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Abstract: We study the spectrality of a class of self-affine measures with prime determinant. Spectral
measures are connected with fractal geometry that shows some kind of geometrical self-similarity
under magnification. To make the self-affine measure becomes a spectral measure with lattice
spectrum, we provide two new sufficient conditions related to the elements of digit set and zero set,
respectively. The two sufficient conditions are more precise and easier to be verified as compared
with the previous research. Moreover, these conditions offer a fresh perspective on a conjecture of
Lagarias and Wang.
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1. Introduction

Let R ∈ Mn(Z) be an n× n expanding matrix (i.e., all its eigenvalues have modulus
strictly greater than 1) with integer entries. Let B ⊂ Zn be a finite digit set of |B| (| · | denotes
the cardinality). Hutchinson [1] proved that for the affine iterated function system (IFS)
{φb(x) = R−1(x + b)}b∈B, there exists a unique invariant probability measure µ := µR,B
defined by

µ =
1
|B| ∑

b∈B
µ ◦ φ−1

b .

µR,B is also called a self-affine measure. Such a measure is supported on the attractor
T(R, B) ⊂ Rn which is the unique compact set that satisfies

T(R, B) =
⋃

b∈B

φb(T(R, B)).

The set T(R, B) is also called the invariant set of the IFS {φb(x)}b∈B, it can be de-
scribed as:

T(R, B) =

{
∞

∑
j=1

R−jbj : bj ∈ B

}
.

In the present paper, we study the spectrality of a class of self-affine measures µR,B
when |det(R)| = |B| = p is a prime. For a probability measure µ with compact support
on Rn, we call µ a spectral measure if there exists a countable set Λ ⊂ Rn, such that
E(Λ) := {e2πi〈λ,x〉 : λ ∈ Λ} forms an orthogonal basis (Fourier basis) for Hilbert space
L2(µ). The set Λ is referred to as a spectrum for µ. Particularly, if a spectral measure is the
Lebesgue measure µL restricted on the compact set Ω ⊂ Rn, then we call Ω a spectral set.

A spectral measure is a natural generalization of a spectral set. Fuglede [2] conjectured
that Ω ⊂ Rn(0 < µL(Ω) < ∞) is a spectral set if and only if Ω tiles Rn by translation,
which is known as spectrum-tiling conjecture or Fuglede conjecture. We say that Ω tiles Rn

by translation if there exists a subset T (called a tiling set) so that

Rn =
⋃

t∈T
(Ω + t) and µL(Ω + t1) ∩ µL(Ω + t2) = 0 for all t1 6= t2 ∈ T .

Symmetry 2022, 14, 243. https://doi.org/10.3390/sym14020243 https://www.mdpi.com/journal/symmetry

https://doi.org/10.3390/sym14020243
https://doi.org/10.3390/sym14020243
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/symmetry
https://www.mdpi.com
https://doi.org/10.3390/sym14020243
https://www.mdpi.com/journal/symmetry
https://www.mdpi.com/article/10.3390/sym14020243?type=check_update&version=1


Symmetry 2022, 14, 243 2 of 13

Tao [3] demonstrated that the Fuglede conjecture is false by constructing a counterex-
ample in Rn for n ≥ 5. After that, Matolcsi [4] obtained that the Fuglede conjecture is
invalid for n ≥ 4 by improving Tao’s results. Moreover, Kolountzakis and Matolcsi [5]
also disproved the Fuglede conjecture for n = 3. In the one dimensional case, Pedersen
and Wang [6] proved that if Ω tiles the non-negative half line R+ by translation, then Ω
tiles R by translation and is a spectral set. However, Fuglede conjecture remains unclear
in dimension 1 and 2. As can be seen, it is quite difficult to establish the relation between
spectra and tiling. Nevertheless, as it points out the direction for the existence of a spectral
measure, a considerable amount of literature has been developed around the theme of
spectral measure theory, which is increasingly recognized as a significant subject of research
in harmonic analysis (see [7–10] and the references cited therein).

In the extensive work on Fuglede conjecture, the innovative and seminal work of
Jorgensen and Pedersen [11] first discovered the existence of a singular, non-atomic spec-
tral measure, which is the Hausdorff measure supported on a 1/4-Cantor set (R = 4,
B = {0, 2}). They found that the Fourier transform theory can be applied to certain classes
of fractals. The important characteristic of fractals is that the parts are similar to the whole,
that is, it shows some kind of geometrical self-similarity under magnification [12], such as
the outline of leaves and coastline. The researchers found that harmonic analysis based
on fractal sets can be applied to image compression and physics [13,14]. Because of Jor-
gensen and Pedersen’s discovery, more attention has been devoted to finding conditions
so that a self-affine measure µR,B becomes a spectral measure, as well as finding out the
corresponding spectrum of a spectral measure [15–20].

The Fourier transform of µR,B is defined as usual,

µ̂R,B(ξ) :=
∫

e2πi〈x,ξ〉dµR,B(x) =
∞

∏
j=1

mB(R∗−jξ) (ξ ∈ Rn), (1)

where R∗ denotes the conjugate matrix of R, and

mB(x) =
1
|B| ∑

b∈B
e2πi〈b,x〉 (x ∈ Rn).

It is known that mB(x) is a Zn-periodic function for B ⊂ Zn. Let Z(µ̂R,B) denote the
zero set of µ̂R,B, i.e., Z(µ̂R,B) = {ξ ∈ Rn : µ̂R,B(ξ) = 0}. For any λ1 6= λ2 ∈ Λ, the orthogo-
nality condition

0 = 〈e2πi〈λ1,x〉, e2πi〈λ2,x〉〉L2(µR,B)
=
∫

e2πi〈λ1−λ2,x〉dµR,B = µ̂R,B(λ1 − λ2)

is directly related to the zero set Z(µ̂R,B). E(Λ) is an orthogonal family of L2(µR,B) if and
only if (Λ−Λ) \ {0} ⊂ Z(µ̂R,B). It follows from (1) that

Z(µ̂R,B) =
{

ξ ∈ Rn : ∃ α ∈ N = {1, 2, . . .} such that mB(R∗−αξ) = 0
}

. (2)

It is well known that a compatible pair is of vital importance when dealing with the
spectrality of a self-affine measure. Łaba and Wang [21] proved that compatible pairs
generate spectral self-affine measures in dimension one. In the higher dimensional case,
for a subset S ⊂ Zn with the same cardinality as B, 0 ∈ S, Dutkay and Jorgensen [16]
conjectured that µR,B is a spectral measure if there exists the set S such that (R−1B, S)
is a compatible pair (or (R, B, S) is a Hadamard triple). The conjecture is valid with a
few additional conditions (see [16,17,22]). Finally, the conjecture was proved by Dutkay,
Haussermann, and Lai [18], and they showed that all compatible pairs generate spectral self-
affine measures. In most cases, it is hard to find conditions to ensure that µR,B is a spectral
measure. In addition, many spectral measures that cannot be obtained from a compatible
pair occur in higher dimensions (see [20]). In particular, when |det(R)| = |B| = p is a
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prime, Li [23,24] obtained a class of spectral measures with lattice spectrum that cannot be
generated by the condition of compatible pair, and showed the following results:

Theorem 1. Let R ∈ Mn(Z) be an expanding matrix with |det(R)| = p is a prime. Assume that
one of the following six conditions holds:

(a) p(Zn) 6⊆ R2(Zn);
(b) p(Zn \ R(Zn)) ⊆ R(Zn \ R(Zn));
(c) pZ2 6= R2(Z2), in the case when n = 2;
(d) p(Zn) 6⊆ R∗2(Zn);
(e) p(Zn \ R∗(Zn)) ⊆ R∗(Zn \ R∗(Zn));
(f) pZ2 6= R∗2(Z2), in the case when n = 2.

Let B ⊂ Zn be a finite digit set with 0 ∈ B, |B| = p. If Z(µ̂R,B) ∩Zn 6= ∅, then there exists
r ∈ N0 = {0, 1, 2, . . .} such that B = Rr B̃, where B̃ is a complete set of coset representatives of
Zn/R(Zn), thus µR,B is a spectral measure with lattice spectrum.

The purpose of the current study is to provide another two new sufficient conditions
(see Theorem 3) for Theorem 1 so that µR,B is a spectral measure with lattice spectrum.
It should be noted that these two conditions are sufficient but not necessary, unlike the
condition of compatible pair. Furthermore, because the two sufficient conditions are related
to the elements of digit set B and zero set Z(µ̂R,B), respectively, they are more precise and
easier to be verified than the conditions (a)–(f) of Theorem 1, which may contribute to our
applications of integral self-affine tiles. It is obvious that we extend the previous research.

The plan of this paper is as follows. Section 2 presents the main results and their proofs,
as well as provides the Hermite normal forms of R2 and R∗2 which cannot satisfy the two
sufficient conditions. Finally, Section 3 gives a concluding remark about a conjecture of
Lagarias and Wang.

2. Main Results

To investigate the spectrality of µR,B, one can simplify the digit set with the help of the
following lemma.

Lemma 1. ([23]) Let R ∈ Mn(Z) be an expanding matrix and B ⊂ Zn be a finite digit set. Then,
there exist r ∈ N0 and a finite set B1 ⊂ Zn such that

B = RrB1 and B1 6⊂ R(Zn). (3)

According to the results in [23] (pp. 399–400), we know that the spectrality of µR,B
is the same as µR,B1 . We first obtain the conditions that µR,B1 is a spectral measure, and
then turn to provide two sufficient conditions (see Theorem 3) that lead to µR,B is a spectral
measure with lattice spectrum under a more general form.

Theorem 2. Let R ∈ Mn(Z) be an expanding matrix with |det(R)| = p is a prime. Let B1 ⊂ Zn

be a finite digit set with 0 ∈ B1 and |B1| = p. Suppose that there is a b̃ ∈ B1 \ {0} such
that pb̃ 6∈ R2(Zn). If there is a l ∈ Z(µ̂R,B1) ∩ Zn, then µR,B1 is a spectral measure with
lattice spectrum.

Proof. Let B1 = {b0 = 0, b1, . . . , bp−1}. From l ∈ Z(µ̂R,B1) ∩Zn, we have

µ̂R,B1(l) =
∞

∏
j=1

mB1(R∗−jl) = 0. (4)
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From (2), it follows that there exists a α ∈ N (α = α(l)), such that mB1(R∗−αl) = 0.
As µ̂R,B1(0) = 1, we have l ∈ Zn \ {0}. Since R∗(Zn) ⊂ Zn, we divide l into two cases:
l ∈ Zn \ R∗(Zn) and l ∈ R∗(Zn).

Case 1: l ∈ Zn \ R∗(Zn). We divide the proof into the following three steps. In step 1,
we construct a complete set of coset representatives of Zn/R(Zn). In step 2, we get two
required equations. In step 3, we prove that B1 is a complete set of coset representatives of
Zn/R(Zn).

Step 1. We construct a complete set of coset representatives of Zn/R(Zn).
For mB1(R∗−αl) = 0, a result in [23] (p. 401) tells us that

{0, 〈(R†)αb1, l〉, 〈(R†)αb2, l〉, . . . , 〈(R†)αbp−1, l〉}
≡ {0, pα−1, 2pα−1, . . . , (p− 1)pα−1} (mod pα), (5)

where R† = pR−1 and R† ∈ Mn(Z), we intend to prove α = 1 in the final step.
As l ∈ Zn \ R∗(Zn) and (R†)∗ = pR∗−1, we get (R†)∗l ∈ (R†)∗Zn \ p(Zn), thus, there

exists a ϑ ∈ Zn \ {0} such that

〈R†ϑ, l〉 6≡ 0 (mod p) (6)

(Otherwise, we have 〈R†ϑ, l〉 ≡ 0 (mod p) for any ϑ ∈ Zn. Now we take
ϑ1 = (1, 0, . . . , 0)t, . . . , ϑn = (0, . . . , 0, 1)t, which implies that (R†)∗l ∈ p(Zn), a contra-
diction). From (6), we get

ϑ 6∈ R(Zn) (7)

(If not, there would exist a τ ∈ Zn, such that ϑ = Rτ, then 〈R†ϑ, l〉 = 〈R†Rτ, l〉 =
p〈τ, l〉 ∈ pZ, which contradicts with (6)).

The condition pb̃ 6∈ R2(Zn) implies that b̃ 6∈ R(Zn). In fact, since pR(Zn) = R2R†(Zn)
⊆ R2(Zn), it follows from pb̃ 6∈ R2(Zn) that pb̃ 6∈ pR(Zn), i.e., b̃ 6∈ R(Zn). From b̃ 6∈ R(Zn)
and R†R = pIn, we have R† b̃ 6∈ p(Zn). Hence, there exists a γ ∈ Zn \ {0} such that

〈R† b̃, γ〉 6≡ 0 (mod p).

Let H = {h1, h2, . . . , hp−1}with hj ≡ j (mod p), j = 1, 2, . . . , p− 1. Since gcd(p, hj) = 1,
it follows that

〈R†hj b̃, γ〉 6≡ 0 (mod p),

which yields hj b̃ 6∈ R(Zn), j = 1, 2, . . . , p− 1. Thus, {0, h1b̃, h2b̃, · · · , hp−1b̃} is a complete
set of coset representatives of Zn/R(Zn), which implies

Zn = R(Zn) ∪ (h1b̃ + R(Zn)) ∪ · · · ∪ (hp−1b̃ + R(Zn)), (8)

where the p sets of the right side are mutually disjoint. Consequently, any z ∈ Zn has a
unique representation

z = jz b̃ + Rβz, where jz ∈ {0, h1, h2, . . . , hp−1} and βz ∈ Zn. (9)

Step 2. We obtain two required equations, that is, (12) and (13).
Since R† b̃ ∈ Zn, from (9), we have

R† b̃ = j1b̃ + Rβ, where j1 ∈ {0, h1, h2, . . . , hp−1} and β ∈ Zn. (10)

As R† = pR−1, we find that the condition pb̃ 6∈ R2(Zn) is equivalent to

R† b̃ 6∈ R(Zn), (11)
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which yields j1 6= 0 in (10). For any positive integer n, using (10) and j1 6= 0, we get

(R†)n b̃ = jn
1 b̃ + Rβn, where j1 ∈ H and βn ∈ Zn. (12)

Since ϑ ∈ Zn \ 0, from (9) and taking (7) into consideration, we have

ϑ = jϑ b̃ + Rβϑ, where jϑ ∈ H and βϑ ∈ Zn.

From this, together with (6), we deduce

〈R†ϑ, l〉 ≡ jϑ〈R† b̃, l〉 (mod p)

6≡ 0 (mod p).

Together with p - jϑ, yields

〈R† b̃, l〉 6≡ 0 (mod p). (13)

Step 3. We prove that B1 is a complete set of coset representatives of Zn/R(Zn).
It follows from (12) that

〈(R†)n b̃, l〉 = jn−1
1 〈R† b̃, l〉+ p〈βn−1, l〉

≡ jn−1
1 〈R† b̃, l〉 (mod p)

6≡ 0 (mod p) (by (13)). (14)

Applying (14) to (5), we obtain that α = 1. Hence, (5) becomes

{0, 〈R†b1, l〉, 〈R†b2, l〉, . . . , 〈R†bp−1, l〉}
≡ {0, 1, 2, . . . , (p− 1)} (mod p). (15)

It follows that B1 is a complete set of coset representatives of Zn/R(Zn). If not, there
would exist ζ ∈ Zn and bq1 , bq2 ∈ B1 such that bq1 − bq2 = Rζ, then 〈R†(bq1 − bq2), l〉 =
〈R†Rζ, l〉 = p〈ζ, l〉 ∈ pZ, which contradicts with (15).

Case 2: l ∈ R∗(Zn). In this case, a result in [23] (p. 402) tells us that there exist a t ∈ N0
and a l̂ ∈ Zn \ {0} such that

l = R∗t l̂ and l̂ ∈ Zn \ R∗(Zn). (16)

Because of mB(x) = 1 for any x ∈ Zn, it follows from (4) that

µ̂R,B1(l) =
∞

∏
j=1

mB1(R∗−jl) =
∞

∏
j=1

mB1(R∗(t−j) l̂) =
∞

∏
j=1

mB1(R∗−j l̂)

= µ̂R,B1(l̂) = 0.

The case l̂ is similar to the l of Case 1. Therefore, we obtain that B1 is a complete set of
coset representatives of Zn/R(Zn).

Up to now, we have completely showed that B1 is a complete set of coset representa-
tives of Zn/R(Zn). It is time to conclude that µR,B1 is a spectral measure with some lattice
spectrum Γ∗ (see [23] (p. 403)). This completes the proof of Theorem 2.

With the same notations above, for the pair (R, B), we now turn to prove that µR,B is a
spectral measure with lattice spectrum.

Theorem 3. Let R ∈ Mn(Z) be an expanding matrix with |det(R)| = p is a prime. Let B ⊂ Zn

be a finite digit set with 0 ∈ B and |B| = p. Suppose that one of the following two conditions
(at least one) holds:
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(i) There is a br ∈ B \ {0} such that pbr 6∈ Rr+2(Zn), where r is given by (3);
(ii) There is a l ∈ Z(µ̂R,B1) ∩Zn such that pl 6∈ R∗t+2(Zn), where t is given by (16).

If there is a λ ∈ Z(µ̂R,B) ∩ R∗−κ(Zn) for some κ satisfying 0 ≤ κ ≤ r + t, then µR,B is a
spectral measure with lattice spectrum.

Proof. From Lemma 1, we have B = RrB1 with B1 = {b0 = 0, b1, . . . , bp−1} ⊂ Zn.
Since λ ∈ R∗−κ(Zn), we may assume that there exists a l̃ ∈ Zn \ {0} such that λ = R∗−κ l̃.
From λ ∈ Z(µ̂R,B), if 0 ≤ κ ≤ r, then

µ̂R,B(R∗−κ l̃) = µ̂R,B1(R∗(r−κ) l̃) = µ̂R,B1(l̃) = 0.

Obviously, we have l̃ ∈ Z(µ̂R,B1) ∩Zn, take l̃ = l, then it is the same as in Theorem 2.
If l̃ ∈ Zn \ R∗(Zn), we take 0 ≤ κ ≤ r. If l̃ ∈ R∗(Zn), we take 0 ≤ κ ≤ r + t.

(i) It is enough to show that the condition (i) guarantees j1 6= 0 in (10).
If br ∈ B \ {0}, as B = RrB1, then there exists a b̃r ∈ B1 \ {0} such that br = Rr b̃r and

b̃r 6∈ R(Zn). Hence, pbr 6∈ Rr+2(Zn) is equivalent to

R† b̃r 6∈ R(Zn), (17)

(17) plays the same role as (11), which guarantees j1 6= 0 in (10). Thus, B1 is a complete set
of coset representatives of Zn/R(Zn).

(ii) Since l ∈ Z(µ̂R,B1) ∩ Zn with l = R∗t l̂ and l̂ ∈ Zn \ R∗(Zn), together with
(R†)∗ = pR∗−1, we obtain that pl 6∈ R∗t+2Zn is equivalent to

(R†)∗ l̂ 6∈ R∗(Zn). (18)

Firstly, we construct a complete set of coset representatives of Zn/R∗(Zn). Secondly,
we give two required equations, that is, (20) and (22). Finally, we prove that B1 is a complete
set of coset representatives of Zn/R(Zn).

Since l̂ ∈ Zn \ R∗(Zn), we have (R†)∗ l̂ ∈ (R†)∗Zn \ p(Zn). Hence, there exists a σ ∈
Zn \ {0} such that 〈(R†)∗ l̂, σ〉 6≡ 0 (mod p). Furthermore, we have 〈(R†)∗hl̂, σ〉 6≡ 0 (mod p)
for any h ∈ H. This implies hl̂ 6∈ R∗(Zn) for any h ∈ H. It follows that {0, h1 l̂, h2 l̂, · · · , hp−1 l̂}
is a complete set of coset representatives of Zn/R∗(Zn), which indicates:

Zn = R∗(Zn) ∪ (h1 l̂ + R∗(Zn)) ∪ · · · ∪ (hp−1 l̂ + R∗(Zn)), (19)

where the p sets of the right side are mutually disjoint. Since (R†)∗ l̂ ∈ Zn, it follows from
(19) that

(R†)∗ l̂ = j2 l̂ + R∗η, where j2 ∈ {0, h1, h2, . . . , hp−1} and η ∈ Zn. (20)

This, together with (18), yields j2 6= 0.
As B1 6⊂ R(Zn), there exists a b̂r ∈ B1 \ {0} such that b̂r 6∈ R(Zn), thus, R† b̂r 6∈ p(Zn),

then there exists a ω ∈ Zn \ {0} such that

〈(R†)∗ω, b̂r〉 6≡ 0 (mod p), (21)

which implies ω 6∈ R∗(Zn), hence

ω = jω l̂ + R∗ηω, where jω ∈ H and ηω ∈ Zn.

This together with (21), we get

〈(R†)∗ω, b̂r〉 ≡ jω〈(R†)∗ l̂, b̂r〉 (mod p)

6≡ 0 (mod p).
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Since p - jω, we have
〈(R†)∗ l̂, b̂r〉 6≡ 0 (mod p). (22)

From (20) and (22), we deduce 〈(R†)∗n l̂, b̂r〉 6≡ 0 (mod p), that is, (14) holds. Hence,
B1 is a complete set of coset representatives of Zn/R(Zn).

In conclusion, we have proved that B1 is a complete set of coset representatives of
Zn/R(Zn). Therefore, we obtain that µR,B is a spectral measure with some lattice spectrum
(R∗)−rΓ∗. This completes the proof of Theorem 3.

Remark 1. (i) The condition pbr 6∈ Rr+2(Zn) is equivalent to

pbr ∈ Rr+1(Zn \ R(Zn)). (23)

In fact, it is enough to show that (23) guarantees j1 6= 0 in (10). From br = Rr b̃r, b̃r 6∈ R(Zn),
and R† = pR−1, we find that (23) is equivalent to R† b̃r ∈ Zn \ R(Zn), together with (8) yields
j1 6= 0 in (10). If r = 0, then pbr 6∈ Rr+2(Zn) is reduced to pb̃ 6∈ R2(Zn), which is equivalent to
pb̃ ∈ R(Zn \ R(Zn)). Note that pb̃ 6∈ R2(Zn) and pb̃ ∈ R(Zn \ R(Zn)) imply the condition (a)
and (b) of Theorem 1, respectively, not vice versa, and they are more precise and easier to be verified
than the condition (a) and (b) of Theorem 1.

(ii) The condition pl 6∈ R∗t+2(Zn) is equivalent to

pl ∈ R∗t+1(Zn \ R∗(Zn)). (24)

In fact, it is enough to show that (24) guarantees j2 6= 0 in (20). In view of l = R∗t l̂,
l̂ ∈ Zn \ R∗(Zn), and (R†)∗ = pR∗−1, we obtain that (24) is equivalent to (R†)∗ l̂ ∈ Zn \
R∗(Zn), it follows from (19) that j2 6= 0 in (20). If t = 0, then pl 6∈ R∗t+2(Zn) is reduced to
pl 6∈ R∗2(Zn), which is equivalent to pl ∈ R∗(Zn \ R∗(Zn)). Note that pl 6∈ R∗2(Zn) and
pl ∈ R∗(Zn \ R∗(Zn)) imply the condition (d) and (e) of Theorem 1, respectively, not vice versa,
and they are more precise and easier to be verified.

(iii) The condition Z(µ̂R,B) ∩ Zn 6= ∅ of Theorem 1 can be substituted by a more general
condition Z(µ̂R,B) ∩Rn 6= ∅.

In Theorems 2 and 3, we only consider the case of |det(R)| = p is a prime, which
raises an interesting question: can the method in Theorems 2 and 3 deal with the case of a
real symmetric matrix R with |det(R)| = pq (p, q are distinct primes)?

By Theorem 3, for B and l, we may assume that B 6⊂ R(Zn) and l ∈ Zn \ R∗(Zn), that
is, r = 0 and t = 0. From now on, we always assume B 6⊂ R(Zn) and l ∈ Zn \ R∗(Zn).

In dimension one, that is, n = 1, we must point out that the conditions (i) and (ii) of
Theorem 3 are always hold. In addition, for n ≥ 2 we find out the Hermite normal forms
of R2 and R∗2 which cannot satisfy the condition (i) and (ii), respectively. Domich et al.
provided the following result (see [25] Theorem 1.2).

Proposition 1. ([25]) Let A ∈ Mn(Z) be a nonsingular integer matrix. Then there exists a n× n
unimodular matrix U such that AU = H, where H is called the Hermite normal form of A, whose
entries satisfy

(1) hij = 0, for any j > i;
(2) hii > 0, for any i;
(3) hij ≤ 0 and | hij |< hii, for any j < i.

Obviously, we see that H is a lower-triangular matrix. By Proposition 1 and det(R2) =
det(R∗2) = p2 is a prime power, we find that the Hermite normal forms of R2 and R∗2 are
the following two cases.
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(1) H1 =



1 0 · · · 0 0 · · · 0 0
0 1 · · · 0 0 · · · 0 0
...

...
...

...
...

...
0 0 · · · 1 0 · · · 0 0

hi,1 hi,2 · · · hi,i−1 p2 · · · 0 0
...

...
...

...
...

...
0 0 · · · 0 0 · · · 1 0
0 0 · · · 0 0 · · · 0 1


,

where hi,j ≤ 0 and | hi,j |< p2, for any i = 1, 2, . . . , n, j = 1, 2, . . . , i − 1. In particular,
H1 = diag(p2, 1, . . . , 1) is a diagonal matrix for i = 1.

(2) H2 =



1 0 · · · 0 0 · · · 0 0 · · · 0 0
0 1 · · · 0 0 · · · 0 0 · · · 0 0
...

...
...

...
...

...
...

...
0 0 · · · 1 0 · · · 0 0 · · · 0 0

hi,1 hi,2 · · · hi,i−1 p · · · 0 0 · · · 0 0
...

...
...

...
...

...
...

...
0 0 · · · 0 0 · · · 1 0 · · · 0 0

hj,1 hj,2 · · · hj,i−1 hj,i · · · hj,j−1 p · · · 0 0
...

...
...

...
...

...
...

...
0 0 · · · 0 0 · · · 0 0 · · · 1 0
0 0 · · · 0 0 · · · 0 0 · · · 0 1



,

where j > i, i, j = 1, 2, . . . , n, hi,s ≤ 0 and | hi,s |< p for any s ∈ {1, 2, . . . , i− 1}. hj,t ≤ 0
and | hj,t |< p for any t ∈ {1, 2, . . . , j− 1}.

In view of the above two Hermite normal forms of R2 and R∗2, we obtain the forms of
b̃ that does not satisfy the condition pb̃ 6∈ R2(Zn) and l that does not satisfy the condition
pl 6∈ R∗2(Zn), respectively.

Proposition 2. Let R ∈ Mn(Z) be an expanding matrix with |det(R)| = p is a prime. Assume
that the Hermite normal form of R2 is H1. Suppose that B ⊂ Zn is a finite digit set with 0 ∈ B.

For any nonzero element b̃ = (b1, b2, . . . , bn)t ∈ B, if p | bi −
i−1
∑

s=1
hi,sbs, then pb̃ ∈ R2(Zn), where

i is given by H1.

Proof. As the Hermite normal form of R2 is H1, it follows that there exists a unimodular
matrix U1 such that R2U1 = H1. Since U1(Zn) = Zn, we have R2(Zn) = H1(Zn). Hence, it
suffices to prove pb̃ ∈ H1(Zn).

Let k = (k1, k2, . . . , kn)t, where

k1 = pb1, . . . , ki−1 = pbi−1, ki =
1
p
(bi −

i−1

∑
s=1

hi,sbs), ki+1 = pbi+1, . . . , kn = pbn.
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Since p | bi −
i−1
∑

s=1
hi,sbs, we have ki ∈ Z, then k ∈ Zn, thus

H1k =



1 0 · · · 0 0 · · · 0 0
0 1 · · · 0 0 · · · 0 0
...

...
...

...
...

...
0 0 · · · 1 0 · · · 0 0

hi,1 hi,2 · · · hi,i−1 p2 · · · 0 0
...

...
...

...
...

...
0 0 · · · 0 0 · · · 1 0
0 0 · · · 0 0 · · · 0 1





pb1
pb2

...
pbi−1

1
p (bi −

i−1
∑

s=1
hi,sbs)

...
pbn−1

pbn


= (pb1, pb2, . . . , pbi−1, pbi, . . . , pbn−1, pbn)

t

= pb̃.

Therefore, pb̃ ∈ H1(Zn).

Proposition 3. Let R ∈ Mn(Z) be an expanding matrix with |det(R)| = p is a prime. Assume
that the Hermite normal form of R2 is H2. Suppose that B ⊂ Zn is a finite digit set with 0 ∈ B.

For any nonzero element b̃ = (b1, b2, . . . , bn)t ∈ B, if p | hj,i(bi −
i−1
∑

s=1
hi,sbs), then pb̃ ∈ R2(Zn),

where i and j are given by H2.

Proof. As the Hermite normal form of R2 is H2, it follows that there exists a unimodular
matrix U2 such that R2U2 = H2. Since U2(Zn) = Zn, we have R2(Zn) = H2(Zn). It suffices
to prove pb̃ ∈ H2(Zn).

Let k = (k1, k2, . . . , kn)t, where

k1 = pb1, . . . , ki−1 = pbi−1, ki = bi −
i−1

∑
s=1

hi,sbs, ki+1 = pbi+1, . . . ,

k j−1 = pbj−1, k j = bj −
i−1

∑
s=1

hj,sbs −
1
p

hj,i(bi −
i−1

∑
s=1

hi,sbs)−
j−1

∑
s=i+1

hj,sbs,

k j+1 = pbj+1, . . . , kn = pbn.

Since p | hj,i(bi −
i−1
∑

s=1
hi,sbs), we have k j ∈ Z, then k ∈ Zn. By calculation, we obtain

H2k = pb̃. Therefore, pb̃ ∈ H2(Zn).

Similar to the above b̃, we give the following two propositions about l.

Proposition 4. Let R ∈ Mn(Z) be an expanding matrix with |det(R)| = p is a prime. Assume
that the Hermite normal form of R∗2 is H1. Suppose that B ⊂ Zn is a finite digit set with 0 ∈ B.

For any l = (l1, l2, . . . , ln)t ∈ Z(µ̂R,B) ∩ Zn, if p | li −
i−1
∑

s=1
hi,sls, then pl ∈ R∗2(Zn), where i is

given by H1.

Proposition 5. Let R ∈ Mn(Z) be an expanding matrix with |det(R)| = p is a prime. Assume
that the Hermite normal form of R∗2 is H2. Suppose that B ⊂ Zn is a finite digit set with 0 ∈ B.

For any l = (l1, l2, . . . , ln)t ∈ Z(µ̂R,B) ∩Zn, if p | hj,i(li −
i−1
∑

s=1
hi,sls), then pl ∈ R∗2(Zn), where

i and j are given by H2.



Symmetry 2022, 14, 243 10 of 13

Particularly, if n = 2, then the Hermite normal form of R2 and R∗2 are the following
three cases:

H1 =

[
p2 0
0 1

]
, Ĥ1 =

[
1 0

a21 p2

]
and H̃2 =

[
p 0

h21 p

]
,

where a21 ≤ 0 and | a21 |< p2, h21 ≤ 0 and | h21 |< p.

Remark 2. For any z = (z1, z2)
t ∈ Z2 \ {0}, it follows from Proposition 2 that pz ∈ R2(Z2) if

p | z1 or p | z2 − a21z1. It follows from Proposition 3 that pz ∈ R2(Z2) if p | h21z1. Hence, we
have pZ2 6= R2(Z2). Similarly, we obtain pZ2 6= R∗2(Z2). Therefore, the condition (c) and (f)
hold in Theorem 1.

In summary, we have obtained two sufficient conditions, such that µR,B is a spectral
measure with lattice spectrum in Theorem 3. Let us illustrate the differences between
Theorem 3 and Theorem 1 with the following example.

Example 1. Let

R =

[
0 1
3 1

]
, B =

{(
0
0

)
,
(

3
3

)
,
(

1
4

)}
. (25)

We have B = R2B1, where

B1 =

{(
0
0

)
,
(

1
0

)
,
(

0
1

)}
.

Since B = R2B1, take b̃ = (1, 0)t ∈ B1 (or br = (3, 3)t ∈ B), we check that pb̃ 6∈ R2(Z2) (or
pbr 6∈ R4(Z2)). If κ = 3, then there exists a l̃ = (6, 3)t ∈ Z2 such that λ = (− 2

9 , 5
9 )

t ∈ Z(µ̂R,B)∩
R∗−3(Z2) (i.e., Z(µ̂R,B) ∩R2 6= ∅). It follows from Theorem 3 that µR,B is a spectral measure
with lattice spectrum. By the set Z2 \ R(Z2) in [23] (p. 405), it follows that pb̃ ∈ R(Z2 \ R(Z2))
(or pbr ∈ R3(Zn \ R(Zn))).

If κ = 3, then there is a l = l̃ = (6, 3)t = R∗(1, 2)t ∈ Z(µ̂R,B1) ∩ Z2, such that pl 6∈
R∗3(Z2), and λ = (− 2

9 , 5
9 )

t ∈ Z(µ̂R,B) ∩ R∗−3(Z2). From Theorem 3, we find that µR,B is a
spectral measure with lattice spectrum. For the expanding matrix R∗, we can check that

Z2 \ R∗(Z2) =

{(
3k1 + 1
k1 + k2

)
: k1, k2 ∈ Z

}⋃{( 3k1 + 2
k1 + k2

)
: k1, k2 ∈ Z

}
.

It is straightforward to verify that pl ∈ R∗2(Z2 \ R∗(Z2)).

For the pair (R, B) in (25), it should be pointed out that we cannot find out a S ⊂ Z2

such that (R−1B, S) is a compatible pair. In fact, Example 1 is an example in [23] (p. 405).
For the pair (25), it is not easy to verify the inclusion relation between the sets of the
condition (b), as well as the condition (e) of Theorem 1. For the given (R, B), a major
advantage of the conditions we have obtained in this paper is that they are more precise
and easier to be verified than the conditions of Theorem A. We need only choose an
element from the digit set B and zero set Z(µ̂R,B), respectively, such that the corresponding
conditions are valid.

The following example demonstrates that the two conditions (i) and (ii) of Theorem 3
are sufficient but not necessary.

Example 2. Let

R =

[
0 1
3 0

]
, B =

{(
0
0

)
,
(

1
3

)
,
(

2
3

)}
.
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We have B = RB1, where

B1 =

{(
0
0

)
,
(

1
1

)
,
(

1
2

)}
.

If κ = 1, then there exists a l̃ = (1, 1)t ∈ Z2, such that λ = (1, 1
3 )

t ∈ Z(µ̂R,B) ∩
R∗−1(Z2). Since B1 is a complete set of coset representatives of Z2/R(Z2), it follows that
µR,B is a spectral measure with lattice spectrum (R∗)−1Γ∗. However, for any br ∈ B, we
have pbr ∈ R3(Z2), and we also have pl ∈ R∗2(Z2) for any l ∈ Z(µ̂R,B1) ∩Z2, we see that
both of the conditions (i) and (ii) of Theorem 3 fail, thus, the two conditions (i) and (ii) of
Theorem 3 are sufficient but not necessary.

3. Concluding Remarks

We observe that the two sufficient conditions (i)–(ii) of Theorem 3 are closely relevant
to a conjecture of Lagarias and Wang in [26]. In the end, we give a remark about these two
sufficient conditions applied to integral self-affine tiles.

Suppose that R ∈ Mn(Z) is an expanding matrix, B ⊂ Zn is a finite digit set, 0 ∈ B
and |B| = |det(R)|. If µL(T(R, B)) > 0, then T(R, B) is defined as an integer self-affine tile
and the corresponding B is referred to as a tile digit set (with respect to R). Z[R, B] denotes
the smallest R− invariant sublattice of Zn containing B. Lagarias and Wang [26] provided
the following useful fact.

Proposition 6. ([26]) Suppose that the columns of a matrix P ∈ Mn(Z) are a basis of Z[R, B],
i.e., Z[R, B] = P(Zn), then there exists a matrix R0 := P−1RP ∈ Mn(Z) and a digit set
B0 := P−1B ⊂ Zn, such that Z[R0, B0] = Zn, 0 ∈ B0, and T(R, B) = P(T(R0, B0)).

If B0 is a complete set of coset representatives of Zn/R0(Zn), then B is called a standard
digit set (with respect to R). In this case, for the pair (R0, B0), we have µL(T(R0, B0)) > 0
(see [27]). For a standard digit set, Lagarias and Wang [26] Theorem 4.1 proved the
following result.

Theorem 4. ([26]) Let R ∈ Mn(Z) be an expanding matrix with |det(R)| = p is a prime.
Suppose that p(Zn) 6⊆ R2(Zn) and B ⊂ Zn is a digit set with |B| = p. Then µL(T(R, B)) > 0 if
and only if B is a standard digit set.

The following conjecture was formulated in [26] by Lagarias and Wang.

Conjecture 1. The condition p(Zn) 6⊆ R2(Zn) in Theorem 4 is redundant.
In recent decades, considerable interest about Conjecture 1 has developed. A paper [28] by He

and Lau showed that p(Zn) 6⊆ R2(Zn) can be substituted by span(B) = Rn. Li [24] proved that
p(Zn) 6⊆ R2(Zn) can be substituted by any one of the conditions (a)–(f) of Theorem 1. Since the
two sufficient conditions (i) and (ii) of Theorem 3 are supplementary to Theorem 1, we find that
p(Zn) 6⊆ R2(Zn) can be substituted by any one of the conditions (i) and (ii) of Theorem 3.

Remark 3. The two sufficient conditions (i) and (ii) of Theorem 3 shed new light on the Conjecture 1.
To further research on it, it suffices to consider the following two cases:

(ĩ) pb̃ ∈ R2(Zn) for any b̃ ∈ B,

(ĩi) pl ∈ R∗2(Zn) for any l ∈ Zn \ R∗(Zn).

Furthermore, we only need to consider b̃ in Propositions 2 and 3, and l in Propositions 4 and 5.

Obviously, Remark 3 shows clearly the cases to be resolved. The Propositions 2–5 we
obtained provide new insights into the Conjecture 1 and generalize the related results.



Symmetry 2022, 14, 243 12 of 13

Finally, we would like to point out that we only consider the spectrality of self-affine
measures µR,B with |det(R)| = p is a prime, however, the idea and the method which we
used in Section 2 may be also suitable to a real symmetric matrix R with |det(R)| = pq,
where p, q are distinct primes. Next, we will further focus on the spectrality of self-affine
measures µR,B with the real symmetric matrix, as we know, real symmetric matrices play
an important role in quantum mechanics and engineering technology.
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