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Abstract: Steganography is the technique for secretly hiding messages in media such as text, audio,
image, and video without being discovered. Image is one of the most essential media for concealing
data, making it hard to identify hidden data not visible to the human eye. In general, the cover image
and the encrypted image are symmetrical in terms of dimension size, resolution, and qualities. This
makes the difference difficult to perceive with the human eye. As a result, distinguishing between
the two symmetric images required the development of methods. Steganalysis is a technique for
identifying hidden messages embedded in digital material without having to know the embedding
algorithm or the “non-stego” image. Due to their enormous feature vector dimension, which requires
more time to calculate, the performance of most existing image steganalysis classification (ISC)
techniques is still restricted. Therefore, in this research, we present a steganalysis classification method
based on one of the texture features chosen, such as segmentation-based fractal texture analysis
(SFTA), local binary pattern (LBP), and gray-level co-occurrence matrix (GLCM). The classifiers
employed include Gaussian discriminant analysis (GDA) and naïve Bayes (NB). We used a public
database in our proposed method and applied it to IStego100K datasets to be able to assess its
performance. The experimental results reveal that in all classifiers, the SFTA feature surpassed all of
the texture features, making it a great texture feature for image steganalysis classification. In terms of
feature dimension and classification accuracy (CA), a comparison was made between the suggested
SFTA-based GDA approach and various current ISC methods. The outcomes of the comparison are
obvious show that the proposed method surpasses current methods.

Keywords: image steganalysis classification (ISC); LBP; SFTA; Gaussian discriminant analysis (GDA)
classifier; naïve Bayes (NB) classifier

1. Introduction

Due to the rapid growth of social networking sites, we may see or receive a large
number of photographs, but we have no way of knowing whether these images are original
or encrypted. Steganography is a method of hiding private information in media such as
text, audio, image, and video without leaving any trace that they are encrypted, as shown
in Figure 1. The figure shows that the cover image and the encrypted image, in general, are
symmetrical in terms of size dimension, resolution, and qualities. Therefore, we urgently
require methods to distinguish photos containing an encrypted object. The goal of blind
steganalysis is to detect steganographic data without knowing the embedding algorithm or
the cover image.

Figure 2 depicts a general taxonomy of steganalysis techniques, which is separated
under multimedia data types and domains. Steganalysis approaches are classified into two
kinds, signature and statistical steganalysis, according to steganalysis detection methods
in the literature review. Statistical steganalysis is the process of seeking to find such
statistical traces. When compared with signature steganalysis, statistical steganalysis
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is a more powerful tool since mathematical procedures are more sensitive than visual
perception [1,2].
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The majority of steganalysis approaches rely on image statistical calculations such
as first and second-order statistics. Statistical and signature steganalysis can be divided
into two categories: specific and universal. Specific steganalysis is created for a particular
steganographic embedding algorithm, such as LSB embedding, LSB matching, spread
spectrum, BPCS, JPEG compression, and other transform domains [3], whereas universal
steganalysis is a general class steganalysis technique that can be used with any stegano-
graphic embedding algorithm, including unknown algorithms [4].

Most of the previous image steganalysis classification (ISC) methods suffer from a poor
classification rate. In order to improve the accuracy and reduce the high dimensionality of
extracted features, we proposed an image steganalysis classification (ISC) method based on
three steps: First was the pre-processing stage, after which texture features were extracted
by using SFTA, LBP, and GLCM. Finally, the classifiers Gaussian discriminant analysis
(GDA) and naïve Bayes (NB) were chosen.

The rest of the article is arranged as follows: The relevant works are presented in
Section 2. Some texture analysis techniques are discussed in Section 3. The presented ISC
methods are detailed in Section 4. Section 5 discusses experimental results and analysis.
Finally, in Section 6, conclusions are drawn.

2. Related Works

Several studies on the subject of steganalysis have been conducted in recent years
and are still ongoing. The majority of image steganalysis techniques described in the
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literature have been primarily concerned with either the spatial or transform domains. For
information hiding, spatial domain approaches rely entirely on the pixels of the image. As a
result, spatial domain approaches are easy and quick to implement. The frequency content
is used in transform domain techniques, which are based on the orthogonal frequency
and phase transformations of the image. These techniques are complicated. In the spatial
domain, multiple image steganalysis classification techniques (ISCTs) are introduced.

Ashu et al. [5] proposed an image steganalysis classification (ISC) method that relied on
GLCM, as well as J48 and SMO, and the naïve Bayes was used as the classifier. Gui et al. [6]
proposed an ISC method based on LBP. In summary, smooth pixels were used to extract
multi-scaled rotation invariant LBPs as distinguishing features. After that, linear SVM
was used to train and classify the features. Wang and Gong [7] proposed an ISC method
that relied on the cloud gray-level co-occurrence matrix (CGCM) for GIF images. In this
method, 27-Dimensional statistical features of CGCM were color-correlation sensitive. In [8],
Arooj Nissar et al. presented an ISC method that relied on the spatial gray-dependency
technique. The texture info from the non-stego and stego images was utilized to train
a neural network classifier, which was then applied to test images. Tao Zhang et al. [9]
presented an ISC method that relied on statistical analyses of differential image histograms.
Song et al. [10] presented an ISC method relying on the Shannon entropy of 2D Gabor
wavelets. An ensemble classifier was utilized for classification. Karimi et al. [11] presented
an ISC method that relied on discrete cosine transform (DCT) coefficients. An ensemble
classifier was utilized for classification. Jyothy et al. [12] presented an ISC method that
relied on different textural features Such as GLCM, discrete wavelet transform (DWT),
and contourlet transform (CT). For classification, the AdaBoost classifier was utilized.
Liu et al. [13] presented an ISC method that relied on generalized Gaussian distribution
(GGD) in the wavelet domain. Lin et al. [14] presented an ISC method relying on LTP
and pi-LBP features combined. After evaluating the literature on the ISC technique, we
concluded that more effort should be invested in this area. This is primarily to improve
accuracy and reduce the large dimensionality of extracted features, hence increasing the
time complexity. The feature discrimination can be improved by combining features. For
classification, an ensemble classifier was used.

3. Texture Analysis

Texture in an image provides information about the spatial arrangement of colors or
intensities. The spatial distribution of intensity levels in a neighborhood defines texture.
Texture analysis is important in a number of situations. One of the most important is
steganalysis [15]. Texture analysis is used to uncover information that the human eye
cannot perceive since the information buried in the images is very difficult to identify or
discriminate with the naked eye. In the case of embedding the secret data in an image, the
texture and features of the image are drastically altered. As a result, texture analysis may
be able to easily reveal these buried features. In this section, some of the texture features
include SFTA, LBP, and GLCM are employed to extract texture features. In what follows,
each texture descriptor is explored in detail.

3.1. LBP

The primary contribution of the original LBP operator [16] is the marking of image
pixels with decimal values, which are referred to as LBPs and represent the local structure
around pixels [6]. In particular, each central pixel is initially compared in value with its
eight neighbors in a 3 × 3 square context. The relevant place is indicated as 1 if the adjacent
pixel is not less than the center one, and 0 otherwise. A binary number can be derived
as the LBP value for the central pixel by appending every one of these binary values in a
clockwise direction from its top-left neighbor. Lastly, the resulting binary number’s decimal
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value is utilized to mark the specified pixel. The generalized LBP [6,14] can be stated in
decimal notation as follows:

LBPP,R =
P

∑
P=0

s (xP − c)2P (1)

When x is less than zero, the function s(x) equals 1; otherwise, it equals 0. In the
example shown in Figure 3, the central pixel value is 15, and the pixels in the 8 nearby
pixels that are not less than 15 represent 1 in the associated LBP, while the others indicate 0.
As a result, the LBP received is 11000111, with a decimal value of 199.

Symmetry 2022, 13, x FOR PEER REVIEW 4 of 12 
 

 

3.1. LBP 
The primary contribution of the original LBP operator [16] is the marking of image 

pixels with decimal values, which are referred to as LBPs and represent the local structure 
around pixels [6]. In particular, each central pixel is initially compared in value with its 
eight neighbors in a 3 × 3 square context. The relevant place is indicated as 1 if the adjacent 
pixel is not less than the center one, and 0 otherwise. A binary number can be derived as 
the LBP value for the central pixel by appending every one of these binary values in a 
clockwise direction from its top-left neighbor. Lastly, the resulting binary number’s deci-
mal value is utilized to mark the specified pixel. The generalized LBP [6,14] can be stated 
in decimal notation as follows: 𝐿𝐵𝑃 , 𝑠 𝑥 𝑐 2  (1)

 
When x is less than zero, the function s(x) equals 1; otherwise, it equals 0. In the ex-

ample shown in Figure 3, the central pixel value is 15, and the pixels in the 8 nearby pixels 
that are not less than 15 represent 1 in the associated LBP, while the others indicate 0. As 
a result, the LBP received is 11000111, with a decimal value of 199. 

 
Figure 3. The local binary pattern (LBP) operator example [6]. 

The stego signal causes a disruption in the correlation of adjacent pixels in the cover 
image, which can be used for steganalysis. The LBP is a useful image texture feature for 
describing the relationship between adjacent pixels, which is the main argument for em-
ploying it. 

3.2. SFTA 
One of the most common texture descriptors is segmentation-based fractal texture 

analysis (SFTA) [17]. The texture of an image is its most noticeable feature. The SFTA 
method has two major phases: (i) using the two-threshold binary decomposition (TTBD) 
method to decompose the input grayscale image as a set of binary images; (ii) for each 
binary image formed by subtracting the fractal dimension from the borders of its regions, 
SFTA feature vectors are computed. For more details, see [17]. The SFTA features are ex-
tracted using the given mathematical formula (Equation (2)). 

 ∅ 𝑈 1 𝑖𝑓 ∃ 𝑖 , 𝑗 ∈ 𝑁 𝑖, 𝑗 : ∅ 𝑖 , 𝑗 0^∅ 𝑖, 𝑗 1 0 𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒  (2)

Where N8 [(i, j)] represents the number of connected pixels, which is set at eight. A Binary 
image is ∅ 𝑖, 𝑗 . In order to define the dimension of the features vector, the number of 
thresholds is determined. If the number of thresholds is set to three, seven binary images 
are generated, and then, 21 features are produced for each image. 

Figure 3. The local binary pattern (LBP) operator example [6].

The stego signal causes a disruption in the correlation of adjacent pixels in the cover
image, which can be used for steganalysis. The LBP is a useful image texture feature
for describing the relationship between adjacent pixels, which is the main argument for
employing it.

3.2. SFTA

One of the most common texture descriptors is segmentation-based fractal texture
analysis (SFTA) [17]. The texture of an image is its most noticeable feature. The SFTA
method has two major phases: (i) using the two-threshold binary decomposition (TTBD)
method to decompose the input grayscale image as a set of binary images; (ii) for each
binary image formed by subtracting the fractal dimension from the borders of its regions,
SFTA feature vectors are computed. For more details, see [17]. The SFTA features are
extracted using the given mathematical formula (Equation (2)).

∅s f ta(U) =


1 i f ∃(i′, j′) ∈ N8[(i, j)] :

∅e(i′, j′) = 0ˆ
∅e(i, j) = 1
0 Otherwise

(2)

where N8 [(i, j)] represents the number of connected pixels, which is set at eight. A Binary
image is ∅e(i, j). In order to define the dimension of the features vector, the number of
thresholds is determined. If the number of thresholds is set to three, seven binary images
are generated, and then, 21 features are produced for each image.

Due to their durability and low computing cost, SFTA features are employed for
texture feature extraction among texture image analysis methods. As a result, applying
SFTA features extraction to image steganalysis classification is intriguing.

3.3. GLCM

Gray-level co-occurrence matrix (GLCM) is a powerful second-order statistical ap-
proach for analyzing texture. For each image, GLCM is the matrix containing information
about the relationship between values of an adjacent pixel [18,19]. Texture descriptors,
or GLCM descriptors, are common texture features used to extract texture information.
The GLCM [20] features are dependent on statistical moments and are obtained from a co-
occurrence matrix. Figure 4 shows an example of GLCM. In total, 14 textural characteristics
were computed from using GLCM.
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GLCM depicts the number of times pixel I at location (x,y) occurs in accordance
with pixel j at position (x + x, y + y) for a given image I(x,y) of size M × N with Gt
as total different gray levels. The frequency of occurrence is denoted by A(i,j,d) and is
mathematically formulated by

A(i, j, d, θ) = ∑M
X=1 ∑N

y=1

{
1, i f I(x, y) = i and I (x + ∆x, y + ∆y) = j

0 otherwise

}
(3)

where ‘d’ specifies the pixel’s x, y offset distance from its neighbor and signifies the direction.
More details can be found in [20,21]. Each stego image is subjected to the GLCM feature
extraction method, which extracts distinguishing characteristics that are utilized to improve
feature extraction efficiency.

4. The Proposed Methods

This section includes a flowchart of the proposed method, as illustrated by Figure 5.
Furthermore, the Algorithm 1 was created. The following are the descriptions of the steps
in the algorithm:

Algorithm 1: Proposed Steganalysis Classification_based GDA and Naïve Bayes Classifier.
INPUT: Image Dataset.
OUTPUT: Non-stego/Stego Image.

Begin
For

1: Read each image by “Imread ( )” function;
2: Transforming the RGB image to the gray image using “rgb2gray ( )” function;
3: For each transformed image, extract the SFTA features {Sftaf1, Sftaf2, Sftaf3, Sftaf4, . . .
Sftaf21} to obtain a 21-dimension feature vector;
4: For each transformed image, extract the LBP features {Lbpf1, Lbpf2, Lbpf3, Lbpf4 . . .
Lbpf59} to obtain a 59-dimension feature vector;
5: Extract the GLCM features vector:

A. Create the co-occurrence matrix for each transformed image, using “graycomatrix ( )”
function;

B. Extract the GLCM features {Glcmf1, Glcmf2, Glcmf3, Glcmf4 . . . Glcmf14} to obtain a
14-dimension feature vector.

6: Training:

A. Train the GDA classifier with these feature vectors;
B. Train the naïve Bayes classifier with these feature vectors.

7: Testing:

A. Test the trained GDA model to determine if the image is non-stego or stego;
B. Test the trained naïve Bayes model to determine if the image is non-stego or stego.

End for
End
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4.1. Pre-Processing

The input, a colored image I(x,y), was transformed into a grayscale image using
the “rgb2gray (I(x,y))” function during the pre-processing stage. The objective was to
decrease the computational burden. The secret information is not destroyed as a result of
this processing.

4.2. Texture Feature Extraction

The method of obtaining the relevant information or features from the original image
is known as feature extraction. The texture features SFTA, LBP, and GLCM were extracted
for each cover and stego image, as illustrated in Figure 6. As detailed in the following, the
final feature vector dimension was 94. The final SFTA feature vector extracted is as follows:
(Sftaf1, Sftaf2, Sftaf3, Sftaf4, . . . Sftaf21). The SFTA feature vector had a dimension of 1
× 21. The final LBP feature vector extracted is as follows (Lbpf1, Lbpf2, Lbpf3, Lbpf4 . . .
Lbpf59). The LBP feature vector had a dimension of 1 × 59. The final GLCM feature vector
extracted is as follows (Glcmf1, Glcmf2, Glcmf3, Glcmf4 . . . Glcmf14). The GLCM feature
vector had a dimension of 1 × 14. The final combined feature vector of SFTA, LBP, and
GLCM had a dimension of 1 × 94.
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4.3. Classification

Classification is a fundamental stage that involves extracting image features from an
original image (non-stego image) and its stego counterpart. The aim would be to discern
the difference between non-stego or stego-image. As a result, in this paper, the GDA and
naive Bayes (NB) classifiers were employed to identify whether the image is non-stego or
stego, as shown in Figure 5. The classifiers were fed the feature vector derived from the
SFTA, LBP, and GLCM features. In the training phase, the two classifiers were trained with
various texture-related feature sets. The trained classifiers were used to identify a stego
image from a non-stego image during the testing phase.

In order to perform the classification problem, the Gaussian discriminant analysis
(GDA) [22,23] is the most well generative model. The naïve Bayes classifier is built on
Bayes’ theorem. This classifier is regarded as a straightforward probabilistic one. The basic
function of this classifier is to produce a set of probabilities for each dataset by calculating
the frequency and combinations of values [24].

5. Experimental Results and Analysis

In order to demonstrate the efficacy of the proposed method, this section contains
the following: (i) MATLAB 2020 (b) was used for the experimental and assessment of the
proposed method; (ii) images from publicly available websites were used to generate a
database for training and testing; (iii) the performance analysis and results were displayed;
(iv) using various classifiers, the proposed methods were compared with the state of the art.

5.1. Dataset

IStego100K (large-scale image steganalysis dataset) [25] is a public dataset that contains
208,104 images. The training set consists of 200,000 images (100,000 cover-stego image
pairings), while the testing set consists of 8104 images. The cover/stego images have a
resolution of 1024 * 1024. The databases for cover and stego image samples are shown
in Figure 7.
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5.2. Performance Results
5.2.1. Performance Evaluation

Equation (4) can be used to calculate the classification accuracy, which is the percentage
of non-stego and stego images that are correctly classified to the total number of non-stego
and stego images.

Classi f ication Accuracy =
(Tp + Tn)

(Tp + Tn + Fp + Fn)
× 100 % (4)

True positive indicates the number of correctly categorized stego images (Tp). The
number of false negatives (Fn) indicates how many stego images were erroneously classified.
False positives are the number of wrongly classified non-stego images (Fp). True negative
indicates the number of correctly categorized non-stego images (Tn).

5.2.2. Evaluation Results

As indicated in Table 1, the performance analysis for each classifier is listed in order to
reveal whether a test image is stego or non-stego. In order to select the best classifier, the
accuracy of GDA and NB classifiers was measured.

Table 1. The accuracy results of different classifiers and features.

Classifier

Texture Features

LBP GLCM SFTA Combined Features

Detection Accuracy (%)

GDA 75 79 90 85

Naive Bayes 71 73 75 75

Despite the fact that all classifiers used the same feature vector, they yielded different
outputs. This is due to the fact that each classifier has its own range of attributes. The
performance of each classifier is detailed here. As shown in Table 1, the accuracy of the GDA
classifier for LBP, GLCM, SFTA, and combined features was 75, 79, 90, and 85, respectively.
As a result, it is reasonable to claim that the GDA classifier outperformed the naïve Bayes
classifier in terms of accuracy rate, with an accuracy rate of 90%. As shown in Table 1,
the accuracy of the NB classifier for LBP, GLCM, SFTA, and combined features was 71,
73, 75, and 75, respectively. As a consequence, behind the GDA classifier, the naïve Bayes
classifier came in second. Figure 8 shows a graphical representation of the accuracy rate
of two classifiers, GDA and naïve Bayes, which were used to categorize test images using
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various texture features. As shown in Figure 8, we conclude that when employing the GDA
classifier, SFTA produced significant results in terms of the accuracy rate.
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In both classifiers, when compared with LBP and GLCM features, the SFTA feature
emerged on top, as seen in Table 1. While the performance of GLCM came after the
SFTA feature. The LBP feature had a lower performance than the other texture features.
Furthermore, experimental results demonstrate that combining features (LBP, GLCM, SFTA)
did not improve performance over using separate features (LBP, GLCM, and SFTA). When
compared with a combination of feature vectors, an individual feature vector using SFTA
could attain an accuracy of 90%.

Lastly, we conclude that the proposed method, which relied on the SFTA texture
feature and the GDA classifier, outperformed all other texture features and classifiers,
making it a great texture feature for steganalysis classification.

5.3. Comparison with Previous ISC Works

In this section, we compare our method to other methods in order to assess its perfor-
mance. The extraction of texture features is the main element of each of these image steganal-
ysis classification algorithms. The proposed approach is compared with existing methods
relying on feature-based steganalysis in Table 2. The comparison shows that the proposed
method outperforms current state-of-the-art methods in terms of classification rates.

Table 2. Comparison of performance with other ISC techniques.

Techniques Feature Vector Dimension Texture Features Classifier Accuracy (%)

Jyothy et al. [12] 416 GLCM, DWT, and CT Ada-Boost 93

Qin et al. [26] 22130 GLCM Ensemble Classifier 83

Chhikara et al. [5] 134 Global histogram and
GLCM

Naïve
Bayes 60

Lin et al. [14] 1944 LBP Ensemble Classifiers 94

Proposed 21 SFTA GDA 90

As demonstrated in Figure 9, the proposed feature extraction strategy has a better
accuracy rate and fewer feature vector dimensions (21) than the majority of existing ap-
proaches, making it computationally easier. The methods [12,14] produced excellent results,
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with 416 and 1944 feature vector dimensions, respectively. However, the feature vector’s
high dimension necessitates a significant amount of computation. Ultimately, the exper-
iment results in Table 2 show that our method uses fewer features and improves image
steganalysis classification accuracy.

 

 

 

 

 

 

 

Figure 9. Performance Assessment based on several features and classifiers. 
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6. Conclusions

The main objective of this research was to find efficient and trustworthy texture
feature extraction methods and classifiers for improved steganalysis performance and a
high classification rate. First image preprocessing was carried out, followed by texture
feature extraction techniques. SFTA, LBP, and GLCM were used to extract texture feature
values, which were then utilized to train two distinct classifiers, GDA and naïve Bayes, to
identify a stego image from a non-stego image.

The experimental results show that the accuracy of the GDA classifier for LBP, GLCM,
and SFTA, as well as combined features, was 75, 79, 90, and 85, respectively. Therefore,
it is reasonable to claim that the GDA outperformed the naïve Bayes classifier in terms
of accuracy rate, with an accuracy rate of 90%. The accuracy of the NB classifier for LBP,
GLCM, and SFTA, as well as combined features, was 71, 73, 75, and 75, respectively. As a
consequence, behind the GDA classifier, the naïve Bayes classifier came in second. It can be
seen that when employing the GDA classifier, SFTA surpassed LBP and GLCM in terms of
accuracy rate.

GDA had the best classification rate, with 90 percent, among the classifiers. The
suggested method outperformed other existing texture-based analysis methods in terms
of feature vector dimension and classification accuracy (CA), according to the results.
Experiments results show that the presented method, which relied on the SFTA texture
feature and the GDA classifier, surpassed LBP and GLCM features and NB classifier, making
it a great texture feature for image steganalysis classification. The most current approaches
have more features vector dimensions than the proposed feature extraction technique,
making the method computationally simpler. In the future, we will look into approaches
such as Gabor that can successfully capture changes in image texture. We also aim to use
deep learning to implement the method.
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