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Abstract: The modified Stokes second problem for incompressible upper-convected Maxwell (UCM)
fluids with linear dependence of viscosity on the pressure is analytically and numerically investigated.
The fluid motion, between infinite horizontal parallel plates, is generated by the lower wall, which
oscillates in its plane. The movement region of the fluid is symmetric with respect to the median
plane, but its motion is asymmetric due to the boundary conditions. Closed-form expressions are
found for the steady-state components of start-up solutions for non-dimensional velocity and the
corresponding non-trivial shear and normal stresses. Similar solutions for the simple Couette flow
are obtained as limiting cases of the solutions corresponding to the motion due to cosine oscillations
of the wall. For validation, it is graphically proved that the start-up solutions (numerical solutions)
converge to their steady-state components. Solutions for motions of ordinary incompressible UCM
fluids performing the same motions are obtained as special cases of present results using asymptotic
approximations of standard Bessel functions. The time needed to reach the permanent or steady state
is also determined. This time is higher for motions of ordinary fluids, compared with motions of
liquids with pressure-dependent viscosity. The impact of physical parameters on the fluid motion
and the spatial–temporal distribution of start-up solutions are graphically investigated and discussed.
Ordinary fluids move slower than fluids with pressure-dependent viscosity.

Keywords: upper-convected Maxwell fluids; pressure-dependent viscosity; permanent solutions

1. Introduction

Usually, in the existing literature, the viscosity of incompressible Newtonian or non-
Newtonian fluids in isothermal motions is considered constant, although it can depend
on the pressure or shear rate. Stokes [1] was the first who remarked that the viscosity of a
fluid can depend on the normal stress and the experimental investigations of Barus [2,3],
Bridgman [4], Griest et al. [5], and more recently, Bair et al. [6,7] and Prusa et al. [8] certified
this dependence. It was reported by Denn [9] that the fluid viscosity begins to increase at a
pressure of 50 atm, and at pressures of 1.000 atm, it increases more than an order of magni-
tude (see Renardy [10] and Rajagopal et al. [11]). It was also proved that the effects of the
pressure-dependent viscosity are very important in many engineering applications such as
polymer and food processing, pharmaceutical tablet manufacturing, fluid film lubrication,
microfluidics, and geophysics (see, for instance, Le Roux [12], Martinez-Boza et al. [13],
and Dealy and Wang [14]), and they cannot be neglected. At the same time, it is worth
mentioning the fact that the changes in density are small enough over a large pressure
range (see Dowson and Higginson [15]), and most liquids can be studied as incompressible
fluids with pressure-dependent viscosity.
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There is no general pressure–viscosity law that is valid for all types of fluids. Barus [2,3]
suggested a linear or exponential dependence of viscosity on the pressure—namely,

η(p) = µ[α(p− p0) + 1]
(1a)

or η(p) = µeα(p−p0). (1b)

The first relation is adequate for low-to-medium pressures, while the second one is
used for high-pressure p. In these relations, η(·) is the viscosity function, µ is the fluid
viscosity at the reference pressure p0, while the positive constant α is called the dimensional
pressure–viscosity coefficient. The approximate values for α, as it results from the work
of Housiadas [16], are 10− 50 GPa−1 for polymer melts, 10− 70 GPa−1 for lubricants,
and 10 − 20 GPa−1 for mineral oils. Hron et al. [17] showed that some unidirectional
flows are not possible in fluids with an exponential dependence of viscosity on pressure.
Recently, Fusi [18] proved that such flows of Herschel–Bulkley fluids are possible only if
the dependence of the viscosity on the pressure is linear, and we shall use the linear form
(1a) for the function η(·) in what follows.

It is well known that the gravity effects can have a significant influence on different
flows of fluids with engineering applications. They are more pronounced for flows in
which the pressure changes along the direction in which the gravity acts. Owing to gravity,
the pressure in a moving fluid varies with depth. Exact solutions for steady motions
of the incompressible Newtonian fluids with pressure-dependent viscosity in which the
gravity was taken into account were firstly obtained by Rajagopal [19,20]. Steady-state
(permanent or long-time) solutions for the modified Stokes second problem of the same
fluids have been determined by Prusa [21]. Explicit expressions for the start-up solutions of
the modified Stokes problems of Newtonian fluids were provided by Rajagopal et al. [22].
Other interesting results for motions of such fluids in rectangular domains were determined
by Kalagirou et al. [23], Akyildiz and Siginer [24], Housiadas and Georgiou [25], Fetecau
and Bridges [26], and Vieru et al. [27].

Unfortunately, exact solutions for flows of the non-Newtonian fluids with pressure-
dependent viscosity in which the gravity influence is taken into account are rare in the
existing literature. Numerical solutions for motions of such fluids, more exactly Maxwell
fluids, have been obtained by Karra et al. [28]. Steady-state solutions for the modified
Stokes second problem of incompressible UCM fluids with an exponential dependence of
viscosity on the pressure, for instance, were recently obtained by Fetecau et al. [29]. For
completion, in the present work, we provide closed-form expressions of the steady-state
solutions of the same problem for incompressible UCM fluids with linear dependence
of viscosity on pressure. The fluid motion is generated by the lower plate that oscillates
in its plane. The obtained solutions are used to determine the time needed to reach the
steady or permanent state. In addition, the steady solutions corresponding to the simple
Couette flow of the same fluids and the steady-state solutions for oscillatory motions of the
ordinary UCM fluids are obtained as limiting cases of general solutions. Known solutions
for motions of Newtonian fluids are also acquired as limiting cases. Effects of physical
parameters on the fluid motion, as well as the spatial distribution of the start-up solutions
(numerical solutions), are graphically presented and discussed.

2. Constitutive and Governing Equations

Let us assume that an incompressible UCM fluid with linear dependence of viscosity
on the pressure, whose constitutive equations (Karra et al. [28]) have the forms

T = −pI + S, (2a)

S + λ

(
dS
dt
− LS− SLT

)
= η(p)(L + LT), (2b)
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which fills the space between two infinite horizontal parallel plates at the distance h apart.
In the above equations, T is the Cauchy stress tensor, S is the extra-stress tensor, I is the unit
tensor, λ is the relaxation time, and L is the gradient of the velocity field v. The function
η(p) is given by Equation (1a), and we denote the Lagrange multiplier p as pressure (see,
for instance, Fusi [18] or Karra et al. [28]). If α→ 0 in Equation (1a), η(p)→ µ , and the
constitutive Equation (2) correspond to the ordinary incompressible UCM fluids. The fact
that η(p)→ ∞ if p→ ∞ is in accordance with a property that was experimentally proved.

After the time t = 0+, the lower wall oscillates in its plane with the velocity V cos(ωt)
or V sin(ωt). Here, V and ω are, respectively, the amplitude and the frequency of the
oscillations. Owing to the shearing force, the fluid starts to move. Following Rajagopal [19]
and Karra et al. [28], we search for a solution of the form

v = v(y, t) = u(y, t)ex, p = p(y), (3)

in a suitable Cartesian coordinate system x, y, and z, having the y-axis perpendicular to
plates. ex is the unit vector along the x-axis of the coordinate system. Since the fluid and
the plates have been at rest up to the moment t = 0, it leads to

v(y, 0) = 0, (4a)

S(y, 0) = 0. (4b)

By substituting the velocity field v(y, t) from Equation (3) in Equation (2b), and
bearing in mind the initial condition (4b), it is not difficult to show that the components
Sxz, Syy, Syz, and Szz of S are zero (see, for instance, [28] or [29]), while τ(y, t) = Sxy(y, t)
and σ(y, t) = Sxx(y, t) have to satisfy the following differential equations:(

1 + λ
∂

∂t

)
τ(y, t) = η(p)

∂u(y, t)
∂y

, (5a)

(
1 + λ

∂

∂t

)
σ(y, t) = 2λτ(y, t)

∂u(y, t)
∂y

. (5b)

If no pressure gradient in the x-direction exists, the balance of linear momentum
reduces to the next relevant partial or ordinary differential equations

ρ
∂u(y, t)

∂t
=

∂τ(y, t)
∂y

, (6a)

dp(y)
dy

+ ρg = 0, (6b)

in which ρ and g are the fluid density and the gravitational acceleration, respectively. The
incompressibility condition is identically satisfied while Equation (6b) suggests

p(y) = ρg(h− y) + p0 where p0 = p(h). (7)

Eliminating τ(y, t) between Equations (5a) and (6a), and bearing in mind Equation (1a)
for the viscosity function η(p) and the expression of p(y) from Equation (7), the next partial
differential equation(

1 + λ
∂

∂t

)
∂u(y, t)

∂t
= ν

{
[αρg(h− y) + 1]

∂

∂y
− αρg

}
∂u(y, t)

∂y
; 0 < y < h, t > 0, (8)
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is obtained for the dimensional fluid velocity u(y, t). In the above equation, ν = µ/ρ is the
kinematic viscosity of the fluid. Corresponding initial and boundary conditions are

u(y, 0) = 0,
∂u(y, t)

∂t

∣∣∣∣
t=0

= 0 if 0 ≤ y ≤ h, (9)

u(0, t) = V cos(ωt) or u(0, t) = V sin(ωt), u(h, t) = 0 if t > 0. (10)

If the velocity field u(y, t) is known, the non-null components τ(y, t) and σ(y, t) of S
can be worked out using Equation (5) with the adequate initial conditions—namely,(

1 + λ
∂

∂t

)
τ(y, t) = µ[αρg(h− y) + 1]

∂u(y, t)
∂y

; (11a)

τ(y, 0) = 0 i f 0 < y < h, (11b)(
1 + λ

∂

∂t

)
σ(y, t) = 2λτ(y, t)

∂u(y, t)
∂y

; (12a)

σ(y, 0) = 0 i f 0 < y < h. (12b)

Using the next dimensionless variables, functions, and parameters

y∗ =
y
h

, t∗ =
V
h

t , u∗ =
u
V

, τ∗ =
1

ρV2 τ, ω∗ =
h
V

ω, α∗ = αρgh (13)

and eliminating the star notation, the following initial, and boundary value problem

Re
(

1 + We
∂

∂t

)
∂u(y, t)

∂t
=

{
[α(1− y) + 1]

∂

∂y
− α

}
∂u(y, t)

∂y
; 0 < y < 1, t > 0, (14)

u(y, 0) = 0,
∂u(y, t)

∂t

∣∣∣∣
t=0

= 0; 0 ≤ y ≤ 1, (15)

u(0, t) = cos(ωt) or u(0, t) = sin(ωt), u(1, t) = 0 if t > 0, (16)

is obtained for the non-dimensional velocity field u(y, t).
In Equation (14), the two dimensionless constants Re and We defined by

Re = Vh/ν, We = λV/h, (17)

are, respectively, Reynolds and Weissenberg numbers. The first number represents the ratio
of internal forces to viscous forces, while the second one is the ratio of the relaxation time λ
and the characteristic time h/V. While We takes small enough values (see, for example, the
studies of Karra et al. [28] or Evans [30]), the range of variation of Re is up to 2000, in the
laminar regime, and more than 4000 in the turbulent regime for internal flows (Menon [31]).

The dimensionless forms of the ordinary differential Equations (11a) and (12a) with
the corresponding initial conditions are given by the following relations:

Re
(

1 + We
∂

∂t

)
τ(y, t) = [α(1− y) + 1]

∂u(y, t)
∂y

; 0 < y < 1, t > 0, (18)

(
1 + We

∂

∂t

)
σ(y, t) = 2Weτ(y, t)

∂u(y, t)
∂y

; 0 < y < 1, t > 0, (19)

τ(y, 0) = 0, σ(y, 0) = 0; 0 ≤ y ≤ 1. (20)

In the following equations, to avoid possible confusions, we denote uc(y, t), τc(y, t),
σc(y, t) and us(y, t), τs(y, t), σs(y, t) as the dimensionless start-up velocity, shear stress, and
normal stress field appropriate to the two motions of the incompressible UCM fluids with
linear dependence of viscosity on the pressure produced, respectively, by cosine and sine
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oscillations of the lower wall in its plane. These physical entities can usually be written as
the sum of their steady-state (permanent) and transient components—namely,

uc(y, t) = ucp(y, t) + uct(y, t), τc(y, t) = τcp(y, t) + τct(y, t), σc(y, t) = σcp(y, t) + σct(y, t), (21)

us(y, t) = usp(y, t) + ust(y, t), τs(y, t) = τsp(y, t) + τst(y, t), σs(y, t) = σsp(y, t) + σst(y, t). (22)

The dimensionless steady-state velocities ucp(y, t) and usp(y, t) have to fulfill the par-
tial differential Equation (14) with the boundary conditions of (16), while the corresponding
stresses τcp(y, t), τsp(y, t) and σcp(y, t), σsp(y, t) have to satisfy the ordinary differential
Equations (18) and (19), respectively. Fluid behavior is characterized by the starting
solutions uc(y, t), τc(y, t), σc(y, t) or us(y, t), τs(y, t), σs(y, t) some time after the motion
initiation. After this time, the fluid behavior is described by its steady-state components.
This is the time needed to reach a permanent or steady state. In practice, it is important for
experimental researchers who want to eliminate transient solutions from their experiments.
In order to ascertain this time for a prescribed motion, at least exact expressions for the
steady-state or transient solutions are necessary. This is the reason why we determine
closed-form expressions for the steady-state components ucp(y, t), τcp(y, t), σcp(y, t), and
usp(y, t), τsp(y, t), σsp(y, t) in the next section.

In order to determine these expressions at the same time, we define the complex
velocity up(y, t) and the complex stresses τp(y, t) and σp(y, t) as follows:

up(y, t) = ucp(y, t) + iusp(y, t), (23a)

τp(y, t) = τcp(y, t) + iτsp(y, t), (23b)

σp(y, t) = σcp(y, t) + iσsp(y, t), (23c)

where i is the imaginary unit. The dimensionless complex velocity up(y, t) need to satisfy
the following boundary value problem:

Re
(

1 + We
∂

∂t

)
∂up(y, t)

∂t
=

{
[α(1− y) + 1]

∂

∂y
− α

}
∂up(y, t)

∂y
; 0 < y < 1, t ∈ R, (24)

up(0, t) = eiωt, up(1, t) = 0; t ∈ R, (25)

while τp(y, t) and σp(y, t) satisfy the ordinary differential equations

Re
(

1 + We
∂

∂t

)
τp(y, t) = [α(1− y) + 1]

∂up(y, t)
∂y

; 0 < y < 1, t ∈ R, (26)

(
1 + We

∂

∂t

)
σp(y, t) = 2Weτp(y, t)

∂up(y, t)
∂y

; 0 < y < 1, t > 0. (27)

Following Karra et al. [28], we are searching for solutions of the form

up(y, t) = U(y)eiωt, (28a)

τp(y, t) = S(y)eiωt, (28b)

σp(y, t) = T(y)e2iωt , (28c)

for the boundary value problem (24) and (25) and the differential Equations (26) and (27).
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3. Solution

Substituting up(y, t) from Equation (28a) in (24), one obtains the following boundary
value problem for the function U(y):

[α(1− y) + 1]
d2U(y)

dy2 − α
dU(y)

dy
− γ2U(y) = 0; (29a)

U(0) = 1, (29b)

U(1) = 0, (29c)

where γ =
√

iωRe(1 + iωWe).
Making a suitable change of the spatial variable y—namely,

y =
4γ2(α + 1)− (αr)2

4αγ2 or equivalent ly r =
2γ

α

√
α(1− y) + 1 , (30)

one obtains for the function W(r) defined by the relation

W(r) = U

(
4γ2(α + 1)− (αr)2

4αγ2

)
, (31)

an ordinary differential equation of Bessel type. Its general, solution is of the form

W(r) = C1 I0(r) + C2K0(r). (32)

In the above relation, C1 and C2 are constants, while I0(·) and K0(·) are modified
Bessel functions of zero order. From Equations (30)–(32), it is derived that

U(y) = C1 I0

[
2γ

α

√
α(1− y) + 1

]
+ C2K0

[
2γ

α

√
α(1− y) + 1

]
. (33)

Using the boundary conditions (29b,c), the function U(y) is easily determined, and
the complex velocity up(y, t), as it results from the Equation (28a), is given by

up(y, t) =
K0

(
2γ
α

)
I0

(
2γ
α

√
α(1− y) + 1

)
− I0

(
2γ
α

)
K0

(
2γ
α

√
α(1− y) + 1

)
K0

(
2γ
α

)
I0

(
2γ
α

√
α + 1

)
− I0

(
2γ
α

)
K0

(
2γ
α

√
α + 1

) eiωt . (34)

An equivalent form of the dimensionless complex velocity up(y, t)—namely,

up(y, t) =
Y0

(
2iγ
α

)
J0

(
2iγ
α

√
α(1− y) + 1

)
− J0

(
2iγ
α

)
Y0

(
2iγ
α

√
α(1− y) + 1

)
)

Y0

(
2iγ
α

)
J0

(
2iγ
α

√
α + 1

)
− J0

(
2iγ
α

)
Y0

(
2iγ
α

√
α + 1

) eiωt, (35)

is immediately obtained using the known identities given by Equations (A1) from Appendix A.
Here, J0(·) and Y0(·) are standard Bessel functions of zero order.

Consequently, the base of the definition (23a) of up(y, t) results in

ucp(y, t) = <e

Y0

(
2iγ
α

)
J0

(
2iγ
α

√
α(1− y) + 1

)
− J0

(
2iγ
α

)
Y0

(
2iγ
α

√
α(1− y) + 1

)
Y0

(
2iγ
α

)
J0

(
2iγ
α

√
α + 1

)
− J0

(
2iγ
α

)
Y0

(
2iγ
α

√
α + 1

) eiωt

, (36)

usp(y, t) = Im

Y0

(
2iγ
α

)
J0

(
2iγ
α

√
α(1− y) + 1

)
− J0

(
2iγ
α

)
Y0

(
2iγ
α

√
α(1− y) + 1

)
Y0

(
2iγ
α

)
J0

(
2iγ
α

√
α + 1

)
− J0

(
2iγ
α

)
Y0

(
2iγ
α

√
α + 1

) eiωt

, (37)

where <e and Im denote, respectively, the real and the imaginary part of that which follows.
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Having the exact expressions for the two steady-state components ucp(y, t) and
usp(y, t), analytical expressions can be also determined for the corresponding shear and
normal stresses τcp(y, t), τsp(y, t), σcp(y, t) and σsp(y, t). In order to determine τcp(y, t) and
τsp(y, t), we use Equations (26), (28b) and (35) to obtain the dimensionless complex shear
stress τp(y, t) under the form

τp(y, t) =
√

ω/Re
√

α(1− y) + 1

×
Y0

(
2iγ
α

)
J1

(
2iγ
α

√
α(1−y)+1

)
)−J0

(
2iγ
α

)
Y1

(
2iγ
α

√
α(1−y)+1

)
Y0

(
2iγ
α

)
J0

(
2iγ
α

√
α+1

)
−J0

(
2iγ
α

)
Y0

(
2iγ
α

√
α+1

) ei(ωt+3π/4)
√

1+iωWe
.

(38)

Simple computations show that up(y, t) and τp(y, t) given by Equations (34) and (38),
respectively, satisfying the ordinary differential Equation (26).

Now, according to Equation (23b), it is immediately deduced that

τcp(y, t) =
√

ω/Re
√

α(1− y) + 1

×<e

{
Y0

(
2iγ
α

)
J1

(
2iγ
α

√
α(1−y)+1

)
−J0

(
2iγ
α

)
Y1

(
2iγ
α

√
α(1−y)+1

)
Y0

(
2iγ
α

)
J0

(
2iγ
α

√
α+1

)
−J0

(
2iγ
α

)
Y0

(
2iγ
α

√
α+1

) ei(ωt+3π/4)
√

1+iωWe

}
,

(39)

τsp(y, t) =
√

ω/Re
√

α(1− y) + 1

×Im

{
Y0

(
2iγ
α

)
J1

(
2iγ
α

√
α(1−y)+1

)
−J0

(
2iγ
α

)
Y1

(
2iγ
α

√
α(1−y)+1

)
Y0

(
2iγ
α

)
J0

(
2iγ
α

√
α+1

)
−J0

(
2iγ
α

)
Y0

(
2iγ
α

√
α+1

) ei(ωt+3π/4)
√

1+iωWe

}
.

(40)

Non-dimensional permanent frictional forces exerted by the fluid on the stationary
wall, for instance, can be immediately obtained by using y = 1 in Equations (39) and (40).

Finally, relying on the relations (27), (28), (34), and (38), it is not difficult to show that
the complex permanent normal stress σp(y, t) is given by the relation

σp(y, t) = 2ωWe

×
[

Y0

(
2iγ
α

)
J1

(
2iγ
α

√
α(1−y)+1

)
−J0

(
2iγ
α

)
Y1

(
2iγ
α

√
α(1−y)+1

)
Y0

(
2iγ
α

)
J0

(
2iγ
α

√
α+1

)
−J0

(
2iγ
α

)
Y0

(
2iγ
α

√
α+1

)
]2

e2i(ωt+3π/4)

1+2iωWe .
(41)

Consequently, the dimensionless steady-state normal stresses σcp(y, t) and σsp(y, t)
have the following expressions:

σcp(y, t) = 2ωWe

×<e


[

Y0

(
2iγ
α

)
J1

(
2iγ
α

√
α(1−y)+1

)
−J0

(
2iγ
α

)
Y1

(
2iγ
α

√
α(1−y)+1

)
Y0

(
2iγ
α

)
J0

(
2iγ
α

√
α+1

)
−J0

(
2iγ
α

)
Y0

(
2iγ
α

√
α+1

)
]2

e2i(ωt+ 3π
4 )

1+2iωWe

,
(42)

σsp(y, t) = 2ωWe

×Im


[

Y0

(
2iγ
α

)
J1

(
2iγ
α

√
α(1−y)+1

)
−J0

(
2iγ
α

)
Y1

(
2iγ
α

√
α(1−y)+1

)
Y0

(
2iγ
α

)
J0

(
2iγ
α

√
α+1

)
−J0

(
2iγ
α

)
Y0

(
2iγ
α

√
α+1

)
]2

e2i(ωt+ 3π
4 )

1+2iωWe

.
(43)

Now, by letting We→ 0 in Equations (36), (37), (39), (40), (42) and (43), the solutions
of Newtonian fluids with linear dependence of viscosity on the pressure performing the
same motions are obtained. The velocity fields, for instance, are given by the relations

uNcp(y, t) = <e

Y0

(
2iδ
α

)
J0

(
2iδ
α

√
α(1− y) + 1

)
− J0

(
2iδ
α

)
Y0

(
2iδ
α

√
α(1− y) + 1

)
Y0

(
2iδ
α

)
J0

(
2iδ
α

√
α + 1

)
− J0

(
2iδ
α

)
Y0

(
2iδ
α

√
α + 1

) eiωt

, (44)

uNsp(y, t) = Im

Y0

(
2iδ
α

)
J0

(
2iδ
α

√
α(1− y) + 1

)
− J0

(
2iδ
α

)
Y0

(
2iδ
α

√
α(1− y) + 1

)
Y0

(
2iδ
α

)
J0

(
2iδ
α

√
α + 1

)
− J0

(
2iδ
α

)
Y0

(
2iδ
α

√
α + 1

) eiωt

, (45)



Symmetry 2022, 14, 219 8 of 17

where the constant δ =
√

iωRe. The two velocity fields uNcp(y, t) and uNsp(y, t) have
been also established by Fetecau and Bridges [26] using a different method. However, a
relation between actual and previous solutions cannot be established because different
normalizations have been used in the two works. In addition, the parameter β in the
previous work is not the pressure–viscosity coefficient.

4. Asymptotic Approximations

In this section, some asymptotic approximations of the standard Bessel functions
are used to find steady solutions for the simple Couette flow of the same fluids and the
corresponding steady-state solutions for the modified Stokes second problem of ordi-
nary incompressible UCM fluids. Furthermore, as a check of the results that are here
obtained, known solutions from the existing literature for the incompressible Newtonian
fluids with/without pressure-dependent viscosity are recovered as limiting cases of the
curren results.

4.1. Case ω → 0 (Simple Couette Flow of Incompressible UCM Fluids with Linear Dependence of
Viscosity on the Pressure)

Using the asymptotic approximations of the Bessel functions J0(·), J1(·), Y0(·), and
Y1(·), given by Equations (A2) from Appendix A, it is not difficult to show that, for
small enough values of the dimensionless frequency ω of the oscillations, the steady-
state components ucp(y, t), τcp(y, t), and σcp(y, t) given by Equations (36), (39) and (42),
respectively, can be approximate by the following relations:

ucp(y, t) ≈ ln[α(1− y) + 1]
ln(α + 1)

cos(ωt), (46)

τcp(y, t) ≈ −
√

ω/Re
α ln(α + 1)

<e
{

α2 − 2γ2[α(1− y) + 1][ln(iγ/α) + β]

iγ
√

1 + iωWe
ei(ωt+3π/4)

}
, (47)

σcp(y, t) ≈ 2ωWe
α2[α(1−y)+1] ln2(α+1)

×<e
{[

α2−2γ2[α(1−y)+1][ln(iγ/α)+β]
iγ

]2
e2i(ωt+ 3π

4 )

1+2iωWe

}
.

(48)

Now, taking the limit of Equations (46)–(48) for ω → 0 , the steady solutions

uCp(y) = lim
ω→0

ucp(y, t) = ln[α(1−y)+1]
ln(α+1) ,

σ
(49a)

τCp = lim
ω→0

τcp(y, t) = − 1
Re

α

ln(α + 1)
, (49b)

Cp(y) = lim
ω→0

σcp(y, t) =
2α2We

Re[α(1− y) + 1]ln2(α + 1)
, (49c)

corresponding to the simple Couette flow of the incompressible UCM fluids with linear
dependence of viscosity on the pressure are obtained. Indeed, the dimensionless velocity
field uCp(y) can directly be obtained by solving the corresponding governing equation
with the following boundary conditions:

u(0, t) = 1, u(1, t) = 0; t > 0. (50)

As it was to be expected, the expressions of uCp(y) and τCp given by Equation (49a,b)
are identical to the solutions uNCp(y) and τNCp, respectively, corresponding to the simple
Couette flow of the incompressible Newtonian fluids with linear dependence of viscosity on
the pressure. This is normal since the governing equations for the two important physical
entities corresponding to steady motions of the incompressible Newtonian or UCM fluids
with/without pressure-dependent viscosity are identical. A surprising result is the fact
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that the steady shear stress τCp corresponding to this motion is constant on the entire flow
domain, although the fluid velocity field uCp(y) and the normal stress σCp(y) depend on the
spatial variable y. Now, by letting α→ 0 and We = 0 in Equation (49), the steady solutions

uONCp(y) = 1− y, τONCp = −1/Re, σONCp = 0, (51)

corresponding to the simple Couette flow of the ordinary incompressible Newtonian fluids
are recovered (see Erdogan [32] for the velocity field only).

4.2. Case α→ 0 (the Modified Stokes Second Problem of Ordinary Incompressible UCM Fluids)

Now, using the asymptotic approximations given by Equation (A3) from Appendix A,
it is not difficult to show that, for small enough values of the dimensionless pressure-
viscosity coefficient α, the dimensionless steady-state velocity fields ucp(y, t) and usp(y, t)
can be approximated by the relations

ucp(y, t) ≈
√

α + 1√
α(1− y) + 1

<e

 sin
{
(2iγ/α)[1−

√
α(1− y) + 1]

}
sin
{
(2iγ/α)[1−

√
α + 1]

} eiωt

, (52)

usp(y, t) ≈
√

α + 1√
α(1− y) + 1

Im

 sin
{
(2iγ/α)[1−

√
α(1− y) + 1]

}
sin
{
(2iγ/α)[1−

√
α + 1]

} eiωt

. (53)

Using the Maclaurin series expansions of the expressions [1 + α(1− y)]1/2 and (1 + α)1/2

in Equations (52) and (53) and taking their limits when α→ 0 , one recovers the non-
dimensional steady-state velocity fields (see also the identity (A4a) from Appendix A) as

uOcp(y, t) = lim
α→0

ucp(y, t) = <e

{
sin h[(1− y)

√
iωRe(1 + iω We)]

sin h[
√

iωRe(1 + iω We)]
eiωt

}
, (54)

uOsp(y, t) = lim
α→0

usp(y, t) = Im

{
sin h[(1− y)

√
iωRe(1 + iω We)]

sin h[
√

iωRe(1 + iω We)]
eiωt

}
, (55)

corresponding to the ordinary incompressible UCM fluids performing the same motions.
Following the same way as before for τcp(y, t) and τsp(y, t), it is not difficult to show

that shear stresses τOcp(y, t) and τOsp(y, t) corresponding to ordinary UCM fluids with
linear dependence of viscosity on the pressure can be written in the simple forms

τOcp(y, t) = lim
α→0

τcp(y, t) = −
√

ω

Re
<e

{
cos h[(1− y)

√
iωRe(1 + iω We)]

sin h[
√

iωRe(1 + iω We)]
ei(ωt+π/4)
√

1 + iωWe

}
, (56)

τOsp(y, t) = lim
α→0

τsp(y, t) = −
√

ω

Re
Im

{
cos h[(1− y)

√
iωRe(1 + iω We)]

sin h[
√

iωRe(1 + iω We)]
ei(ωt+π/4)
√

1 + iωWe

}
. (57)

As expected, the expressions of uOsp(y, t) and τOsp(y, t) given by Equations (55) and (57)
are identical to those obtained by Fetecau et al. [33] (Equations (36) and (42) with K = 0)
by a different method. In addition, making We = 0 in Equations (54)–(57), we recover the
similar non-dimensional solutions uONcp(y, t), uONsp(y, t), τONcp(y, t), and τONsp(y, t),
corresponding to the ordinary incompressible Newtonian fluids performing the same
motions ([29], Equations (61)–(63)).
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The dimensionless normal stresses σOcp(y, t) and σOsp(y, t) corresponding to the two
motions of the ordinary incompressible UCM fluids can also be obtained in the same way
as before, and their expressions are given by the following relations:

σOcp(y, t) = lim
α→0

σcp(y, t) = 2ωWe <e

{
cos h2[(1− y)

√
γ]

sin h2[
√

γ]

e2i(ωt+π/4)

1 + 2iωWe

}
, (58)

σOsp(y, t) = lim
α→0

σsp(y, t) = 2ωWe Im

{
cos h2[(1− y)

√
γ]

sin h2[
√

γ]

e2i(ωt+π/4)

1 + 2iωWe

}
. (59)

4.3. Case ω → 0 and α→ 0 (Simple Couette Flow of Ordinary Incompressible UCM Fluids)

Finally, making α→ 0 in Equation (49a–c) or ω → 0 in Equations (54), (56), and (58)
one obtains the dimensionless solutions

uOCp(y) = lim
α→0

uCp(y) = lim
ω→0

uOcp(y, t) = 1− y, (60)

τOCp = lim
α→0

τCp = lim
ω→0

τOcp(y, t) = − 1
Re

, (61)

σOCp = lim
α→0

σCp(y) = lim
ω→0

σOcp(y, t) = 2
We
Re

, (62)

corresponding to the simple Couette flow of the ordinary incompressible UCM fluids.
Consequently, as we already mentioned, the steady velocity and shear stress fields corre-
sponding to the simple Couette flow of ordinary incompressible Newtonian or Maxwell
fluids are identical, while the corresponding normal stresses are different.

5. Numerical Results, Discussion, and Conclusions

Isothermal oscillatory motions of the incompressible UCM fluids whose viscosity
linearly depends on the pressure were analytically and numerically investigated while
considering the effects of gravity. Closed-form expressions were provided for the steady-
state components of the non-dimensional velocity and the corresponding non-trivial shear
and normal stresses. Similar solutions for the simple Couette flow of the same fluids are
deduced using suitable asymptotic approximations of Bessel functions. Obtained results
can be useful for the experimental researchers who want to know the needed time to obtain
the permanent state. This is the time after which the diagrams of the start-up solutions
superpose over those of their steady-state components, and the fluid behavior is described
by the steady-state solutions.

For a check of results that were here obtained, the convergence of the start-up solutions
uc(y, t) and uC(y, t) (numerical solutions) to their steady-state components ucp(y, t) and
uCp(y), respectively, is proved in Figures 1–4 for distinct values of the dimensionless
pressure–viscosity coefficient α and the Weissenberg number We.

From these graphical representations, it also results that the necessary time to reach
the permanent (steady) state dwindles for increasing values of α or We. Consequently, the
permanent state is reached later for motions of ordinary fluids, compared with fluids with
pressure-dependent viscosity. It is also obtained for motions of Newtonian fluids later than
UCM fluids. Figures 3 and 4, as expected, reveal that the fluid velocity increases in time,
and the boundary conditions are clearly satisfied.

To shed light on the important characteristics regarding the fluid behavior in such
motions, Figures 5–9 are here prepared for Re = 100 and ω = π/12. Of particular interest
for this study is the pressure–viscosity coefficient. The oscillatory specific features of the two
motions and the phase difference between them are clearly underlined in Figures 5 and 6.
In Figure 5, the time variations in the midplane velocities ucp(0.5, t), usp(0.5, t) are together
presented at three decreasing values of α, as well as uOcp(0.5, t), uOsp(0.5, t).
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Similar graphical representations are provided in Figure 6 for the corresponding
frictional forces τcp(1, t), τsp(1, t) and τOcp(1, t), τOsp(1, t) on the stationary wall. In
all cases, as expected, the diagrams corresponding to motions of fluids with pressure-
dependent viscosity tend to superpose over those of ordinary fluids. The amplitude of the
oscillations corresponding to the same values of α is the same for both motions. This is an
increasing function with regard to the parameter α. Consequently, the fluid accelerates for
increasing values of α and the lowest velocity corresponds to the ordinary fluids.
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Figure 9. Contours diagrams of the dimensionless start-up velocities uc(y, t) and us(y, t) (numerical
solutions) for We = 0.8, ω = π/6 and α = 0.7.

In Figure 7, for comparison, the spatial distributions of the start-up velocities uc(y, t)
and us(y, t) are together presented for ω = π/6, Re = 100, We = 0.5 , and α = 0.7. The
oscillatory behavior and the phase difference between motions are easily observed, and the
imposed conditions uc(y, 0) = us(y, 0) = 0 and uc(1, t) = us(1, t) = 0 are clearly satisfied.
The spatial distribution of the velocity uC(y, t) corresponding to the simple Couette flow
is depicted in Figure 8a,b for two values of We. A careful analysis shows that uC(y, t) is a
decreasing function with regard to We. This behavior is easily explained, bearing in mind
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the fact that the Weissenberg number can also be interpreted as the ratio of elastic to viscous
forces (see Poole [34], for instance). More specifically, if the elastic force is fixed, a reduction
in We means an increase in the viscous force, which suggests a decline in the fluid velocity.

As an alternative to the first two three-dimensional graphs, the numerically computed
two-dimensional contours graphs of the dimensionless start-up velocity fields uc(y, t) and
us(y, t) are together illustrated in Figure 9 for ω = π/6, Re = 100,We = 0.8 , and α = 0.7.
The current graphical representations are displayed in the Parula colormap of the MATLAB
software, where the maximum and minimum values of the solutions are underlined by
dark yellow and dark blue colors, respectively. The alternative moving of the two separate
sets of closed curves along the time t signifies the oscillatory behavior of the two solutions.
The amplitude of the oscillations, as expected, diminishes for increasing values of the
spatial variable y, and the notable phase difference between the two motions is due to the
satisfaction of the boundary conditions.

The main outcomes that have been obtained in this work are as follows:

– Closed-form expressions were established for dimensionless steady-state solutions
of the modified Stokes second problem of incompressible UCM fluids with linear
dependence of viscosity on the pressure;

– Steady solutions for the simple Couette flow of the same fluids and steady-state
solutions for the modified Stokes second problem of ordinary incompressible UCM
fluids were obtained as special cases of previous results;

– The dimensionless steady shear stress τCp of the simple Couette flow of these fluids
is constant on the whole flow domain, although the corresponding velocity and the
normal stress are functions of the spatial variable y;

– The permanent state is obtained later for motions of ordinary fluids in comparison
with the fluids having pressure-dependent viscosity, as well as for incompressible
Newtonian fluids, compared with incompressible UCM fluids;

– Known solutions for the modified Stokes second problem of incompressible Newto-
nian fluids with/without pressure-dependent viscosity were immediately recovered
as special cases of the present results;

– The graphical representations from Figures 1–4 and 7–9 clearly show the fluid motion
is not symmetric with regard to the median plane in view of some physical reasons.
However, it can become symmetric if both plates are moving in the same way. In addi-
tion, various symmetry properties are inherent at Bessel functions used in constructing
solutions.
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Nomenclature

T Cauchy stress tensor
λ [s] Relaxation time
S Extra stress tensor
µ [Kg·m−1·s−1] Dynamic viscosity
L Velocity gradient
ρ [kg·m−3] Fluid density
I Identity tensor
ν [m2·s−1] Kinematic viscosity
v Velocity vector
ω [s−1] Frequency of oscillations
g [ms−2] Gravitational acceleration
τ [Kg·m−1·s−2] Shear stress
x, y, z [m] Cartesian coordinates
σ [Kg·m−1·s−2] Normal stress
u(y, t) [m·s−1] Fluid velocity

Appendix A

I0(x) = J0(−ix), K0(x) = −π i
2 [J0(−ix)− iY0(−ix)] ,

J0(−x) = J0(x), Y0(−x) = Y0(x)− 2i J0(x),
(A1)

J0(x) ≈ 1, J1(x) ≈ x
2

, Y0(x) ≈ 2
π

[
ln
( x

2

)
+ β

]
, Y1(x) ≈ − 2

π x
for |x| << 1, (A2)

where β = 0.5772 is the Euler–Mascheroni constant.

Jν(x) ≈
√

2
πx

cos
[

x− (2ν + 1)π
4

]
, Yν(x) ≈

√
2

πx
sin
[

x− (2ν + 1)π
4

]
for |x| >> 1, (A3)

sin(ix) = ish(x), (A4a)

cos(ix) = ch(x). (A4b)
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