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Abstract: Encryption is the de facto method for protecting information, whether this information is
locally stored or on transit. Although we have many encryption techniques, they have problems in-
herited from the computational models that they use. For instance, the standard encryption technique
suffers from the substitution box syndrome—the substitution box does not provide enough confusion.
This paper proffers a novel encryption method that is both highly secure and lightweight. The
proposed technique performs an initial preprocessing on its input plaintext, using fuzzy substitutions
and noising techniques to eliminate relationships to the input plaintext. The initially encrypted plain-
text is next concealed in enormously complicated codes that are generated using a chaotic system,
whose behavior is controlled by a set of operations and a nature-inspired triggering technique. The
effectiveness of the security of the proposed technique is analyzed using rigorous randomness tests
and entropy.

Keywords: chaotic key expansion; encryption technique; key expansion; key round; key-echo
code generation

1. Introduction

Researchers have effectively responded to the need for protecting information by
proposing many encryption techniques [1–12]. These techniques can be categorized either
by how they process their input (stream or block ciphers) or by the shared information
between the communicating parties (symmetric or asymmetric). Symmetric encryption
techniques (e.g., [13–18]) depend on a secret key that is shared between senders/receivers
and used for encryption and decryption. This type is the mostly used one because it
ensures faster processing. Asymmetric encryption techniques use two different keys [19,20].
A public key is used for encryption, and a private key (known only to the recipient) is used
for decryption.

These encryption techniques process their input using different computational mod-
els. Conventional methods use operations, such as substitutions, shifting, permutations,
and adding the effect of the key [18]. Chaos-based encryption techniques use chaotic
systems to induce enough confusion in the resulting ciphertext [21–26]. Numerical encryp-
tion techniques process their input using mathematical models [27–30]. These techniques
represent the key as a non-linear, one-dimensional function f (x) and encrypt plaintext
symbols ai by finding the roots for the equation f (x)− ai = 0. DNA-based techniques
make use of the sophisticated structures of the DNA sequences of living beings [31–34].
These techniques first manipulate their input using manipulation operations and then
hide the resulting messages within the complicated human genomic DNA. Another in-
teresting paper [35] proposed a novel image encryption scheme based on DNA sequence
operations and a spatiotemporal chaos system to encrypt images. Neural network-based
encryption techniques were also proposed. Authors of [36] proposed a double image
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encryption algorithm based on convolutional neural networks and dynamic adaptive diffu-
sion. The technique proposed in [37] uses continuous-variable quantum neural network
to induce high confusion and thus, secure the ciphered images. The techniques [38,39]
propose a chaos-based pseudo-random sequence generator and a DNA-rules-based chaotic
encryption algorithm for image encryption.

All the above techniques are important, as they use powerful computational methods
that provide reasonable protection for information. Although they passed important secu-
rity testing, they still have intrinsic problems and security vulnerabilities because of the
way they handle their input (plaintexts and keys). The performance of the chaos-based en-
cryption methods fully depends on the quality of the chaotic systems. If the chaotic system
is ill-designed or improperly seeded, the corresponding encryption technique is likely to
suffer. The chaos-based techniques either do not link the behavior of the chaotic system
to the key, or this link is direct and may leak the identity of the key. Although numerical
encryption techniques are based on mathematically sound principles, they suffer from real
problems. First, finding a function that can form an acceptable key is not easy. Second,
using the numerical solutions for the system of equations incur high processing demands
and potentially rounding problems for approximating the roots to the correct integer. Third,
the decryption becomes impossible in the case of computation overflow errors that result
from finding the roots. The conventional encryption methods have problems as well.
The entropy of the ciphertext is not sufficiently high [27]. Furthermore, the substitution
box is still a leaking point because it is not quite nonlinear [40,41]. The security of the
DNA-based methods is built only partially on the manipulation operations, but mainly
on the complexity of the DNA. Since the security of the DNA-based techniques is built on
the DNA complexity, this may be a problem, given the increasing power of the machines.
The neural network techniques are sound, provided that they are well trained and initial-
ized. Since the performance of the neural network-based techniques highly depends on the
quality of the initial data and the robustness of the intermediate calculations—which is not
easy to achieve—any errors in the initialization are likely to weaken the output (ciphertext).

This paper offers a novel encryption technique that is secure and demands low ex-
ecution time. The technique is based on several sound operations that can significantly
boost the confusion in the ciphertext and, therefore, addresses the vulnerabilities of the
other techniques. First, the initial encryption round processes its input using chaotic
symbol encoding, diffusion, and distortion techniques. These operations use chaotic and
data-dependent means to induce great confusion in the output. Second, the key echo
code generator uses expansion techniques, multistage mapping distortion, and biologi-
cally triggered mutation operations to create enormously complicated codes for hiding
the ciphertext. Third, the hiding method conceals the initially ciphered symbols in the key
echo codes. The hiding method involves highly effective mixing operations that—to the
best of our knowledge—are unique to the proposed method (all other methods use simple
means, such as XOR and addition operations to mix the key effect). Therefore, the proposed
encryption technique offers the following contributions.

1. Combining chaotic systems and nature-inspired triggering techniques to ensure high
confusion.

2. Diffusion techniques that are greatly sensitive to the input variation and reflect this
variation in a high avalanche effect.

3. Effective ciphertext-key echo code mixing operations that ensure deep hiding of the
ciphertext in the key echo codes.

4. Key echo generator that effectively hides the encryption key identity.

We present the contributions of this paper as follows. Section 2 presents two funda-
mental concepts: the substitution space (Section 2.1) and the chaotic system (Section 2.2).
Section 3 presents the encryption technique processes: the initial encryption process
(Section 3.1), the key echo generation process (Section 3.2), and the key round (Section 3.3).
The decryption process is presented in Section 4. Section 5 presents the security testing.
Section 6 provides concluding remarks and directions for future work.
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2. Preliminaries

This section presents the substitution space operation and the key-controlled chaotic system.

2.1. Substitution Space: ST

The substitution space ST is a 2
p
2 × 2

p
2 table—p is the number of bits that represent a

symbol. The 2p entries of ST are filled with all possible permutations of the p bits. These
permutations are placed in ST as specified by the S-Box of AES [18]. The substitution space
is used to substitute input plaintext symbols as follows. For any p-bit input symbol oi,
the substitution is performed by splitting the bits of oi into left and right halves, where
the left half indexes the substitution space’s rows and the right half indexes its columns.
The content of the indexed entry is the substitution for oi.

2.2. Chaotic System

The chaotic system uses a one-dimensional logistic map to generate chaotic signals,
each with p bits, where p is determined by the ASCII symbols used (For instance, if the
ASCII symbols from 0 to 255 are used in the encryption, then p = 8). The logistic map is
a simple but very powerful system that uses one bifurcation parameter r. Equation (1)
defines the logistic map, where the bifurcation parameter r can assume any value in the
interval (0, 4] and xn can assume any value in the open interval (0, 1). Based on [4,42],
if 0 ≤ r < 3.57, the system has a specified attractor value (the value or the set of values
that the system settles toward over time), and therefore does not show chaotic behavior.
If r ∈ [3.57, 4], the system becomes in the state of chaos.

xn+1 = r · xn(1− xn) (1)

When the system is in a chaotic state, very different chaotic sequences are generated by
modifying the value of x0 ∈ (0, 1) and r within their optimal intervals. The paper provides
an effective way to correlate the chaotic states of the chaotic system with the encryption
key variations. Algorithm 1 provides the logic for initializing x0 and r using the key.

Algorithm 1 Initializing the parameters of the chaotic system

1. Process the encryption key using the SHA-512 hashing algorithm.
Let a1a2 . . . an be the processed key.
2. Compute a value of x0 using the left half n/2 bytes of the key using

x0 =
∑

n
2
i=1 INT(ai).Bi−1

L. ∑
n
2
i=1 Bi−1

3. Compute an initial value r0 for r using the right half n/2 bytes

of the key using r0 =
∑n

i= n
2 +1 INT(ai).B

i− n
2

R. ∑n
i= n

2 +1 Bi−1

4. Adjust the value of r to the optimal range ([3.57, 4]) using the
transformation r = 3.57 + 0.43× r0

Let a1a2 . . . an be the encryption key. As Algorithm 1 shows, step (1) processes the key
using the SHA-512 hashing algorithm before using it. This step is important because the
SHA-x algorithm is one-way and sensitive to bit variation, which ensures large changes
in the initialization values if the key changes. Step (2) computes an initial value for x0,
using the left half bytes of the processed encryption key (a1a2 . . . a n

2
). Likewise, steps (3)

and (4) compute an initial value for r, using the right half bytes of the key (a n
2

a n
2 +1 . . . an).

In steps (2) and (3), INT(ai) is the ASCII (integer) value of the symbol ai, L = max
1≤i≤ n

2

{INT

(ai)}, R = max
n
2 +1≤i≤n

{INT (ai)}, and B is the radix of the used symbols. For instance, if the range

of symbols is 0. . . 255, B = 256. Observe that the values of x0 and r0 are always in the range
[0, 1]. Step (4) transforms the intermediate value r0 to the desired interval for r.
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When the parameters of chaotic map are initialized (Algorithm 1), the random number
generator can produce random numbers by simulating Equation (1). Since the generated
random values are within the range [0. . . 1], these numbers can be transformed to the
desired interval [0. . . 2p] using Equation (2)—where xi ∈ [0, 1) is generated by Formula (1).

zi = MOD(xi × 1014, 2p) (2)

3. The Encryption Technique

Figure 1 shows the core components of the proposed encryption technique. The tech-
nique processes plaintext using two rounds. The initial encryption round processes
plaintext and outputs an initially encrypted text. All the processing involved in this round
is independent of the encryption key. The key echo generation processes the encryption
key and generates key echo codes. The key round uses complex and non-linear operators
to add enormously complicated key codes to the initial ciphertext. The chaotic system
provides chaotic signals for supporting the encryption process.
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Figure 1. The encryption technique components.

3.1. Initial Encryption Round

The initial encryption is a key-independent operation. It uses three fundamental
operations to process its input (see Figure 2). The diffuser operation increases the avalanche
effect of the output by detecting plaintext variations and propagating these variations
to impact every other symbol. The encoder operation transforms the input symbols to
new symbols using the symbol itself and other noise values that add fuzzy impact to the
functionality of the encoding process. The distorter operation adopts a fuzzy model to
invoke distortion operations for handling input symbols.

Before presenting the technical details of each operation, we introduce a piece of
knowledge—the control variable—that supports the functionality of the encryption round
operations.

3.1.1. The Control Variable

The control variable is a sequence of p ∗ k bits. The value p is the maximum number of
bits required for representing the used symbols (e.g., p = 8 if the used symbols are integers
within the range 0. . . 255) and k is the total number of p-bit subsequences required for
supporting the functionality of the initial encryption operations. The process of initializing
and updating the control variable Xn is illustrated in Figure 3. The process consists of ini-
tializing the control variable Xn and an update process called the update loop. The control
variable Xn is initialized with k chaotic values Hi (p bits each) by an XOR operation and
left shifting by “(i− 1)*p” positions.
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Figure 3. The update method for the control variable.

The update loop consists of the updater and the pollinator operations and is repeat-
edly invoked every time the initial encryption round processes an input symbol. When
invoked, the updater manipulates the control variable Xn using three steps (i–iii), which
are the steps used in the XorShift random generator. In addition, the updater maintains
three variables qi (i = 1, 2, 3) that support the functionality of the pollinator. The updater
refreshes the values of qi by adding three values yi extracted from the control variable.
The rightmost 9 bits of the control variable are used to form yi as follows: y1 is the decimal
value of the rightmost three bits, y2 is the decimal value of the next three bits, and y3 is the
decimal value of the last three bits.

The pollinator updates the control variable by including the impact of the input
symbols in it (the control variable). Unlike the updater, which is repeatedly invoked,
the pollinator is invoked using a logic that is based on the input symbols. To implement
this invocation logic, the pollinator maintains three layers of data, where each layer has 2p

entries (see Figure 3). Layer L1 (the innermost circle) is populated by replicating 8 direction
flags that determine the 8 possible move directions starting from a cell in the substitution
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space ST (We call the cell that we start the move from a reference cell). These flags are either
unidirectional or bidirectional. The unidirectional flags allow the move to be along the row
or the column of the reference point. We define four unidirectional flags: two flags allow
the move along the row either to the left (L) or to the right (R) of the reference point, and
two flags allow the move along the column either to the top (T) or to the bottom (B) of
the reference point. The bidirectional flags allow the move to be along the four diagonals
of the reference point. We define four bidirectional flags: two flags allow the move along
the top right diagonal (TRC) or the top left diagonal (TLC), and two flags allow the move
to the bottom right diagonal (BRC) or the bottom left diagonal (BLC). L2 is populated
with the integers 0 . . . 2p − 1. The entries of L2 determine the amount of the move (within
the substitution space) starting from the reference cell. The outer layer L3 contains equal
replications of two values “U” (execute pollinator) and “N” (do not execute). The 2p entries
of each layer Li (i = 1, 2, 3) are randomly shuffled using a sequence of 2p chaotic numbers
obtained from the chaotic system.

Accordingly, the update loop refreshes the value of the control variable as follows.
The pollinator checks the possibility of including the impact of the input symbol ai (assum-
ing the currently considered symbol is ai+1) by accessing L3. The access takes the general
format: Lk[qk + ai], where ai is a plaintext symbol and qk is one of the variables maintained
by the updater. If the outcome of the access is “U” (i.e., L3[q3 + ai] = “U”) the pollinator
is triggered and updates the control variable using the values L1[q1 + ai] and L2[q2 + ai].
If the content of L1[q1 + ai] is a unidirectional flag (R, L, T, or B), the pollinator moves
(starting from the reference point) along the direction flag a number of positions equal to
the decimal value of the right p

2 bits of the distance value L2[q2 + ai] (The input plaintext ai
designates the reference point within the substitution space. The left half bits of ai designate
the row of the reference point, and the right half bits of ai designate its columns). If the
content of L1[q1 + ai] is a bidirectional flag (TRC, TLC, BLC, or BRC), the pollinator moves
(starting from the reference point) along the direction flag a number of positions on both
the rows and columns of the substitution space. The amount of the move on the rows and
the columns equals, respectively, the decimal value of the left p

2 bits and the right p
2 bits

of the distance value L2[q2 + ai]. In either case, the content of the reached cell, say Ni, is
used to pollinate the control variable. The pollinator determines the bits of the control
variable that should be pollinated using the variable z, where z is the decimal value of the
right three bits of the input plaintext ai. The actual pollination is achieved (see Figure 3) by
left-shifting Ni a number of positions equal to “p ∗ z” and XOR’ing the outcome with the
control variable Xn.

We use a simple example to demonstrate the move within the substitution space
starting from a reference point. Suppose that the direction flag is the unidirectional T and
the amount of the move is 151 “1001 0111”. Based on this configuration, the pollinator
moves 7 cells (the value of the right half bits of 151) up the reference cell designated by ai
(wrap if necessary) and retrieves the value Ni. Suppose now that the direction flag is TRC
and the amount of the move is 28 “0001 1100”. Based on this configuration, the pollinator
moves 1 row (the value of the left half bits) and 12 columns (the value of the right half
bits) along the top right diagonal (wrap is necessary). The content of the reached cell is the
value Ni.

The initial encryption process needs 8P bits to support its operations. Therefore,
the control variable length is 8p bits (i.e., k = 8). These bits are consumed by the initial
encryption process operations as specified by Figure 4. As Figure 4 shows, the rightmost
p bits are used to support the functionality of the encoder. The left 7p bits are used as
follows: the rightmost of the 3p bits are used for triggering the distortion process, the next
p bits (toward the left) are used for selecting a specific distortion operation, the next p bits
are used as a flipping pattern, and the leftmost 2p bits are used for reordering the distortion
operations list.
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Figure 4. The consumption of the bits of the control variable (8p bits).

3.1.2. Encoder Operation

The encryption technique uses a sliding-point encoder to encode plaintext input
symbols a1a2 . . . an . . .. To encode an input symbol ai’, the encoder creates a sliding point
(s1, s2) using the rightmost p bits of the control variable, where s1 and s2 are, respectively,
the decimal values of the left/right p/2 bits. It also creates a reference point (r1, r2) within
the substitution space by splitting the bits of the input symbol ai, where r1 and r2 are,
respectively, the left/right half bits of ai. The encoder uses (s1, s2) to slide from the reference
point (r1, r2) to a new point within the substitution space. The sliding is a non-linear
transformation, which is performed by left-shift “≺≺” and XOR “⊕” (〈s1 ≺≺ 1〉 ⊕ r1,
〈s2 ≺≺ 1〉 ⊕ r2). The encoder uses the content of the accessed cell as the code for the input
symbol ai.

The encoder operation has the following decoder that restores the original symbols.
Let (s1, s2) be the sliding point that was used to encode the input symbol ai, and (c1, c2)
is the cell from which the code of ai was retrieved. The following two steps restore the
original symbol: r1 = (s1 ≺≺ 1)

⊕
c1 Mod |c1| and r2 = (s2 ≺≺ 1)

⊕
c2 Mod |c2|, where

Mod is the division remainder and |w| is the number of w’s bits. The decimal value of the
concatenation of, respectively, the bits of r1 and r2 is the original symbol ai.

3.1.3. Distortion Operation

The distortion operation sharply manipulates the bits of the input symbols using the
operations defined in Table 1. Chaotic-Mutate (y, v) mutates bits of the input symbol y by
XOR’ing it with the chaotic value v. The chaotic value v is computed by XOR’ing a chaotic
value θ (obtained from the chaotic system) and the p bits of the control variable dedicated
for chaotic mutation operation (see Figure 4). Shift-Left (y, s) circularly left shifts the
bits of the input y by s positions (s = 1. . . p− 1). LRHi-Flip (y, f) interleaves the left half
bits of the input symbol y between the right half bits (either in the even or odd positions)
based on the argument f. The argument f has eight possible states described in the table.
These operations are initially ordered in a list as follows: Shift-Left (y, 1), . . . , Shift-Left
(y, p− 1), LRHi-Flip (y, 0), LRHi-Flip (y, 1), . . . , LRHi-Flip (y, 7), Chaotic-Mutate (y, v).
The order, however, changes as we describe next.

The distortion operation is stochastically triggered. Let U be the integer value of the
3p bits of the control variable dedicated for the distortion process, and V be the maximum
number that can be created from 3p bits (when all bits are ones). The ratio A = U

V is a value
in [0, 1]. The distortion process is triggered if A > q, where 0 ≤ q ≤ 1. The threshold
q determines the intensity of the stochastic triggering. For instance, no distortion occurs
when q = 1, while statistically 75% of the symbols are distorted when q = 0.25. When the
distortion process is triggered, it selects a distortion operation using the p bits of the control
variable (dedicated for selecting a distortion operation) and uses the chosen operation to
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distort the input symbol (The selection of a distortion operation is achieved by simple
model, such as Mod (D, L), where D is the decimal value of the p bits of the control variable,
L is the length of the distortion operations list, and Mod is the division remainder).

Table 1. The distortion operations.

Distortion Operation Description

Chaotic-Mutate (y, v) Performs chaotic mutation by XORing the input symbol y with the chaotic value v.

Shift-Left (y, s) Circularly left shifts the bits of the input y by s positions. The argument s can be any value from 1 to
p − 1.

LRHi-Flip (y, f)

Interleaves the left half bits of an input symbol y within the right half bits either in the odd or even
positions. The way in which the interleaving is carried out is determined by f, which has eight
possible values: the values 0 and 1 instruct the operation to interleave the left half bits within the
right half bits in, respectively, the even and odd positions. The values 2 and 3 instruct the operation
to interleave the reversed left half bits of the input y within the right half bits in, respectively, the
even and odd positions. The values 4 and 5 instruct the operation to interleave the left half bits of y
(after flipping them) within the right half bits in, respectively, even and odd positions. The values 6
and 7 instruct the operation to interleave the reversed and flipped left half bits within the right half
bits in, respectively, the even and odd positions.

After processing an input symbol, the distortion process updates the order of the
operations list using the designated 2p bits of the control variable. The left p bits are used to
circularly left shift the content of the list and the right p bits are used to swap the operation
at the index created from the p bits with the operation at the index zero.

The distortion operation has the following distortion operation inverse. The impact
of the operation Chaotic-Mutate (y, v) is straightforwardly reversed by regenerating the
same chaotic value v and XOR’ing it with the input symbol y. The impact of the left shift
operation Shift-Left (y, s) is easily reversed by right shifting the symbol s positions.
Finally, the impact of the operation LRHi-Flip (y, f) is reversed by collecting the bits from
either odd or even positions depending on f, handling these bits (if needed), and appending
them as a prefix for the remaining bits.

3.1.4. Diffuser Operation

A secure encryption technique must have a high avalanche effect [43]. The com-
putational model uses a lookback technique to detect the variations in the previously
processed input symbols and propagate these variations to impact all the subsequent
symbols. Figure 5 defines the algorithmic steps for embedding the effect of the previous
symbols a1a2 . . . ai−1 in the outcome of processing the current ai. The XOR+Shift opera-
tion accumulates the effect of the previously processed symbols (a1a2 . . . ai−1) as follows.
The input to the XOR+Shift operation is the values X and L. The value X receives the input
symbol ai−1 when the diffuser considers the symbols ai(i > 1) (The value X is zero when the
diffuser considers the first input symbol a1). The value L is initially zero. The output of the
XOR+Shift operation is the value B. The decimal value of the rightmost p bits of B is used
as a diffusion value R, which is XOR’ed with the current input symbol. The decimal value
of the remaining bits of B are assigned to L, which serves as a “memory” that accumulates
the impact of the previously processed symbols. It is worth noting that by splitting B,
the manipulation of the current input ai is independent of the manipulation of the next
input symbol ai+1.
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The diffuser operation has the following diffuser operation inverse that restores the
original symbols. The symbol a1 is obtained from d1 by XOR’ing d1 with R, where R
is computed from the initial values of L and X (zeros). Once ai−1 is restored from di−1,
the diffuser inverse restores the symbol ai from di using the previously restored original
symbol ai−1 as a value for X and the new value of L.

3.2. Key Echo Generation

The key echo generation is a process for producing arbitrarily long sequences of codes
created using the encryption key [44]. These codes must be enormously complicated to
hide the encryption key and provide an impenetrable shield to conceal the ciphertext
symbols. The paper proposes a key echo generation process that creates very effective code
sequences. This process uses two operations: input-doubling operation that expands its
n-symbol input to 2n-symbol output and key-echo generator that deeply processes the
output of the input doubling operation and produces random code sequences.

3.2.1. Input-Doubling Operation

The input-doubling operation receives sequences of n symbols and outputs sequences
of 2n symbols. Initially, the n-symbol input (x1x2 . . . xn) is the encryption key. The input-
doubling operation expands the n-symbol input using four actions outlined in Figure 6.
The right n symbols of the output are fed back as an input for producing more 2n-symbol
sequences, while the left n bits are passed to the key echo generator (the key echo generator
is discussed next).

The Mutation and Augmentation Actions

The mutation action makes micro changes to the bits of its input symbols. Its function-
ality can be described by the following sequence of invocations (see Figure 6): (1) invoke
the bit-mixing action to process the input x1x2 . . . xn and produce the output y1y2 . . . yn,
(2) substitute the resulting sequence y1y2 . . . yn to produce a new sequence m1m2 . . . mn,
and (3) perform an XOR operation between each original symbol xi and the processed
symbol mi to yield s1s2 . . . sn. The augmentation action does essentially the same steps as
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the mutation action, except that the outcome of the substitution ai is appended as a suffix
to the input s1s2 . . . sn.
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Figure 6. The algorithmic steps for the input doubling operation.

Deep Bit-Mixing Action

The deep bit-mixing action detects any variation in the input and compiles these
variations to substantial changes to the output. To maximize the sensitivity to the input
variations, the action uses dual-pass processing: forward mixing and backward mixing
(see Figure 7). The forward mixing processes the first input symbol b1 by substituting it
and producing the new symbol c1. For all input symbols bi (i > 1), the input symbol bi
is first XOR’ed (⊕) with the most recent output symbol ci−1 and the outcome of the XOR
operation is then substituted.

 

 

 

 

 

 

 

 

 

 

 

   

 

  

  

Forward-mixing 

c1= Substitute (b1) 

For i =2 to n Do 

   ti = bi ⊕ ci−1 

   ci = Substitute (ti) 

sn= Substitute (cn) 

For i =n−1 to 1 Do 

   ti = ci ⊕ si+1 

   si = Substitute (ti) 

b1 b2 … bn 

s1 s2 … sn 
c1 c2 … cn 

Backward-mixing 

Deep Bit-Mixing: forward → �� backward 

�
 

�
 

Figure 7. Algorithmic steps for the deep bit-mixing action.

The backward mixing handles the output of the forward mixing (c1c2 . . . cn) using
similar processing logic, but it starts processing the input backward—right to left. Due to
the dual-pass bit mixing, the bit-mixing action is highly sensitive to the input variations—
regardless of the scale of the variation (a single bit or more) and its position within the
input. Furthermore, for effective bit mixing, the deep bit-mixing action handles the input
in W rounds.
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Permutation Action

The permutation impacts the order of the input sequence rather than its individual
symbols. It uses a data-dependent algorithm along with data-dependent distortions to
reorder the input x0x1 . . . xn−1. Algorithm 2 shows the logic of the permutation action.
The action maintains a state variable LIP (initially zero) to remember the index of the
last insertion point and generates data-dependent distortion. The algorithm computes
the location k for xi+1 using the input symbol xi and the distortion variable LIP and then
moves xi+1 to the new location k (within the input sequence). Referring to Algorithm 2,
if xi < LIP, the action moves xi+1 to the position k = Lbits (xi ⊕ LIP), where Lbits is an
operator that selects a number of bits from the leftmost of its argument sufficient to index
any symbol in the output (For instance, if the input is 16 symbols, this operator selects
the leftmost 4 bits since 4 bits are adequate to index any of the 16 symbols). If LIP ≥ xi,
the action moves xi+1 to the position k = Rbits (xi ⊕ LIP), where Rbits is the same as Lbits,
except it selects the bits from the rightmost.

Algorithm 2 Data-dependent permutation action

PERMUTE (x0x1 . . . xn−1)
LIP = 0
For i = 0 to n–2 Do

a. move xi+1 to a new position k as follows
If LIP < xi move xi+1 to the position k = Lbits(xi ⊕ LIP)
Else move xi+1 to the position k = Rbits(xi ⊕ LIP)

b. Update LIP = k

The functionality of the input doubling operation can be described as follows. The mu-
tation action handles the input x1x2 . . . xn. The augmentation action doubles its n-symbol
input to produce 2n-symbol output. The permutation action reorders the output of the
augmentation action (2n symbols). Finally, the right n symbols are fed back to the input
doubling action for producing further 2n-symbol sequences, and the left n symbols are
passed to the key echo generator (discussed next) to produce key echo sequences.

3.2.2. Flirt-Mate Triggering Technique

The technique generates two control signals (signal1 and signal2) to adjust its own
functionality and the functionality of the key-echo generator (discussed next). Figure 8
shows the components of this technique. The technique is composed of a single n-gene
chromosome Y and an internal mechanism for controlling the chromosome evolution.
When a variable X flirts with the chromosome Y, the technique checks if the flirting
variable is eligible to mate with the chromosome. The mate eligibility is defined by the
genetic diversity adequacy, which is measured by the number of genes that differs in the
corresponding positions of X and Y (We call the number of different genes, the degree
of fitness, or df ). If the degree of fitness exceeds the threshold n/2, X and Y are eligible
to mate (effective flirt) and both signals 1 and 2 contain the value “effective”. If the mate
eligibility condition does not hold, both signals 1 and 2 contain the value “ineffective”
(ineffective flirt).

When the chromosome evolution action receives the signal2, it updates the chromo-
some Y using the operators in Table 2. The operator Flip() updates the chromosome Y by
XOR’ing it with the flirting variable X and possibly with a noise value f. The noise value f
(initially zero) is updated whether the Flip() operator is invoked or not, using the formula
f=Substitute ( f≺≺ 2 ⊕ df), where Substitute(.) substitutes its argument using the sub-
stitution space ST . The operator Crossover(m, flag) replaces m genes of the chromosome
Y with m genes of the flirting variable X. The positions of the genes are determined by
the flag, which could assume any of the four directives: LL (Left-Left), RR (Right-Right), LR,
and RL (The directive LL means that the left m bits of Y are replaced with the left m bits of
X and RR means the right m bits of Y are replaced with the right m bits of X. The semantics
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of RL and LR follows). The values for the flag and m are assigned according to Algorithm 3.
The value f is split into two halves A and B. Based on A and B, the procedure produces one
of the four directives. The value of m is computed as a module (division remainder) of f
and n (m is the number of bits). Which of the two update operators to invoke depends on
the value of signal2: if the value is “effective”, invoke Crossover() operator, else invoke
Flip(). Observe, we try here to capture the intuitive meaning of the mate: if the mate
happens, the two variables (flirting variable X and the chromosome Y) exchange genes;
otherwise, we only change the bits of the chromosome Y.
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Figure 8. The flirt-mate triggering technique.

Table 2. Chromosome evolution handling operators.

Operation Functionality

Crossover(m, flag)
The chromosome YR and the flirting variable X exchange m bits
based on flag. The flag can be either value: LL (Left–Left), RR
(Right–Right), LR (Left–Right), RL (Right–Left).

Flip()
updates the chromosome Y by performing an XOR operation
between Y, the flirting variable X, and the feedback symbol f (i.e.,
Y = Y⊕ X⊕ f ).

Algorithm 3 Assigning values for the flag and m

Let A and B be, respectively, the decimal values of the left n/2 bits and the right n/2 bits
of f.
If A < 2

n
2 , then f lag = L Else f lag = R .assign a value to flag

If B ≥ 2
n
2 , then f lag ·= L Else f lag ·= R .concatenate (·) a second value to flag

m = f Mod n

3.2.3. Key Echo Generator

The key echo generator is a three-stage process that further manipulates the output of
the input doubling operation. Figure 9 shows the three stages of the echo generator. The first
stage consists of Deep Bit-Mixing Action and Re-Directives operations. The second
stage consists of the Mutation operation, which makes fine-grained modifications to some
of its input symbols. The third stage consists of the Output Noising operation, which fur-
ther randomizes the output sequence by reordering the symbols of the output. As Figure 9
shows, we have two instances of the flirt-mate triggering technique, each with its own
different chromosome. The two chromosomes Y1 and Y2 are initialized with values obtained
from the chaotic system.

The input I1 I2 . . . In is first processed by the bit-mixing action. This initial processing
is very important for boosting the avalanche effect [43,45]). The Re-Directives is a T-layer
distortion operation. Each layer Li contains the integers 0. . . 2p− 1, where p is the maximum
number of bits that represent a symbol. The entries of each layer are independently shuffled
using a sequence of numbers ri (i = 1, 2, . . . ,2p) obtained from the chaotic system, where the
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integer at index k is swapped with the integer at the index rk. The input to the first layer
is a symbol si, and the output is a symbol xi indexed by si. The output of the layer Li−1 is
first manipulated by the bit-mixing action and then passed as an input for the next layer Li.
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Figure 9. The key echo generator.

The flirt-mate technique triggers the mutation operation by passing an activation signal
that carries the state of the flirtation between the symbol yi’ (the output of the layer LT−1)
and the chromosome Y1. If the signal carries the value “effective”, the mutation operation
intercepts the symbol zi’ (the output of the last layer LT), XOR’es it with the pattern U,
and appends it to the output list. The pattern U is a symbol with p bits (initially zero) but is
updated using the two instructions in (3) regardless of whether the mutation operation is
performed flipping or not (i.e., whether the signal carries “effective” or “ineffective” state).
Instruction 1 unconditionally updates the pattern U by left shifting U for two positions and
then XOR’ing the outcome with the degree of fitness (df ). Instruction 2 is executed only if
the activation signal carries an “ineffective” state. This instruction further updates U by
left shifting U for four positions and XOR’ing the outcome of the shift with z′i (the output
of the last mapping layer).

1. U = (U ≺≺ 2)
⊕

d f . this computation is always per f ormed
2. U = (U ≺≺ 4)

⊕
z′i . executes only when f lirting is ine f f ective

(3)

The output noising operation (the third stage) induces further confusion to the output
sequence by reordering the output symbols. It uses the operations Feedforward Handler
and Flirt-Mate technique to support its functionality. The Feedforward Handler com-
putes two values H and fc using the logic in Algorithm 4. The feedforward handler uses
the symbol x′i (the output of the first layer after diffusion has taken place) and calculates
fc using simple bit operations (bit shift “>> or <<” and XOR “⊕") and the substitution
operation. The variable H is computed by H = (H ⊕ fk)/2p (k=1, 2. . . c− 1).

The Flirt-Mate technique sends activation signals to the output noising operation.
If the received activation signal is “effective", the output noising reorders the output by
executing the two operators described in Table 3. The Permute (h) operator is executed first
then Shift (k) is executed next. The Permute (h) performs h swaps, where h is the degree
of fitness. Each swap exchanges the element at index i (i = 0, 1. . . h − 1) with the symbol at
index j, which is computed using j = fc⊕xi

2p ∗ Lout ± H ∗ xi. The symbol fc is the most recent
feedforward symbol; p is the number of bits that represents a symbol; xi is the unicode
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value of the symbol at location i; Lout is the length of the current output list; and H is the
accumulated history of the previous feedforward symbols. The offset H ∗ xi is added (+)
or subtracted (–) if xi is, respectively, even or odd. Shift (k) operator moves the symbols of
the output list by k positions to the left. The number of positions k is equal to H ∗ xi after
adding the effect of the most recent feedforward symbol to H (Observe that the new index j
depends on both the current feedforward symbol fc and the accumulated history of all the
previous feedforwards f1 f2 . . . fc−1. This data-dependent computation makes the selection
of each index j involve plenty of fuzziness. Furthermore, the shift operator maximizes the
effectiveness of the Permute(h) operator by changing the symbols that will be influenced by
every permutation).

Table 3. Output manipulation operators.

Operation Functionality

Permute(h) This operator performs h swaps on the output list.

Shift(k) This operation left rotates the output list k positions.

Algorithm 4 Computing the feedforward symbol fc

Forward-Handler (x′i)
vi= Substitute (x′i) ***Substitute x′i using ST

wi = vi ⊕ (vi << 2) ***Left shift vi and XOR the result with vi
ẅi = wi ⊕ (2 >> wi) ***Right shift wi and XOR the result with wi
fc = Substitute (ẅi) ***Compute fc by substituting ẅi

Return fc

The update handler maintains a state variable VLi for each layer Li. The state variables
are initialized to 0, but updated after processing each input symbol. The update handler
updates each state variable VLi by XOR’ing its current value with the output of the respec-
tive layer Li just before passing this output to the bit-mixing action. These state variables
are used to update the order of the elements in the re-directive layers Li.

After discussing the processing stages and the update handler, we describe how the
key echo generator processes its input I1 I2 . . . In and creates the key echo codes. Firstly,
the bit-mixing action processes the input sequence and yields the new sequence s1s2 . . . sn.
The re-directives distort each symbol si through mapping it to the layers’ Li. The output
symbol of each layer Li is used to update the state variable VLi and is also passed to the
bit-mixing action for further distortion before mapping it to the next layer Li+1. Secondly,
the output of the last layer (LT) may receive additional distortion based on the activation
signal sent by the flirt-mate triggering technique. If the activation signal carries the value
“effective” (an effective flirt state), the mutation operation distorts the symbol by XOR’ing it
with the pattern U. Thirdly, the output sequence may receive reordering for some of its
symbols if the corresponding flirt-mate triggering technique instructs the output noising
operation. Before processing additional sequences I1 I2 . . . In from the input doubling
operation, the state of re-directive layers are slightly modified by partially reordering their
elements. Namely, the entries of each layer Li are left shifted by i positions and the content
of the first cell Li[0] is swapped with the content of the cell Li[VLi ].

3.3. The Key Round

The key round embeds the effect of the key echo codes in the initially encrypted
plaintext. Unlike other encryption methods that add the key effect using a single operation,
the proposed technique defines different operations to embed the effect of the key (Table 4).
The operator XOR(s, k) performs an XOR operation between the input symbol s and the
key echo symbol k. The operator LRX [m](s, k) left rotates the input symbol s by m positions
and then XOR’es the outcome with the key echo symbol k. (m = 1, 2, . . . , p−1, where p is the
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number of bits that represent a symbol). The operator TX[i, l, j, Q](s, k) breaks the structure
of the input symbol s by extracting a selected subsequence of its bits and appending it as
a prefix or a suffix to the remaining bits (of the original symbol). The operator extracts l
bits starting from i. It may further process the selected subsequence based on the directives
defined in Q. In particular, the operator flips the bits of the selected sequence if the directive
is “Flip”; reverses the order of the bits of the sequence if the directive is “Reverse”; or leaves
the subsequence unprocessed if the directive is “NoOp”. Once the subsequence is processed,
the operator appends the subsequence to the remaining bits as a suffix or a prefix based on
the value of j, where j ∈{Suffix, Prefix}. Finally, the processed symbol is XOR’ed with the
key echo symbol k. Figure 10 shows an example of the TX functionality.

TX[2, 3, “Suffux”, “Flip”] (‘a’, ‘&’) 

      Select 3 bits from ‘a’ (01100001) starting from position 2. 

                Let Sub = “100” 

                  Flip the subsequence Sub since the directive is “Flip”  

                                         Sub= “011” 

                                   Append the Sub as a suffix to the remaining bits (“01001”)                    
                                                  
                                                         01001011  

                                                         00100110                         

                                                 
                                                         01101101 

                                                      

⊕ 
Key symbol ‘&’ 

XOR with key 

symbol ‘&’ 

The outcome of TX  

Figure 10. An example of the TX operator computations.

Table 4. The mixing operators.

Operator Functionality

TX[i, l, j, Q](s, k)

(1) extracts l bits (of the symbol s) starting from index i, (2) handles the l
bits according to the directive in Q = {Flip, Reverse, NoOp}, (3) appends
the extracted bits to the remaining bits as a suffix or prefix based on the
current value of j, which could be either prefix or suffix, and (4) XOR’es
the outcome of the operator with the key echo symbol k.

LRX [m](s, k) left rotates the bits of the input symbol s by m positions and XOR’es the
outcome of the rotation with the key echo symbol k.

XOR (s, k) XOR’es the input symbol s and the key echo code k.

Each of the mixing operators in Table 4 has an inverse operator. The operator LRX [m](s,
k) impact is reversed by first XOR’ing the input symbol with the key echo symbol k and
then right rotate the outcome of the XOR by m positions. The operator XOR (s, k) impact is
reversed by XOR’ing the input symbol with k. Reversing the impact of the operator TX[i, l,
j, Q](s, k) is a bit complicated and performed by the steps described in Algorithm 5.

Algorithm 5 Inverse of TX mixing operator

Let ci be the input symbol. TX[i, l, j, Q ](s, k ) performs the following
steps to obtain the original symbol s
(1) di = ci ⊕ ki
(2) Extract the leftmost or the rightmost l symbols from di based on the

value of j.
(3) Handle the extracted bits based on the value of Q .
(4) Place the extracted bits at the position i of the di

Figure 11 outlines the logic of the key round. The mixing module executes the selected
operator to produce the final ciphertext symbol vi. The indexing mechanism produces an
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index I to access one of the entries of the mixing operators list. The production of the index
I is both data-dependent because it uses the input symbol ci−1 and is chaotic due to the use
of the well-known chaotic system called rotation–transformation. This system is defined by
Equation (4) ([46], p. 191).

xk+1 = a + b.(xkcos(θk)− yksin(θk))
yk+1 = b.(xksin(θk) + ykcos(θk))

θk = c + d
(x2

k+y2
k)

(4)

The parameters of the rotation–transformation system are better set as follows [46]:
a = 6, b = 0.8, c = a/2, d = a. The initial values for x0 and y0 can respectively be assigned
from their effective ranges (0, 1) and (−1, 1). In the proposed approach, the values for x0
and y0 are randomly selected from the effective ranges using the chaotic system. The index
I is computed by Equation (5). We take the Mod (division remainder) of 2p because all the
symbols are represented by p bits. In addition, we include the effect of the input data by
XOR’ing the initial index value with the ci−1 (the previous input symbol).

I = Mod[ f loor(xk+1 × yk+1 × 1014), 2p]⊕ ci−1 (5)
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Figure 11. The key echo round operation.

4. The Decryption Process

The decryption operation is outlined in Figure 12. The decryption process first handles
the ciphertext using the key echo round (Section 3.3) to remove the impact of the key. In the
decryption process, the key round must use the mixing operations inverse rather than
the mixing operations per se. There is no change to the key-echo generation process or to
creating/updating the control variable.

The output of the key round is the initial ciphertext that is produced by the initial
encryption round. To successfully decipher the initial ciphertext, the decryption round
executes the same processing flow of the initial encryption in Figure 2 but backward (from
distortion process back to diffuser process) and the inverse operation for each encryption
operation is used (The inverse of each encryption operation is described in the context
of the description of each encryption operation). For instance, to restore the plaintext
processed by the distortion process, the decryption round uses the distortion process
inverse (Section 3.1.3) and to restore the plaintext processed by the sliding-point encoder,
the decryption process uses the decoder process (Section 3.1.2).
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Figure 12. The decryption process control flow.

5. Security Analysis

We evaluate the proposed technique in this section. The evaluation includes (1) the key
echo code generation (Section 5.1) and (2) the encryption technique (Section 5.2). We also
discuss why the proposed technique resists the classical security attacks (Section 5.3) and
estimated the time complexity for the proposed technique (Section 5.4). The performance
analysis was done using the NIST (National Institute for Science and Technology) battery of
randomness tests [47], ENT battery of randomness tests [48], entropy, and avalanche effect.

5.1. Key Echo Code Generator

The test case consists of a large set of 128-bit keys (5000 keys). For a good key diversity,
the keys were obtained using different methods. We obtained 2500 random keys generated
using online service (passwordsgenerator.net) and handcrafted 100 keys. The other
2400 keys were low entropy keys and obtained by flipping bits of a 128-bit key of all zeros.
In particular, 128 keys were obtained by flipping only the ith bit (i = 1. . . 128). The remaining
low entropy keys (2372) were obtained by flipping l bits at random positions (l = 2, 3, 4,
5. . . 64) (Observe, we intentionally flipped only up to half of the input key bits to preserve
low entropy property in the resulting keys).

5.1.1. Entropy

The key echo code generator used the 5000 keys to produce 5000-long code sequences,
where each sequence is 128,000 symbols (1,024,000 bits). Since the performance of the
deep-bit mixing depends on the number of rounds it executes and the performance of the
re-directives layer depends on the number of mapping layers, we analyzed the impact
of rounds and the mapping layers on the overall performance of the key code generator.
The key echo code generator was executed several times for different values of the rounds
and the re-directives layers. Figure 13 shows the average entropy over all the sequences.
As the figure shows, the entropy improves (getting closer to the ideal value 1) as the number
of rounds and the number of layers increase. This improvement is significant up to 4 rounds
(for the deep-bit mix) and 4 layers (for the re-directives). It is clear also that there is no
remarkable improvement in the values of the entropy beyond 4 rounds and 4 layers.
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Figure 13. The entropy as a function of number of deep bit mixing rounds (x-Rounds) and the
number of the re-directive mapping layer.

5.1.2. Avalanche Effect

To effectively examine the avalanche effect of the key echo code generator, we used a
low entropy 128-bit key of all zeros. We then constructed different perturbed keys from
the low entropy key by flipping bits at random positions (We used the computer built-in
random generator for choosing the random positions). Because there is a huge number
of possibilities, we flipped only i bits (i = 1, 2, 3, 4, 8, 12, 16, 24, 32, 64, and 96) to create
the perturbed keys. We constructed 30 different perturbed keys for each i flipped bits.
For instance, we constructed different 30 perturbed keys, where each perturbed key was
created by flipping the input key (all bits are zeros) in a single random position. The key
echo generator created a code sequence of 1024 symbols (8192 bits) for every used key.
When the key echo generator produces the sequence, it uses a different number of re-
directive layers and executed the deep-bit mixing operation for a different number of
rounds. As in [49], the avalanche effect is determined by computing the Hamming distance
between the sequences generated using the input key (bits are all zeros) and the sequences
generated using its corresponding perturbed keys (The Hamming distance is the number
of bits that differ at the identical locations of two equal-size sequences).

Figure 14 shows the average Hamming distance (avalanche effect) as a function of
the number of re-directive layers and the number of deep-bit mixing rounds. As the
figure shows, the avalanche effect increases as the number of rounds and layers increases.
When the deep-bit mixing operation executes only one round, the avalanche effect is not
satisfactory regardless of the number of re-directive layers. That is because the Hamming
distance between the two sequences generated from the input key and its perturbed key is
less than half of the sequences bits (8192 bits) (As in [49], in order for the avalanche effect to
be effective, more than half of the bits must change when a bit or more change). Obviously
as the number of rounds increases, the avalanche effect increases. It could be inferred from
the figure that 4 rounds and 4 re-directive layers give a high avalanche effect (more that
5000 bits changed). In addition, executing the deep-bit mixing operation for more than
4 rounds does not significantly improve the avalanche effect regardless of the number of
layers of the re-directives (We call the configuration of 4 rounds and 4 layers, the effective
configuration of the key echo generator).

Figure 15 shows the Hamming distance as a function of the number of flipped bits.
The figure depicts the Hamming distance for sequences generated using 4 rounds of the
deep-bit mixing operation and 4 layers of re-directives. As the figure shows, the minimum
average Hamming distance (avalanche effect) exceeds 5000 bits difference, regardless of the
number of flipped bits. The confidence intervals around the average—represented by the
error bars—show that there is no significant difference in the average of Hamming distance
when the number of the flipped bits changes (observe that the intervals overlap). As such,
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the avalanche effect of the key echo code generator is high and it is independent of the
number of flipped bits.
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Figure 14. The average avalanche effect as function of number of re-directive layers and the number
of deep-bit mixing rounds.
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Figure 15. The average avalanche effect as function of number of flipped bits.

5.1.3. ENT: Randomness Test

To further investigate the performance of the key echo code generator, we tested the
randomness of the sequences. Namely, we tested the sequences that were generated—in
Section 5.1.1—using the effective configuration of the key echo code generator (4 rounds
for the deep-bit mixing operation and 4 layers of re-directives). The number of randomly
selected sequences is 100. Table 5 shows the results of the ENT random test on these
100 sequences. The results represent the average over all the 100 sequences for each test
metric along with the min and max value. The average entropy value is 0.9998997 (pretty
close to 1, the ideal values for bit sequence), the average Chi-square value (57.33%) indicates
that the sequences are random, the average estimation for π is close to the actual value
with a tiny error (please see [48] for ENT test values interpretation). The average serial
correlation coefficient is sufficiently small 0.00105 (close to the ideal value 0) and the average
of the arithmetic mean is 0.9988927 (close to the ideal value 0.5). These ENT test results
indicate that the sequences generated by the key echo code generator are generally random.
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Table 5. ENT’s randomness tests.

Randomness Test Test Output Min Max

Entropy 0.9988927 0.9801964 0.9999836
Chi-square Test 57.33% 51.93% 68.107%
Arithmetic Mean 0.499851 0.4980133 0.5019587
Monte Carlo Value for Pi (π) 3.1397227 (Err. 1.87 ×10−3) (Err. 7.773 ×10−5) (Err. 5.633 ×10−3)
Serial Correlation Coefficient 0.00105 0.0000306 0.01007

5.2. Encryption Technique Security Analysis

Effective testing must analyze the impact of all the factors that may influence the
performance of the encryption method. Fortunately, the National Institute for Standards
and Technology established a well-defined framework for evaluating the performance of
encryption techniques [47]. Based on [47], the testing data set must analyze the impact
of the variations of both the plaintext and encryption key on the ciphertext and also
must determine how significant the correlation between the plaintext and its corresponding
ciphertext is. To satisfy the criteria of the testing data set, the test cases include the following
data sets.

1. Key Avalanche Data Set . This data set shows how the encryption technique responds
to the changes of the key for a fixed plaintext.

2. Plaintext Avalanche Data Set. This data set shows how the encryption technique
responds to the changes in the plaintext for a fixed key.

3. Plaintext/Ciphertext Correlation Data Set. This data set allows for detecting any
correlation that could exist between plaintext/ciphertext pairs.

Adhering to NIST framework, we created the three sets of data above exactly as
specified by [47]. First, to evaluate how the proposed technique reacts to the changes of
the key, we created and analyzed 1400 sequences of size 262,144 bits each. We used a fixed
2048-bit (256 bytes) plaintext of all zeros and 1400 keys each of size 128 bits. The 1400
keys were chosen from the set of keys in Section 5.1—700 keys from the set of randomly
generated keys, 50 keys from the set of handcrafted keys, and 650 keys from the set of low
entropy keys. Each sequence was built by concatenating 128 derived blocks created as
follows. Each derived block is constructed by XOR’ing the ciphertext created using the
fixed plaintext and the 128-bit key with the ciphertext created using the fixed plaintext and
the perturbed random 128-bit key with the ith bit modified, for 1 ≤ i ≤ 128.

Second, to evaluate the sensitivity to the plaintext change, we created and analyzed
1400 sequences of size 262,144 bits each. We used 1400 random plaintexts of size 512 bits
(64 bytes) and a fixed 128-bit key of all zeros. Each sequence was created by concatenating
512 derived blocks constructed as follows. Each derived block is created by XOR’ing the
ciphertext created using the 128-bit key and the 512-bit plaintext with the ciphertext created
using the 128-bit key and the perturbed random 512-bit plaintext with the ith bit changed,
for 1 ≤ i ≤ 512.

Third, to evaluate the correlation of plaintext/ciphertext pairs, we constructed 1200
sequences of size 716,800 bits per a sequence. To create these sequences, we used 1200 keys
each of 128 bits and 1400 random plaintext blocks (each block 512 bits). Each sequence is
created as follows. Given a random 128-bit key and 1400 random plaintext blocks, a binary
sequence is constructed by concatenating 1400 derived blocks. A derived block is created by
XOR’ing the plaintext block and its respective ciphertext block. Using the 1400 (previously
selected) plaintext blocks, the process is repeated 1199 times (one time for every additional
128-bit key).

Tables 6–8 show the results of the NIST randomness tests on the three sets of data.
The number and rate of sequences that passed a particular randomness test under the
significance level 0.05 are presented in the column “Success rate (%)”. The significance
level α = 0.05 means that, ideally, no more 5 sequences out of 100 will fail a corresponding
test. In practice, however, any set of data is likely to deviate from this ideal case. The NIST
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developed the Formula (6), which computes an upper bound on the number of sequences
that may fail a particular test under the significant level (α) [47] (In Formula (6), S is the
total number of sequences (1400) and α (0.05) is the significance level). The upper bound is
shown in the three tables under the column “Max Fail”.

The security analysis results meet the standards of NIST for effective encryption
techniques. As shown in Tables 6–8, the number of sequences that failed any specific
randomness test is less than the maximum expected by the NIST estimation formula.
There is only one case “Spectral test” (Table 6), where the number of failed sequences
(102) is slightly greater than the maximum expected number (94.46). Regardless of this
minor failure (Spectra test, Table 6), which will be further investigated in the future work,
the encryption technique is, generally speaking, performed really well.

The high performance of the proposed technique can be attributed to three important
aspects of the proposed technique. First, the initial encryption round induces large confu-
sion using operations whose functionality is data-dependent and chaotic. Second, the key
echo generation operation produces arbitrary long sequences of codes by extending the
encryption key. The key echo sequences have a high avalanche effect (minor key variation
causes large changes to the output sequence), have an entropy value that is close to the
ideal entropy value and are random (please see Section 5.1). These important properties
of the key echo sequences enable not only adding the impact of the key to the ciphertext,
but also boosting the randomness of the ciphertext. Third, the key round uses powerful
operations that effectively mix the ciphertext symbols and the key echo sequence symbols.

Max Fail = S.(α + 3.

√
α(1− α)

S
) (6)

Table 6. NIST’s random test figures: key avalanche.

Test Success Rate (%) Max Fail

Runs 1387 (99.07%) 94.46
Monobit 1388 (99.14%) 94.46
Spectral 1298 (92.71%) 94.46
Serial 1362 (97.28%) 94.5
Cumulative Sums 1344 (96.00%) 94.46
Non–Overlapping Template Matching 1338 (95.57%) 94.46
Overlapping Template Matching 1341 (95.78%) 94.46
Linear Complexity 1378 (98.4%) 94.46
Binary Matrix Rank 1349 (96.35%) 94.46
Maurer’s “Universal Statistical” 1361 (97.21%) 94.46
Approximate Entropy 1381 (98.64%) 94.46
Longest Runs of Ones in a Black 1385 (98.93%) 94.46

Table 7. NIST’s random test figures: plaintext avalanche.

Test Success (%) Max Fail

Runs 1399 (99.93%) 94.5
Monobit 1391 (99.35%) 49.5
Spectral 1312 (93.71%) 94.5
Serial 1363 (97.36%) 94.5
Cumulative Sums 1327 (94.79%) 94.5
Non–Overlapping Template Matching 1333 (95.21%) 94.5
Overlapping Template Matching 1341 (95.78%) 94.5
Linear Complexity 1357 (96.93%) 94.5
Binary Matrix Rank 1354 (96.71%) 94.5
Maurer’s “Universal Statistical” 1344 (96.00%) 94.5
Approximate Entropy 1381 (98.64%) 94.5
Longest Runs of Ones in a Black 1378 (98.43%) 94.5
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Table 8. NIST’s random test figures: plaintext/cipheredtext correlation.

Test Success (%) Max Failure

Runs 1382 (98.7%) 94.5
Monobit 1382 (98.7%) 94.5
Spectral 1319 (94.2%) 94.5
Serial 1360(97.14%) 94.5
Cumulative Sums 1337 (95.5%) 94.5
Non-Overlapping Template Matching 1337 (95.5%) 94.5
Overlapping Template Matching 1358 (97.00%) 94.5
Linear Complexity 1359 (97.07%) 94.5
Binary Matrix Rank 1342 (95.85%) 94.5
Maurer’s “Universal Statistical” 1347 (96.21%) 94.5
Approximate Entropy 1366 (97.57%) 94.5
Longest Runs of Ones in a Black 1352 (96.57%) 94.5

5.3. Security Attacks Resistance

Besides the standard security tests, we also show in this subsection that the proposed
technique has features that make it resist critical types of attacks. We particularly argue
that the proposed technique can beat deferential and classic attacks.

5.3.1. Deferential Attacks

Differential attacks are a real challenge for encryption techniques [50]. They typically
make use of weaknesses due to the insufficient confusion that can hide the key identity.
The proposed encryption technique uses the key to initialize the chaotic system parameters
and to create the key-echo codes. The initialization process (Section 2.2) uses nonlinear
operation, SHA-512, to highly confuse the key. Because the SHA-512 is a one-way operation,
even if the attackers learn the manipulated key, it is impossible to identify the original
encryption key. The key-echo code generator uses the key. However, the key is subjected
to a nonlinear key doubling process and next to a three-stage processing. The three-stage
processing involves highly complicated nonlinear manipulation operations: deep bit-
mixing action, distorting mapping, mutation, and output noising. As shown in Section 5.1,
the output of the key-echo code generator has very high entropy, is random, and has a high
avalanche effect (flipping a bit forces more than 1

2 of the output bits to change).

5.3.2. Classic Attacks

We have four classic attacks: ciphertext-only, known-plaintext, chosen-plaintext,
and chosen-ciphertext attacks. As argued elsewhere [50], the chosen-plaintext attack
is the most effective one. If the encryption technique can resist this attack, it can resist the
others [51].

The proposed encryption technique resists the chosen-plaintext attacks due to both
how each symbol is encoded and to how the key impact is generated and embedded.
The initial encryption round uses three nonlinear operations. The encoder operation uses a
sliding point substitution, which adds further confusion to the confusion induced by the
substitution using S-Box [49]. The distortion operation increases the fuzziness of the initial
encryption because it is based on both chaotic signals and a stochastic process. The diffuser
operation uses a data-dependent mechanism to introduce bitwise changes to the encoded
symbols. These operations highly complicate the relation to the plaintext and remove any
patterns that may help decrypt the ciphertext. The key-echo code generator uses effective
operations to produce key-echo code sequences that are random with high entropy and
an avalanche effect. Additionally, the key round embeds the key-echo codes, using highly
complicated mixing operations, and these operations are selected using a data-dependent
method. This confusion obtained from different sources (chaotic system, initial encryption
operations, and the random key-echo codes) makes it impossible for hacking techniques to
identify patterns that may lead to knowing the input plaintext.
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5.4. Time Complexity Analysis

The functionality of the proposed algorithm is delivered by two major components: the
initial encryption round and the key echo generation process. These two components can
run concurrently. The initial encryption round depends on diffuser, encoder, and distortion
operations. The diffuser operation handles its input by sequentially reading each symbol
and processing this symbol using XOR and logic shift operations (these operations are
lightweight operations). Therefore, the time complexity of this operation is linear in the
size of the input (or O(n) in big-o terminologies). Both the encoder operation and the
distortion operation read the input (n symbols) and process each symbol using an XOR
operation, circular bit shift, and bit flipping. Therefore, the time complexity for the encoder
is O(n) and for the distortion operation is also O(n). As a result, the time complexity of
the initial encryption round is the sum of the complexities O(n) + O(n) + O(n) = 3O(n) or
O(n) (based on the big-o rules).

The functionality of the key echo generator is summarized in Figures 6 and 9. The input
doubling operation (Figure 6) depends mainly on the bit-mixing action, the substitution
space, and the permutation action. The bit-mixing action is of linear complexity in the input
size because it reads sequentially the input (n symbols) and handles this input using an XOR
operation and table lookup operation (both lightweight operation or O(1)). The substitution
space is a look-up table operation. The permutation operation (Algorithm 2) reads the input
symbols (n symbols) and moves them to a new index. The complexity of this operation is
O(n). In total, the complexity of the input doubling operation is the sum of the complexities
of these operations (i.e., O(n)). The key echo generator (Figure 9) uses several operations.
The bit-mixing operation is of O(n) time complexity. The re-directive maps a symbol to
a specific layer by a direct indexing. This direct indexing requires a complexity of O(1).
The time complexity for mapping any symbol to the T layers is thus O(T) (T < n).The
flirt-mate triggering technique is linear because it handles each symbol using the XOR
operation and crossover operation. The output noising computes some values using XOR
and shift operators and swaps h symbols (h < n). Thus, the maximum time complexity
is O(n)—assuming h = n. According to big-o rules, the time complexity of the key echo
generator is O(n).

We have also some overhead because of the chaotic system operation. The chaotic
system execution is linear in the sequence size. Given that the key echo generation and
the initial encryption round can work concurrently, the time complexity of the proposed
algorithm is linear in the input size (i.e., O(n)). Generally speaking, this complexity is very
acceptable and there is no other encryption algorithm that can handle its input in less than
this linear complexity. For instance, the AES involves matrix multiplication; we are not
aware of any method that can do this multiplication in less complexity than O(n).

6. Concluding Remarks and Future Work

The paper proposes an encryption technique that puts together the static substitution
table, data-dependent noising, chaotic-based distortion, and diffusion into one coherent
effective encoding method. This method is more effective than the classical substitution
operation adopted by important encryption techniques (e.g., AES’s S-BOX). Due to its
nonlinear and data-dependent operations, the encoding method effectively transforms
the plaintext symbols to new ones that have a very complicated and untractable relation
to the input. The key-echo generator uses also chaotic and data-dependent methods to
expand encryption keys and produces highly complicated codes to conceal the final output
of the encryption technique. We are aware of no standard encryption technique that
processes the key as effectively as the proposed technique and (1) produces sequences
of arbitrary length that match the length of the ciphertext, and (2) these sequences meet
the security measures. For example, the standard encryption technique (AES) has a very
primitive process for expanding the key to a length that is sufficient for encrypting one
block. This means that all blocks are handled with the same key sequence. In the proposed
technique, every block is handled with a different sequence. Furthermore, unlike the
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other encryption techniques, which add the key impact using a simple XOR operation,
the proposed technique adds the key echo impact, using more effective mixing operations
(please see Section 3.3). The proposed technique achieves a high rate of success based on
rigorous randomness testing batteries (NIST and ENT). This high performance supports
the claim that the intelligent use of data-dependent and chaotic methods is promising and
improves the immunity of encryption methods against sophisticated hacking tools used in
contemporary attacks.

We have some tasks left for future work. First, although the test cases are reasonably
sufficient and based on a well-established testing framework (NIST), we believe that more
test cases may help estimate the true performance of the proposed encryption technique.
Second, we want to use some of the recently proposed s-boxes (e.g., [40]) and estimate their
impact on the performance of the encryption technique.
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