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Abstract: To develop low-carbon transport and promote sustainable economic development, this
paper took the uncertainty in highway transport speed and transshipment time into account in
the actual transport process and established multi-objective path-decision models of multimodal
transport under different carbon policies. The expectation values of nonlinear uncertainties were
estimated by Law of Large Numbers (LLN), and the models were solved by the K-shortest paths algo-
rithm and non-dominated sorting algorithm (NSGA-II), whose advancement and effectiveness were
verified through the comparison of SPEA2. Based on the Pareto theory, the optimally symmetrical
compromise between the objectives and the influence of the transport speed uncertainty and carbon
emission policies on path decisions were quantified and discussed. Taking the multimodal transport
network of West Africa as the experimental background, the practicability of the path-decision results
is analyzed, and a trade-off analysis is also conducted to provide the theoretical foundation for future
freight transport planning.

Keywords: uncertainty; carbon emission policies; multimodal transport; multi-objective path-decision;
NSGA-II; pareto theory; symmetrical compromise

1. Introduction

The fast pace of globalization and the development of international trade has spawned
huge shipping demand, as more cargoes need to be transported; thus, the emissions
produced during the transport process have inevitably increased, which makes the envi-
ronment situation more serious [1]. Transport emission accounts for 39% of global CO2
emission, which ranks first among electricity, industry, residential, commercial and other
aspects [2]. The typical approaches to reduce the negative impact of logistic activities on the
environment are implementing carbon-control policies and the transformation of existing
freight transport modes [3]. Freight transport activities have taken up more than 30% of
carbon emissions and the fuel consumption of freight companies constitutes more than
40% of their total cost [1,2], which makes freight transport being one of the main emission
sources. The adverse impact of carbon emissions released from shipping activities has
restricted the development of transport industries.

Consequently, many national governments have introduced carbon emission policies,
such as Carbon Tax, Carbon Cap and Cap-and-Trade [4]. The impact of various carbon
policies on transport varies with the introduction of carbon taxes, which sets prices on
emission directly, and which will urge shippers to choose more environmentally friendly
transport modes; thus, the total cost of transport will not sharply increase [5,6]. Meanwhile,
carbon tax policy is easy to implement though emission-level uncertainty remains [7]. The
Carbon Cap policy, which is generally modeled by enforcing an upper bound on emission,
underlines the necessity of cost-emission trade-offs to go in quest of the best transport way,
such as switching to low-emitting technology and greener transport modes [8]. Similar to
Carbon Cap, Cap-and-Trade can significantly decrease carbon emission by correctly setting
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limits [9]. A finite number of carbon credits are bought and sold in a market regulated by
a third party. According to different carbon-control policies, decision makers can make
different path decisions.

Multimodal transport is an economical way to transform existing freight transport
modes, while in the meantime, multimodal transport under a carbon emission policy
is uncommon [10]. The low efficiency of unimodal transport (highway) and its lack of
combination with other modals (e.g., railway, waterway) makes it quite hard to lower the
carbon emission from a holistic perspective, so its prolonged positive effects are difficult to
exert. Multimodal transport means carrying cargoes through two or more transport modes,
offering an efficient, reliable and sustainable service for freight transport. Compared with
unimodal transport, multimodal transport can minimize its negative environmental impact
by as much as 57% in terms of carbon emissions and is quite appealing to both research
and shipping decision makers [11].

During the multimodal transport process, in order to follow the “green” concept,
the belief of a carbon emissions reduction is investigated by route planning or transport
network designing. In previous studies, planning models were built where carbon emis-
sions are cited as evaluation indexes while not considered as the minimized objective. In
multimodal transport problems, procedures and approaches for reducing carbon emissions
are examined. For regulating policies, the effects are studied and evaluated to signify
its importance in logistic activities [12,13]. However, few of these studies focused on the
impact of policies on path-decision problems, especially in multimodal transport. Different
implementations of carbon policies will affect the transport mode selection, thus exerting a
more significant impact on the total cost or total volume of carbon emissions. Therefore, to
uphold the “green” idea, it is necessary to study the multi-objective path-decision problem
of multimodal transport under different carbon policies.

Uncertainty exists in transport process and is reflected in transport speed, transport
time and transit time. Transport speed uncertainty is caused by the difference in road
conditions. Transshipment time is affected by the stevedoring equipment, level and capacity
of the different nodes. Under uncertain conditions, if it is modeled and solved according
to the determined situation, the decision results are inconsistent with the actual transport
scenarios [14]. Handling these uncertainties can help prompt a strategic, tactical and
operational decision [15]. There is a gap between the actual transport situation handling
and traditional uncertainty programming, such as stochastic programming [16], fuzzy
programming [17], heuristic optimization [18] or scenario-based optimization [19], and it is
logically impracticable to obtain the exact value of the uncertainty parameters [20]. Hence,
in this paper, the mathematical expectation of the function corresponding to the uncertain
variable is taken to deal with the problem.

In urban logistic activities, multimodal transport inevitably concerns highway trans-
port, as enormous interference factors, such as the speed instability, will disrupt the normal
operation of the overall transportation system. Highway transport as a major component
of the multimodal transport process is the main contributor to the total carbon emissions,
and there is a correlation between them. Studies suggest that the variation in speed will
lead to the increase of carbon emissions and low transport efficiency. Average speed and
multi-objective models are built to demonstrate the relationship and trade-off analysis
between speed and carbon emissions [21–23]. In a nutshell, to achieve sustainable transport
while retaining a high transport efficiency, it is obligatory to simultaneously consider the
impacts of different carbon policies and highway transport speed on the path decision of
the multimodal transport problem; therefore, here, a multi-objective approach is applied to
reach the best symmetrical compromise between the goals.

Considering a single objective in the real problem is not practical for we cannot
achieve one goal without jeopardizing other interests. Since we cannot optimize all the
target values, the best way is to reach a symmetrical compromise [24]. Multi-objective
optimization originated from three areas: economic equilibrium and welfare theories, game
theory and pure mathematics. As an artificial intelligence approach, it can effectively
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address complicated problems. The general framework is to inspect a set of solutions,
with which an acceptable level will be satisfied [25,26]. Nowadays, there has emerged two
modern methods to solve multi-objective optimization problems: one is to integrate all the
objective functions into one synthetical formulation or select one objective function as the
major-optimized one while moving the others to the constraints. Utility theory, weighted
sum method, etc., are applied while the best choice of the utility functions or weights
is rather difficult to determine and quite arbitrary since it relies heavily on the decision-
maker’s preference. A different combination of weights will greatly influence the calculated
results. For the latter case, the constraint values need to be set for the objective functions,
which is also quite difficult to measure. A promising method is to give a set of Pareto
optimal solutions, which are not dominating each other. The Pareto optimal solution sets,
of which the symmetrical compromise can be reached, are preferred by decision makers
because they are more practical in dealing with real-life problems and allow them to do a
trade-off analysis to proceed the thinking process more comprehensively; so, Pareto theory
is the most widely adopted method to deal with multi-objective optimization problems.

A trade-off analysis is an effective measure to study the multi-objective path-decision
problem. It is a process of cognizing the conflicting objectives to help decision makers
assess the benefits and risks, based on which a symmetrical discussion can be implemented.
For example, Yu et al. [27] and Duran et al. [28] conducted a trade-off analysis to reveal the
interactive relationship of multiple objectives and demonstrated the benefits of considering
certain decisions or elements to optimize a system configuration. In this paper, the trade-off
analysis is adopted to evaluate how the carbon policies and highway transport speed
affect the system performance and the symmetrical relationship among our proposed
objectives [29].

Few studies have shown the impact of different carbon emission policies on route
planning and there is a lack of quantitative analyses (the specific comparisons can be found
in Table 1). This study aims to provide a heterogenous scheme in the context of multimodal
transport. The contributions of this paper are as follows. First, the stochastic expected
value model is used to describe the uncertainty in the transport and transshipment process.
Through LLN and stochastic simulation, the uncertain conditions are linearized, which
effectively reduces the complexity of the solution. Next, based on different carbon emission
policies, a multi-objective path-decision model of multimodal transport is constructed
in order to realize a symmetrical compromise between the economy and environmental
impacts. Third, according to different transport scenarios, the Pareto frontiers with a
number of non-dominated solutions are given. The influence of uncertain conditions and
carbon emission policies on path decision making is quantified.

Table 1. Comparison with the most related studies.

Article Transport
Time

Transport
Cost

Carbon
Emission

Uncertain
Conditions

Objective
Function

Scenario
Mode Solving Method

M 1 S 1 M S KSP NSGA-II Others

[3] 4 4 4 4 4 4
[17] 4 4 4 4 4 4
[20] 4 4 4 4 4 4
[30] 4 4 4 4 4 4
[31] 4 4 4 4 4
[32] 4 4 4 4 4 4
[33] 4 4 4 4 4 4
[34] 4 4 4 4 4 4
[35] 4 4 4 4 4
This

study 4 4 4 4 4 4 4 4 4

1 M: Multi; S: Single.

The rest of the paper is organized as follows: Section 2 introduces the modelling
methodology of the multi-objective path-decision problem. Section 3 provides solution
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methods to cope with the proposed models. Section 4 presents the case study of West Africa
freight transport to analyze the impacts of different carbon policies on path decisions under
highway transport uncertainty. Finally, the conclusions of this paper and the potential
extensions from this research are discussed in Section 5.

2. Modelling Methodology
2.1. Problem Description

The potential uncertainties and causes in the actual multimodal transport process
are shown in Figure 1. Enterprises deliver goods from the origin to the destination with
combined transport. Due to the uncertain conditions during transportation, it is necessary
to plan the route scheme under uncertainty, so as to make the goods meet the delivery time
constraints and realize the optimal economic benefits. Furthermore, in order to evaluate the
impact of a variation in the uncertain conditions during the transport process, to provide
risk decision support to enterprises, this study establishes a multi-objective multimodal
path-decision model of multimodal transport.
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Figure 1. Study motivation and background.

2.2. Assumptions

• The path is acyclic, i.e., the same node or transport path can be passed at most once.
• The same batch of goods cannot be separated in the process of transport. For one

transport mode, only one path between adjacent nodes can be used.
• In addition to the start and the end point, cargoes can be transferred at any node.
• The total quantity of goods is smaller than that of all paths and nodes.

2.3. Parameters

The notation of the parameters and variables is shown in Table 2.

2.4. Model Establishment

The uncertain conditions can be specifically formulated as the follows:

T1 = ∑
(h,i)∈A

∑
k∈M(h,i)

xk
(h,i)

Sk
(h,i)

vk
(h,i)

(1)

T2 = ∑
i∈N

∑
k∈M(h,i)

∑
l∈M(i,j)

yk,l
i Tk,l

i (2)

E(T0) = E(T1) + E(T2) (3)

Equation (1) denotes the transport time T1, which is concerned with the transport dis-
tance and speed. Equation (2) denotes the total transshipment time T2, which is concerned
with the unit transshipment time between adjacent nodes. Equation (3) formulates the
expected total transport time T0.
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Table 2. Subscripts and parameters used in the mathematical formulations.

Symbol Definition

N, A, M Collection of transport nodes, paths and modes
Ni The adjacent nodes set of i, , Ni ⊆ N

M(h,i) Collection of transport modes of path (h, i), M(h,i) ⊆ M
h, i, j Transport nodes, h, i, j ∈ N
(h, i) Transport path, (h, i) ∈ A
k, l Cargo transport modes, k, l ∈ M

Ms, Mr Transport modes with fixed paths and operation plans or not, Ms, Mr ⊆ M
qk
(h,i) Passing capacity of the path (h, i) under the transport mode k

Sk
(h,i) Transport distance of the path (h, i) under the transport mode k

vk
(h,i) Speed of the path (h, i) under the transport mode k

Tk
(h,i) Transport time of the path (h, i) under the transport mode k

Ck
(h,i) Transport cos t of the path (h, i) under the transport mode k

Emk
(h,i) Carbon emission of the path (h, i) under the transport mode k

Tk,l
i , Ck,l

i , Emk,l
i

Transshipment time, cost and carbon emissions generated switching from
mode k to mode l at node i

xk
(h,i)

Decision variable: if transport mode k is chosen in the path (h,i), the value
is 1, otherwise the value is 0

yk,l
i

Decision variable: if the mode changed from k to l in node i, the value is 1,
otherwise the value is 0

C1 = Q0[ ∑
(h,i)∈A

∑
k∈M(h,i)

xk
(h,i)C

k
(h,i) + ∑

i∈N
∑

k∈M(h,i)

∑
l∈M(i,j)

yk,l
i Ck,l

i ] (4)

C2 = max(µ, 0)Cod(T0 − Tod) (5)

E(C0) = C1 + E[C2] (6)

Equation (4) denotes the sum of transport and transshipment cost C1, which is de-
pendent on the total volume of cargoes Q0. The penalty cost for delay is represented as
Equation (5), where Cod is the unit delay penalty cost, and Tod is the prescribed arrival time,

µ = sgn(t) =


−1 T0 − Tod < 0
0 T0 − Tod = 0
1 T0 − Tod > 0

. Equation (6) indicates the expected total cost C0.

Under uncertain conditions, whether the goods will arrive on time is a random variable

subject to a 0–1 distribution. Define variable h(λr), h(λr) =

{
1 T0 − Tod < 0
0 otherwise

. The

expectation of the punctuality of the cargoes’ arrival can be expressed as follows:

E[h(λr)] = P(T0 − Tod < 0) ≥ α (7)

In Equation (7), α is the expected threshold of the punctuality of the cargoes’ arrival
time, α ∈ (0, 1).

The multimodal transport path-decision problem belongs to the NP hard problem.
Therefore, Stochastic Simulation and LLN, which is able to transform the nonlinear content
in the model and reduce the solving complexity, are explored here to estimate the expected
value. r groups of samples λr = (vk

(h,i)r, Tk,l
ir ) are generated by Random Simulation, in

which 1 < r < R.

1
R
[

R

∑
r=1

∑
(h,i)∈A

∑
k∈M(h,i)

xk
(h,i)

Sk
(h,i)

vk
(h,i)r

+
R

∑
r=1

∑
i∈N

∑
k∈M(h,i)

∑
l∈M(i,j)

yk,l
i Tk,l

ir ]→ E[T1] + E[T2] , a.s. (8)

R
∑

r=1
h(λr)

R
→ E[h(λr)] = P(T0 − Tod < 0) , a.s. (9)
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where R→ ∞ . The left side of the arrows in Equations (8) and (9) are the estimated values
of expectations of the total transport time and the punctuality of the cargoes’ arrival. After
the uncertain conditions are transformed, the optimization models under different carbon
emission policies are shown as follows:

(1) Without a carbon emission policy
In this scenario, the model takes the minimization of the estimated values T0

′ and C0
′

as the objectives and the estimated value of the punctuality of the cargoes’ arrival as the
constraint, which is shown as Equation (10):

min T0
′ = 1

R (
R
∑

r=1
T1r +

R
∑

r=1
T2r)

min C0
′ = C1 +

1
R

R
∑

r=1
C2r

s.t. 1
R

R
∑

r=1
h(λr) ≥ α

(10)

(2) Carbon Cap Policy
Carbon Cap policy requires that the sum of the transport carbon emissions Em1 and

transshipment carbon emissions Em2 should be no more than the emission threshold
proposed by regulatory authorities Emu, which is illustrated as Equations (11) and (12):

Em1 = ∑
(h,i)∈A

∑
k∈M(h,i)

xk
(h,i)Emk

(h,i) (11)

Em2 = ∑
i∈N

∑
k∈M(h,i)

∑
l∈M(i,j)

yk,l
i Emk,l

i (12)

The calculation methods of carbon emissions for different transport modes are different.
If k ∈ Ms, the volume of the generated carbon emission is only related to the transport
distance, and Em0 is a fixed value; if k ∈ Mr, the volume of carbon emissions is affected by
uncertain conditions, then Em0 is a non-fixed value. The objectives and constraints of the
path-decision model under Carbon Cap policy is shown as Equation (13):

min T0
′ = 1

R (
R
∑

r=1
T1r +

R
∑

r=1
T2r)

min C0
′ = C1 +

1
R

R
∑

r=1
C2r

s.t. Em1 + Em2 ≤ Emu

s.t. 1
R

R
∑

r=1
h(λr) ≥ α

(13)

Specifically, if k ∈ Mr, then

Em1 =
1
R

R

∑
r=1

Ek
(h,i)r (14)

(3) Carbon Tax Policy
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Under the Carbon Tax policy, the total carbon emissions generated in the transport
process are charged with a carbon tax rate Ew, which is included in the total cost. Under
this policy, the optimization objectives and constraints are as Equation (15):

min T0
′ = 1

R (
R
∑

r=1
T1r +

R
∑

r=1
T2r)

min C0
′ = C1 +

1
R

R
∑

r=1
C2r + Em0Ew

s.t. 1
R

R
∑

r=1
h(λr) ≥ α

(15)

(4) Cap-and-Trade Policy
Under the Cap-and-Trade policy, enterprises have a fixed carbon emission quota Eml .

If there is any surplus, the remaining quota can be sold at a certain price Es, and the profit
will offset part of the transport cost. If the quota has been overdrawn, certain quota Eb
should be traded, and the purchase expenditure will be included in the total transport cost.
The optimization objectives and constraints of the model are shown as Equation (16) under
the Cap-and-Trade policy:

min T0
′ = 1

R (
R
∑

r=1
T1r +

R
∑

r=1
T2r)

min C0
′ = C1 +

1
R

R
∑

r=1
C2r + δ(Em0 − Eml)

s.t. 1
R

R
∑

r=1
h(λr) ≥ α

(16)

In Equation (16), δ =

{
Es Em0

− Em1
< 0

Eb otherwise
. The above models are subject to the

following constraints:

∑
h∈Ni

∑
k∈M(h,i)

xk
(h,i) − ∑

j∈Ni

∑
l∈M(i,j)

xl
(i,j) =


1, i = d
0, i 6= o, i 6= d
−1, i = o

; ∀i ∈ N (17)

∑
k∈M(h,i)

xk
(h,i) ≤ 1 ∀(h, i) ∈ A (18)

0 ≤ ∑
k∈M(h,i)

∑
l∈M(i,j)

yk,l
i ≤ 1 ∀i ∈ N, k 6= l (19)

Q0xk
(h,i) ≤ qk

(h,i) ∀k ∈ M(h,i) (20)

Q0yk,l
i ≤ qi ∀k ∈ M(h,i), l ∈ M(i,j), k 6= l (21)

k = l ∀l ∈ {O, D}, ∀k ∈ M(h,i), ∀l ∈ M(i,j) (22)

xk
(h,i), yk,l

i ∈ {0, 1} ∀h, i ∈ N, k ∈ M(h,i), l ∈ M(i,j) (23)

Constraint (17) represents the conservation constraint of cargo flow between adjacent
transport paths; Constraint (18) indicates that only one transport mode can be adopted
in one path for the same good; Constraint (19) denotes that cargoes can be transferred at
most once on one node; Constraint (20) ensures that the quantity of cargoes on any path
is less than or equal to the service capacity of this path; Constraint (21) ensures that the
cargo quantity on any transport node is no more than its service capacity; Constraint (22)
means that no transshipment of cargoes will occur at the origin or destination nodes; and
Constraint (23) means that the value of the decision variable should be 0 or 1.
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3. Solution Methods

The path-decision problem investigated in this paper is a multi-objective problem. As
most of the multi-objective problems (such as vehicle routing problem, traveling salesman
problem, scheduling problem, etc.) have to realize several objectives, instead of considering
a unilateral objective, multi-objective optimization addresses the problem from a holistic
perspective. As for multi-objective path-decision problems, approaches to solving them
can be divided into exact and heuristic algorithms. In terms of the heuristic algorithm,
uncertain conditions will inevitably bring about nonlinear path-decision contents, which
reduces the solving efficiency and is easy to fall into the local optimum. For this reason, this
paper applies the exact and heuristic algorithm, i.e., the Path Search Algorithm, to search
for feasible paths.

The NSGA-II algorithm is one of the most commonly used multi-objective optimization
algorithms. This method ensures the diversity of the solutions by using the concept of
crowding distance while considering the Elite principle and the non-dominated sorting.
The diversity of solutions maintained is the main advantage of the NSGA-II algorithm.
Therefore, the NSGA-II algorithm was applied to obtain the non-dominated solution set of
the path scheme. The general framework of the methodology is shown in Figure 2.
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3.1. Path Search Algorithm

In view of the existence of the expected arrival punctuality constraints, the Dijkstra
Path Search Algorithm is unable to effectively screen the path schemes that meet the
constraints. Therefore, we applied the K-shortest paths algorithm to search for the deviated
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path schemes, then sorting and screening for feasible path schemes. Compared with the
original path schemes, the deviated ones have the same starting point, ending point and
several public nodes, but deviate from the original path on some nodes [22]. The path
search method is as follows:

Initialize set List A, List B, List C and List D. Set the sum of transport time Tk
(h,i) and

transit time Tk,l
i as the edge weight, P0 = h(λr) as the expected arrival punctuality of each

path scheme, r as the random simulation times, r = 1, 2, . . . , R; and u as the number of
iterations, u = 1, 2, . . . , K.

Step 1. Simulate randomly r groups of uncertain variable values
{

vk
(h,i)r, Tk,l

ir , Ek
(h,i)r

}
according to the settings. Collect basic data such as unit freight charge and carbon emission
per unit transport, and establish a path matrix.

Step 2. Solve matrix by the Dijkstra algorithm. Search the feasible paths in the
multimodal transport network and output T0r, C0r, h(λr).

Step 3. Place R groups of the uncertain variable values into the path matrix and
iterate the Dijkstra algorithm repeatedly until r = R. Output the total transport time
T0r = {T01, T02 . . . , T0R} and cost C0r = {C01, C02 . . . , C0R} corresponding to the random
simulation value.

Step 4. Add the values in the output array and proceed LLN estimation by dividing
the result through R. Add the feasible route schemes and its corresponding estimated total
transport time T0 and expected arrival punctuality P0 to List A;

Step 5. Search for the path scheme Au with the shortest T0 and its corresponding Tu
0

and Pu
0 in List A. Search for the deviated path schemes of Au and add them to List B.

Step 6. Search for the path scheme Au+1 with the shortest T0 either and its correspond-
ing Tu+1

0 and Pu+1
0 in List B.

Step 7. Repeat iterative Step 5 and Step 6 until PK+1
0 < α. Output the top K path

schemes that meet the expected arrival punctuality constraint. Store the path scheme in
List C and its corresponding T0 and C0 in List D.

3.2. Path Scheme Non-Dominated Sorting

Non-domination is defined as follows: Zt = (T0t, C0t) and Zv = (T0v, C0v) are two
individuals in the objective functions minT0 and minC0. When two sub-objectives C0t and
T0t in Zt are not greater than that in Zv, and at least one sub-objective value is less than the
target value in Zv, it is called that Zt dominates Zv, and vice versa. If Zt is not dominated
by other individuals, it is a non-dominated solution. If there is no dominant relationship
between individuals Zt and Zv, there is no correlation between individuals. Generally
speaking, the Pareto front is the set of the non-dominated solutions whose number is
greater than one in two-dimensional space. For any solution in the Pareto front, it is usually
not dominated by other solutions outside or within the front. Moreover, the contradiction
gap between the target values is the smallest, which provides a wide range of choices.
Therefore, through the trade-off characteristics between target values, we can further reach
a symmetrical compromise of all the non-dominated solutions in the Pareto front and
obtain the optimal solutions. The non-dominated sorting method is as follows:

Set List D ={Z1, . . . , Zt, . . . , Zv, . . . , ZK}, 1 < t, v < K, Zt = (T0t, C0t) is an individual
in List D. NDSet is non-dominated solution set which is initialized null.

Step 1. Search forward (k−−) from the last individual ZK to find the first individual
Zv which dominates Z1 or is irrelevant to Z1. Exchange the position of Zv and Z1.

Step 2. Search backward (1++) from the first individual Zv to find the first individual
Zt which dominates Z1. Exchange the position of Zv and Z1.

Step 3. Repeat Steps 1 and 2 until the individuals are all sorted. At this time, the
individuals on Z1

′s left dominate Z1 or are irrelevant to Z1 and are stored in the temporary
set List E. The individuals on Z1

′s right, which are dominated by Z1, are discarded. If there
is no individual on the left that can dominate Z1, it will be stored in the non-dominated
solution set; if there existing at least one, the individual will be discarded. At this time, the
first comparison process is completed.
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Step 4. Repeat the comparison process in Step 3 until the temporary set List E with
dominated and irrelevant individuals is null. At this point, all non-dominated solutions
have been stored in N D Set.

3.3. Trade-Off Analysis on Non-Dominated Path Schemes

The non-dominated solutions concerning the transport time and cost of NDSet consti-
tutes the Pareto front in two-dimensional space, as shown by the curve in Figure 3. Among
them, the 1# Pareto front has the highest rank, and the solution in this front is the optimal
non-dominant solution. The 2# Pareto front is the suboptimal Pareto front, and the solution
in this front is only dominated by the solution in the 1# Pareto front. Influenced by uncer-
tain conditions and carbon emission policies, the Pareto front may shift from the 2# front
to 1# front, which is called the Pareto improvement [23]. A study on the non-dominated
scheme and its improvement in the Pareto front has been helpful to quantify the influence
degree of the uncertainty conditions and to conduct a trade-off analysis concerning the
symmetrical compromise [24].
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4. Implementation and Analysis
4.1. Study Site Selection and Description

This paper takes the multimodal transport network of West Africa as the research
background to further verify the effectiveness of the proposed models and algorithm. This
shipment plan is to deliver a batch of phosphate ore weighing 10TEU from Agadez, Niger,
West Africa, to Freetown Port, which can be transported by trucks, trains and ships. The
study site is shown in Figure 4.

The speed of the railway and waterway is assumed the certain values. The speed is no
higher than 60 km/h of railway and 27 km/h of waterway in West Africa [25,26]. Influenced
by the uncertain conditions, the highway transport speed is an uncertain value subject to a
normal distribution. The capacity of the roads in West Africa is about 500 pcu/h/ln [27,28];
the BPR function (Equation (24)) was used to represent the highway transport speed. Five
groups of transport scenarios were set, from congestion to unimpeded situations, which
are shown in Table 3.

vi =
vi0[

1 + α
(

Q
C

)β
] (24)
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Table 3. Uncertain highway transport scenarios.

Transport Scenario Speed (km/h) Value of BPR
Function (pcu/h/ln) Characteristic

1 N (90,3) 459 Unimpeded
2 N (70,3) 650 Normal traffic flow
3 N (55,5) 890 General traffic flow
4 N (40,5) 955 Large traffic flow
5 N (25,5) 1057 Congestion

In Equation (24), vi denotes the highway speed and vi0 is the free-flow speed. Q is the
actual traffic volume (pcu/h/ln), and C is the road capacity (pcu/h/ln); α = 0.15, β = 4.

During multimodal transport, the setting of an uncertain transshipment time is shown
in Table 4. The transshipment time and the waiting time of the next transport stage,
respectively, conform to a normal distribution and uniform distribution. Equation (25) is
the probability density function of the normal distribution.

Table 4. Characteristics and distribution interval of the uncertain transshipment time.

Transshipment Time (h) Waiting Time of the Next Stage (h)

Transshipment
Mode 1 Transshipment Time Characteristic Waiting Time

H→R N (7,1) Unimpeded U (2,0.5)
H→W N (8,1) General (2,5)
R→W N (4,0.5) Congestion N (5,1)

1 H: Highway; R: Railway; W: Waterway.

If the probability density function of the random variable x can be expressed as

f (x) =
1

σ
√

2π
e−

1
2 (

x−µ
σ )

2

(25)

Then, x conforms to the normal distribution, represented as x ∼ N(µ, σ), where
x ∈ (−∞,+∞).

The unit prices of freight transport and transshipment between two modes were
determined by West Africa’s fluctuating standard [36], and delay penalty only occurs when
the total transport time is greater than 80 h. The carbon emissions, which is expressed as
Equation (26), are related to transport distance and total cargo volume.
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Ek
(h,i) = [ε0 + ε1·vk

(h,i) + ε2·(vk
(h,i))

2
+ ε3(vk

(h,i))
3
+

ε4

vk
(h,i)

+
ε5

(vk
(h,i))

2 +
ε6

(vk
(h,i))

3 ]·
⌈

Q0

Hk

⌉
·10−3 (26)

In Equation (26), {ε0, ε1, ε2, ε3, ε4, ε5, ε6} are the correlation coefficients, where the
values of the coefficients are {1576, −17.6, 0, 0.00117, 0, 36067, 0}; Hk is the loads of the
freight trucks. The units carbon emission of the other transport modes is shown in Table 5.

Table 5. Per unit carbon emission of freight transport and the transshipment of railways and
waterways.

Transport Mode Carbon Emission
(kg/km) Mode Switching Transshipment Carbon

Emission (kg/TEU)

Railway 0.156
H→R 2.17
H→W 1.98

Waterway 0.644 R→W 1.92

In the early stage of the development of low-carbon transport in West Africa, the
carbon tax rate is set at 10 yuan/tonCO2e; the market price of the carbon emission quota
may fluctuate due to the stability of the trading environment.

4.2. Results and Discussions

This section analyzes the influence of an uncertain transport environment and differ-
ent carbon emission policies on path decision; the Pareto fronts obtained under the five
scenarios are shown in Figure 5.
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4.2.1. Under Uncertain Transport Conditions

It can be seen that as the highway transport conditions deteriorate, the Pareto front
moves from the high level to the low level, and the path schemes in the front are also
reduced. When the transport condition becomes worse until congested, the Pareto front
level is upgraded again. At this time, the path schemes in the front all adopts whole-journey
railway transport.

Under the different transport scenarios, the non-dominated path-decision schemes are
occupied by rail–road combined transport, and then the railway transport gradually takes
advantage with the deterioration of highway transport conditions. At this time, the carbon
emissions also decreased. It can also be found that all the non-dominated path-decision
schemes do not include waterway transport. The reasons are that (1) waterway transport
in West Africa is fragmented, i.e., it cannot form the water–water continuous transport
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process. Costs spent on mode shift also make waterway transport lose its advantage in
profits; and (2) preference will be given to other modes if the transport time is no different.

When the carbon emission policies are not implemented, the worse the highway
conditions are, the more path schemes adopt low-carbon transport. After conducting
carbon emission policies, the nature and ability of uncertain conditions in influencing the
decision making in a path scheme will be discussed in the following section.

4.2.2. Under Different Carbon Emission Policies

(1) Carbon Cap Policy
The implementation of Carbon Cap policy can only influence path schemes whose

carbon emissions exceed the threshold in the non-dominated solution set. Moreover,
with the deterioration of highway transport conditions, railway transport gradually takes
advantage, and the restriction ability of this policy will be weakened as well.

(2) Carbon Tax Policy
When a low tax rate of 10 yuan/tonCO2e is adopted, the carbon tax does not exceed

0.1% of the total transport cost and is negligible. At this stage, the implementation of this
policy has little influence on the path decision. By referring to the experience of developed
countries such as Sweden, the carbon tax rate is increased to 250, 500 and 1000 yuan
/tonCO2e separately to study the impact of a high tax rate on the results of path decision
making.

As shown in Figure 6, in Scenario 1, when the tax rate is raised to 500, a new route
scheme that adopted whole-journey railway transport, whose carbon emission is the lowest,
is added in the Pareto front and its low carbon emission gives this scheme an advantage in
the total transport cost. Moreover, it is notable that under the tax rate of 500 and 1000, the
path-decision result is the same.
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Figure 6. Influence of carbon tax rate on path decision in Scenario 1.

However, as shown in Figure 7a,b, in Scenarios 2 and 3, only when the tax rate reaches
1000 can it affect the path-decision result. Among them, (1) Scenario 2 deletes one path
scheme that adopts rail–road combined transport; (2) the new path schemes in Scenario 3
is exactly the same as that of Scenario 1; and (3) all the path schemes in Scenarios 4 and 5
adopt whole-journey rail transport, so they are not affected by the Carbon Tax policy.
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shown in subfigures a,b).

It can be seen that with the implementation of carbon tax policy, the increase of
transport cost weakens the level of the Pareto front. For the management department, not
only can it improve the carrier’s awareness of low-carbon transport, but also increase the
tax revenue. However, only if the carbon tax rate reaches high enough will it affect the
multimodal path decision. Moreover, as the highway transport conditions become worse,
the carbon tax rate needs to be continuously increased so that it will again affect the path
decision results. However, it should be stressed that imposing high taxes in West Africa will
hurt the enthusiasm of transport companies and put more freight pressure on low-carbon
transport modes such as railway and waterway.

(3) Cap-and-Trade Policy
Under the Cap-and-Trade policy, the trading in the carbon emission quota belongs

to the free market. According to commodity supply and demand, the trading market is
divided into buyer’s, seller’s and equal trading markets. The buyer’s market is dominated
by customers, and the price of the carbon quota is lower than the conventional market
price, while the seller’s market is the opposite. Carrier enterprises can trade the carbon
emission quota according to their freight transport plan. Assume the carbon emission quota
as 15 tons and take 500 yuan and 1000 yuan/tonCO2e as the market price, respectively, to
conduct the analysis.

In Scenario 1, when the market price is 500 yuan/tCO2e, the Cap-and-Trade policy
improves the results of path-decision schemes. Specifically, as shown in Figure 8, (1) in the
seller’s market, the improvement direction and the path schemes of the Pareto front change
distinctively; and (2) the Pareto front of the buyer’s market is basically overlapped with
that of the equal trading market, which lie between the Pareto front of the seller’s market
and the Pareto front of the implementation of carbon tax policy.
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Figure 8. Influence of the implementation of the Cap-and-Trade policy under a seller’s market on
path decisions in Scenario 1.

In Scenarios 2 and 3, when the market price is 1000 yuan/tCO2e, the obtained set of
non-dominated path schemes is shown in Figure 9a,b. In this scenario, the impact of the
Cap-and-Trade policy on the results of path decision is similar to that of the Carbon Tax
policy. However, it can be found that the path schemes of Scenarios 4 and 5 are mainly
based on railway transport, whose carbon emissions are lower. Therefore, no matter what
market pricing is adopted, the obtained path schemes remain unchanged.
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Figure 9. Influence of the implementation of a Cap-and-Trade policy under a seller’s market on path
decisions in Scenarios 2 and 3 (respectively shown in subfigures a,b).

Combined with the above results, and compared with the non-dominated path
schemes without a carbon emission policy, the influence degrees of the different carbon
emission policies on the path-decision results are shown in Table 6.
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Table 6. Influence degrees of different carbon policies implementation on path-decision results.

Theoretical Research Application in Real Life

Carbon
Emission

Policy

Improvement
Direction of
Pareto Front

Path Schemes in Pareto
Front

Reduce
Transport Time

Reduce
Transport Cost

Reduce Carbon
Emissions

Carbon Cap
Policy Insignificant Add or drop schemes No Yes Yes

Carbon Tax
Policy Improved 1 Improve the scheme and

change its objective values No No Yes

Cap-and-Trade
Policy Improved 1 Improve the scheme and

change its objective values No Yes Yes

1 Compared with the Pareto front without carbon emission policies.

Under uncertain transport scenarios, the implementation of a Carbon Cap policy can
greatly reduce carbon emissions compared with the other two policies. The Carbon Cap
policy is a hard constraint, which directly eliminate the schemes of exceeding the carbon
emission threshold and can largely save transport cost. However, this policy is unfriendly
to transport enterprises and not conducive to the development of the logistics industry in
West Africa under the current socio-economic background. The other two policies are to
awake the carrier’s awareness of environmental protection through taxation and carbon
trade, so that the carrier can choose the transport scheme with fewer carbon emissions
freely, which can be viewed as the soft constraints. In general, under the seller’s market,
the implementation of a Cap-and-Trade policy exerts the most distinctive positive impact
on the path decision, which comprehensively coordinate the nexus among social, economic
and environmental benefits and endow transport enterprises with great autonomy.

4.3. Algorithm Performance Comparison

In order to solve the multi-objective optimization problem proposed in this paper, this
paper applies an exact algorithm, and combines the path search algorithm with the fast
non-dominated sorting algorithm to obtain the Pareto frontier. The K-shortest algorithm
was used to search, sort and screen the feasible path schemes, and the fast non-dominated
sorting algorithm was employed to output the Pareto frontier. The relevant data of a West
Africa multimodal transport network was used to compare the results of NSGA-II with
that of zitzler, Laumann and Thiele’s SPEA2 algorithm [37].

At present, many indicators have been adopted to evaluate the performance of solving
algorithms, such as CPU time [38], the number of Pareto optimal solutions [39], error
rate [40] and so on. In this paper, CPU time is used to highlight the solving efficiency of the
algorithm. We used MATLAB 2016a on an Intel Core i5-11320h CPU (2.7 GHz). The CPU
results are shown in Table 7.

Table 7. CPU time comparison of the two algorithms.

Carbon Cap Policy Carbon Tax Policy Cap-and-Trade Policy

NSGA-II 265 s 284 s 254 s
SPEA2 310 s 345 s 324 s

Therefore, the algorithm proposed in this paper can obtain the solution of the model
in a shorter time.

5. Conclusions

In this paper, the multi-objective path-decision problems under different carbon emis-
sion policies are studied considering the highway transport uncertainty. As a way to
achieve sustainable transport, the implementation of a low-carbon policy has proven to ex-
ert a positive role in reducing carbon emissions. However, the transport of goods is affected
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by multiple factors, where uncertain road transport conditions have a great impact on the
transport cost and time. The Path Search Algorithm and Fast NSGA-II were adopted to
obtain the set of feasible paths and non-dominated solution sets of path schemes. Through
the case study of West Africa freight transport, the effectiveness of the proposed model and
algorithms was verified, trade-off analysis and symmetrical discussion are also formulated.

The analysis of path schemes in non-dominant solutions shows that (1) improvement
of the Pareto set was positively correlated to the changes in highway speed; (2) path schemes
with carbon emissions exceeding the limit would be excluded under the implementation of
a Carbon Cap policy; (3) only when the carbon tax rate was high enough could it influence
the results of the path decision, and the implementation of a Carbon Tax policy would
significantly drive up the transport cost; and (4) the implementation of a Cap-and-Trade
policy had a positive impact on the path decision, and this influence would become more
striking under a seller’s market. The implementations of carbon emission policies are
conductive to encouraging transport enterprises to project low-carbon transport plans
and authorities to formulate relevant policies. However, for west African countries, their
transport demand is not able to support the establishment of a carbon-trading market, and
the implementation of a Carbon Tax policy might be hard given the economic situation in
West Africa; therefore, it is more suitable to implement Carbon Cap and Carbon Tax policies.
By analyzing the impact of different carbon emission policies and uncertain road conditions
on transportation routes, this paper could help the local governments to reasonably adopt
their carbon emission policies and form a stable market order in combination with the
current situation of the local economy and transportation infrastructures.

Nevertheless, the study has its limitations. Based on different carbon emission policies,
this paper considers the uncertainty of road transportation speed and cargo transshipment
time in the multimodal transport process. However, factors such as the local market
situation and market competition will also induce uncertainty in transport demand, as well
as affect delivery efficiency and path decisions. In addition, the path-decision schemes
in this paper were not specifically quantitatively investigated, while the final transport
scheme still needs to be determined. Promising extensions stemming from this paper are
as follows: (1) deeply consider the uncertain factors in the multimodal transport process
and expand the Pareto theory to more complex conditions; (2) evaluate the advantages and
disadvantages of the solution schemes in the Pareto set, and select the most feasible and
practical transport scheme; and (3) assess how to transform a multi-objective path-decision
problem into a single-objective optimization issue to search for the global optimum.
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