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Abstract: The possibility that a neutron can be transformed to a hidden sector particle remains
intriguingly open. Proposed theoretical models conjecture that the hidden sector can be represented
by a mirror sector, and the neutron n can oscillate into its sterile mirror twin n′, exactly or nearly
degenerate in mass with n. Oscillations n− n′ can take place in vacuum or in an environment con-
taining regular matter and a magnetic field, in which only the neutron will be subject to interactions
with the environment. We describe the propagation of the oscillating n− n′ system in a cold neutron
beam passing through dense absorbing materials in connection to the possible regeneration type of
experiments, where the effect of n→ n′ → n transformation can be observed.

Keywords: neutron; mirror neutron; oscillation; density matrix

1. Introduction

Current interest in the hidden sector in particle physics is motivated mostly by the
apparent existence of Dark Matter (DM), which is not contained in the Standard Model (SM)
and the nature of which is not yet determined. One of the interesting possibilities is that
DM is related to particles of some hidden sectors which also appear in string theory models.
In these models, hidden sectors can include a new gauge group that is independent from
the gauge group of the Standard Model or some of its extensions such as Grand Unification.
Thus, the hidden sector particles do not interact with ordinary matter particles via Standard
Model forces; however, they have gravitational interactions in common with ordinary
matter. In the Mirror Matter model conjectured in [1,2], the hidden gauge sector is a replica
of the ordinary sector including the same particle content so that two sectors are described
by the Standard Model (SM) and its mirror copy SM′. They can have identical Lagrangians
due to mirror Z2 symmetry under the exchange of the particles between the two sectors
(for reviews, see [3–5], and for a historical overview, see [6]). Mirror matter can be a viable
candidate for DM, with specific cosmological implications, provided that the temperature
of the mirror sector is smaller than that of the ordinary sector [7–10].

If mirror symmetry Z2 is an exact symmetry, i.e., the Higgs doublets of the SM and
SM′ have exactly the same vacuum expectation values (VEV), 〈φ〉 = 〈φ′〉, then the ordinary
and mirror sector should have identical particle spectra, so that all ordinary particles
(electron e, proton p, neutron n, etc.) have mass degenerate mirror twins (e′, p′, n′, etc.)
which are sterile with respect to the SM interactions but have their own SM′ interactions.
However, Z2 symmetry can be spontaneously broken with two Higgses having different
VEVs 〈φ〉 6= 〈φ′〉, in which case the mirror particle will have masses different from that of
their ordinary partners [11,12].

Other than gravity, there can exist other interactions between the ordinary and mirror
particles, possibly giving rise to observable effects. The cross-interactions which violate the
lepton and/or baryon numbers of both sectors are of particular interest. From one side,
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since these interactions violate both B− L and B′ − L′ symmetries, they can induce baryon
asymmetries in both sectors [13,14], and such co-genesis mechanisms can explain the dark
matter fraction in the Universe [15,16]. On the other side, they can induce the mixing and
oscillation phenomena between the neutral particles from both sectors, e.g., the neutrino
mixing ν− ν′ between two sectors, which makes mirror neutrinos the natural candidates
for sterile neutrinos [17–20]. In addition, the neutron n can be mixed with a sterile neutron
n′, its partner from the mirror sector, εn̄n′ + h.c. Interestingly, the oscillation n− n′ can
be a rather fast process, with the characteristic oscillation time τnn′ = ε−1 as small as a
few seconds; this possibility does not contradict the existing astrophysical limits, and it
does not lead to nuclear instability [21]. That is different from the neutron–antineutron
oscillation [22,23], for which the characteristic time should be τnn̄ > 108 s as restricted by
direct experimental limit as well by nuclear stability bounds [24]. In fact, both n− n′ and
n− n̄ mixing phenomena could be originated from the same theoretical framework [21,25]).
This could also have interesting astrophysical implications, e.g., for extreme energy cosmic
rays [26,27], for solar neutrons [28], and for neutron stars [29–31].

The n− n′ transition is affected by medium effects such as the presence of matter or
magnetic fields [21,32] such that a transition faster than the neutron decay may not be
immediately observed. However, this transition can be observed via neutron disappearance
n → n′ or regeneration n → n′ → n [21] in experiments with properly controlled back-
ground and environmental conditions. These experiments are convenient for observations
due to the long lifetime of the neutron, the detection mechanism determined by strong
interactions, and the large neutron fluxes available from reactors or spallation sources.

In the previous works, [21,33–35], various possible experiments for observing n− n′

oscillation effects were considered, including essentially the two detection methods: the
disappearance experiments due to the neutron oscillation n→ n′ into a sterile neutron n′,
and the appearance (walking through the wall) experiments due to neutron regeneration
from sterile state n′, i.e., n→ n′ → n.

Several dedicated experiments have already been performed to search for n → n′

oscillations via neutron disappearance in ultra-cold neutron (UCN) traps [36–42]. These
experiments still do not exclude the possibility of n− n′ oscillation time to be much less
than the neutron decay time, and some of them even show anomalous deviations from the
null-hypothesis [43]. A new search is underway for testing these anomalies at the UCN
facility of the Paul Sherrer Institute (PSI) [44].

As an alternative to UCN experiments, both the neutron disappearance n→ n′ and
regeneration n→ n′ → n can be experimentally tested with cold neutrons [34]. The latter
search can be realized, e.g., in an experiment with an intense cold neutron beam where the
transformation n→ n′ in the beam can be enhanced by applying specific environmental
conditions. Then, the neutron beam can be removed by a strong absorber, leaving only
n′ states passing freely through. After passing the absorber, n′ can effectively oscillate
back to the n states under the same environmental conditions and will be detectable.
Such experiments are underway at neutron sources in Oak Ridge National Laboratory
(ORNL) [45–47] and at the newly constructed European Spallation Source (ESS) [48]. In
the disappearance experiment, a small reduction in the neutron flux should be detected
under applying a certain constant magnetic field over the neutron flight distance. In the
regeneration mode, a small appearance effect can be directly measured possibly against
a small background. For both methods, a resonant constant magnetic field should allow
switching the effect on/off. There is also another type of experiment that can be related
to the neutron regeneration to the antineutron, n→ (n′, n̄′)→ n̄, which is possible if the
neutron n has mixings with both the mirror neutron n′ and mirror antineutron n̄′ [49].

In the 1960s, the regeneration method was used by O. Piccioni and his colleagues
for a demonstration of the KL → KS transformation [50]. The mixing of neutral beam
components K0 and K0 forms a two-level quantum system with weak decay eigenstates KL

and KS. Since K0 and K0 components are interacting differently with the matter, the long-
lived state KL is transformed to a short-lived state KS after passing solid iron or lead plates.
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Similarly, the mixed oscillating system of the neutron n and the mirror neutron n′ with
eigenfunctions of the propagation Hamiltonian n1 and n2 has the components interacting
differently with the matter such that n can be absorbed and n′ will be non-interacting with
the material. In difference with mixed kaon system, the (n, n′)T system can be a subject
of additional interaction with the environment (e.g., magnetic field) that can lead to the
suppression or enhancement of the transformation.

Regeneration experiments are particularly promising for testing n− n′ oscillations in
the case when the two states n and n′ have some small mass splitting of ∆m = mn −m′n ∼
100 neV or so. In particular, this situation was used in [51] for explaining the neutron
lifetime discrepancy between the trap and beam experiments. Such a small splitting
between the ordinary and mirror particles can be obtained if mirror symmetry Z2 is very
mildly broken, with the VEVs of two Higgses having a small difference, 〈φ′〉 ≈ 〈φ〉 [52,53].

The model with mass splitting between n and n′ is being tested with the cold neutrons
in a strong magnetic field by the NN′ Collaboration at the Spallation Neutron Source in
Oak Ridge National Laboratory using the regeneration method [47]. An essential element
of the regeneration method is the absorber, where a two-component oscillating (n, n′)
system will propagate with only one component n strongly interacting with the material
environment and the other component, n′, is sterile. When the (n, n′) system is passing
the absorber, due to n ↔ n′ oscillations, both components n and n′ are the subject of
attenuation. To our knowledge, no quantum mechanical consideration of the evolution of
such a system, through strongly absorbing materials, have been reported. We should note
that the reflection/absorption of the mass-degenerate (n, n′) system in the walls of the UCN
traps was considered in Refs. [32,54], and the interactions of the two-level oscillating (n, n̄)
system with a magnetic and gaseous environment has been considered in Ref. [55]. In view
of the aforementioned cold neutron experiments, including the regeneration search, we
performed this study. We also found that a recent paper of the STEREO collaboration [56]
describes the search of hidden (sterile) neutrons via regeneration in a shielded detector
installed close to the ILL reactor without detailed treatment of absorption of n and n′

inside the reactor shielding. We think that the STEREO collaboration can benefit from
our approach, particularly in the region of larger (ε/∆E) not shown in the paper [56] that
might be relevant [51] for the neutron lifetime anomaly [57,58].

2. Description of Approach

We shall describe the propagation of the oscillating (n− n′) system in a cold beam of
neutrons, i.e., neutrons with a spectrum of velocities ranging from 200 m/s to 2000 m/s,
through dense materials in view of the possible regeneration type experiments [34] where
the effect of n→ n′ → n transformation can be measured. The regeneration experiment can
be described in the following way. The beam of free cold neutrons that can oscillate between
n and n′ states propagates in a vacuum. Before entering the absorber, it has probability Pn
to be detected as n neutron (if a neutron detector were to be present at this location) and
probability Pn′ = 1− Pn to be in n′ state (since n′ is not detectable as such). The thickness
of the absorber can be sufficiently large to remove almost all neutrons from the beam. The
n′ component should pass through the absorber without interaction. After exiting the
absorber, n′ can continue free oscillations, enriching the beam with n component. The latter
traveling through some distance to the detector will be counted there. Thus, neutrons can
be found to have passed through the absorbing wall.

The evolution of n− n′ system is described by the Schrödinger equation, id|Ψ〉/dt =
H|Ψ〉, where:

|Ψ(t)〉 =
(

ψn(t)
ψn′(t)

)
(1)

with each of the components ψn = (ψ+
n , ψ−n )T and ψn′ = (ψ+

n′ , ψ−n′)
T being two-component

spinors describing the two spin states of the ordinary and mirror neutron, respectively.
Thus, Pnn(t) = |ψn(t)|2 = |ψ+

n (t)|2 + |ψ−n (t)|2 corresponds to the probability of detecting
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the neutron, and Pnn′(t) = |ψn′(t)|2 = |ψ+
n′(t)|

2 + |ψ−n′(t)|
2 is the probability of n − n′

oscillation at time t.
A generic non-relativistic Hamiltonian in a medium has the form:

H =

(
Hn ε
ε Hn′

)
(2)

where non-diagonal term ε is the n− n′ mixing mass, and diagonal entries Hn and Hn′

correspond to n and n′ states, respectively. (In this paper we use natural units c = 1 and
h̄ = 1.) In particular, one has:

Hn = m +
p2

2m
+ µ(~σ · ~B) + V − i

(
W +

Γ
2

)
(3)

where m is the neutron mass and µ is its magnetic moment; ~B is the magnetic field and
~σ = (σ1, σ2, σ3) are the Pauli matrices; V is the neutron optical potential; W is the neutron
absorption rate in matter; and Γ = τ−1

dec is the neutron decay rate. Similarly, Hn′ can be
expressed in terms of a contribution from a mirror magnetic field and mirror matter density,
whenever the latter can be present in the experiment.

We assume that there is a small mass splitting between ordinary and mirror neutrons,
∆m = m′ −m. For the sake of definiteness, we take ∆m ∼ 102 ÷ 103 neV, the values sug-
gested in Ref. [51] for solving the neutron lifetime problem. The identical real contributions
in Hn and Hn′ are irrelevant for the evolution of the system, and we can omit them. In
particular, for cold neutrons, v ∼ 1 km/s or so, the difference of the kinetic energies is
negligibly small since p2/m− p2/m′ ' v2∆m ∼ 10−11∆m. We also assume that contribu-
tions of mirror matter and mirror magnetic fields are negligible, and set V′, W ′ and B′ to
zero. In this case, it is convenient to take the spin quantization axis as the direction of the
magnetic field ~B = (0, 0, B). Therefore, the magnetic field contribution for two polarization
states will be ±µB. In addition, the last term in Equation (3) is the neutron decay width,
which should be practically the same for the mirror neutron. Since the neutron decay time,
τdec ≈ 880 s, is very large as compared to the cold neutron observation time, typically
t ∼ 0.1 s, we can neglect this term in Equation (3).

Therefore, our Hamiltonian (2) can be reduced to the following effective form:

H =

(
U − iW ε

ε 0

)
=

(
V − ∆m± µB− iW ε

ε 0

)
(4)

which is non-hermitian in the presence of the absorptive contribution. The diagonal real
quantities in Equation (4) are combined into U = V − ∆m∓ |µB|. This Hamiltonian can
also be split in two parts, hermitian and anti-hermitian (absorptive):

H = Hosc +Habs, Hosc =

(
U ε
ε 0

)
Habs = −i

(
W 0
0 0

)
(5)

Hamiltonian H is non-hermitian if W 6= 0. However, it can be diagonalized by a
canonical transformation:

SHS−1 = Hdiag = diag(H1, H2) (6)

or vice versa, H = S−1HdiagS. Without loss of generality, the matrix S can be taken as
unimodular, with Det S = 1:

S =

(
c s
−s c

)
, c = cos ζ =

1
2
(
eiζ + e−iζ), s = sin ζ =

1
2i
(
eiζ − e−iζ) (7)
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with

tan 2ζ =
2ε

U − iW
=

2ε(U + iW)

U2 + W2 (8)

where the parameter ζ = θ + iω as well as the eigenvalues H1,2 are generally complex.
Namely, since the transformation (6) conserves the trace and determinant ofH, we have
H1 + H2 = U − iW and H1H2 = −ε2. In this way, we obtain:

H1,2 = U1,2 − iW1,2 =
1
2

(
U − iW ±

√
(U − iW)2 + 4ε2

)
(9)

Then, the Schrödinger equation i d
dt |Ψ〉 = H|Ψ〉 in a constant medium is formally

solved as:

|Ψ(t)〉 = S(t)|Ψ(0)〉, S(t) = e−iHt = e−iS−1HdiagS t = S−1diag(e−iH1t, e−iH2t) S (10)

and so the transition probabilities are described by the evolution matrix:

S(t) =
(
Snn(t) Snn′(t)
Sn′n(t) Sn′n′(t)

)
=

(
c2e−iH1t + s2e−iH2t cs(e−iH1t − e−iH2t)
cs(e−iH1t − e−iH2t) s2e−iH1t + c2e−iH2t

)
(11)

Namely, starting at t = 0 from a neutron state |Ψ(0)〉 = |n〉 = (1, 0)T , we obtain:

Pnn(t) = |Snn(t)|2 = |c|4e−2W1t + |s|4e−2W2t + 2Re
(
c∗2s2ei∆Et)e−Wt

Pnn′(t) = |Sn′n(t)|2 =
1
4
| sin 2ζ|2

[
e−2W1t + e−2W2t − 2 cos(∆Et)e−Wt] (12)

where ∆E = U1 −U2.
Once again, if the absorptive part W is vanishing, then the matrix S (7) becomes

orthogonal with ζ = θ real, tan 2θ = 2ε/U, and the eigenvalues H1,2 are also real, so the
evolution matrix S(t) becomes unitary. In this case we have: H1 − H2 = ∆E =

√
U2 + 4ε2,

4c2s2 = sin2 2ζ = 4ε2/(U2 + 4ε2), and Equation (12) reduces to a standard expression for
the probability of n− n′ oscillation:

Pnn′(t) = sin2 2θ
[
1− cos(∆Et)

]
=

4ε2

∆E2 sin2
(

∆E
2

t
)

(13)

and Pnn(t) = 1− Pnn′(t). In the vacuum conditions, V = 0, and in the absence of magnetic
field, B = 0, we have U = −∆m, and the n − n′ oscillation amplitude is sin2 2θ0 =
4ε2/(∆m2 + 4ε2). The presence of medium modifies the oscillation probability. Namely,
if |U| < |∆m|, then n− n′ oscillation probability is enhanced, sin2 2θ > sin2 2θ0, and for
U = 0, i.e., in the case of full cancellation between ∆m and medium contributions, we have
maximal oscillations with θ = π/2 and ∆E = 2ε so that the oscillation probability becomes
Pnn′(t) = sin2(εt).

Another interesting case is when W 6= 0, but instead, U is vanishing, assuming, e.g.,
an exact cancellation between ∆m and medium contributions (notice, however, that in the
presence of magnetic field this is possible only for one polarization of the neutron, + or −).
Then, in the absence of n− n′ mixing, ε = 0, we would have the exponential extinction of
the neutron flux, Pnn(t) = e−2Wt and Pnn′(t) = 0.

If ε < W/2, both eigenvalues are imaginary, H1,2 = −iW1,2 (so that ∆E = 0), where
both W1 and W2 are positive, with W1 + W2 = W and W1 −W2 = ∆W =

√
W2 − 4ε2.

The mixing parameter is imaginary, ζ = iω, with | sin 2ζ|2 = 4ε2/∆W2. Hence, from
Equation (12), we obtain the following for the transition probabilities:
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Pnn(t) =
[

cosh(∆Wt/2)− W
∆W

sinh(∆Wt/2)
]2

e−Wt

Pnn′(t) =
[

2ε

∆W
sinh(∆Wt/2)

]2
e−Wt (14)

In particular, in the limit ∆W → 0, i.e., W1 = W2 = W/2 = ε, one obtains Pnn(t) =
(1 − εt)2e−2εt and Pnn′(t) = (εt)2e−2εt. Thus, for short flight times, εt � 1, we ob-
tain Pnn′(t) ≈ (εt)2(1− 2εt) and Pnn(t) ≈ 1− 4εt, while for large times, εt � 1, both
probabilities Pnn and Pnn′ are exponentially suppressed. In the case ε � W, we have
∆W ≈ W − 2ε2/W, so that W2 ≈ ε2/W � W1 ≈ W − ε2/W. Thus, for large flight times,
Wt� 1, we obtain Pnn′(t) ≈ (2ε2/W)2e−(2ε2/W)t.

As for the regime ε > W/2, H1,2 are not purely imaginary since
√

4ε2 −W2 = ∆E
becomes real. In this case, we obtain H1,2 = 1

2 (−iW ± ∆E), sin 2ζ = 2ε/∆E and we obtain:

Pnn(t) =
[

cos(∆Et/2) +
W
∆E

sin(∆Et/2)
]2

e−Wt

Pnn′(t) =
(

2ε

∆E

)2
sin2(∆Et/2) e−Wt (15)

Therefore, for short times, Wt � 1, Pnn′ reproduces the standard result of
Equation (13), while for large times, Wt� 1, both Pnn and Pnn′ are exponentially suppressed.

In this paper, we follow the approach of our previous paper [35]. For our purposes, it
will be convenient to use the density matrix formalism and describe the evolution of (n, n′)
system evolution via the Liouville–von Neumann equation (see, for example, [59]):

ρ̇ = −i
(
Hρ− ρH†) = −i

[
Hosc, ρ

]
− i
{
Habs, ρ

}
(16)

where ρ(t) = |Ψ(t)〉〈Ψ(t)| is a 4× 4 Hermitian density matrix: ρij(t) = ψi(t)ψ∗j (t), where
i, j = n, n′ of two polarizations. The diagonal terms ρnn(t) and ρn′n′(t) represent the
probability to detect the neutron and sterile neutron correspondingly at time t. The first
term in Equation (16) is related to the hermitian part of the Hamiltonian and contains a
commutator. The second term related to its absorptive part contains an anti-commutator.
We set ρnn(0) = 1 at initial moment t = 0, corresponding to a pure n state.

We note that the Hamiltonian Equation (2) describing the interaction of (n, n′) system
with an absorber is incomplete. It omits effects of scattering of the neutrons on the nuclei
of the absorber material. Since mirror neutrons do not scatter off nuclei, the scattering
at any angle different than zero will lead to decoherence of the oscillating (n, n′) system.
This decoherence should be properly treated with the more complicated Lindblad Master
equation [60,61]. Elastic scattering treatment similar to Lindblad equation for the oscillating
muonium–antimuonium system in a gas environment was considered in an early paper [62].
For neutron scattering in condensed matter, the classical Van Hove theory with inclusion
of Lindblad treatment was presented in the paper [63]. For thick absorbers and when
the length of neutron scattering is smaller than absorption length, such as in the STEREO
experiment [56], the approach of this paper can be useful.

For the regeneration effect that we consider in this paper, the elastic scattering of
neutrons at angles larger than zero will additionally reduce the number of neutrons at
coordinate z along the beam paths that are removed by absorption. For the mirror neutron
component entering the absorber, transitional oscillations are damped at the neutron
absorption length, which is much smaller than the length for elastic scattering. Thus, if,
e.g., cadmium is used as an absorber, the absorption length is ∼0.04 mm, while the elastic
scattering length is ∼20 mm.

In the next section, we will start with a discussion of the preparation of the initial
state of the density matrix in a vacuum and the calculation of an average density matrix
as the initial state. Next, we will discuss the case when a magnetic field is absent, i.e.,
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U = −∆m + Vop, and will calculate numerically the evolution of the density matrix for
an idealized regeneration experiment where a neutron is passing the vacuum–absorber–
vacuum–detector environment sequence. If the regeneration experiment occurs in a con-
stant magnetic field, then this can be described in the same way as a zero magnetic field
but with modification of the magnitude of U and by considering two possible beam po-
larizations with −µB and +µB. Finally, we will discuss the calculations with constant U
for the case of weak and strong absorbers. The case with U(z) including ∆m and complex
Vopt in non-uniform magnetic field B(z) was used in calculations for the regeneration
experiment [47] and not presented in this paper.

3. Density Matrix in Vacuum

Now, following the paper [51], we can consider an oscillating (n, n′) system with
U = −∆m propagating in a vacuum, with B = 0, V = 0, and W = 0:

H =

(
−∆m ε

ε 0

)
(17)

This Hamiltonian will be used in Equation (16) together with the density matrix:

ρ(t) =
(

ρnn(t) ρnn′(t)
ρn′n(t) ρn′n′(t)

)
(18)

At the point where the neutron is produced in the nuclear reactor or in spallation
process, or as a result of neutron scattering or decay of other particles, the initial state of
the density matrix for (n, n′) system at t = 0 can be described as:

ρ(0) =
(

1 0
0 0

)
(19)

The time evolution of the density matrix Equation (18) will depend on the oscillation
frequency ω and the mixing angle θ0 defining the amplitude of oscillations:

∆E/2 = ω =
√
(∆m/2)2 + ε2 (20)

tan2θ0 = −2ε/∆m (21)

The solution of Equation (16) under the initial conditions of Equation (19) can be
explicitly found by:

ρnn(t) = 1− sin2 2θ0 · sin2(ωt), ρn′n′(t) = sin2 2θ0 · sin2(ωt)

ρnn′(t) = −
1
2

sin 4θ0 · sin2(ωt)− i
2

sin 2θ0 · sin(2ωt), ρn′n(t) = ρ∗nn′(t)
(22)

If ∆m > 10 neV, then for an arbitrarily small ε, the frequency ω will be large enough
such that a neutron in the Lab with a velocity ∼1000 m/s will have an oscillation length
smaller than 1 mm. If the size of the experiment is much larger than 1 mm, then the time-
dependent probabilities of Equation (22) can be replaced by time-averaged values. Thus,
we come to the time-averaged density matrix (TADM). In the TADM, the oscillation phases
induced by variable initial phases and velocities of the beam neutrons will be averaged in
the following way (we also use here the smallness of the angle θ0):

ρ̄ =

(
1− 2θ2

0 −θ0
−θ0 2θ2

0

)
(23)

This matrix when taken as the initial condition for Equation (16) with the Hamiltonian
Equation (17) reproduces itself in evolution. This density matrix Equation (23) provides
phase averaging and can be used as an initial condition for evolution of the (n, n′) system
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coming from vacuum through the absorbing material. This density matrix can be under-
stood as a final state of a single (n, n′) system having probabilities similar to that of the
average of the large ensemble of neutrons in the beam.

4. Evolution through Weakly Absorbing Material

In practice, sometimes it is necessary to transport a cold neutron beam through
air. This is an example of a weakly absorbing environment for the propagation of the
(n, n′) system. We will try to construct an average density matrix that will be a result of
evolution through homogeneous weakly absorbing material described by the Hamiltonian
Equation (4) without a magnetic field, such that U = −∆m + V and W � U.

For the propagation of cold neutrons in air, at NTP, we use the following values
for V = 5.668 × 10−11 eV and W = (5.773 × 10−15 + v · 8.328 × 10−18) eV, where v is
neutron velocity in m/s. By direct numerical computation of ρ(t) in the evolution of
Equation (16), we obtain the following density matrix for the (n, n′) system following a
path in air: ∆z = v · ∆t. As we mentioned before, we do not consider in the evolution the
elastic scattering of cold neutrons off the nuclei in the gas, since elastic scattering will result
in a dropout of neutrons from a highly collimated beam and effectively reduce the beam
intensity but will not fundamentally affect the propagation of (n, n′) system:

ρ̄nn =
(

1− 1
2 · sin2 2θ0

)
· e−∆z/Lair

Reρ̄nn′ = Reρ̄n′n = − 1
4 · sin 4θ0 · e−∆z/Lair

Imρ̄nn′ = Imρ̄n′n = 0

ρ̄n′n′ =
1
2 · sin2 2θ0 · e−∆z/2Lair

(24)

where tan2θ0 = −2ε/(∆m − Vair), and Lair is the absorption length in air calculated as
Lair = h̄v/(2W). For example, for a neutron velocity v = 1000 m/s, this gives an absorption
length Lair = 23.338 m. The averaged density matrix in Equation (24) can be used as the
initial state of the evolution for the (n, n′) system entering a strongly absorbing material af-
ter passing the distance ∆z in air or in another weakly absorbing medium. These equations
correspond to the case considered in Equation (15) and follow from Equation (12)’s general
solution.

5. Evolution in the Strongly Absorbing Material

The evolution of the (n, n′) system inside the absorber can be described by the same
Hamiltonian Equation (4) without a magnetic field with different values for V and W
for the particular absorbing material. As an example calculation for practical reasons,
we have chosen two absorber materials: a 3.5 mm thick cadmium (Cd) and a 32 mm
boron carbide (B4C) with natural isotope abundance. For Cd, V = 5.877× 10−8 eV and
W = (8.4558 × 10−9 + v · 9.914 × 10−15) eV. For B4C, V = 1.992 × 10−7 eV and W =
(6.102× 10−9 + v · 2.397× 10−14) eV. An example of the evolution calculations for Cd is
shown in Figure 1 for parameters ∆m = 300 neV and θ0 = 1× 10−2 and 1× 10−3.

As expected, the mirror neutron component ρn′n′ remains practically constant through-
out the length of the absorber, but at the entrance it experiences some damped oscillations
due to the re-arrangement of the energy eigenvalues of the system. The neutron component
ρnn shows fast absorption with the conventional absorption length known from the neutron
cross sections until it reaches the level that is determined by oscillation feedback of mirror
neutrons to neutrons. Since the probability of n′ remains almost constant, it provides an
equilibrium level of neutron probability. The oscillation probability is slightly dampened
in this equilibrium, though this is at a very small level, invisible in the figure. In equilib-
rium, the attenuation of both components is near equal. Interestingly, the probability for
n′ levels is approximately θ2

0, while the constant level of probability for neutrons is ∼θ4
0,

thus demonstrating a regeneration effect already inside the absorber. Since oscillations are
suppressed inside the absorber, the system does not obtain the phase shift factor that would
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lead to the significant variation in the probability at the exit of the absorber, thus providing
the state of the density matrix that is averaged and can serve as an initial condition for the
propagation in vacuum (or in air, or in magnetic field) behind the absorber.

Figure 1. Evolution of (n, n′) system in a 3.5 mm Cd absorber for ∆m = 300 neV, θ0 = 10−2 and 10−3,
and for velocity v = 1000 m/s. The averaged density matrix at the entrance of the Cd absorber after
passing 3 m in air is used as an initial condition. Magnetic field is B = 0. Neutron components ρnn

are shown in light/dark blue and mirror neutron component ρn′n′ in light/dark red colors.

This interesting behavior of the (n, n′) system inside the absorber opens up a new,
very simple way of observation for the presence of mirror neutrons in the intense beam of
cold neutrons. For that, it should be sufficient to measure the attenuation of the neutron
beam intensity as a function of the absorber thickness. At some thickness, the attenuation
regime should be stopped and replaced by a constant irreducible intensity. The latter
should be above the level of the background in the neutron detector. Since the constant
level of neutron probability in essentially determined by the ∼θ4

0, such measurements will
not be difficult to perform for larger values of θ0. The parameter θ0 = ε/∆m can be limited
by measurements for all values of ∆m.

One can notice that in Equation (4), without a magnetic field, U = −∆m + V, and
there is a possibility that U = 0 and ε > W/2 with a modified oscillation frequency of:

∆E/2 = ω =
√

ε2 − (W/2)2, ε = (∆m/2)× tan 2θ0 (25)

This case also can be calculated with the evolution Equation (16) and with the Hamil-
tonian in Equation (4). We show the results of such calculations as the values of ρnn and
ρn′n′ in Figure 2 for a B4C 32 mm absorber and in Figure 3 for a Cd 3.5 mm absorber. For
both figures, we calculate the density matrix components at the exit of the absorber as a
function of ∆m for two values of θ0 = 0.01 and 0.001.

The Fermi potential of B4C is V = 1.992× 10−7 eV corresponding to a pronounced
structure of probability in Figure 2 around ∆m = 200 neV. For a small angle θ0, the
resonance enhances the regeneration of neutrons ρnn and increases the yield of mirror
neutrons ρn′n′ . For larger angles at a stronger mixing parameter, the absorption of neutron
components starts to dominate in the resonance region.
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As we mentioned above, the presence of a constant magnetic field can play the same
role in U as ∆m or the real part of the optical potential Vop. Therefore, the position of the
resonance can be controlled for some region of ∆m and the magnetic field. For the Cd
absorber where Vop = 58.8 neV, similar resonance behavior in Figure 3 is not as pronounced
as with B4C for the same values of mixing angle θ0.
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Figure 2. ∆m dependence of probability ρnn and ρn′n′ for two values of angles θ0 = 0.01 and 0.001
after the neutron passes through the 32 mm B4C absorber starting from the average density matrix in
a vacuum. The value for the magnetic field B = 0.
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vacuum. The value for the magnetic field B = 0.

6. Summary

By computing the time evolution of the density matrix of the two-level system (n, n′)
passing the environment where one of the components in the Hamiltonian is strongly
interacting with an environment and another component is sterile, we provided the method
for understanding the process of regeneration that can be used in experiments with cold
neutron beams, e.g., in [47]. The real part of the potential of the Hamiltonian describing
the two-level (n, n′) oscillating system interacting with the environment can include the
effect of ∆mnn′ that can be positive and/or negative, the positive optical potential of the



Symmetry 2022, 14, 230 11 of 13

material, and the magnetic field whose contribution will depend on the polarization of the
neutron. If a magnetic field varies along the path of the neutron beam, it may compensate
the overall real potential to zero and will lead to the resonance behavior inside the absorber
that might essentially modify the regeneration process. This method can also be applied to
the experiments with lower magnetic fields, where n and n′ are degenerate in mass but the
mirror magnetic field B′ and/or eventual mirror matter gas can contribute to the energy
splitting. In this case, the latter contribution should not be neglected in the Hamiltonian (2).
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