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Abstract: For solving the problem of modeling and visualization of scattered data that should
preserve some constraints, we use a modified Shepard type operator that is required to fulfill some
special conditions, highlighting the symmetry with other methods. We illustrate the properties of the
obtained operators by some numerical examples.
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1. Introduction

Some of the most important interpolation methods for large scattered data sets are
the Shepard type methods. The problem of modeling and visualization of scattered data
that should preserve some constraints appears in many scientific areas, e.g., when the data
should satisfy lower and upper bounds, due to various constraints (economical, physical,
socio-political, chemical, etc. [1]). For example, there are cases when the data have to
preserve some constraints, subject to certain physical laws (e.g., the densities, percentage
mass concentrations in a chemical reaction, volume and mass, see [2,3]). Such problems
require to impose some special conditions to the interpolants (see, e.g., [1–4]).

The purpose of the paper is to impose some constraints to Shepard-Bernoulli operator,
introduced in [5], and to enforce it to satisfy them using a symmetrical way with the method
described in [1]. First, we recall some results regarding Shepard-Bernoulli interpolation,
studied in [5–7].

Consider the function f ∈ C(m,n)(X), X = [a, b]× [c, d] and a set of N distinct points
(xi, yi) ∈ X, i = 1, ..., N. The bivariate Shepard operator (introduced in [8]) is given by

S f (x, y) =
N

∑
i=1

Ai(x, y) f (xi, yi), (1)

where

Ai(x, y) =

N
∏
j=1
j 6=i

rµ
j (x, y)

N
∑

k=1

N
∏
j=1
j 6=k

rµ
j (x, y)

, (2)

with µ > 0 and ri(x, y) are the distances between (x, y) and the given points (xi, yi), i =
1, ..., N. The parameter µ influences the behavior of S f in the neighborhood of the nodes. If
0 < µ ≤ 1 then S f has peaks at the nodes. For µ > 1 then S f has flat spots and if µ is large
enough S f becomes a step function.

Proposition 1. The following properties hold:
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1. Ai(xk, yk) = δik, i, k = 1, ..., N.
2. degree of exactness of S is 0 (dex(S) = 0).

Shepard interpolation leads to flat spots at each data point and the accuracy tends to
decrease in the areas where the interpolation nodes are sparse. This can be improved using
the local version of Shepard interpolation, introduced by Franke and Nielson in [9] and
improved in [10–12]:

S f (x, y) =

N
∑

i=1
Wi(x, y) f (xi, yi)

N
∑

i=1
Wi(x, y)

, (3)

with
Wi(x, y) =

[
(Rw−ri(x,y))+

Rwri(x,y)

]2
, (4)

where Rw is a radius of influence about the node (xi, yi) and it is varying with i. This is
taken as the distance from node i to the jth closest node to (xi, yi) for j > Nw (Nw is a
fixed value) and j as small as possible within the constraint that the jth closest node is
significantly more distant than the (j− 1)st closest node (see, e.g., [11]).

The Bernoulli polynomials are defined by (see, e.g., [13]):
B0(x) = 1,
B′n(x) = nBn−1(x), n ≥ 1,∫ 1

0
Bn(x)dx = 0, n ≥ 1.

(5)

The values of Bn(x) at x = 0 are the Bernoulli numbers and they are denoted by Bn. For
f ∈ Cm[a, b], the univariate Bernoulli interpolant is given by

Bm f (x) := Bm[ f ; a, b] = f (a) +
m

∑
i=1

Si
( x−a

h
) hi−1

i! ∆h f (i−1)(a), (6)

where h = b− a and

Si
( x−a

h
)
= Bi

( x−a
h
)
− Bi, i ≥ 1, (7)

∆h f (i−1)(a) = f (i−1)(b)− f (i−1)(a), 1 ≤ i ≤ m.

Denote h := b− a, k := d− c and consider the operators:

∆(h,0) f (x, y) := f (x + h, y)− f (x, y),

∆(0,k) f (x, y) := f (x, y + k)− f (x, y), (8)

∆(h,k) f (x, y) := ∆(h,0)∆(0,k) f (x, y) = ∆(0,k)∆(h,0) f (x, y).

For f ∈ Cm,n(X), the Bernoulli interpolant on the rectangle is [13]:

Bm,n f (x, y) := f (a, c) +
m
∑

i=1
∆(h,0) f (i−1,0)(a, c) hi−1

i! Si
( x−a

h
)

+
n
∑

j=1
∆(0,k) f (0,j−1)(a, c) kj−1

j! Sj

(
y−c

k

)
(9)

+
m
∑

i=1

n
∑

j=1
∆(h,k) f (i−1,j−1)(a, c) hi−1kj−1

i!j! Si
( x−a

h
)
Sj

(
y−c

k

)
,

where Sk, k > 1 are given in (7). The polynomial from (9) satisfies the following interpola-
tion conditions:
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Bm,n f (a, c) = f (a, c),

(∆(h,0)Bm,n f )(i,0)(a, c) = ∆(h,0) f (i,0)(a, c), 0 ≤ i ≤ m− 1, (10)

(∆(0,k)Bm,n f )(0,j)(a, c) = ∆(0,k) f (0,j)(a, c), 0 ≤ j ≤ n− 1,

(∆(h,k)Bm,n f )(i,j)(a, c) = ∆(h,k) f (i,j)(a, c), 0 ≤ i ≤ m− 1, 0 ≤ j ≤ n− 1.

The bivariate Shepard-Bernoulli operator (introduced in [5]) preserves the advantages and
improve the reproduction qualities, have better accuracy and computational efficiency:

SB f (x, y) =
N

∑
i=1

Ai(x, y)Bi
m,n f (x, y), µ > 0, (11)

where Bi
m,n f denotes the Bernoulli interpolant Bm,n[ f ; (xi, yi), (hi, ki)] in the rectangle with

opposite vertices (xi, yi), (xi+1, yi+1), given by (9), having hi = xi+1 − xi, ki = yi+1 − yi,
i = 1, ..., N.

The improved form of the Shepard-Bernoulli operator, based on (3), is (see [5]):

Sw
B f (x, y) :=

N
∑

i=1
Wi(x,y)Bi

m,n f (x,y)

N
∑

i=1
Wi(x,y)

. (12)

2. Constraints of the Shepard-Bernoulli Operator

Consider the function f ∈ C(m,n)(X), X = [a, b]× [c, d] and a set of N distinct points
(xi, yi) ∈ X, i = 1, ..., N. The classical Shepard operator S, given in (1) satisfies the follow-
ing property:

min
i=1,...,N

{ f (xi, yi)} ≤ S f (x, y) ≤ max
i=1,...,N

{ f (xi, yi)}. (13)

A consequence of this property is that a positive interpolant is guaranteed if the data values
are positive.

The modified Shepard operator, given in (3), has superior qualities but it does not
satisfy the property (13).

We will impose constraints to the operators given in (11) and (12) using the steps of
the method described in [1], whose notations will be used.

Let CU and CL be the upper and lower bounds inR, a constant K in (0, 1) and p = 1
K − 1.

We mention that K is an input parameter which gives us flexibility to use a value suitable
for the application. We consider

dU(xi, yi) := f (xi, yi)− CU ,

dL(xi, yi) := f (xi, yi)− CL,

DU(xi, yi) := dU(xi, yi) + K[Bi
m,n f (x, y)− f (xi, yi)],

DL(xi, yi) := dL(xi, yi) + K[Bi
m,n f (x, y)− f (xi, yi)],

Q(xi, yi) := f (xi, yi) + K[Bi
m,n f (x, y)− f (xi, yi)],

and

µU(xi, yi) :=

{ (
DU(xi ,yi)
dU(xi ,yi)

)p
, if f (xi, yi) ≤ Bi

m,n f (xi, yi) ≤ CU ,
0, otherwise.

(14)

µL(xi, yi) :=

{ (
DL(xi ,yi)
dL(xi ,yi)

)p
, if CL ≤ Bi

m,n f (xi, yi) ≤ f (xi, yi)

0, otherwise.
(15)
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Let

R(xi, yi) =

{
CU + µU(xi, yi)DU(xi, yi), if f (xi, yi) ≤ Bi

m,n f (xi, yi),
CL + µL(xi, yi)DL(xi, yi), otherwise.

(16)

The constrained Shepard-Bernoulli operators are given by

Sc1 f (x, y) =
N

∑
i=1

Ai(x, y)R(xi, yi), (17)

Sc2 f (x, y) =

N
∑

i=1
Wi(x,y)R(xi ,yi)

N
∑

i=1
Wi(x,y)

, (18)

with Ai(x, y) and Wi(x, y) given by (2) and (4), respectively.

Theorem 1. For (x, y) ∈ X, it holds

CL ≤ Sc1 f (x, y) ≤ CU , (19)

and
CL ≤ Sc2 f (x, y) ≤ CU . (20)

Proof. Replacing (14) and (15) in (16), we get

R(xi, yi) =

=


CU +

( f (xi ,yi)−CU+K(Bi
m,n f (x,y)− f (xi ,yi)))

p+1

( f (xi ,yi)−CU)p , if f (xi, yi) ≤ Bi
m,n f (xi, yi) ≤ CU

CL +
( f (xi ,yi)−CL+K(Bi

m,n f (x,y)− f (xi ,yi)))

( f (xi ,yi)−CL)
p

p+1
, if CL ≤ Bi

m,n f (xi, yi) ≤ f (xi, yi).

If f (xi, yi) ≤ Bi
m,n f (xi, yi) ≤ CU , it holds

R(xi, yi) ≤ CU +
( f (xi ,yi)−CU+Bi

m,n f (x,y)− f (xi ,yi))
p+1

( f (xi ,yi)−CU)p

≤ CU +

(
Bi

m,n f (x,y)−CU
f (xi ,yi)−CU

)p
(Bi

m,n f (x, y)− CU) ≤ CU .

If CL ≤ Bi
m,n f (xi, yi) ≤ f (xi, yi), it holds

R(xi, yi) ≥ CL + f (xi, yi)− CL ≥ f (xi, yi) ≥ CL.

Therefore, by (17) and (2), the inequality (19) is proved.
Similarly, taking into account (18) and (4), (20) follows.

Theorem 2. For f ∈ C(m,n)(X), the following interpolation properties hold:

Sc1 f (xk, yk) = f (xk, yk),

for 1 ≤ k ≤ N and µ > m + n− 2.

Proof. We have

Sc1
f (xk, yk) =

N

∑
i=1

Ai(xk, yk)R(xi, yi)

and by the property Ai(xk, yk) = δik, see Proposition 1, we get
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Sc1
f (xk, yk) = R(xk, yk)

=

 CU +
(

DU(xk ,yk)
dU(xk ,yk)

)p
DU(xk, yk), if f (xk, yk) ≤ Q(xk, yk),

CL +
(

DL(xk ,yk)
dL(xk ,yk)

)p
DL(xk, yk), otherwise.

=

 CU +
(dU(xk ,yk)+K(Bk

m,n f (x,y)− f (xk ,yk)))
p+1

[dU(xk ,yk)]
p , if f (xk, yk) ≤ Q(xk, yk),

CL +
(dL(xk ,yk)+K(Bk

m,n f (x,y)− f (xk ,yk)))
p+1

[dL(xk ,yk)]
p , otherwise.

By the interpolation properties of the Bernoulli operator, we have Bk
m,n f (xk, yk) = f (xk, yk),

for k = 1, ..., N, whence it follows

(Sc1
f )(xk, yk) =

{
CU + dU(xk, yk), if f (xk, yk) ≤ Q(xk, yk)
CL + dL(xk, yk), otherwise.

= f (xk, yk), for k = 1, ..., N.

Theorem 3. The degree of exactness of the operator Sc1
is 0.

Proof. Considering ek,j(x, y) = xkyj, with k ≤ m and j ≤ n, we have

Sc1 ek,j(x, y) =
N

∑
i=1

Ai(x, y)R(xi, yi)

=


CU +

N
∑

i=1
Ai(x, y)

(
DU(xi ,yi)
dU(xi ,yi)

)p
DU(xi, yi), if f (xi, yi) ≤ Q(xi, yi),

CL +
N
∑

i=1
Ai(x, y)

(
DL(xi ,yi)
dL(xi ,yi)

)p
DL(xi, yi), otherwise.

=


CU +

N
∑

i=1

Ai(x,y)(dU(xi ,yi)+K(Bi
m,nek,j(x,y)−ek,j(xi ,yi)))

p+1

(dU(xi ,yi))
p , if f (xi, yi) ≤ Q(xi, yi),

CL +
N
∑

i=1

Ai(x,y)(dL(xi ,yi)+K(Bi
m,nek,j(x,y)−ek,j(xi ,yi)))

p+1

(dL(xi ,yi))
p , otherwise.

Having degree of exactness of Bi
m,n equal to (m, n) (see, e.g., [5,13]), for k ≤ m and j ≤ n,

we get

Sc1 ek,j(x, y) =


CU +

N
∑

i=1
Ai(x, y)dU(xi, yi), if f (xi, yi) ≤ Q(xi, yi)

CL +
N
∑

i=1
Ai(x, y)dL(xi, yi), otherwise.

=


CU +

N
∑

i=1
Ai(x, y)(ek,j(xi, yi)− CU), if f (xi, yi) ≤ Q(xi, yi)

CL +
N
∑

i=1
Ai(x, y)(ek,j(xi, yi)− CL), otherwise.

Applying the property that dex(S) = 0 (see Proposition 1), we get Sc1 ek,j(x, y) = ek,j(x, y)
for k = j = 0.

3. Numerical Examples

To illustrate the performance of the proposed constructions, we consider the following
test functions ([10–12]):
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Gentle: f1(x, y) = exp[− 81
16 ((x− 0.5)2 + (y− 0.5)2)]/3,

Saddle: f2(x, y) = (1.25+cos 5.4y)
6+6(3x−1)2 ,

Franke: f3(x, y) =0.75e−
1
4 [(9x−2)2+(9y−2)2] + 0.75e[−

1
49 (9x+1)2− 1

10 (9y+1)]

+ 0.5e−
1
4 [(9x−7)2+(9y−3)2] − 0.2e[−(9x−4)2−(9y−7)2].

Table 1 shows the minimum and the maximum values of Sc2
fi, i = 1, 2, 3, for cases

CL = 0; CU = 1 and CL = 0; CU = 2, considering 20 random generated nodes, K = 0.5 and
Nw = 8.

Table 1. Minimum and maximum of Sc2
fi, i = 1, 2, 3.

CL = 0; CU = 1 CL = 0; CU = 2

min max min max

Sc2 f1 0.0274 0.3479 0 0.5167

Sc2 f2 0.0103 0.6163 6.7525× 104 0.3590

Sc2 f3 0.0346 0.9959 1.0621× 104 1.7136

In Figures 1–3 we plot the graphs of fi, Sw
B fi, Sc2

fi, for i = 1, 2, 3 (that have better
approximation properties than Sc1

fi).
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4. Conclusions

By Table 1, we remark that the values of Sc2 fi, i = 1, 2, 3 preserve the lower bound
of CL and the upper bound of CU , as it is theoretically proved in the previous section.
Further, by the same table and the figures, we note the good approximation properties of
the constructed operators.

By Figures 1–3, it is seen that the behaviour of the operators Sc2 fi, i = 1, 2, 3, is
better than the behaviour of the improved form of the Shepard-Bernoulli operators, Sw

B fi,
i = 1, 2, 3.

Funding: The publication of this article was supported by the 2021 Development Fund of the UBB.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Acknowledgments: We are grateful to the referees for careful reading of the manuscript and for their
valuable suggestions.

Conflicts of Interest: The author declares no conflict of interest.

References
1. Mustafa, G.; Shah, A.A.; Asim, M.R. Constrained Shepard method for modeling and visualization of scattered data. In Proceedings

of the WSCG 2008, Plzen, Czech Republic, 4–7 February 2008; Science Press: Plzen, Csech Republic, 2008; Volume 16, pp. 49–56.
2. Asim, M.R.; Mustafa, G.; Brodlie, K.W. Constrained Visualization of 2D Positive Data using Modified Quadratic Shepard Method.

In Proceedings of the WSCG 2004, Plzen-Bory, Czech Republic, 2–6 February 2004; Science Press: Plzen, Czech Republic, 2004;
pp. 9–13.

3. Brodlie, K.W.; Asim, M.R.; Unsworth, K. Constrained Visualization Using the Shepard Interpolation Family. Comput. Graph.
Forum 2005, 24, 809–820. [CrossRef]
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