
symmetryS S

Article

Nonlinearity of Boolean Functions: An Algorithmic Approach
Based on Multivariate Polynomials
Emanuele Bellini 1,* , Massimiliano Sala 2 and Ilaria Simonetti 3

����������
�������

Citation: Bellini, E.; Sala, M.;

Simonetti, I. Nonlinearity of Boolean

Functions: An Algorithmic Approach

Based on Multivariate Polynomials.

Symmetry 2022, 14, 213. https://

doi.org/10.3390/sym14020213

Academic Editor: Dmitry V. Dolgy

Received: 8 November 2021

Accepted: 14 December 2021

Published: 22 January 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Cryptography Research Centre, Technology Innovation Institute, Abu Dhabi P.O. Box 9639,
United Arab Emirates

2 Department of Mathematics, University of Trento, 38123 Trento, Italy; maxsalacodes@gmail.com
3 Department of Mathematics, University of Milan, 20133 Milan, Italy; ilaria.simonetti@gmail.com
* Correspondence: emanuele.bellini@tii.ae

Abstract: We review and compare three algebraic methods to compute the nonlinearity of Boolean
functions. Two of them are based on Gröbner basis techniques: the first one is defined over the
binary field, while the second one over the rationals. The third method improves the second one
by avoiding the Gröbner basis computation. We also estimate the complexity of the algorithms,
and, in particular, we show that the third method reaches an asymptotic worst-case complexity of
O(n2n) operations over the integers, that is, sums and doublings. This way, with a different approach,
the same asymptotic complexity of established algorithms, such as those based on the fast Walsh
transform, is reached.

Keywords: boolean functions; gröbner basis; nonlinearity; fast fourier transform; multivariate
polynomials

MSC: Primary: 06E30; 11T71; Secondary: 11T06; 13P25

1. Introduction

Any function that maps binary strings of fixed length to the set {0, 1} is called a
Boolean function (B.f.). Besides being mathematically interesting combinatorial objects,
Boolean functions have turned to be a fundamental tool for their relations to coding
theory (to the covering radii of Reed–Muller codes), combinatorics (difference set) and
cryptography, in particular for the design of symmetric and, recently, also homomorphic
ciphers. Due to this, researchers have uninterruptedly studied these objects for more than
four decades.

Modern symmetric ciphers are designed to achieve the principles of confusion and
diffusion [1]. Diffusion aims at distributing uniformly the dependence of the output bits
from all the input bits. This property is usually optimally achieved by means of linear
operations. On the other hand, confusions aims at complicating the relationship between
the output bits, the input bits and the key. This is usually achieved by exploiting relations
that are not linear. In symmetric cryptography, Boolean functions are often used in the
confusion layer of ciphers. An affine B.f. does not provide an effective confusion. To
overcome this, functions that are as far as possible from being an affine function are
needed. The effectiveness of these functions is measured by several parameters, one of
these is called “nonlinearity”. In particular, it is hard to approximate a B.f. with high
nonlinearity by an affine (or linear) function, which is a fundamental property in the
defense against linear cryptanalysis. Furthermore, B.f.s with highest nonlinearity (so called
“bent” functions [2]), have two fundamental properties: they achieve optimal diffusion
(similarly to linear functions) and their derivative takes on each value exactly half the
time, i.e., they are balanced, which makes them ideal to be resistant against differential
cryptanalysis. Unfortunately, bent functions are not balanced. When used to build stream

Symmetry 2022, 14, 213. https://doi.org/10.3390/sym14020213 https://www.mdpi.com/journal/symmetry

https://www.mdpi.com/journal/symmetry
https://www.mdpi.com
https://orcid.org/0000-0002-2349-0247
https://orcid.org/0000-0002-7266-5146
https://doi.org/10.3390/sym14020213
https://doi.org/10.3390/sym14020213
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/sym14020213
https://www.mdpi.com/journal/symmetry
https://www.mdpi.com/article/10.3390/sym14020213?type=check_update&version=2

Symmetry 2022, 14, 213 2 of 17

ciphers, for example, they make them susceptible to correlation attacks. In these case,
bent functions need to be replaced with a B.f. that is both balanced and highly non-linear.
Due to the extremely high number of B.f. and the scarcity of B.f.s with cryptographically
interesting properties, one can either build B.f.s with predetermined nonlinearity (often this
approach implies the lost of some desirable properties such as good diffusion, see, e.g., [3],
or high algebraic degree, for example symmetric functions with highest nonlinearity are
quadratic [4,5]), or to run a brute-force search among the available B.f.s. In this last case, it
becomes crucial to be able to compute the nonlinearity of a B.f. efficiently. We refer to [6–8]
for other applications of B.f.s in cryptography.

1.1. Related Works

Techniques to compute the nonlinearity of Boolean functions have been known for
many years, since the seminal work of Rothaus in 1976 [2], where he introduced “bent”
functions (even though his first paper in English on bent functions was written in 1966 [9]),
Boolean functions achieving maximal nonlinearity. These functions were also studied by
Dillon in 1974 [10], and it is claimed that they were already known also by Eliseev and
Stepchenko in the Soviet Union in the early 1960s, but their technical reports have never
been declassified [11]. A good overview and surveys on B.f. can be found, for example,
in [12], or, specifically for bent functions, in [9,11,13].

All methods to compute the nonlinearity of a generic B.f. f rely on butterfly algorithms
such as the Fast Fourier transform, or the fast Möbius transform, which are exponential
in the number of variables of f . These methods allow to compute the so called Walsh
spectrum, from which the nonlinearity can be directly quantified (see Section 2). With these
methods, usually one can compute the nonlinearity up to about 40 variables, on a relatively
powerful personal laptop. When f has a particular structure, there might be faster methods
to compute the nonlinearity. For example, in 2013, Çalik [14,15] showed that, when f is
sparse, the task of nonlinearity computation can be reduced to solving an associated binary
integer programming problem. The algorithm is used to compute the nonlinearity of some
sparse functions (up to 100 monomials) with 60 variables. Other kinds of properties of a B.f.
are reflected in the structure of the Walsh spectrum, which becomes easier to determine.
This is the case, for example, of quadratic functions, Maiorana–McFarland’s functions [16],
or normal functions [17,18] (see [19] for more details).

When computing the nonlinearity is not feasible, it becomes interesting to provide
lower bounds for this value. In 2008, Carlet [20], improving previous results from [21–23],
introduces a recursive method for lower bounding the nonlinearity profile of a B.f. and
deduces bounds on the second order nonlinearity for several classes of cryptographic
Boolean functions, including the Welch and the multiplicative inverse functions (used in
the S-boxes of the AES block cipher). Some more recent results [24] improve the lower
bounds on the second-order nonlinearity of three classes of Boolean functions whose form
is related to the absolute trace map.

Recently, in the context of defining a homomorphic encryption cipher, Carlet, Méaux,
and Rotella [19] have studied the main cryptographic features, including nonlinearity,
of Boolean functions when the input to these functions is restricted to some subset. The
nonlinearity with restricted input is the focus of [25].

Cryptographic attack have also pushed to generalization of the concept of nonlinearity,
as recently done for example by Semaev in [26], where “multidimensional” nonlinearity
parameters for conventional and vectorial Boolean functions are introduced.

Techniques that are similar to those presented in this work, have also been applied
in [27,28] to compute the minimum distance and the weight distribution of, respectively,
systematic nonlinear codes, and generic binary nonlinear codes.

1.2. Our Contribution

In this paper, we review three methods to compute the nonlinearity, which are based
on the theory of multivariate polynomials instead of the standard approach in terms

Symmetry 2022, 14, 213 3 of 17

of the Walsh transform. These three methods are unpublished and have been partially
presented only in conference (the method from Section 4.1 in WCC 2007 [29], the one from
Section 4.2 in MEGA 2015 [30], and the one from Section 4.3 in YACC 2014 [31]). All three
methods compute the nonlinearity of Boolean functions by starting from their truth table
(i.e., evaluation vector) representation (see Section 2). Moreover, we give an estimate of
the complexity of our methods, comparing it with the complexity of the classical method
which uses the fast Walsh transform and the fast Möbius transform.

The first method, described in Section 4.1, computes the nonlinearity of a B.f. f from
the evaluation vector (truth table) of f . We construct a polynomial system of equations
over the binary field with two elements, representing the set of all affine functions with a
given distance t from f . Then, using Gröbner basis algorithms, we solve the system for
t = 1, and, if there is no solution, we increase t and try with the newly derived system.
We repeat the procedure until a solution is found. At this point, the value of t returns
the nonlinearity of the B.f. f . As already mentioned, this method, not only returns the
nonlinearity of f , but also all affine functions with distance t from f (and thus also all
the best affine approximations of f , i.e., those affine functions g for which the distance
between f and g is minimal), compactly represented as a polynomial system of equations
over the binary field. Traditional methods to compute the nonlinearity only return the set
of distances of all affine functions from f in the form of the so called Walsh table. Although
all such affine functions could be deduced from the Walsh table, this does not provide a
compact algebraic representation for them. This is the main reason why this method is
considerably less efficient than those based on the fast Fourier transform.

At the cost of losing the information of all affine functions, we improve the efficiency
of the previous method. Again, starting from the evaluation vector of f , we construct
a polynomial, that we call the nonlinearity polynomial, whose evaluation contains all the
distances of f from all possible affine functions, and the minimum such distance will
be the nonlinearity. This evaluation can be found again using Gröbner basis algorithms
over the rational or a prime field (see Section 4.2) or by using a more traditional butterfly
algorithm (see Section 4.3). This last option let us compute the nonlinearity of f with the
same asymptotical complexity O(n2n) of the traditional technique using the Fast Walsh
transform. Notice that, though we are not aware of any proof, the asymptotic complexity
of O(n2n) seems to be already optimal. This claim is enforced by the fact that the input of
the problem has a dimension of 2n.

1.3. Outline of the Paper

In Sections 2 and 3 we recall the basic notions and statements, especially regarding
Boolean functions, which are necessary for our methods. In Section 4, we present our
original algorithms, and we introduce the notion of nonlinearity polynomial and describe
its properties. Finally, in Section 5 we analyze the complexity of the proposed methods,
both experimentally and theoretically.

2. Preliminaries and Notation on Boolean Functions

In this chapter we summarize some definitions and known results from [12,32], con-
cerning Boolean functions and the classical techniques to determine their nonlinearity.

We denote by F the binary field F2. The set Fn is the set of all binary vectors of length
n, viewed as an F-vector space. Let v ∈ Fn. The Hamming weight w(v) of the vector v is the
number of its nonzero coordinates. For any two vectors v1, v2 ∈ Fn, the Hamming distance
between v1 and v2, denoted by d(v1, v2), is the number of coordinates in which the two
vectors differ. A Boolean function is a function f : Fn → F. The set of all Boolean functions
from Fn to Fwill be denoted by Bn.

2.1. Representations of Boolean Functions

We assume implicitly to have ordered Fn, so that Fn = {p1, . . . , p2n}. A Boolean
function f can be specified by a truth table, which gives the evaluation of f at all pi’s.

Symmetry 2022, 14, 213 4 of 17

Definition 1. We consider the evaluation map Bn −→ F2n
such that

f 7−→ f = (f (p1), . . . , f (p2n)) .

The vector f is called the evaluation vector of f .

Once the order on Fn is chosen, i.e., the pi’s are fixed, it is clear that the evaluation
vector of f uniquely identifies f .

A B.f. f ∈ Bn can be expressed in a unique way as a square free polynomial in
F[X] = F[x1, . . . , xn], i.e., f = ∑v∈Fn bvXv , where Xv = xv1 · · · xvn . This representation is
called the Algebraic Normal Form (ANF).

Definition 2. The degree of the ANF of a B.f. f is called the algebraic degree of f, denoted by deg f ,
and it is equal to max{w(v) | vs. ∈ Fn, bv 6= 0}.

Let An be the set of all affine functions from Fn to F, i.e., the set of all Boolean
functions in Bn with algebraic degree 0 or 1. If α ∈ An then its ANF can be written as
α(X) = a0 + ∑n

i=1 aixi . There exists a simple divide-and-conquer butterfly algorithm [12]
(p. 10) to compute the ANF from the truth-table (or vice versa) of a Boolean function, which
requires O(n2n) bit sums, while O(2n) bits must be stored. This algorithm is known as the
fast Möbius transform.

In [33], a useful representation of Boolean functions for characterizing several crypto-
graphic criteria (see also [34,35]) is introduced.

Boolean functions can be represented as elements of K[X]/〈X2 − X〉, where 〈X2 − X〉
is the ideal generated by the polynomials x2

1 − x1, . . . , x2
n − xn, and K is Q, R, or C.

Definition 3. Let f be a function on Fn taking values in a field K. We call the numerical normal
form (NNF) of f the following expression of f as a polynomial:

f (x1, . . . , xn) = ∑
u∈Fn

λu(
n

∏
i=1

xui
i) = ∑

u∈Fn
λuXu ,

with λu ∈ K and u = (u1, . . . , un).

It can be proved that any B.f. f admits a unique numerical normal form. As for the
ANF, it is possible to compute the NNF of a B.f. from its truth table by mean of an algorithm
similar to a fast Fourier transform, thus requiring O(n2n) additions over K and storing
O(2n) elements of K.

From now on let K = Q. The truth table of f can be recovered from its NNF by the
formula f (u) = ∑a�u λa, ∀u ∈ Fn , where a � u ⇐⇒ ∀i ∈ {1, . . . , n} ai ≤ ui. Conversely,
it is possible to derive an explicit formula for the coefficients of the NNF by means of the
truth table of f .

Proposition 1. Let f be any integer-valued function on Fn. For every u ∈ Fn, the coefficient λu
of the monomial Xu in the NNF of f is:

λu = (−1)w(u) ∑
a∈Fn |a�u

(−1)w(a) f (a) . (1)

2.2. Nonlinearity and Walsh Transform of a Boolean Function

Definition 4. Let f , g ∈ Bn. Then d(f , g) = |{v : f (v) 6= g(v)}|.

Lemma 1. Let f , g ∈ Bn. Then d(f , g) = d(f , g) = w(f + g) .

Symmetry 2022, 14, 213 5 of 17

Definition 5. Let f ∈ Bn. The nonlinearity of f is the minimum of the distances between f and
any affine function N(f) = minα∈An d(f , α) .

The maximum nonlinearity for a B.f. f is bounded by:

max{N(f) | f ∈ Bn} ≤ 2n−1 − 2
n
2−1 . (2)

Definition 6. The Walsh transform of a B.f. f ∈ Bn is the function F̂ : Fn −→ Z, such that
x 7−→ ∑y∈Fn(−1)x·y+ f (y) , where x · y is the scalar product.

Fact. N(f) = minv∈Fn{2n−1 − 1
2 |F̂(v)|} = 2n−1 − 1

2 maxv∈Fn{|F̂(v)|}

Definition 7. The set of integers {F̂(v) | v ∈ Fn} is called the Walsh spectrum of the B.f. f .

It is possible to compute the Walsh spectrum of f from its evaluation vector in O(n2n)
integer operations, while storing O(2n) integers, by means of the fast Walsh transform (the
Walsh transform is the Fourier transform of the sign function of f). Thus, the computation
of the nonlinearity of a B.f. f , when this is given either in its ANF or in its evaluation vector,
requires O(n2n) integer operations and a memory of O(2n).

3. Preliminary Results

Here we present the main results from [29,36]. The same techniques are also applied
in [27,37].

Polynomials and Vector Weights

LetK be a field and X = {x1, . . . , xs} be a set of variables. We denote byK[X] the multi-
variate polynomial ring in the variables X. If f1, . . . , fN ∈ K[X], we denote by 〈{ f1, . . . , fN}〉
the ideal in K[X] generated by f1, . . . , fN . Let q be the power of a prime. We denote by
Eq[X] = {xq

1 − x1, . . . , xq
s − xs} , the set of field equations in Fq[X] = Fq[x1, . . . , xs], where

s ≥ 1 is an integer, understood from now on. We write E[X] when q = 2.

Definition 8. Let 1 ≤ t ≤ s and m ∈ Fq[X]. We say that m is a square free monomial of degree t
(or a simple t-monomial) if:

m = xh1 · · · xht , where h1, . . . , ht ∈ {1, . . . , s} and h` 6= hj, ∀` 6= j ,

i.e., a monomial in Fq[X] such that degxhi
(m) = 1 for any 1 ≤ i ≤ t. We denote byMs,t the set

of all square free monomials of degree t in Fq[X].

Let t ∈ N, with 1 ≤ t ≤ s and let Is,t ⊂ Fq[X] be the following ideal

Is,t = 〈{σt, . . . , σs} ∪ Eq[X]〉 ,

where σi are the elementary symmetric functions: σ1 = x1 + x2 + . . . + xs, σ2 = x1x2 +
x1x3 + . . . + x1xs + x2x3 + . . . + xs−1xs, . . . , σs = x1x2 · · · xs−1xs.

We also denote by Is,s+1 the ideal 〈Eq[X]〉. For any 1 ≤ i ≤ s, let Pi be the set which
contains all vectors in (Fq)n of weight i, Pi = {v ∈ Fn

q | w(v) = i}, and let Qi be the set
which contains all vectors of weight up to i, Qi = t0≤j≤iPj.

Theorem 1. Let t be an integer such that 1 ≤ t ≤ s. Then the vanishing ideal I(Qt) of Qt is
I(Qt) = Is,t+1 , and its reduced Gröbner basis G is

G = Eq[X] ∪Ms,t , for t ≥ 2 ,
G = {x1, . . . , xs} , for t = 1 .

Symmetry 2022, 14, 213 6 of 17

Let Fq[Z] be a polynomial ring over Fq. Let m ∈ Ms,t, m = zh1 · · · zht . For any
polynomial vector W in the module (Fq[Z])n, W = (W1, . . . , Wn), we denote by m(W) the
following polynomial in Fq[Z]:

m(W) = Wh1 · . . . ·Wht .

Example 1. Let n = s = 3, q = 2, W = (x1x2 + x3, x2, x2x3) ∈ (F[x1, x2, x3])
3 and m = z1z3.

Then m(W) = (x1x2 + x3)(x2x3) .

4. Computing the Nonlinearity of a Boolean Function

In this section, we present three methods to compute the nonlinearity of a B.f. f . The
first exploits Gröbner basis algorithms over the binary field, and is somehow inefficient,
but beside the nonlinearity, also returns all affine functions of a given distance from f . The
second methods is more efficient and uses Gröbner basis algorithms over the rational or a
prime field. Finally, the third method, the most efficient, is based on a butterfly structure
similar to a fast Fourier transform.

4.1. Gröebner Bases over the Biniary Field

In this section, we show how to use Theorem 1 to compute the nonlinearity of a given
B.f. f ∈ Bn. We want to define an ideal such that a point in its variety corresponds to an
affine function with distance at most t− 1 from f .

Let A be the variable set A = {ai}0≤i≤n. We denote by gn ∈ F[A, X] the following
polynomial:

gn = a0 +
n

∑
i=1

aixi .

According to Lemma 1, determining the nonlinearity of f ∈ Bn is the same as finding
the minimum weight of the vectors in the set { f + g | g ∈ An} ⊂ F2n

. We can consider the
evaluation vector of the polynomial gn as follows:

gn = (gn(A, p1), . . . , gn(A, p2n)) ∈ (F[A])2n
.

Example 2. Let g3 be a general affine function in A3. Then g3 = a1x1 + a2x2 + a3x3 + a0. We
consider vectors in F3 ordered as follows (note that, in all the examples, we first list the vectors from
smaller to higher Hamming weight. Among vectors of the same weight, we list first those having a
smaller integer representation, with least significant bit on the right):

p1 = (0, 0, 0), p2 = (0, 0, 1), p3 = (0, 1, 0), p4 = (1, 0, 0),
p5 = (0, 1, 1), p6 = (1, 0, 1), p7 = (1, 1, 0), p8 = (1, 1, 1).

Thus, we have that the evaluation vector of g3 is g3 = (a0, a0 + a1, a0 + a2, a0 + a3, a0 + a1 +
a2, a0 + a1 + a3, a0 + a2 + a3, a0 + a1 + a2 + a3).

Definition 9. We denote by Jn
t (f) the ideal in F[A]:

Jn
t (f) = 〈{m

(
gn(A, p1) + f (p1), . . . , gn(A, p2n) + f (p2n)

)
| m ∈ M2n ,t} ∪ E[A]〉

= 〈{m(gn + f) | m ∈ M2n ,t} ∪ E[A]〉 .

Remark 1. As E[A] ⊂ Jn
t (f), Jn

t (f) is zero-dimensional and radical ([38]).

Lemma 2. For 1 ≤ t ≤ 2n the following statements are equivalent:

1. V(Jn
t (f)) 6= ∅,

2. ∃u ∈ { f + g | g ∈ An} such that w(u) ≤ t− 1,
3. ∃α ∈ An such that d(f , α) ≤ t− 1.

Symmetry 2022, 14, 213 7 of 17

Proof. (2)⇔(3). Obvious.
(1)⇒(2). Let Ā = (ā0, ā1, . . . , ān) ∈ V(Jn

t (f)) ⊂ Fn+1 and u = (gn(Ā, v1) + f (v1), . . . ,
gn(Ā, v2n) + f (v2n)) ∈ F2n

. We have that m(u) = 0 for all m ∈ M2n ,t. Thus, u ∈ V(I2n ,t)
and, thanks to Theorem 1, u ∈ Qt−1, i.e., w(u) ≤ t− 1.

(2)⇒(1). It can be proved by reversing the above argument.

From Lemma 2 we immediately have the following theorem.

Theorem 2. Let f ∈ Bn. The nonlinearity N(f) is the minimum t such that V(Jn
t+1(f)) 6= ∅.

From this theorem we can derive an algorithm to compute the nonlinearity for a
function f ∈ Bn, by computing any Gröbner basis of Jn

t (f).

Remark 2. If f is not affine, we can start our check from Jn
2 (f).

Example 3. Let f : F3 → F be the Boolean function: f (x1, x2, x3) = x1x2 + x1x3 + x2 + 1 . We
want to compute N(f) and clearly f is not affine. We compute vector f and we take a general affine
function g3 (as in Example 2), so that f = (1, 1, 0, 1, 1, 0, 0, 0), g3 = (a0, a0 + a1, a0 + a2, a0 +
a3, a0 + a1 + a2, a0 + a1 + a3, a0 + a2 + a3, a0 + a1 + a2 + a3). Thus, f + g3 = (a0 + 1, a0 +
a1 + 1, a0 + a2, a0 + a3 + 1, a0 + a1 + a2 + 1, a0 + a1 + a3, a0 + a2 + a3, a0 + a1 + a2 + a3) =
(p1, p2, . . . , p8). The ideal J3

2 (f) is the ideal generated by J3
2 (f) = 〈{p1 p2, p1 p3, . . . , p7 p8} ∪

{a2
0 + a0, a2

1 + a1, a2
2 + a2, a2

3 + a3}〉 . We compute any Gröbner basis of this ideal and we obtain
that it is trivial, so V(J3

2 (f)) = ∅ and N(f) > 1. Now we have to compute a Gröbner basis
for J3

3 (f). We obtain, using degrevlex (graded reverse lexicographic order, also known as grevlex,
or degrevlex for degree reverse lexicographic order, compares the total degree first, then uses a reverse
lexicographic order as tie-breaker, but it reverses the outcome of the lexicographic comparison so
that lexicographically larger monomials of the same degree are considered to be degrevlex smaller).
Ordering with a1 > a2 > a3 > a0, that G(J3

3 (f)) = {a2 + a3 + 1, a2
3 + a3, a1a3 + a0 + 1, a0a3 +

a0 + a3 + 1, a2
1 + a1, a0a1 + a0 + a1 + 1, a2

0 + a0}. Thus, N(f) = 2 by Theorem 2. By inspecting
G(J3

3 (f)), we also obtain all affine functions having distance 2 from f : α1 = 1 + x1 + x2, α2 =
1 + x2, α3 = 1 + x3, α4 = x1 + x3 .

Example 4. Let f : F5 → F be the Boolean function f = x1x3x4x5 + x1x2x4 + x1x4x5 +
x2x3x4 + x2x4x5 + x3x4x5 + x4x5. As it is obvious that f is not affine, we start from the ideal
J5
2 (f). The Gröbner basis of J5

t (f) is trivial with respect to any monomial order for 2 ≤ t ≤ 4.
For t = 5, we obtain the Gröbner basis G(J5

5 (f)) = {a0, a5, a4, a3, a2, a1} . with respect to the
degrevlex order with a1 > a2 > a3 > a4 > a5 > a0: Then N(f) = 4, that is, there is only one
affine function α that has distance equal to 4 from f : α = 0.

4.2. Gröebner Bases over the Rational Field

Here we present an algorithm to compute the nonlinearity of a B.f. using Gröbner
bases over Q rather than over F, which turns out to be much faster than Algorithm 1.
The same algorithm can be slightly modified to work over the field Fp, where p is a prime.
The complexity of these algorithms will be analyzed in Section 5.

Algorithm 1 NLGBF: Basic algorithm to compute the nonlinearity of a B.f. using Gröbner
basis over F.
Input: a B.f. f
Output: the nonlinearity of f

1: j← 1
2: while V(Jn

j (f)) = ∅ do
3: j← j + 1
4: end while
5: return j− 1

Symmetry 2022, 14, 213 8 of 17

As we have seen in Section 4.1, the nonlinearity of a B.f. can be computed using
Gröbner bases over F. It is sufficient to find the minimum j such that the variety of the
ideal Jn

t (f) is not empty. Recall that

Jn
t (f) = 〈{m(gn + f) | m ∈ M2n ,t} ∪ E[A]〉 .

This method becomes impractical even for small values of n, since (2n

t) monomials
have to be evaluated. A first slight improvement could be achieved by adding to the ideal
one monomial evaluation at a time and check if 1 has appeared in the Gröbner basis. Even
this way, the algorithm remains very slow.

For each i = 1, . . . , 2n, let us denote:

f (F)i (A) = gn(A, pi) + f (pi)

the B.f. where as usual A = {a0, . . . , an} are the n + 1 variables representing the coefficient
of a generic affine function. In this case we have that:

(f (F)1 (A), . . . , f (F)2n (A)) = gn(A) + f ∈ (F[A])2n

Note that the polynomials f (F)i are affine polynomials. We also denote by

f (Z)i (A) = NNF(f (F)i (A))

the NNF of each f (F)i (A) (obtained as in [33], Theorem 1).

Definition 10. We call n f (A) = f (Z)1 (A) + · · · + f (Z)2n (A) ∈ Z[A] the integer nonlinearity
polynomial (or simply the nonlinearity polynomial) of the B.f. f . For any t ∈ N we define the ideal
N t

f ⊆ Q[A] as follows:

N t
f = 〈E[A]

⋃
{ f (Z)1 + · · ·+ f (Z)2n − t}〉 = 〈E[A]

⋃
{n f − t}〉

Note that the evaluation vector n f represents all the distances of f from all possible
affine functions (in n variables).

Theorem 3. The variety of the ideal N t
f is non-empty if and only if the B.f. f has distance t from

an affine function. In particular, N(f) = t, where t is the minimum positive integer such that
V(N t

f) 6= ∅.

Proof. Note thatN t
f = 〈E[A]〉+ 〈{n f (A)− t}〉 and so V(N t

f) = V(〈E[A]〉)∩V(〈{n f (A)−
t}〉) . Therefore, V(N t

f) 6= ∅ if and only if ∃ā = (ā0, . . . , ān) ∈ V(〈E[A]〉) such that n f (ā) =

t. Let α ∈ An such that α(X) = ā0 + ∑n
i=1 āixi. By definition we have f (Z)i = 1 ⇐⇒

f (pi) 6= α(pi) and f (Z)i = 0 ⇐⇒ f (pi) = α(pi) . Hence n f (ā) = ∑2n

i=1 f (Z)i (ā)− t = 0 ⇐⇒
|{i | f (pi) 6= α(pi)}| = t ⇐⇒ d(f , α) = t . and our claim follows directly.

To compute the nonlinearity of f we can use Algorithm 2 over the rational field
(K = Q), with input f .

Symmetry 2022, 14, 213 9 of 17

Algorithm 2 NLGBK: To compute the nonlinearity of the B.f. f using Gröbner basis over a
field K.
Input: f
Output: nonlinearity of f

1: Compute n f
2: j← 1
3: while V(N j

f) = ∅ do
4: j← j + 1
5: end while
6: return j

4.3. Fast Polynomial Evaluation

Once the nonlinearity polynomial n f is defined, we can use another approach to
compute the nonlinearity avoiding the computations of Gröbner bases. We have to find the
minimum nonnegative integer t in the set of the evaluations of n f , that is, in {n f (ā) | ā ∈
{0, 1}n+1 ⊂ Zn+1}. To compute the evaluations we can use a Fast Polynomial Evaluation
algorithm (FPE), such as the fast Möbius transform. In Algorithm 3, we explicitly show the
above steps.

Algorithm 3 NLNLP+FPE: To compute the nonlinearity of the Boolean function, using
Nonlinearity Polynomial (NLP) and Fast Polynomial Evaluation (FPE).

Input: f
Output: nonlinearity of f

1: if f ∈ An then
2: return 0
3: else
4: Compute n f // Algorithm 4: NLP
5: Compute m = min{n f (ā) | ā ∈ {0, 1}n+1} // FPE
6: return m
7: end if

Example 5. Consider the case n = 2, f (x1, x2) = x1x2 + 1. We have that f = (1, 1, 1, 0) and

gn = (a0, a0 + a1, a0 + a2, a0 + a1 + a2). Let us compute all f (F)i = (gn + f)i and f (Z)i , for
i = 1, . . . , 22:

f (F)1 = a0 + 1 → f (Z)1 = −a0 + 1

f (F)2 = a0 + a1 + 1 → f (Z)2 = 2a0a1 − a0 − a1 + 1

f (F)3 = a0 + a2 + 1 → f (Z)3 = 2a0a2 − a0 − a2 + 1

f (F)4 = a0 + a1 + a2 → f (Z)4 = 4a0a1a2 − 2a0a1 − 2a0a2

+ a0 − 2a1a2 + a1 + a2

Then n f = f (Z)1 + f (Z)2 + f (Z)3 + f (Z)4 = 4a0a1a2 − 2a0 − 2a1a2 + 3 and since

n f = (3, 1, 3, 1, 3, 1, 1, 3)

then the nonlinearity of f is 1. Observe that the vector n f represents all the distances of f from all
possible affine functions in 2 variables, that is, from 0, 1, x1, x1 + 1, x2, x2 + 1, x1 + x2, x1 + x2 + 1.

4.4. Properties of the Nonlinearity Polynomial

From now on, with abuse of notation, we sometimes consider 0 and 1 as elements of F
and other times as elements of Z. We have the following simple lemma:

Symmetry 2022, 14, 213 10 of 17

Lemma 3. Given b1, . . . , bn ∈ F

b1 ⊕ . . .⊕ bn = ∑
v=(v1,...,vn)∈Fn ,v 6=0

(−2)w(v)−1 · bv1
1 · · · b

vn
n .

where the sum on the right is in Z.

It is easy to show that b1 ⊕ . . . ⊕ bn ∈ {0, 1}. We give a theorem to compute the
coefficients of the nonlinearity polynomial.

Theorem 4. Let v = (v0, v1, . . . , vn) ∈ Fn+1, ṽ = (v1, . . . , vn) ∈ Fn, Av = av0
0 · · · a

vn
n ∈ F[A]

and cv ∈ Z be such that n f = ∑v∈Fn+1 cv Av. Then the coefficients of n f can be computed as:

cv = ∑
u∈Fn

f (u) = w(f) if vs. = 0 (3)

cv = (−2)w(v) ∑
u∈Fn
ṽ�u

[
f (u)− 1

2

]
if vs. 6= 0 (4)

Proof. The nonlinearity polynomial is the integer sum of the 2n numerical normal forms of
the affine polynomials gn(A, u)⊕ f (u) ∈ F[A], each identified by the vector u ∈ Fn, i.e.,:

n f = ∑
u∈Fn

NNF(gn(A, u)⊕ f (u)) = ∑
u∈Fn

NNF(a0 ⊕ a1u1 ⊕ . . .⊕ anun ⊕ f (u))

which is a polynomial in Z[A]. The NNF of gn(A, u)⊕ f (u) is a polynomial with 2n+1

terms, i.e.,:

NNF(gn(A, u)⊕ f (u)) = ∑
v∈Fn+1

λv Av ,

for some λv ∈ Z, and by Proposition 1

λv(u) = (−1)w(v) ∑
a∈Fn+1|a�v

(−1)w(a)
(
gn(a, u)⊕ f (u)

)
.

Let us prove Equation (3). When v = (0, . . . , 0) we have

c(0,...,0) = ∑
u∈Fn

[
gn((0, . . . , 0), u)⊕ f (u)

]
= ∑

u∈Fn
f (u) .

Let us prove Equation (4). Suppose v 6= 0. Now the coefficient cv of the monomial Av

of the nonlinearity polynomial is such that:

cv = ∑
u∈Fn

λv(u) =

= ∑
u∈Fn

(−1)w(v) ∑
a∈Fn+1,

a�v

(−1)w(a)[gn(a, u)⊕ f (u)
]
=

= (−1)w(v) ∑
u∈Fn

∑
a∈Fn+1,

a�v

(−1)w(a)[gn(a, u)⊕ f (u)
]

. (5)

We claim that each u such that ṽ = (v1, . . . , vn) � u yields a zero term in the sum-
mation. If ṽ � u then ∃i ∈ {1, . . . , n} s.t. vi > ui, i.e., vi = 1, ui = 0. We show now that
∀a ∈ Fn+1 s.t. a � vs. ∃ā = (ā0, . . . , ān) ∈ Fn+1 s.t. ā � v and

(−1)w(a)[gn(a, u)⊕ f (u)
]
+ (−1)w(ā)[gn(ā, u)⊕ f (u)

]
= 0 (6)

Symmetry 2022, 14, 213 11 of 17

It is sufficient to choose āi 6= ai and āj = aj for all j ∈ {1, . . . , n}, j 6= i. Clearly ā � v
and a � v since vi = 1. By direct substitution we obtain

(−1)w(a)[gn(a, u)⊕ f (u)
]
+ (−1)w(ā)[gn(ā, u)⊕ f (u)

]
=

=(−1)w(a)[a0 ⊕ a1u1 ⊕ . . .⊕ aiui ⊕ . . .⊕ anun
]
+

(−1)w(a)(−1)
[
ā0 ⊕ ā1u1 ⊕ . . .⊕ āiui ⊕ . . .⊕ ānun

]
=(−1)w(a)[aiui − āiui] = 0 .

Thanks to (6) we can continue from (5) and get

cv = (−1)w(v) ∑
u∈Fn
ṽ�u

∑
a∈Fn+1,

a�v

(−1)w(a)[gn(a, u) + f (u)

−2gn(a, u) f (u)
]

, (7)

where we used a⊕ b = a + b− 2ab.
Now we consider v, u fixed, and ṽ � u. There are exactly 2w(v) vectors a such that

a � v, i.e.,:

|{a ∈ Fn+1 | a � vs.}| = 2w(v) (8)

Now we want to study the internal summation in (7). If u = (0, . . . , 0) then ∀a =
(a0, . . . , an) � v we have gn(a, u) = a0 ⊕ a1u1 ⊕ . . . anun = a0. Otherwise, if u 6= (0, . . . , 0)
we can consider the following set of indices U = {j | uj = 1} = {j1, . . . , jw(u)}, which has
size w(u). Since a � v and ṽ � u then (a1, . . . , an) � u by transitivity. For all j /∈ U we
have aj = 0, and then w(a0, aj1 , . . . , ajw(u)

) = w(a). Thus, for any u ∈ Fn we have

gn(a, u) = a0 ⊕ aj1 ⊕ . . .⊕ ajw(u)
=

{
1 if w(a) is odd
0 if w(a) is even

(9)

and each of the two cases happens for exactly one half of the vectors a � v. Clearly the two
halves are disjointed. This yields, from (5) and (7), the following chain of equalities:

cv = ∑
u∈Fn

λv(u) =

= (−1)w(v) ∑
u∈Fn

ṽ�u

[
∑

a∈Fn+1,
a� v

gn(a,u)=0

(−1)w(a) f (u)+

∑
a∈Fn+1,

a� v
gn(a,u)=1

(−1)w(a)(1− f (u))
]
=

= (−1)w(v) ∑
u∈Fn

ṽ�u

[
∑

a∈Fn+1,
a� v

gn(a,u)=0

f (u) + ∑
a∈Fn+1,

a� v
gn(a,u)=1

(f (u)− 1)
]
=

= (−1)w(v) ∑
u∈Fn

ṽ�u

[
2w(v)−1 f (u) + 2w(v)−1(f (u)− 1)

]
=

= (−1)w(v) ∑
u∈Fn

ṽ�u

[
2w(v) f (u)− 2w(v)−1

]
=

= (−2)w(v) ∑
u∈Fn

ṽ�u

[
f (u)− 1

2

]

Symmetry 2022, 14, 213 12 of 17

which proves the theorem.

In particular we have:

Corollary 1. Let u = (u1, . . . , un) and the nonlinearity polynomial

n f = ∑
u∈Fn

c(0,u)a
u1
1 · . . . · aun

n + a0 ∑
u∈Fn

c(1,u)a
u1
1 · . . . · aun

n .

Then, we have that:

c(1,0,...,0) = 2n − 2w(f) (10)

Furthermore, ∀ṽ ∈ Fn, ṽ 6= 0 we have:

c(1,ṽ) = −2c(0,ṽ), . (11)

Corollary 1 shows that it is sufficient to store half of the coefficients of n f , precisely
the coefficients of the monomials where a0 does not appear.

Corollary 2. Each coefficient c of the nonlinearity polynomial n f is such that |c| ≤ 2n.

Corollary 3. Given the nonlinearity polynomial of f as

n f (a0, . . . , an) = c(0,...,0) + ∑
(p0,...,pn)∈Fn+1

(p0,...,pn) 6=(0,...,0)

c(p0,...,pn)a
p0
0 · . . . · apn

n

then the nonlinearity polynomial of f ⊕ 1 is related to that of f by the following rule:

n f⊕1(a0, . . . , an) = 2n − c(0,...,0)+

∑
(p0,...,pn)∈Fn+1

(p0,...,pn) 6=(0,...,0)

−c(p0,...,pn)a
p0
0 · . . . · apn

n

A scheme that shows how to derive the coefficients of the nonlinearity polynomial in
the case n = 3 can be seen in Tables 1 and 2.

Table 1. Computation of the coefficients of the nonlinearity polynomial with n = 3. Each line
represents the NNF coefficients of the terms of f (u) + gn(A, u) not containing a0.

u f (u) + gn(a0, a1, a2, a3, u) 1 a3 a2 a2a3 a1 a1a3 a1a2 a1a2a3

000 v1 + a0 v1
001 v2 + a0 + a3 v2 1− 2v2
010 v2 + a0 + a2 v3 1− 2v3
011 v2 + a0 + a2 + a3 v4 1− 2v4 1− 2v4 −2 + 4v4
100 v2 + a0 + a1 v5 1− 2v5
101 v2 + a0 + a1 + a3 v6 1− 2v6 1− 2v6 −2 + 4v6
110 v2 + a0 + a1 + a2 v7 1− 2v7 1− 2v7 −2 + 4v7
111 v2 + a0 + a1 + a2 + a3 v8 1− 2v8 1− 2v8 −2 + 4v8 1− 2v8 −2 + 4v8 −2 + 4v8 4− 8v8

Table 2. Computation of the coefficients of the nonlinearity polynomial with n = 3. Each line
represents the NNF coefficients of the terms of f (u) + gn(A, u) containing a0.

u f (u) + gn(a0, a1, a2, a3, u) a0 a0a3 a0a2 a0a2a3 a0a1 a0a1a3 a0a1a2 a0a1a2a3

000 v1 + a0 1− 2v1
001 v2 + a0 + a3 1− 2v2 −2 + 4v2
010 v2 + a0 + a2 1− 2v3 −2 + 4v3
011 v2 + a0 + a2 + a3 1− 2v4 −2 + 4v4 −2 + 4v4 4− 8v4
100 v2 + a0 + a1 1− 2v5 −2 + 4v5
101 v2 + a0 + a1 + a3 1− 2v6 −2 + 4v6 −2 + 4v6 4− 8v6
110 v2 + a0 + a1 + a2 1− 2v7 −2 + 4v7 −2 + 4v7 4− 8v7
111 v2 + a0 + a1 + a2 + a3 1− 2v8 −2 + 4v8 −2 + 4v8 4− 8v8 −2 + 4v8 4− 8v8 4− 8v8 −8 + 16v8

Symmetry 2022, 14, 213 13 of 17

5. Complexity Considerations

In this section, we analyze the complexity of constructing the nonlinearity polynomial
and of running Algorithms 1–3 to compute the nonlinearity. Recall that, using the Fast
Möbius and the Fast Walsh Transform, the complexity of computing the nonlinearity of a
B.f. with n variables, having as input its coefficients vector, is O(n2n).

5.1. Complexity of Constructing the Nonlinearity Polynomial

In Algorithm 4, we provide the pseudo code to compute the coefficients of the nonlin-
earity polynomial in O(n2n) integer operations. In Figure 1, Algorithm 4 is visualized for
n = 3.

Algorithm 4 NLP: Algorithm to calculate the nonlinearity polynomial n f in O(n2n) inte-
ger operations.

Input: The evaluation vector f of a B.f. f (x1, . . . , xn)

Output: the vector c = (c1, . . . , c2n+1) of the coefficients of n f
Calculation of the coefficients of the monomials not containing a0

1: (c1, . . . , c2n) = f
2: for i = 0, . . . , n− 1 do
3: b← 0
4: repeat
5: for x = b, . . . , b + 2i − 1 do
6: cx+1 ← cx+1 + cx+2i+1
7: if x = b then
8: cx+2i+1 ← 2i − 2cx+2i+1
9: else

10: cx+2i+1 ← −2cx+2i+1
11: end if
12: end for
13: b← b + 2i+1

14: until b = 2n

15: end for
Calculation of the coefficients of the monomials containing a0

16: c1+2n ← 2n − 2c1
17: for i = 2, . . . , 2n do
18: ci+2n ← −2ci
19: end for
20: return c

(x1, x2, x3) f (x1, x2, x3) Step 1 Step 2 Step 3

000 e1 // + e1 + e2 // + e1 + e2 + e3 + e4 // + e1 + e2 + e3 + e4 + e5 + e6 + e7 + e8

001 e2

55

1−2x
// 1− 2e2 // + 2− 2e2 − 2e4 // + 4− 2e2 − 2e4 − 2e6 − 2e8

010 e3 // + e3 + e4

CC

2−2x
// 2− 2e3 − 2e4 // + 4− 2e3 − 2e4 − 2e7 − 2e8

011 e4

55

1−2x
// 1− 2e4

CC

−2x
// −2 + 4e4 // + −4 + 4e4 − 4e8

100 e5 // + e5 + e6 // + e5 + e6 + e7 + e8

II

4−2x
// 4− 2e5 − 2e6 − 2e7 − 2e8

101 e6

55

1−2x
// 1− 2e6 // + 2− 2e6 − 2e8

II

−2x
// −4 + 4e6 − 4e8

110 e7 // + e7 + e8

CC

2−2x
// 2− 2e7 − 2e8

II

−2x
// −4 + 4e7 − 4e8

111 e8

55

1−2x
// 1− 2e8

CC

−2x
// −2 + 4e8

II

−2x
// 4− 8e8

Figure 1. Butterfly scheme to efficiently compute the coefficients of the nonlinearity polynomial,
where (e1, . . . , e8) = (f (p1), . . . , f (p8)) (see Algorithm 4: NLP).

Theorem 5. Algorithm 4 requires:

1. O(n2n) integer sums and doublings, in particular about n2n−1 integer sums and about n2n−1

integer doublings.

Symmetry 2022, 14, 213 14 of 17

2. The storage of O(2n) integers of size less than or equal to 2n.

Proof. In the first part of Algorithm 4 (the computation of the coefficients of the monomials
not containing a0) the iteration on i is repeated n times. For each i, Step 6 and Step 8
or 10 are repeated 2i 2n

2i+1 = 2n/2 times (since b goes from 0 to 2n by a step of 2i+1 and
x performs 2i steps). In Step 6 only one integer sum is performed, in Steps 8 we have
one integer sum and one doubling, and in Step 10 only one doubling. Then the total
amount of integer operation is O(n2n). Finally the computation of the coefficients of the
monomials containing a0 requires only 2n integer doublings. To store all the monomials of
the nonlinearity polynomial we have to store 2n+1 integers, although Corollary 1 shows
that it is sufficient to store only the first half of them, i.e., 2n integers. By Corollary 2, their
size is less than or equal to 2n.

5.2. Some Considerations on Algorithm 1

In Algorithm 1, almost all the computations are wasted evaluating all possible simple-
t-monomials in 2n variables, which are (2n

t). This number grows enormously even for small
values of n and t. We investigated experimentally how many of the (2n

t) monomials are
actually needed to compute the final Gröbner basis of Jn

t . Our experiment ran over all
possible Boolean functions in 3 and 4 variables. The results are reported in Tables 3–5. In
this tables, for each Jn

t there are four columns. Let Gn
t be the Gröbner basis of Jn

t . Under
the column labeled #C we report the average number of checked monomials in 2n variables
before obtaining Gn

t . Under the column labeled #S we report the average number of
monomials which are actually sufficient to obtain Gn

t . Under the columns labeled “m” e “M”
we report, respectively, the minimum and the maximum number of sufficient monomials
to find Gn

t running through all possible Boolean functions in n variables. For example,
to compute the Gröbner basis of the ideal J3

2 associated with a B.f. f whose nonlinearity is 2,
we needed to check on average 24 monomials before finding the correct basis. Between the
24 monomials only 9.7 (on average) were sufficient to obtain the same basis, where the
number of sufficient monomials never exceeded the range 8–11.

Table 3. Number of monomials needed to compute the Gröbner basis of the ideal J3
t , using

Algorithm 1: NLGBF .

J3
1 J3

2 J3
3

NL #S m M #C #S m M #C #S m M #C

0 4 4 4 8 0 0 0 0 0 0 0 0
1 4.5 4 5 4.4 8.5 7 10 28 0 0 0 0
2 4.4 4 5 4 9.7 8 11 24 9.3 8 11 56

Table 4. Number of monomials needed to compute the Gröbner basis of the ideal J4
t , t = 1, 2, 3, using

Algorithm 1: NLGBF .

J4
1 J4

2 J4
3

NL #S m M #C #S m M #C #S m M #C

0 5 5 5 16 0 0 0 0 0 0 0 0
1 5.25 4 6 8 8.75 8 11 120 0 0 0 0
2 4.83 4 6 5.67 9.97 8 12 62.83 14.50 12 18 560
3 4.62 4 6 4.76 9.92 8 12 42.72 15.76 13 19 315.04
4 4.53 4 6 4.42 9.83 8 12 37.49 15.81 13 19 246.19
5 4.46 4 5 4.19 10.11 8 12 34.39 15.89 13 19 215.68
6 4.43 4 5 4.00 9.71 8 11 24.00 17.29 16 19 156.86

Symmetry 2022, 14, 213 15 of 17

Table 5. Number of monomials needed to compute the Gröbner basis of the ideal J4
t ,t = 4, 5, 6, 7,

using Algorithm 1: NLGBF .

J4
4 J4

5 J4
6 J4

7

NL #S m M #C #S m M #C #S m M #C #S m M #C

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
3 20.18 15 23 1820 0 0 0 0 0 0 0 0 0 0 0 0
4 21.44 16 24 1319.96 23.99 22 29 4368 0 0 0 0 0 0 0 0
5 21.54 19 24 1003.15 26.00 24 28 3851.24 23.50 22 25 8008 0 0 0 0
6 19.57 19 20 671.71 28 28 28 2603.79 28 28 28 7608.79 16 16 16 11441

5.3. Algorithms 1 and 2

Since it is not easy to estimate the complexity of a Gröbner basis computation theoreti-
cally, we give some experimental results, shown in Table 6.

Table 6. Experimental comparisons of the coefficients of growth of the analyzed algorithms.

n log2

[(n+1)2n+1

n2n
]

FWT
NLNLP+FPE NLGBFp

NLGBQ NLGBF
Algorithm 3 Algorithm 2 Algorithm 2 Algorithm 1

2–3 1.53 - - 1.45 1.86 2.50
3–4 1.31 - - 1.88 2.27 7.51
4–5 1.22 0.90 1.02 2.33 2.91 -
5–6 1.17 0.98 1.09 2.64 3.23 -
6–7 1.14 1.01 1.13 2.76 4.29 -
7–8 1.12 1.22 1.07 3.24 - -
8–9 1.11 0.95 1.17 3.48 - -

9–10 1.09 1.25 1.07 - - -
10–11 1.09 1.07 1.11 - - -

In this table we report the coefficients of growth of the analyzed algorithms (to com-
pute the values in the columns FWT and NLNLP+FPE we tested 15,000 random Boolean
functions from n = 4, since for n = 3 there are only 2(2

3) = 256 Boolean functions), com-

paring them with the value log2
[(n+1)2n+1

n2n

]
. For each algorithm we compute the average

time tn to compute the nonlinearity of a B.f. with n variables and the average time tn+1 to
compute the nonlinearity of a B.f. with n + 1 variables. Then we report in the table the
value log2

(tn+1
tn

)
. When Gröbner bases are computed, then graded reverse lexicographical

order is used, with Magma [39] implementation of the Faugère F4 algorithm [40]. Since the
ideal Jn

t (f) of Definition 9 is derived from the evaluation of (2n

t) monomials (generating at
most the same number of equations), then the complexity of Algorithm 1 is equivalent to
the complexity of computing a Gröbner basis of at most (2n

t) equations of degree d (where
1 < d ≤ t) in n + 1 variables over the field F. This method becomes almost impractical for
n = 5. We recall that t ≤ 2n−1 − 2

n
2−1 (see Equation (2)).

The complexity of Algorithm 2 is equivalent to the complexity of computing a Gröbner
basis of only n + 1 field equations plus one single polynomial n f of degree at most n + 1 in
n + 1 variables over the rational field, i.e., K = Q (or over a prime field, i.e., K = Fp) with
coefficients of size less then or equal to 2n. As shown in Table 6, computing this Gröbner
basis over a prime field Fp with p ∼ 2n is much faster than computing the same base over
Q. It may be investigated if there exist better size for the prime p.

5.4. Algorithm 3

Theorem 6. Algorithm 3 returns the nonlinearity of a B.f. f with n variables in O(n2n) integers
operations (sums and doublings).

Proof. Algorithm 3 can be divided in three main steps:

1. Calculation of the nonlinearity polynomial n f . This step, as shown in Theorem 5,
requires O(n2n) integer operations and O(2n) memory.

Symmetry 2022, 14, 213 16 of 17

2. Evaluation of the nonlinearity polynomial n f . This step can be performed using
fast Möbius transform in O(n2n) integer sums and O(2n) memory. We refer to this
algorithm as the Fast Polynomial Evaluation (FPE) algorithm.

3. Computation of the minimum n f (a) with a ∈ Zn+1. This step requires no more than
O(2n) checks.

The overall complexity is then O(n2n) integer operations and O(2n) memory.

6. Conclusions

We presented three approaches to compute the nonlinearity of a Boolean function
using multivariate polynomials. In particular we show that the problem of computing the
distance of a generic B.f. f from the set of affine functions is equivalent to the problem of
solving a multivariate polynomial system over the binary field. This system can be refor-
mulated over the rationals by considering the associated pseudo Boolean function, and we
can exhibit a multivariate polynomial whose evaluations solve the problem. Moreover,
we evaluate our polynomial using fast Fourier techniques and solve the problem very
efficiently. In particular, with our polynomial-based approach we compute the nonlinearity
of any B.f. in O(n2n) operations, reaching the same asymptotic complexity of classical
methods. The first of the presented methods returns the nonlinearity of f and a compact
algebraic representation of all affine functions with distance t from f , opposed to traditional
methods to compute the nonlinearity which only allow to deduce these affine functions
from the Walsh table, not yielding a compact algebraic representation. Regarding the two
other methods, they make use of a special polynomial, namely the nonlinearity polynomial,
which is an interesting mathematical object per se. Studying his properties might open
interesting research directions, and, possibly, finding a more efficient way of determining
its minimum value, will determine a more efficient way of computing the nonlinearity.

Author Contributions: Conceptualization, E.B., M.S. and I.S.; methodology, E.B., M.S. and I.S.;
software, E.B.; validation, E.B., M.S.; formal analysis, E.B., M.S. and I.S.; investigation, E.B., M.S.
and I.S.; resources, E.B., M.S. and I.S.; data curation, E.B., M.S. and I.S.; writing—original draft
preparation, E.B., M.S. and I.S.; writing—review and editing, E.B., M.S. and I.S.; visualization, E.B.,
M.S. and I.S.; supervision, M.S.; project administration, M.S.; funding acquisition, not applicable. All
authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Acknowledgments: These results have been partially presented in three conferences, WCC 2007 [29],
YACC 2014 [31], MEGA 2015 [30], and in the Ph.D. thesis [41,42]. The first two authors would like to
thank the third author (their supervisor).

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Shannon, C.E. Communication theory of secrecy systems. Bell Syst. Tech. J. 1949, 28, 656–715. [CrossRef]
2. Rothaus, O.S. On “bent” functions. J. Comb. Theory Ser. A 1976, 20, 300–305. [CrossRef]
3. Adams, C.M.; Tavares, S.E. The Use of Bent Sequences to Achieve Higher-Order Strict Avalanche Criterion in S-Box Design; Technical

Report TR 90-013; Queen’s University: Kingston, ON, Canada, 1990.
4. Maitra, S.; Sarkar, P. Maximum nonlinearity of symmetric Boolean functions on odd number of variables. IEEE Trans. Inf. Theory

2002, 48, 2626–2630. [CrossRef]
5. Savickỳ, P. On the bent Boolean functions that are symmetric. Eur. J. Comb. 1994, 15, 407–410. [CrossRef]
6. Cusick, T.W.; Stanica, P. Cryptographic Boolean Functions and Applications; Academic Press: Cambridge, MA, USA, 2017.
7. Carlet, C. Boolean Functions for Cryptography and Coding Theory; Cambridge University Press: Cambridge, UK, 2021.
8. Wu, C.-K.; Feng, D. Boolean Functions and Their Applications in Cryptography; Springer: Berlin/Heidelberg, Germany, 2016.
9. Carlet, C.; Mesnager, S. Four decades of research on bent functions. Des. Codes Cryptogr. 2016, 78, 5–50. [CrossRef]
10. Dillon, J.F. Elementary Hadamard Difference Sets. Ph.D. Thesis, University of Maryland, College Park, MD, USA, 1974.
11. Tokareva, N. Bent Functions: Results and Applications to Cryptography; Academic Press: Cambridge, MA, USA; Elsevier: Amsterdam,

The Netherlands, 2015.
12. Carlet, C. Boolean functions for cryptography and error correcting codes, Boolean Models and Methods in Mathematics. Comput.

Sci. Eng. 2010, 2, 257–397.

http://doi.org/10.1002/j.1538-7305.1949.tb00928.x
http://dx.doi.org/10.1016/0097-3165(76)90024-8
http://dx.doi.org/10.1109/TIT.2002.801482
http://dx.doi.org/10.1006/eujc.1994.1044
http://dx.doi.org/10.1007/s10623-015-0145-8

Symmetry 2022, 14, 213 17 of 17

13. Mesnager, S. Bent Functions; Springer: Berlin/Heidelberg, Germany, 2016.
14. Çalık, Ç. Nonlinearity computation for sparse boolean functions. arXiv 2013, arXiv:1305.0860.
15. Çalık, Ç. Computing Cryptographic Properties of Boolean Functions from the Algebraic Normal form Representation. Ph.D.

Thesis, Middle East Technical University, Ankara, Turkey, 2013.
16. Carlet, C. On the confusion and diffusion properties of Maiorana–McFarland’s and extended Maiorana–McFarland’s functions. J.

Complex. 2004, 20, 182–204. [CrossRef]
17. Dobbertin, H. Construction of bent functions and balanced Boolean functions with high nonlinearity. In International Workshop on

Fast Software Encryption; Springer: Berlin/Heidelberg, Germany, 1994; pp. 61–74.
18. Charpin, P. Normal boolean functions. J. Complex. 2004, 20, 245–265. [CrossRef]
19. Carlet, C.; Méaux, P.; Rotella, Y. Boolean functions with restricted input and their robustness; application to the flip cipher. IACR

Trans. Symmetric Cryptol. 2017, 2017, 192–227. [CrossRef]
20. Carlet, C. Recursive lower bounds on the nonlinearity profile of boolean functions and their applications. IEEE Trans. Inf. Theory

2008, 54, 1262–1272. [CrossRef]
21. Iwata, T.; Kurosawa, K. Probabilistic higher order differential attack and higher order bent functions. In International Conference on

the Theory and Application of Cryptology and Information Security; Springer: Berlin/Heidelberg, Germany, 1999; pp. 62–74.
22. Carlet, C. On the higher order nonlinearities of algebraic immune functions. In Annual International Cryptology Conference;

Springer: Berlin/Heidelberg, Germany, 2006; pp. 584–601.
23. Carlet, C.; Dalai, D.K.; Gupta, K.C.; Maitra, S. Algebraic immunity for cryptographically significant boolean functions: Analysis

and construction. IEEE Trans. Inf. Theory 2006, 52, 3105–3121. [CrossRef]
24. Yan, H.; Tang, D. Improving lower bounds on the second-order nonlinearity of three classes of boolean functions. Discret. Math.

2020, 343, 111698. [CrossRef]
25. Mesnager, S.; Zhou, Z.; Ding, C. On the nonlinearity of boolean functions with restricted input. Cryptogr. Commun. 2019, 11,

63–76. [CrossRef]
26. Semaev, I. New non-linearity parameters of boolean functions. arXiv 2019, arXiv:1906.00426.
27. Guerrini, E.; Orsini, E.; Sala, M. Computing the distance distribution of systematic nonlinear codes. J. Algebra Its Appl. 2010, 9,

241–256. [CrossRef]
28. Bellini, E.; Sala, M. A deterministic algorithm for the distance and weight distribution of binary nonlinear codes. Int. J. Inf. Coding

Theory 2018, 5, 18–35.
29. Sala, M.; Simonetti, I. An algebraic description of Boolean Functions. International Workshop on Coding and Cryptography

(WCC) 2007, Versailles, France, 2007. Available online: https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.74.3211
&rep=rep1&type=pdf (accessed on 2 November 2021).

30. Bellini, E.; Mora, T.; Sala, M. Algorithmic Approach Using Polynomial Systems for the Nonlinearity of Boolean Functions,
Computation Presentation. In Proceedings of the The thirteen conference on Effective Methods in Algebraic Geometry, Trento,
Italy, 15–19 June 2015.

31. Bellini, E. Yet Another Algorithm to Compute the Nonlinearity of a Boolean Function. In Proceedings of the Yet Another
Conference on Cryptography, Porquerolles, France, 9–13 June 2014. Available online: http://veron.univ-tln.fr/YACC14/Bellini.
pdf (accessed on 2 November 2021).

32. MacWilliams, F.J.; Sloane, N.J.A. The Theory of Error-Correcting Codes; North-Holland Publishing Co. Amsterdam, North-Holland
Mathematical Library: Amsterdam, North-Holland, 1977; Volume 16.

33. Carlet, C.; Guillot, P. A new representation of Boolean functions. In Applied Algebra, Algebraic Algorithms and Error-Correcting
Codes; Springer: Berlin/Heidelberg, Germany, 1999; pp. 94–103.

34. Carlet, C.; Guillot, P. Bent, resilient functions and the Numerical Normal Form. DIMACS Ser. Discret. Math. Theor. Comput. Sci.
2001, 56, 87–96.

35. Carlet, C. On the coset weight divisibility and nonlinearity of resilient and correlation-immune functions. In Sequences and Their
Applications; Springer: Berlin/Heidelberg, Germany, 2002; pp. 131–144.

36. Simonetti, I. On the non-linearity of Boolean functions. In Gröbner Bases, Coding, and Cryptography; RISC Book Series; Sala, M.,
Mora, T., Perret, L., Sakata, S., Traverso, C., Eds.; Springer: Heidelberg, Germany, 2009; pp. 409–413.

37. Guerrini, E. On Distance and Optimality in Non-Linear Codes. Master’s Thesis, Department of Mathematics, University of Pisa,
Pisa, Italy, 2005.

38. Seidenberg, A. Constructions in algebra. Trans. Amer. Math. Soc. 1974, 197, 273–313. [CrossRef]
39. MAGMA: Computational Algebra System for Algebra, Number Theory and Geometry, The University of Sydney Computational

Algebra Group. 2020. Available online: http://magma.maths.usyd.edu.au/magma (accessed on 16 December 2021)
40. Faugere, J.-C. A new efficient algorithm for computing gröbner bases (f4). J. Pure Appl. Algebra 1999, 139, 61–88. [CrossRef]
41. Simonetti, I. On Some Applications of Commutative Algebra to Boolean Functions and Their Non-Linearity. Ph.D. Thesis,

Department of Mathematics, University of Trento, Trento, Italy, 2007.
42. Bellini, E. Computational Techniques for Nonlinear Codes and Boolean Functions. Ph.D. Thesis, Department of Mathematics,

University of Trento, Trento, Italy, 2014.

http://dx.doi.org/10.1016/j.jco.2003.08.013
http://dx.doi.org/10.1016/j.jco.2003.08.010
http://dx.doi.org/10.46586/tosc.v2017.i3.192-227
http://dx.doi.org/10.1109/TIT.2007.915704
http://dx.doi.org/10.1109/TIT.2006.876253
http://dx.doi.org/10.1016/j.disc.2019.111698
http://dx.doi.org/10.1007/s12095-018-0293-6
http://dx.doi.org/10.1142/S0219498810003884
https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.74.3211&rep=rep1&type=pdf
https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.74.3211&rep=rep1&type=pdf
http://veron.univ-tln.fr/YACC14/Bellini.pdf
http://veron.univ-tln.fr/YACC14/Bellini.pdf
http://dx.doi.org/10.1090/S0002-9947-1974-0349648-2
http://magma.maths.usyd.edu.au/magma
http://dx.doi.org/10.1016/S0022-4049(99)00005-5

	Introduction
	Related Works
	Our Contribution
	Outline of the Paper

	Preliminaries and Notation on Boolean Functions
	Representations of Boolean Functions
	Nonlinearity and Walsh Transform of a Boolean Function

	Preliminary Results
	Computing the Nonlinearity of a Boolean Function
	Gröebner Bases over the Biniary Field
	Gröebner Bases over the Rational Field
	Fast Polynomial Evaluation
	Properties of the Nonlinearity Polynomial

	Complexity Considerations
	Complexity of Constructing the Nonlinearity Polynomial
	Some Considerations on Algorithm 1
	Algorithms 1 and 2
	Algorithm 3

	Conclusions
	References

