3 is fulfilled, it holds that

• A2.1: λiskw∗iskmisk ≤ O
(

1
λmin

)
;

• A2.2: ∑ni
k=1 λiskw∗iskmisk = 1.

Furthermore note, that the application of all weights which fulfill both properties
is theoretically possible. For example, Zou [28] developed an ’optimal’ estimator, which
incorporates information on cluster sizes and intra-cluster correlations by a mixed model
approach.

First, we will study the asymptotic properties of general estimators for p in the
following proposition.

Proposition 2. The estimator p̂∗ =
(

p̂∗11, . . . , p̂∗1d, p̂∗21, . . . , p̂∗ab
)′ is asymptotically unbiased and

strongly consistent, i.e.,

1. E(p̂∗) = p +O( 1
λmin

);

2. p̂− p a.s.−→ 0, λmin → ∞.

Subsequently, the asymptotic distribution of the statistic
√

N(p̂∗ − p) will be derived.
It will be indicated in the next theorem that

√
N(p̂∗ − p) has asymptotically under A1.1

and A1.2, the same distribution as the random vector
√

NB∗, with

√
NB∗ =

a

∑
h=1

√
NB∗h =

a

∑
h=1

(√
N

nh

nh

∑
k=1

(Ψ∗hk − E(Ψ∗hk))

)

based on random variables defined as

Ψ∗is,hk :=



− nh
ad ∑d

t=1 ∑mhtk
u=1 λhtkw∗htkFis(Xhtku) , for h 6= i

nh
ad ∑a

j 6=i ∑d
t=1 ∑misk

u=1 λiskw∗iskFjt(Xisku)

+ nh
ad ∑d

t=1

(
∑misk

u=1 λiskw∗iskFit(Xisku)

−∑mitk
u=1 λitkw∗itkFis(Xitku)

)
, else.

The expectation of Ψ∗hk can be written as

β∗is,ik := E(Ψ∗is,hk) =



− nh
ad ∑d

t=1 λhtkmhtkw∗htk p(is,ht) , for h 6= i
nh
ad ∑a

j 6=i ∑d
t=1 miskλiskw∗isk p(jt,is))

+ nh
ad ∑d

t=1

(
miskλiskw∗isk p(it,is)

−mitkλitkw∗itk p(is,it)
)

, else,

with p(is,ht) :=
∫

FisdFht denoting pairwise relative effects between groups i and h and time
points s and t.

Theorem 1. Let
√

NB∗ = ∑a
h=1

√
NB∗h = ∑a

h=1

√
N
(

B∗11,h, . . . , B∗ad,h

)′
be the vector of the

random variables
√

nBis, i = 1, . . . , d ; s = 1, . . . , d. If A1.1 and A1.2 hold true, then

||
√

N(p̂∗ − p)−
√

NB∗||22 = O
(

1
N

)
.

It follows that the asymptotic covariance matrix of
√

N(p̂∗ − p) is given by

V∗N = Cov(
√

NB∗).
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The asymptotic multivariate normality of the linear statistic
√

N(p̂∗ − p) is given in
the next theorem.

Theorem 2. Under Assumptions A1.1 and A1.2, the statistic
√

N(p̂∗ − p) follows asymptotically,
as N → ∞, a multivariate normal distribution with expectation 0 and covariance matrix V∗N .

However, this covariance matrix is mostly unknown in practical applications and
must be estimated in order to be able to make statistical inferences. In Section 5 we will
derive a consistent and positive semi-definite estimator of the covariance matrix.

4.2. Informative Cluster Sizes

In many applications, the cluster sizes misk (might) depend on the outcome of inter-
est, i.e.,

Assumption 2.

E(Xisku) 6= E(Xisku|misk), i = 1, . . . , a; s = 1, . . . , d; k = 1, . . . , ni; u = 1, . . . , misk,

Which makes them non-ignorable or informative [29]. As an example, consider the
periodontal disease (an inflammation of the gums and bone that surround and support
the teeth) study [30]. Severe periodontitis ends in the falling out of teeth and, thus, cluster
sizes (patient’s teeth) depend on the clinical outcome. Hoffmann et al. [29], among others,
suggest a Within-Cluster-Resampling (WCR) method for the analysis of informative clustered
binary data. This approach is also applicable in the rather general model considered here
and will be described in the following:

A randomly chosen observation Xq
isk is sampled from cluster Xisk. This is done for

each of all N ∗ d clusters, resulting in a dataset involving single observations only. The
latter is repeated Q times, e.g., Q = 10,000, and for each of the Q datasets, the vector of
relative effects p is estimated by adapting Equation (4):

p̂∆,q
is =

1
λis

ni

∑
k=1

λisk
ad

a

∑
j=1

d

∑
t=1

nj

∑
`=1

λjt`

λjt
c(Xq

isk − Xq
jt`).

An estimator and its asymptotic distribution is given in the following theorem.

Theorem 3. Let

p̂∆ =
1
Q

Q

∑
q=1

p̂∆,q

denote the Within-Cluster-Resampling based estimator. If N → ∞, then

√
N
(

p̂∆ − p
)
→ N (0, Σ∆),

where Σ∆ is finite.

A consistent variance is estimator is provided in the next theorem.

Theorem 4. Let N and p̂∆ be defined as in Theorem 3. Then, an estimator of Σ∆ is given by

Σ̂
∆
= V̂ar

(√
N
(

p̂∆ − p
))

= N

(
1
Q

Q

∑
q=1

Σ̂q −
Q− 1

Q
S2

p

)
, (7)
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where Σ̂q is the estimated covariance matrix from the q-th analysis (see the following chapter for the
derivation of an estimator) and

S2
p =

1
Q− 1

Q

∑
q=1

(
p̂∆,q − p̂∆

)(
p̂∆,q − p̂∆

)′
is the estimated covariance matrix among the Q resample-based estimates p̂∆,q. Then, Σ̂

∆
is

consistent for Σ = Var
(√

N
(

p̂∆ − p
))

.

The proofs of Theorem 3 and 4 can be found in the appendix of Hoffmann et al. [29].
The WCR-approach proposed by Hoffmann et al. [29] is computationally intensive and
could possibly lead to negative variance estimators due to the subtraction in the variance
estimation in Equation (7). Hoffmann et al. [29] noted, that this occurs rarely and concluded
that in these scenarios, the number of resampled datasets Q or the number of clusters N
may be too small for making inferences. However, the WCR-based approach is equivalent
to the unweighted estimation of the relative effects p as proposed by Roy et al. [1]—in
both analysis all clusters are given equal weight, regardless of their size. Thus, the use
of the unweighted estimator should be preferred over the WCR-based approach since its
computation is less intensive and always leads to positive variance estimators. However,
it should be noted that Assumption 2 of ignorable cluster-sizes is never imposed during
the development of the theory in this work. Therefore, all weighting schemes that fulfill
Assumptions A2.1 and A2.2 can be applied in case of non-ignorable cluster sizes-however,
the resulting estimators have a different interpretation.

5. Estimation of the Covariance Matrix

Now, an estimator of the covariance matrix V∗N is derived. Similarly, as in
Rubarth et al. [31], the random variables Ψ∗is,hk are not observable. Otherwise, an esti-
mator of V∗N would be given by

Ṽ
∗
N =

a

∑
h=1

N
nh

Ṽ
∗
N,h

with Ṽ
∗
N,h = 1

nh−1 ∑nh
k=1(Ψ

∗
hk − β∗hk)(Ψ

∗
hk − β∗hk)

′. Therefore, we replace the unknown Ψ∗is,hk

with observable random variables. Define the vectors Ψ̂
∗
hk =

(
Ψ̂∗11,hk, . . . , Ψ̂∗ad,hk

)′
with

Ψ̂∗is,hk :=



− nh
ad ∑d

t=1 ∑mhtk
u=1 λhtkw∗htk F̂∗is(Xhtku) , for h 6= i

nh
ad ∑a

j 6=i ∑d
t=1 ∑misk

u=1 λiskw∗isk F̂∗jt(Xisku)

+ nh
ad ∑d

t=1

(
∑misk

u=1 λiskw∗isk F̂∗it(Xisku)

−∑mitk
u=1 λitkw∗itk F̂∗is(Xitku)

)
, else

and expectation values

β̂∗is,hk := E(Ψ̂∗is,hk) =



− nh
ad ∑d

t=1 λhtkmhtkw∗htk p̂∗(is,ht) , for h 6= i
nh
ad ∑a

j 6=i ∑d
t=1 miskλiskw∗isk p̂∗(jt,is)

+ nh
ad ∑d

t=1

(
miskλiskw∗isk p̂∗(it,is)

−mitkλitkw∗itk p̂∗(is,it)
)

, else,
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where p̂∗(is,ht) =
∫

F̂∗isdF̂∗ht = ∑nh
k=1 ∑mhtk

u=1 λhtkw∗htk F̂∗is(Xhtku) denote the estimators of the
pairwise relative effects p(is,ht). Finally, an estimator for the unknown covariance matrix
V∗N,h is given by

V̂
∗
N,h =

1
nh − 1

nh

∑
k=1

(
Ψ̂
∗
hk − β̂

∗
hk

)(
Ψ̂
∗
hk − β̂

∗
hk

)′
and an estimator for V∗N := ∑a

h=1 κ−1
h V∗N,h is given by

V̂
∗
N :=

a

∑
h=1

N
nh

V̂
∗
N,h.

Its properties are presented in the next theorem.

Theorem 5. For N → ∞, such that A1.1 and A1.3 are fulfilled, it holds

1. V̂
∗
N,h and V̂

∗
N are positive semi-definite;

2. V∗N,h − V̂
∗
N,h

a.s.−→ 0;

3. V∗N − V̂
∗
N

a.s.−→ 0.

6. Multiple Hypotheses

In this section, the formulation of hypotheses for main- and interaction effects in the
factorial repeated measures framework will be outlined. Let C = (c1, . . . , cq)′ ∈ Rq×ad be
an arbitrary contrast matrix and let

Ω = {H`
0 : c′`p = 0, ` = 1, . . . , q}

be a family of hypotheses, where c` denotes the `-th row vector of C. The decision which
contrast matrix is appropriate depends on the specific research questions. Well known types
of contrast matrices are the Tukey-type contrast matrix, used for all-pairwise comparisons
or the Dunnett-type contrast matrix, which is used for the comparison of several groups
to one control group. User-specified contrast matrices can also be applied, as long as they
have the property of a contrast matrix, which is, that each row of the contrast matrix C
sums up to 0 (i.e., ∑ad

m=1 c`,m = 0∀` = 1, . . . , q).
Since the layout in this paper is multifactorial, it is briefly demonstrated how to define

appropriate contrast matrices for testing main effects of group membership and time and
interaction effect between group membership and time.

• Main effect group membership G In order to make comparisons in terms of group
membership, it is necessary to center and average over the repeated measures. Thus,
a contrast matrix to test for no group effect will be defined as

CG := Cg

(
Pa ⊗

1
d

1′d
)
∈ Rq×ad,

with Cg being a contrast matrix for the group effect with a time structure.
• Main effect time T Similarly for the time effect, the measurements across the groups

need to be centered and averaged, leading to a contrast matrix to test for no time
effect as

CT := Ct

(1
a

1′a ⊗ Pd

)
∈ Rq×ad.

Again, Ct denotes a contrast matrix for the effect over time without the group structure.
• Interaction effect G× T For the test of no interaction between group membership and

time, the centering matrix

CGT = Pa ⊗ Pd ∈ Rad×ad

will be used.
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7. Test Statistics

In this section, we will present different test procedures for testing global and multiple
hypotheses concerning the null hypothesis Hp

0 : Cp = 0, with C being an appropriate
contrast matrix tailored to the specific research question. First, we propose two quadratic
test procedures, a Wald-type statistic (WTS) and an ANOVA-type statistic (ATS) as already
described by Brunner et al. [17], Domhof et al. [14], and Rubarth et al. [31]. These procedures
can only be used to test the global null hypothesis and cannot be inverted to obtain
(simultaneous) confidence intervals. Therefore, we will present a Multiple Contrast Test
Procedure (MCTP), which has been introduced by Konietschke et al. in a general non-
parametric factorial framework [32] and Rubarth et al. [31] for the case of incompletely
observed data. Using this procedure, multiple hypotheses can be tested simultaneously
and adjusted confidence intervals and p-values are directly obtained.

7.1. Quadratic Test Procedures

Following Konietschke et al. [33] and Rubarth et al. [31], we consider the Wald-type
statistic (WTS)

Q∗N = N p̂′∗C′
[
CV̂
∗
NC′

]+
Cp̂∗,

which can be approximated by a χ2
f̂

distribution with f̂ = rank(CV̂
∗
NC′) degrees of free-

dom (see the discussion on further assumptions on V∗N in Brunner et al. [25]). Here, [.]+

denotes the Moore-Penrose inverse of a matrix. However, simulation studies by Koni-
etschke et al. [33], Domhof et al. [14] and Rubarth et al. [31] indicate, that the WTS is
very liberal in small or moderate sample size scenarios. Therefore, Akritas et al. [34] and
Brunner et al. [25], among others, approximate the (asymptotic) distribution of

A∗N =
N

tr(MV∗N)
p̂′∗M p̂∗

by a scaled χ2
f / f distribution with

f =
[tr(MV∗)]2

tr(MV∗N MV∗N)

degrees of freedom. Here, M = C′
[
CC′

]−C and
[
CC′

]− denotes a generalized inverse
of CC′. Since M is a projection matrix, it holds that M p = 0 ⇐⇒ Cp = 0. The
unknown traces tr(MV∗N) and tr(MV∗N MV∗N) are estimated by replacing V∗N with V̂

∗
N , see

Brunner et al. [17] for the derivation.

7.2. Multiple Contrast Test Procedure

To overcome the above outlined disadvantages of the quadratic test procedures,
Konietschke et al. [32] proposed a rank-based MCTP for factorial designs, whereas
Rubarth et al. [31] proposed a procedure for repeated measures designs with missing values.

Consider the `-th individual null hypothesis H(`)
0 : c′`p = 0 and the corresponding

test statistic

T∗` =
√

N
c′`(p̂∗ − p)√

c′`V̂
∗
Nc`

with c′` being the `-th row vector of C. All test statistics are collected in the vector

T∗ = (T∗1 , . . . , T∗q )
′.

Note that the test statistics T∗` and T∗m(` 6= m) are not necessarily independent depend-
ing on the chosen contrast and the repeated measures.
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The distribution of T∗` is asymptotically standard normal. It follows then from
Theorem 2 and Slutzky’s theorem that T∗ follows, asymptotically, as N → ∞, a standard
multivariate normal distribution with expectation 0 and correlation matrix

R∗ = D∗,−1/2CV∗NC′D∗,−1/2,

with D∗ being a diagonal matrix of the diagonal elements of CV∗NC′. For large samples,

the local null hypothesis H(`)
0 : c′`p = 0 will be rejected if |T∗` | ≥ z1−α,2,R∗ . Here, z1−α,2,R∗

denotes the two-sided (1− α) equicoordinate quantile of the N (0, R∗) distribution [35]. By
inverting the corresponding test statistic, simultaneous confidence intervals for the effects
δ` = c′`p can be obtained by

CI` =
[
c′` p̂∗ ∓

z1−α,2,R∗√
N

√
c′`V̂

∗
Nc`
]
.

It follows directly, that the global null hypothesis Hp
0 : Cp = 0 will be rejected,

if T0 = max{|T∗1 |, . . . , |T∗q |} ≥ z1−α,2,R∗ . Analogously as in Konietschke et al. [36] and
Rubarth et al. [31], the correlation matrix is unknown but can be consistently estimated by

R̂N = D̂
∗,−1/2

CV̂
∗
NC′D̂

∗,−1/2
.

Again, D̂
∗

is denoted as the diagonal matrix obtained from the diagonal elements
of CV̂

∗
NC′. We note that the method controls the family wise error rate α in the strong

sense asymptotically. However, the proposed procedure is only valid for large sample sizes
and the convergence of T∗ to its asymptotic distribution is rather slow [32]. Therefore,
we follow Konieschke et al. [32] who proposed a small sample approximation by using
a central multivariate T(ν, 0, R̂

∗
) distribution, with ν degrees of freedom and correlation

matrix R̂
∗
. We define for each linear contrast c′` = (c`11, . . . , c`ad)

′, ` = 1, .., q random
variables Φ∗`hk = c′`Ψ

∗
hk. It can be directly seen that

√
Nc′`(p̂∗ − p) ∼

√
N

a

∑
h=1

1
nh

nh

∑
k=1

[Φ∗`hk − E(Φ∗`hk)]

and by independence of Φ∗`hk and Φ∗`hk′(k 6= k′) we obtain for the variance

Var

(
√

N
a

∑
h=1

1
nh

nh

∑
k=1

[Φ∗`hk − E(Φ∗`hk)]

)
= N

a

∑
h=1

1
nh

Var(Φ∗`h1) = N
a

∑
h=1

1
nh

ω2,∗
`h

with ω2,∗
`h = Var(c′lΨ

∗
h1) = Var(Φ∗`h1). The unknown variances ω2,∗

`h can be consistently esti-
mated by ω̂2,∗

`h = 1
nh−1 ∑nh

k=1(Φ
∗
`hk−Φ∗`h)

2 with Φ∗`h = 1
nh

∑nh
k=1 Φ∗`hk. We follow Gao et al. [37]

and estimate the degree of freedom by

ν = max{1, min`=1,...,q{ν1, . . . , νq}}

with

νl =

(
∑a

h=1 ω̂2,∗
`h /nh

)2

∑a
h=1 ω̂2,∗

`h /(n2
h(nh − 1))

, ` = 1, . . . , q.

8. Simulation Study

Within this section, the precision of the unweighted and weighted estimator and
the behavior of the introduced test procedures in terms of their type-I error control are
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examined. The investigated metrics for the precision are Mean Squared Errors (MSEs) and
biases, defined as

bias =
1

nsim

nsim

∑
isim=1

1
ad

a

∑
i=1

d

∑
s=1

(
p̂∗is −

1
2

)

MSE =
1

nsim

nsim

∑
isim=1

1
ad

a

∑
i=1

d

∑
s=1

(
p̂∗is −

1
2

)2
.

As already pointed out by Domhof et al. [14], Konietschke et al. [33], and Rubarth et al. [31],
the WTS requires large sample sizes to be able to maintain the type-I eror rate. Therefore,
only the ATS and the MCTP will be examined.

8.1. Set-Up

The simulation study was conducted in R [38] version R 4.1.0 and for each scenario
10,000 simulation runs were performed. The complete simulation code can be found on
https://github.com/KerstinRubarth/Clustered, last accessed on 10 November 2021. Due
to the abundance of possible scenarios, the simulation study was restricted to the following
parameter constellations: The number of independent groups was set to a = 2 and the
number of repeated measures to d = 3. The sample sizes n1 and n2 were chosen to model
balanced designs with (n1, n2) ∈ {(15, 15), (30, 30)}, as well as unbalanced designs with
(n1, n2) ∈ {(20, 10), (40, 20)}. The number of dependent replicates of subject k at time s in
group i (misk) were chosen to be

• misk ≡ 1 (no dependent replicates);
• misk ≡ 2 (two dependent replicates);
• misk realizations of a Binomial distribution with Binom(5, 0.6) + 1;
• misk realizations of a Binomial distribution with Binom(10, 0.4) + 1.

The correlation of the dependent replicates within a cluster was set to be

• ρisk ≡ 0, ρisk ≡ 0.3, ρisk ≡ 0.9 (same correlation within each cluster);
• ρisk realizations of a Binomial distribution with Binom(10, 0.6)/10 (different correla-

tions within each cluster).

Data was generated by drawing from multivariate normal distributions having ex-
pectation µik = (µi1, . . . , µi1, . . . , µid, . . . , µid)

′ ∈ Rmik (mik = ∑d
s=1 misk) and covariance

matrices Σik ∈ Rmik×mik with

Σik =



σ2
i1 ρi1k . . . ρi1k σi12 . . . . . . σi12 σi13 . . . . . . σi13

ρi1k
. . . ρi1k

...
... . . . . . .

...
... . . . . . .

...
... ρi1k

. . . ρi1k
... . . . . . .

...
... . . . . . .

...
ρi1k . . . ρi1k σ2

i1 σi12 .. . . . σi12 σi13 . . . . . . σi13

σi21 . . . . . . σi21 σ2
i2 ρi2k . . . ρi2k σi23 . . . . . . σi23

... . . . . . .
... ρi2k

. . . ρi2k
...

... . . . . . .
...

... . . . . . .
...

... ρi2k
. . . ρi2k

... . . . . . .
...

σi21
...

... σi21 ρi2k . . . ρi2 σ2
i2 σi23 . . . . . . σi23

σi31 . . . . . . σi31 σi32 . . . . . . σi32 σ2
i3 ρi3k . . . ρi3k

... . . . . . .
...

... . . . . . .
... ρi3k

. . . ρi3k
...

... . . . . . .
...

... . . . . . .
...

... ρi3k
. . . ρi3k

σi31 . . . . . . σi31 σi32 . . . . . . σi32 ρi3k . . . ρi3k σ2
i3



.

https://github.com/KerstinRubarth/Clustered
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The components σisk are obtained from the following homo- and heteroscedastic
covariance matrices of multivariate normal distributions:

Σ1

 1 0.2 0.2
0.2 1 0.2
0.2 0.2 1

 and Σ2 =

 1 0.1 0.2
0.1 1.2 0.3
0.2 0.3 1.5

.

Since the simulation study of Rubarth et al. [31] indicated that the performance
of the procedure is not dependent on the distribution, no other data generating dis-
tributions were considered. Analogously, we restricted our simulations to the case of
Missing-Completely-At-Random (MCAR) scenarios, since no different behavior of the
methods of Rubarth et al. [31] in MAR scenarios compared to MCAR scenarios could
be observed. Thus, the indicators λisk greenwere generated by drawing from Binomial
distributions B(1 − r) with r being the percentage of missing values r = (r1, r2) ∈
{(0%, 0%), (0%, 20%), (10%, 10%), (30%, 30%)}. Since the power of the methods was
already investigated in detail by Rubarth et al. [31], the simulation study green of the
present paper focused solely on type-I error rates. Further, we additionally investigated the
precision of the unweighted and weighted estimators.

8.2. Results—Type-I Error Rate

First, an overview of the impact of different sample sizes in scenarios with completely
observed data is given in Figure 1 if no missing values occur. It can be readily seen that
both procedures control the type-I error quite well even if the sample size is quite low
with n1 = n2 = 15. Interestingly, the MCTP works better if sample sizes are unbalanced,
whereas the ATS works better in case of balanced sample sizes.

●

●

●

●

●

●

●

●

0.04
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0.07

ATS MCTP
Test−Procedure

Ty
pe

−
I E

rr
or

 R
at

e Sample Sizes

15−15

20−10

30−30

40−20

Figure 1. Boxplots of Type-I error rates in relation to sample sizes n1 and n2 in various settings
without missing data.

Next, the impact of missing values will be inspected. In Figure 2, the sample sizes
were fixed with n1 = n2 = 30. The empirical type-I error rates of both procedures increase,
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if missing values occur and the higher the relative frequency of missing values, the higher
the type-I error rates. Furthermore, the simulation study indicates that the MCTP is more
affected by the occurrence of missing values than the ATS, which was already noted by
Rubarth et al. [31].

●

●
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●

●

● ●

●

0.05

0.06

0.07

0.08

ATS MCTP
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Ty
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−
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 R
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e Missing Rates

0.0

0.0−0.2

0.1

0.3

Figure 2. Boxplots of Type-I error rates in relation to missing rates r1 and r2 in various settings with
n1 = n2 = 30.

The relationship between the cluster sizes misk and the type-I error rates is depicted
in Figure 3. For this comparison, the sample sizes were again fixed with n1 = n2 = 30 and
only completely observed data were investigated. It can be readily seen that type-I error
rates decrease if two dependent replicates of each subject are present in comparison to a
dataset without a clustered structure. However, type-I error rates of the ATS increases if the
number of dependent replicates misk is arbitrary with an expected number of dependent
replicates of 5 or 4, respectively. In contrast, the type-I error rates of the MCTP decrease on
median in these scenarios.

Next, the influence of intra-cluster correlations ρisk on type-I error rates is investigated
in scenarios with sample sizes n1 = n2 = 30 and green without missing data (Figure 4). The
type-I error rates of the ATS decrease if non-arbitrary higher intra-cluster correlations are
present, whereas the type-I error rates of the MCTP increase in case of higher (non-arbitrary)
intra-cluster correlations ρisk. Interestingly, if arbitrary correlations ρisk are present with a
mean correlation of 0.6, the type-I error rates of the ATS increase in comparison to scenarios
with fixed correlations, whereas the type-I error rates of the MCTP are on the same level as
in scenarios with a fixed correlation ρisk = 0.9.

Figure 5 depicts the impact of homo- and heteroscedastic covariance matrices Σ1 and
Σ2 in settings with n1 = n2 = 30 and green without missing data. Again, it can be seen that
the type-I error rates of the ATS are on median smaller than those of the MCTP for both
homo- and heteroscedastic covariance matrices. Type-I error rates of the ATS seem to be a
bit smaller in case of homoscedasticity, whereas type-I error rates of the MCTP seem to be
slightly larger in homoscedastic scenarios.
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Figure 3. Boxplots of Type-I error rates in relation to cluster sizes misk in various settings with
n1 = n2 = 30 and green without missing data.
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Figure 4. Boxplots of Type-I error rates in relation to intra-cluster correlation ρisk in various settings
with n1 = n2 = 30 and green without missing data.
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Figure 5. Boxplots of Type-I error rates in relation to covariance matrices Σ1 and Σ2 in various settings
with n1 = n2 = 30 and without missing data.

Next, the relationship of unweighted and weighted estimation and type-I error rates
will be inspected in scenarios with n1 = n2 = 30 and without missing data (Figure 6). It
can be readily seen that the type-I error rates of the ATS do not differ on median in case of
weighted and unweighted estimation of the relative effect p, only the interquartile range is
increased in case of weighted estimation. Contrary, the type-I error rates of the MCTP are
on median smaller in case of unweighted estimation of the relative effect p but without an
enlargement of the respective interquartile range.

To conclude, an analysis of the impact of unweighted and weighted estimation of
the relative effect p and the fixed intracluster correlation ρisk is presented in Figure 7 (in
scenarios with n1 = n2 = 30 and without missing data). The type-I error rates of the
ATS decrease if the intra-cluster correlations ρisk increase, as already depicted in Figure 4.
Interestingly, the medians of the type-I error rates are comparable in case of unweighted and
weighted estimation if no intra-cluster correlation is present. However, in these scenarios,
the interquartile range of the type-I error rates in case of weighted estimation is very
enlarged in comparison to the case of unweighted estimation. If a medium intra-correlation
is present, type-I error rates of the unweighted estimator are on median smaller than those
of the weighted estimator. Here, the interquartile ranges are quite comparable. In scenarios
with high intra-class correlations, the weighted estimator yields smaller type-I error rates
on median; as well as a larger interquartile range.

Again, as already outlined in Figure 4, type-I error rates of the MCTP increase with
higher intra-cluster correlations. The type-I error rates of the unweighted and weighted
estimator are quite comparable if no intracluster-correlation is present. However, they are
quite different if a medium correlation is present: type-I error rates by using the unweighted
estimator tend to be smaller on median than those obtained from weighted estimation. If
high correlations are present, the unweighted estimator yields smaller type-I error rates
than the weighted version.
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Figure 6. Boxplots of Type-I error rates in relation to unweighted and weighted estimation of the
relative effect p in various settings with n1 = n2 = 30 and without missing data.
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Figure 7. Boxplots of Type-I error rates in relation to unweighted and weighted estimation of the
relative effect p and fixed intra-cluster correlations ρisk in various settings with n1 = n2 = 30 and
without missing data.
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8.3. Results—Precision

Analogously to the previous section, we will first explore the impact of the sample size
on the precision of the unweighted and weighted estimators in scenarios with completely
observed data. It can be readily seen in Figure 8 that the MSEs of the unweighted and
weighted estimators are quite comparable. The MSEs decrease if sample size increase;
balanced settings exhibit smaller MSEs than unbalanced settings. Regarding the bias of
the estimators, scenarios with smaller sample sizes tend to exhibit biases in the negative
direction, whereas scenarios with larger sample sizes exhibit biases in the positive direction.
Interestingly, the interquartile range of biases is quite enlarged in scenarios with n1 = 40
and n2 = 20.
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Figure 8. Boxplots of biases and MSEs of estimators p̂∗is in Equation (5) in relation to different sample
sizes n1 and n2.

Next, the impact of missing data on the precision of the estimators is inspected in
scenarios with n1 = n2 = 30 (see Figure 9). As seen before, the MSEs of unweighted and
weighted estimators are quite comparable. The MSEs increase with an increasing missing
rate. Interestingly, the interquartile ranges of the biases of the two different estimators are
quite different; the weighted estimator exhibits a larger interquartile range (especially if
10% of data are missing) than the unweighted estimator. Further, biases of the unweighted
estimator tend to be positive (except if the missing rate is 30%). Contrary, the biases of the
weighted estimator tend to be negative.
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Figure 9. Boxplots of biases and MSEs of estimators p̂∗is in Equation (5) in relation to the amount of
missing data in scenarios with n1 = n2 = 30.

In Figure 10, the influence of the number of dependent replicates misk on the precision
is presented (again in scenarios with n1 = n2 = 30 and without missing data). As already
pointed out, the distribution of MSEs of the unweighted and weighted estimator is very
similar. Interestingly, there is very little variation if only one observation per subject and
time point is available compared to scenarios with more possibly dependent replicates.
Further, the MSEs decrease quite a lot if already two possibly dependent observations are
available and the more clustered data are available, the smaller are the MSEs. The same
observations can be made regarding the biases of both estimators.

Finally, the relationship between intra-cluster correlations will be inspected (see
Figure 11, again scenarios with n1 = n2 = 30 and without missing data). Again, the MSEs
of the unweighted and the weighted estimator do not differ much. It can be readily seen
that in scenarios with fixed cluster correlations, the MSEs increase with increased intra-
cluster correlations. Contrary, the biases of both estimators approach 0 with increasing fixed
intra-cluster correlations but the two estimators exhibit a different behavior: the biases of
the unweighted estimator tend to be positive whereas the biases of the weighted estimator
tend to be negative.
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Figure 10. Boxplots of biases and MSEs of estimators p̂∗is in Equation (5) in relation to cluster sizes
misk in scenarios with n1 = n2 = 30 and without missing data.
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Figure 11. Boxplots of biases and MSEs of estimators p̂∗is in Equation (5) in relation to intra-cluster
correlations ρisk in scenarios with n1 = n2 = 30 and without missing data.
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9. Analysis of the Motivating Example

The parameter pRNFL from the SUPREMES study introduced in Section 2 can now be
analyzed using the newly proposed methodology for factorial repeated measures designs
with dependent replicates. It can be readily seen in Figures 12 and 13 that pRNFL baseline
values in the placebo group tend to be smaller than those from the EGCG group.
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Figure 12. Lineplot of pRNFL values in both groups at baseline, 1-year follow-up and 2-year follow-
up of the SUPREMES trial.
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Figure 13. Boxplot of pRNFL values in both groups at baseline, 1-year follow-up and 2-year follow-up
of the SUPREMES trial.
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Further, Figure 13 indicates that pRNFL values seem to increase at 2-year follow-up;
however, this needs to be interpreted with caution, since almost 50% of the patients could
not be measured at this time point. These were mostly patients with smaller baseline pRNFL
values. This could possibly violate the Missing Completely at Random (MCAR) assumption.
However, the simulation study of Rubarth et al. [31] indicated that the proposed method is
robust against violations of the MCAR assumption. In order to account for the baseline
differences between the two groups following Klumbies et al. [19], the analysis is not
based on raw pRNFL values but on differences to baseline. In contrast to the analysis of
Klumbies et al. [19], the MCTP on baseline differences is applied. The Tukey contrast was
chosen to compare all pairwise differences, thus, the contrast matrix for testing the null
hypothesis Hp

0 : Cp = 0 is as follows:

C =



c′1
c′2
c′3
c′4
c′5
c′6


=



−1 1 0 0
−1 0 1 0
−1 0 0 1
0 −1 1 0
0 −1 0 1
0 0 −1 1


.

The relative effects were estimated by using the unweighted version of the estima-
tor, leading to p̂ = ( p̂11, p̂12, p̂21, p̂22)

′ = (0.525, 0.445, 0.505, 0.525)′, indicating that the
differences to baseline are the largest at 1-year follow-up simultaneously in group 1 (inter-
vention group) and group 2 (Placebo group) and the smallest at 2-year follow-up in group 1.
The results, including the values of the test statistics T`, p-values and 95% simultaneous
confidence intervals, are displayed in Table 2.

Table 2. Point estimators of differences pis − pjt (i, j: group, s, t: time point), simultaneous confidence
intervals, t-values and p-values for Tukey-type contrasts in relative effects in the SUPREMES trial.

Comparison Estimator 95%-Confidence Interval t-Value p-Value

p̂12 − p̂11 −0.080 [−0.371, 0.212] −0.777 0.850
p̂21 − p̂11 −0.020 [−0.344, 0.303] −0.178 0.998
p̂22 − p̂11 0.000 [−0.468, 0.468] 0.000 1.000
p̂21 − p̂12 0.059 [−0.335, 0.453] 0.429 0.969
p̂22 − p̂12 0.080 [−0.442, 0.601] 0.435 0.968
p̂22 − p̂21 0.020 [−0.306, 0.346] 0.177 0.998

Note that no adjustment for multiplicity was necessary, since the same critical value
obtained from the MCTP was used for each comparison. It follows that no evidence
exists to reject the global null hypothesis Hp

0 : Cp = 0, resulting in the same conclusion
as already pointed out by Klumbies et al. [19]: Retinal thickness analysis did not reveal
neuroprotective effects of EGCG, especially when considering the contrasts p̂21 − p̂11 = 0
and p̂22 − p̂12 = 0, which allow a direct comparison of the differences to baseline at 1-year
and 2-year follow-up in the two groups.

10. Discussion and Conclusions

In the present paper, we presented different estimation techniques for Wilcoxon–Mann–
Whitney effects in factorial repeated measures designs with clustered data. In a first step,
the information whether cluster sizes are informative or non-informative is key and plays
a major role in precise effect size estimation. Furthermore, as indicated by Zou [28] the
use of the intraclass correlation enlarges the precision of the estimators. Anyway, besides
estimation, we furthermore discussed how to test global and multiple hypotheses in terms
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of Wilcoxon–Mann–Whitney effects using any of the aforementioned estimators. Here, no
specific data distribution (symmetric or asymmetric) is required. The presented estimators
and test procedures should be preferred over standard parametric methods such as Linear
Mixed Models or Generalized Estimating Equations in scenarios with small sample sizes,
heteroscedastic variances or count, ordinal outcomes. We recommend to use the MCTP
instead of quadratic-type test procedures in most practical applications since testing global
hypotheses does not usually answer the research questions. However, the MCTP presented
in this paper does not precisely hold the nominal type-I error rate in case of very small
sample sizes, high correlations, and strong heteroscedasticity between groups or time
points. Recently, Friedrich et al. [39] proposed novel resampling methods in purely non-
parametric designs. Extending these ideas to such designs will be part of future research to
improve especially the MCTP in “extreme“ scenarios.

Although an extensive simulation study was conducted to evaluate the precision and
type-I error rates of the procedures in several scenarios, it is advised to conduct further
simulation studies in practical applications, e.g., in the planning or data analysis phase of a
study for a specific scenario. Further examinations indicate that the methods are applicable
even in situations with rather small sample sizes, such as n = 10. The actual nominal level
and accuracy depends, however, on the design of interest.

Furthermore, it is important to note that many scientists in applied research fields,
e.g., biomedicine, have a misconception that the Wilcoxon–Mann–Whitney (WMW) test
is a test for equality of means or medians, when outcomes are metric and distributions
are skewed or ordinal and that this test is the non-parametric equivalent to a classic two-
sample t-test [40]. As investigated by Fagerland et al. [41], the true significance level
of the WMW test deviates enormously from the nominal level when the test is used
for comparing means or medians in scenarios with deviations from a pure shift model
(two populations having equal shapes and scales). In practical applications, the pure
shift model is rarely present, since skewed distributions with different means have most
likely also different variances. Especially in such scenarios, the Brunner–Munzel test [8]
should be applied. Another disadvantage of the application of WMW tests as noted by
Bergmann et al. [42] is that many versions and implementations in statistical software
packages exist, e.g., large sample approximation, exact permutation form, versions with
or without correction for continuity or ties and different algorithm variants, all leading to
possibly different p-values and eventually to different conclusions. In this work we present
a unified approach that does not need a correction for ties nor continuity. Furthermore, the
WMW test and its p-value are rarely accompanied with their corresponding effect estimate,
the Wilcoxon–Mann–Whitney parameter p and its corresponding confidence interval. As
noted by Fay et al. [43], classic confidence interval procedures for the WMW parameter
are not compatible with exact WMW tests, meaning, that the tests rejects a hypothesis
at significance level α but the confidence interval for p includes 1

2 . Thus, Fay et al. [43]
developed compatible confidence intervals for asymptotic WMW tests and for some exact
WMW tests. Furthermore, Fay et al. [44] indicate that the WMW parameter p can be framed
as a causal parameter (the probability that a randomly chosen subject from one population,
e.g., the treatment group in a randomized-controlled trial, will have a larger response than
one subject from the other population, e.g., the control group). However, this parameter
is not equal to another closely related and non-identifiable causal effect, the probability
that a randomly chosen subject will have a larger response under treatment than under
control [44]. This paradox was first introduced by Hand et al. [45]. Therefore, caution
must be given when interpreting effect estimates from non-parametric procedures. Thus,
the literacy of non-parametric statistics of scientists working in applied fields should be
fostered. This work aims to accomplish this by first introducing and explaining Wilcoxon–
Mann–Whitney parameters p in special designs and then providing a flexible model for
the analysis of factorial repeated measure designs with a clustered structure, allowing for
missing values in a second step. For user friendly applications of the methods, it is planned
to enrich the R software package nparLD [46].
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Appendix A

In this section, we present all the proofs of the theoretical results achieved.

Proof of Proposition 1. For the concrete weights, we calculate

λjtkwυ1
jtkmjtk = λjtkmjtk · 1

mjtkλjt
≤ 1

λmin
,

λjtkwυ2
jtkmjtk = λjtkmjtk · 1

mjt
≤ M0

λmin
.

Finally, we calculate

ni

∑
k=1

miskλiskwυ1
isk =

ni

∑
k=1

miskλisk ·
1

λismisk
=

1
λis

ni

∑
k=1

λisk = 1,

and
ni

∑
k=1

miskλiskwυ2
isk =

ni

∑
k=1

miskλisk ·
1

mis
= 1.

Since these are all necessary properties of the weights, the following results hold for
all kinds of weights fulfilling these properties.

Moreover, it becomes clear, that condition A1.3 is only necessary for the first inequality
and the weighted estimator. Since these inequalities are required for nearly all the following
statements, it is therein claimed. Note that if the assumption of bounded cluster sizes is
difficult to justify in practical applications, the unweighted estimator can be used without
any restrictions.

Proposition A1. For the empirical distributions, under condition A1.3, it holds∣∣∣∣F̂∗is − Fis
∣∣∣∣

∞
a.s.−→ 0, λmin → ∞ and

∣∣∣∣Ĝ∗ − G
∣∣∣∣

∞
a.s.−→ 0 λmin → ∞ ∗ ∈ {υ1, υ2}.

Proof. First, we demonstrate the pointwise almost sure convergence of the empirical
distribution function F̂∗is. Denote with Ξis = {k = 1, . . . , ni, : λisk > 0}, the amount
containing the indices of subjects from group i, with existing observation in the s-th
component. It is clear that |Ξis| = λis. Moreover, for fixed x ∈ R we define independent
random variables Y∗isk := λisw∗isk ∑misk

u=1 c(x− Xisku). Then it holds that

F̂∗is(x) =
1

λis

ni

∑
k=1

λiskY∗isk =
1

λis
∑

`∈Ξis

Y∗is`.

https://github.com/KerstinRubarth/Clustered
https://github.com/KerstinRubarth/Clustered
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For the expectation of this sum, we calculate

E
(

∑
`∈Ξis

Y∗is`

)
= ∑

`∈Ξis

λisw∗is`
mis`
∑

u=1
E(c(x− Xis`u))

= λis ∑
`∈Ξis

w∗is`mis`Fis(x)

= λisFis(x)
ni
∑

k=1
λiskw∗is`mis`

= λisFis(x).

Because of |c(x)| < 1 for the variance of Y∗ik` we obtain

Var(Y∗is`) = λ2
is(w

∗
is`)

2Var

(
mis`

∑
u=1

E(c(x− Xis`u))

)
≤ λ2

is(w
∗
is`)

2mis`
2.

For the application of the strong law of large numbers we finally consider

1
λ2

is
∑

`∈Ξis

Var(Y∗ik`) ≤ ∑
`∈Ξis

(w∗is`)
2mis`

2

=
ni
∑

k=1
λ2

isk(w
∗
isk)

2misk
2

= O(λ−1
min)

ni
∑

k=1
λiskw∗iskmisk

= O(λ−1
min)→ 0 for λmin → ∞.

Thus, it holds that

F̂∗is(x) a.s.−→ 1
λis

E
(

∑
`∈Ξis

Y∗ik`

)
= Fis(x).

Replacing c(x) through c(+)(x) resp. c(−)(·), this leads to the same convergence for
the right-continuous resp. left-continuous versions of this distribution functions.

Now, this pointwise convergence has to be expanded for the supremum norm. This
was already done by Domhof [47] for a similar setting and only requires the pointwise
convergence proven above. The result for Ĝ∗ and G follows from this with the triangle
inequality.
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Proof of Proposition 2. To prove the asymptotic unbiasedness, we consider the single
components and calculate

|E( p̂∗is)− pis|

=
∣∣∣ 1

ad

ni
∑

k=1

a
∑

j=1

d
∑

t=1

nj

∑
`=1

misk
∑

u=1

mjt`

∑
v=1

λiskλjt`w∗jt`w
∗
isk

[
E(c(Xisku − Xjt`v))−

∫
FjtdFis

]∣∣∣
≤ 1

ad

ni
∑

k=1

a
∑

j=1

d
∑

t=1

nj

∑
`=1

misk
∑

u=1

mjt`

∑
v=1

λiskλjt`w∗jt`w
∗
isk

∣∣E(c(Xisku − Xjt`v))−
∫

FjtdFis
∣∣

= 1
ad

ni
∑

k=1

a
∑

j=1

d
∑

t=1
λjtkλiskw∗iskw∗jtk

misk
∑

u=1

mjtk

∑
v=1

∣∣∣E(c(Xisku − Xjtkv))−
∫

FjtdFis

∣∣∣
≤ 1

ad

ni
∑

k=1

a
∑

j=1

d
∑

t=1
λjtkλiskw∗iskw∗jtkmiskmjtk

≤ 1
ad

a
∑

j=1

d
∑

t=1

ni
∑

k=1
λiskw∗iskmisk · O(λ−1

min)

= O(λ−1
min).

It is clear that through condition A1.1 and A1.2 we can also substitute this with
O
(

N−1).
For the second part we consider

| p̂∗is − pis| ≤ 1
ad

a
∑

j=1

d
∑

t=1

∣∣∣ ∫ F̂∗jt dF̂∗is −
∫

Fjt dFis

∣∣∣
= 1

ad

a
∑

j=1

d
∑

t=1

∣∣∣ ∫ F̂jt dF̂∗is −
∫

Fjt dF̂∗is +
∫

Fjt dF̂∗is −
∫

Fjt dFis

∣∣∣
≤ 1

ad

a
∑

j=1

d
∑

t=1

∣∣∣ ∫ (F̂∗jt − Fjt) dF̂∗is
∣∣∣+ ∣∣∣ ∫ Fjt d(F̂∗is − Fis)

∣∣∣
= 1

ad

a
∑

j=1

d
∑

t=1

∣∣∣ ∫ (F̂∗jt − Fjt) dF̂is

∣∣∣+ ∣∣∣ ∫ (Fis − F̂∗is) dFjt

∣∣∣
≤ 1

ad

a
∑

j=1

d
∑

t=1

(∣∣∣∣F̂∗jt − Fjt
∣∣∣∣

∞ +
∣∣∣∣Fis − F̂∗is

∣∣∣∣
∞

)
.

From Proposition A1, we know that the differences between the distribution function
and the empirical distribution function converge to zero, independent from the kind of
weights. Therefore, as a finite sum of zero sequences, it holds that p̂∗is − pis

a.s.−→ 0. From
this, it directly follows that p̂∗ − p a.s.−→ 0.

With ψ∗hk = (Ψ∗11,hk, Ψ∗12,hk, . . . , Ψ∗ad,hk), h = 1, . . . , a k = 1, . . . , nh consider the vector

√
NB =

(
a

∑
h=1

√
N · 1

nh
·

nh

∑
k=1

[ψ∗hk −E(ψ∗hk)]

)
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based on random variables defined as

Ψ∗is,hk :=



− nh
ad ∑d

t=1 ∑mhtk
u=1 λhtkw∗htkFis(Xhtku) , for h 6= i

[+2ex] nh
ad ∑a

j 6=i ∑d
t=1 ∑misk

u=1 λiskw∗iskFjt(Xisku)

[+2ex] + nh
ad ∑d

t=1

(
∑misk

u=1 λiskw∗iskFit(Xisku)

[+2ex]−∑mitk
u=1 λitkw∗itkFis(Xitku)

)
, else

with expectation values

β∗is,hk := E(Ψ∗is,hk) =



− nh
ad ∑d

t=1 λhtkmhtkw∗htk p(is,ht) , for h 6= i
[+2ex] nh

ad ∑a
j 6=i ∑d

t=1 miskλiskw∗isk p(jt,is))

[+2ex] + nh
ad ∑d

t=1

(
miskλiskw∗isk p(it,is)

[+2ex]−mitkλitkw∗itk p(is,it)
)

, else.

The term
√

NB can be used to calculate the asymptotic distribution of
√

N(p̂∗ − p).

Proof of Theorem 1. It is clear that

∫
FisdĜ∗ =

1
ad

a

∑
j=1

d

∑
t=1

∫
FisdF̂∗jt =

1
ad

a

∑
j=1

d

∑
t=1

nj

∑
k=1

λjtkw∗jtk
mhtk

∑
u=1

Fis(Xjtku),

∫
GdF̂∗is =

ni

∑
k=1

λiskw∗isk

misk

∑
u=1

G(Xisku) =
1
ad

a

∑
j=1

d

∑
t=1

ni

∑
k=1

λiskw∗isk

misk

∑
u=1

Fjt(Xisku).

Analogously to Theorem 1 from Rubarth et al. [31] for the s-th component from the
i-th group, it holds that

√
N( p̂∗is − pis)

=
√

N
∫

GdF̂∗is −
√

N
∫

Ĝ∗dFis

=
√

N
∫

Ĝ∗d(F̂is − Fis) +
√

N
∫

Ĝ∗dFis −
√

Npis

=
√

N
∫

Gd(F̂∗is − Fis) +
√

N
∫

Ĝ∗dFis −
√

Npis +OP(1)

=
√

N
(∫

GdF̂∗is +
∫

Ĝ∗dFis − 2pis

)
+OP(1)

=
√

N
(∫

GdF̂∗is + 1−
∫

FisdĜ∗ − 2pis

)
+OP(1)

=
√

N

(
1
ad

a
∑

j=1

d
∑

t=1

ni
∑

k=1

misk
∑

r=1
λiskw∗iskFjt(Xiskr)− 1

ad

a
∑

j=1

d
∑

t=1

nj

∑
`=1

mjt`

∑
u=1

λjt`w∗jt`Fis(Xjt`u)

+(1− 2pis)) +OP(1)

=
√

N

(
1
ad

a
∑

j=1

d
∑

t=1

[
ni
∑

k=1

misk
∑

r=1
λiskw∗iskFjt(Xiskr)−

nj

∑
`=1

mjt`

∑
u=1

λjt`w∗jt`Fis(Xjt`u)

]
+(1− 2pis)) +OP(1)
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=
√

N

(
1
ad

a
∑
j 6=i

d
∑

t=1

ni
∑

k=1

misk
∑

u=1
λiskw∗iskFjt(Xisku)

+ 1
ad

ni
∑

k=1

d
∑

t=1

[misk
∑

u=1
λiskw∗iskFit(Xisku)−

mitk
∑

u=1
λitkw∗itkFis(Xitku)

]

− 1
ad

a
∑
j 6=i

d
∑

t=1

nj

∑
`=1

mjt`

∑
u=1

λjt`w∗jt`Fis(Xjt`u) + (1− 2pis)

)
+OP(1)

=
√

N
(

a
∑

h=1

1
nh

nh
∑

k=1
Ψ∗is,hk + (1− 2pis)

)
+OP(1),

where the stochastic convergence to zero, denoted by OP(1), holds regarding λmin → ∞.
Considering now the expectations, this leads to

β∗is,hk = −
nh
ad

d

∑
t=1

λhtkmhtkw∗htk p(is,ht)

for h 6= i and else to

β∗is,ik =
ni
ad

a
∑
j 6=i

d
∑

t=1
miskλiskw∗isk p(jt,is)

+ ni
ad

d
∑

t=1

[
miskλiskw∗isk p(it,is) −mitkλitkw∗itk p(is,it)

]
with p(is,ht) :=

∫
Fis dFht. Therefore, we can calculate

ni
∑

k=1
E(Ψ∗is,ik) =
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∑
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(
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ad

a
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d
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=
a
∑
j 6=i

ni
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∑
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d
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]
as well as, for h 6= i,

ni
∑

k=1
E(Ψ∗is,hk) = − nh

ad

ni
∑

k=1

d
∑

t=1
λhtkmhtkw∗htk p(is,ht) = − nh
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d
∑

t=1
p(is,ht).

In total, we obtain

E
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= 1
ad

(
−

a
∑

h 6=i

d
∑

t=1
p(is,ht) +

a
∑
j 6=i

d
∑

t=1
p(jt,is) +

d
∑

t=1

[
p(it,is) − p(is,it)

])

= 1
ad

(
−

a
∑

h=1

d
∑

t=1
p(is,ht) +

a
∑

j=1

d
∑

t=1
p(jt,is)

)

= −(1− pis) + pis

= −(1− 2pis).

Together with the other equation, we obtain

√
N( p̂∗is − pis) =

√
N

(
a

∑
h=1

1
nh
·

nh

∑
k=1

[
Ψ∗is,hk −E(Ψ∗is,hk)

])
+OP(1)

resp.
√

N(p̂∗ − p) =
√

N

(
a

∑
h=1

1
nh
·

nh

∑
k=1

[ψ∗hk −E(ψ∗hk)]

)
+OP(1).

Proof of Theorem 2. Through the construction of Ψ∗is,hk and A1.2, it holds that |Ψ∗is,hk| ≤
O(N0), thus, these random variables have finite moments. Due to the independence of all
ψ∗hk by Lindeberg–Feller Theorem, we obtain for B∗h = 1

nh
∑nh

k=1

[
ψ∗hk −E(ψ∗hk)

]
that
√

nhB∗h
is asymptotically distributed like a normal distributed random vector with expectation
vector 0 and covariance matrix V∗N,h. Hereby, two of the requirements of the the Lindeberg–
Feller Theorem are obviously fulfilled, since the random variables are uniformly bounded
and centered. However, it is not sure that V∗N,h, which depends on N, converge to a fixed
matrix. However, through the fact that all random variables are bounded, it follows that
the covariance matrix is also bounded, and for each sequence we can find a subsequence
where the covariance matrix converges. For each of this subsequences the asymptotic
distribution of B∗h matches with the actual normal distribution. Therefore, the result holds

in general. Through the independence of the B∗h and
√

NB∗ = ∑a
h=1

√
N√
nh

√
nhB∗h together

with condition A1.2 the result follows.

Since the covariance matrix is unknown and the random variables are not observable,
we use estimated versions of these random variables to estimate the covariance matrix.
They are defined as

Ψ̂∗is,hk :=



− nh
ad ∑d

t=1 ∑mhtk
u=1 λhtkw∗htk F̂∗is(Xhtku) , for h 6= i

nh
ad ∑a

j 6=i ∑d
t=1 ∑misk

u=1 λiskw∗isk F̂∗jt(Xisku)

+ nh
ad ∑d

t=1

(
∑misk

u=1 λiskw∗isk F̂∗it(Xisku)

−∑mitk
u=1 λitkw∗itk F̂∗is(Xitku)

)
, else

and for the expectation

β̂∗is,ik := E(Ψ̂∗is,hk) =



− nh
ad ∑d

t=1 λhtkmhtkw∗htk p̂∗(is,ht) , for h 6= i
nh
ad ∑a

j 6=i ∑d
t=1 miskλiskw∗isk p̂∗(jt,is))

+ nh
ad ∑d

t=1

(
miskλiskw∗isk p̂∗(it,is)

−mitkλitkw∗itk p̂(is,it)
)

, else.
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Based on these variables, we define an estimator for the unknown covariance matrix
V N,h through

V̂
∗
=

1
nh − 1

nh

∑
k=1

(p̂si∗hk − β̂
∗
hk)(p̂si∗hk − β̂

∗
hk)
′,

whereby an estimator for V∗N := ∑a
h=1 κ−1

h · V
∗
N,h is given by V̂

∗
N := ∑a

h=1
N
nh
· V̂∗N,h.

Proof of Theorem 5. 1. Let y = (y1, . . . , yad) be an arbitrary vector. Then, it holds that

y′V̂
∗
hy = 1

nh−1

nh
∑

k=1

[
y′(p̂si∗hk − β̂

∗
hk)
][

y′(p̂si∗hk − β̂
∗
hk)
]′

= 1
nh−1

nh
∑

k=1

[
y′(p̂si∗hk − β̂

∗
hk)
]2
≥ 0.

Since V̂
∗
N is a convex combination of positive semi-definite matrices, it is also positive

semi-definite.
2. It is clear that

Ṽ
∗
N,h =

1
nh − 1

nh

∑
k=1

(ψ∗hk − β∗hk)(ψ
∗
hk − β∗hk)

′

is a consistent estimator for V∗N,h. To demonstrate consistency, we use the triangle inequality

and prove that V̂
∗
N,h − Ṽ

∗
N,h

a.s−→ 0. First, we remember that |Ψ∗hk| ≤ O(N0) and with the
same arguments it follows that |Ψ̂∗hk| ≤ O(N0), |β∗hk| ≤ O(N0) and |β̂∗hk| ≤ O(N0).

Then, we consider the single components, where for the diagonal elements it holds that∣∣∣ 1
nh−1

nh
∑

k=1

(
Ψ̂∗is,hk − β̂∗is,hk

)2(
Ψ∗is,hk − β∗is,hk

)2∣∣∣
≤ 2 · max

k=1,...,nh

∣∣∣(Ψ̂∗is,hk − β̂∗is,hk

)2(
Ψ∗is,hk − β∗is,hk

)2∣∣∣
≤ 2 · max

k=1,...,nh

∣∣∣(Ψ̂∗is,hk − β̂∗is,hk + Ψ∗is,hk − β∗is,hk

)(
Ψ̂∗is,hk − β̂∗is,hk −Ψ∗is,hk + β∗is,hk

)∣∣∣
≤ O(N0) · max

k=1,...,nh

∣∣Ψ̂∗is,hk − β̂∗is,hk −Ψ∗is,hk + β∗is,hk

∣∣
≤ O(N0) · max

k=1,...,nh

∣∣Ψ̂∗is,hk −Ψ∗is,hk

∣∣+O(N0) · max
k=1,...,nh

∣∣β∗is,hk − β̂∗is,hk

∣∣.
First, we consider for h 6= i

|Ψ∗is,hk − Ψ̂∗is,hk| = nh
ad

∣∣∣ d
∑

t=1

mhtk
∑

u=1
λhtkw∗htk

(
Fis(Xhtku)− F̂∗is(Xhtku)

)∣∣∣
≤ nh

ad

d
∑

t=1
miktλhtkw∗htk

∣∣∣∣Fis − F̂∗is
∣∣∣∣

∞

≤ nh · O(λ−1
min) ·

∣∣∣∣Fis − F̂∗is
∣∣∣∣

∞
a.s−→ 0

and similar
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|Ψ∗is,ik − Ψ̂∗is,ik|

= nh
ad

∣∣∣ a
∑
j 6=i

d
∑

t=1

misk
∑

u=1
λiskw∗isk ·

(
Fjt(Xisku)− F̂∗jt(Xisku)

)

+
d
∑

t=1

misk
∑

u=1
λiskw∗isk ·

(
Fit(Xisku)− F̂∗it(Xisku)

)

−
d
∑

t=1

mitk
∑

u=1
λitkw∗itk ·

(
Fis(Xitku)− F̂∗is(Xitku)

)∣∣∣
≤ nh

ad

(
a
∑
j 6=i

d
∑

t=1
miskλiskw∗isk ·

∣∣∣∣Fjt − F̂∗jt
∣∣∣∣

∞

+
d
∑

t=1
miskλiskw∗isk ·

∣∣∣∣Fit − F̂∗it
∣∣∣∣

∞ +
d
∑

t=1
mitkλitkw∗itk ·

∣∣∣∣Fis − F̂∗is
∣∣∣∣

∞

)

≤ nh
ad

(
a
∑
j 6=i

d
∑

t=1
O(λ−1

min) ·
∣∣∣∣Fjt − F̂∗jt

∣∣∣∣
∞

+
d
∑

t=1
O(λ−1

min) ·
∣∣∣∣Fit − F̂∗it

∣∣∣∣
∞ +

d
∑

t=1
O(λ−1

min) ·
∣∣∣∣Fis − F̂∗is

∣∣∣∣
∞

)

≤ O(N0)
ad

(
a
∑
j 6=i

d
∑

t=1

∣∣∣∣Fjt − F̂∗jt
∣∣∣∣

∞ +
d
∑

t=1

∣∣∣∣Fit − F̂∗it
∣∣∣∣

∞ +
d
∑

t=1

∣∣∣∣Fis − F̂∗is
∣∣∣∣

∞

)
a.s−→ 0.

For the expectation, we calculate for h 6= i

|β∗is,hk − β̂∗is,hk| = nh
ad

∣∣∣ d
∑

t=1
λhtkmhtkwhtk

(
p(is,ht) − p̂∗(is,ht)

)∣∣∣
≤ nh

ad

d
∑

t=1
O(λ−1

min) ·
∣∣∣p(is,ht) − p̂∗(is,ht)

∣∣∣ a.s−→ 0
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and

|β∗is,ik − β̂∗is,ik|

≤ nh
ad

a
∑
j 6=i

d
∑

t=1
miskλiskw∗isk

(
p(jt,is) − p̂∗(jt,is)

)

+ nh
ad

d
∑

t=1

[
miskλiskw∗isk

(
p(it,is) − p̂∗(it,is)

)
−mitkλitkw∗itk

(
p(is,it) − p̂∗(is,it)

)]

≤ nh
ad

a
∑
j 6=i

d
∑

t=1
miskλiskw∗isk

∣∣p(jt,is) − p̂∗(jt,is)
∣∣

+ nh
ad

d
∑

t=1

[
miskλiskw∗isk

∣∣p(it,is) − p̂∗(it,is)
∣∣+ mitkλitkw∗itk

∣∣p(is,it) − p̂∗(is,it)
∣∣]

≤ O(N0)
ad

(
a
∑
j 6=i

d
∑

t=1

∣∣p(jt,is) − p̂∗(jt,is)
∣∣+ d

∑
t=1

[∣∣p(it,is) − p̂∗(it,is)
∣∣+ ∣∣p(is,it) − p̂∗(is,it)

∣∣])
a.s−→ 0.

For the off diagonal elements we can use the same convergences, but first we define
∆̂∗is,hk :=

(
Ψ̂∗is,hk − β̂∗is,hk

)
and ∆∗is,hk :=

(
Ψ∗is,hk − β∗is,hk

)
which fulfill |∆̂∗is,hk| ≤ O(N0) and

|∆∗is,hk| ≤ O(N0). Then, for the elements which correspond to Ψ∗is,hk and Ψ∗jt,hk we obtain

∣∣∣ 1
nh−1

nh
∑

k=1
∆̂∗is,hk∆̂∗jt,hk − ∆∗is,hk∆∗jt,hk

∣∣∣
=

∣∣∣ 1
nh−1

nh
∑

k=1
∆̂∗is,hk∆̂∗jt,hk − ∆∗is,hk∆∗jt,hk + ∆̂∗is,hk∆∗jt,hk − ∆̂∗is,hk∆∗jt,hk

∣∣∣
=

∣∣∣ 1
nh−1

nh
∑

k=1
∆̂∗is,hk

(
∆̂∗jt,hk − ∆∗jt,hk

)
+ ∆∗jt,hk

(
∆̂∗is,hk − ∆∗is,hk

)∣∣∣
≤ 1

nh−1

nh
∑

k=1

[∣∣∆̂gi,hk

(
∆̂∗jt,hk − ∆∗jt,hk

)∣∣+ ∣∣∆∗jt,hk

(
∆̂∗is,hk − ∆∗is,hk

)∣∣]
≤ 1

nh−1

nh
∑

k=1

[
O(N0)

∣∣(∆̂∗jt,hk − ∆∗jt,hk

)∣∣+O(N0)
∣∣(∆̂∗is,hk − ∆∗is,hk

)∣∣]
≤ 2

nh

nh
∑

k=1

[
O(N0)

∣∣(∆̂∗jt,hk − ∆∗jt,hk

)∣∣+O(N0)
∣∣(∆̂∗is,hk − ∆∗is,hk

)∣∣]
≤ O(N0) max

k=1,...,nh

∣∣(∆̂∗jt,hk − ∆∗jt,hk

)∣∣+O(N0) max
k=1,...,nh

∣∣(∆̂∗is,hk − ∆∗is,hk

)∣∣
= O(N0) max

k=1,...,nh

∣∣(Ψ̂∗jt,hk − β̂∗jt,hk

)
−
(

Ψ∗jt,hk − β∗jt,hk

)∣∣
+O(N0) max

k=1,...,nh

∣∣(Ψ̂∗is,hk − β̂∗is,hk

)
−
(

Ψ∗is,hk − β∗is,hk

)∣∣
≤ O(N0) max

k=1,...,nh

∣∣Ψ̂∗jt,hk −Ψ∗jt,hk

∣∣+O(N0) max
k=1,...,nh

∣∣β∗jt,hk − β̂∗jt,hk

∣∣
+O(N0) max

k=1,...,nh

∣∣Ψ̂∗is,hk −Ψ∗is,hk

∣∣+O(N0) max
k=1,...,nh

∣∣β∗is,hk − β̂∗is,hk

∣∣ a.s.−→ 0
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Since we demonstrated consistency for the diagonal elements and the off diagonal
elements, it follows that V̂

∗
N,h − Ṽ

∗
N,h

a.s.−→ 0 and consequently V̂
∗
N,h − V∗N,h

a.s.−→ 0.
3. Follows directly from 2. with Slutzky’s theorem.
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