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Abstract: This research paper is dedicated to an investigation of an evolution problem under a
new operator (g-Atangana–Baleanu–Caputo type fractional derivative)(for short, g-ABC). For the
proposed problem, we construct sufficient conditions for some properties of the solution like existence,
uniqueness and stability analysis. Existence and uniqueness results are proved based on some fixed
point theorems such that Banach and Krasnoselskii. Furthermore, through mathematical analysis
techniques, we analyze different types of stability results. The symmetric properties aid in identifying
the best strategy for getting the correct solution of fractional differential equations. An illustrative
example is discussed for the control problem.

Keywords: g-Atangana–Baleanu–Caputo type FD; integral boundary conditions; existence; stability
results; fixed point theorem

1. Introduction

Arbitrary integration and differentiation are some of the most interesting research
fields because they are suitable tools for modeling complex phenomena in a wide range
of science and engineering fields, such as chemical engineering, electrodynamics, power
systems, biological sciences, etc. (for more information see [1–9]). To meet the needs of
modeling many practical problems in different fields of science and engineering, some
researchers have realized the necessity development of the concept of fractional calculus
by searching for new fractional derivatives with different singular or non-singular kernels.
From this perspective, new fractional operators have turned into the best effective tool of
numerous specialists and researchers with their contribution to physical phenomena and
their performance in applying to real-world problems. Some applications of the operator
used can be found in [10–13]. The symmetries can be found by solving a related set of
partial fractional differential equations. Until 2015, all fractional derivatives had only
singular kernels. Therefore, it is difficult to use these singularities to simulate physical
phenomena. Caputo and Fabrizio in [14] introduced a new type of FD in the exponential
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kernel denoted by CF. The CF-fractional derivative has some problems regarding the locality
of its kernel. Atangana and Baleanu (AB) in [15] investigsted new type and interesting FD
with Mittag–Leffler kernels. The AB technique makes an outstanding memory description
and inhold qualities for mean-square displacement using this generalised “Mittag–Leffler”
function as a kernel [16,17]. Abdeljawad in [18] extended AB-fractional derivative type
to higher arbitrary order and formulated their associated integral operators. There are
some researchers who studied the properties of solution for some fractional differential
equations via generalized fractional derivatives with respect to another function g, for
example, [19,20]. The advantage of the operator ABC fractional derivative with respect
to another function g (g-ABC) used in this work is the freedom of choice the suitable
classical differentiation operator and the suitable function g to modeling some real-world
problems such as various infectious diseases like Ebola virus, Leptospirosis, dynamics of
smoking, etc in a more comprehensive way, see [21,22]. There are some researchers in the
various area investigated some properties for evolution FDEs, for example, Zhao in [23]
developed the adequate conditions of exact controllability for a new class of impulsive
fractional functional evolution equations (IFFEEs) using resolvent operator theory. In [24],
by using the resolvent operator theory, and the Picard type iterative methodology, the
authors examined some properties of mild solutions for a class of R-L fractional stochastic
evolution equations of Sobolev type in abstract spaces. Shokri in [25] developed a new
class of two-step multiderivative methods for solving second-order initial value problems
numerically. Recently, Almalahi et al. in [26] study some qualitative properties of solution
for the following problem{ (

H Dq,β;g
a+ + λ

)
u($) = f ($, µ($)), $ ∈ J := (a, T],

u(a) = 0, u(T) = ∑m
i=1 κi I

ζ,g
a+ µ(ηi), ηi ∈ (a, T),

where H Dq,β,φ
a+ denotes the φ-Hilfer FD of order q ∈ (1, 2), β ∈ [0, 1], γ = q+ 2β − qβ,

λ < 0 and the integer m ≥ 1. f : J×R→ R is a continuous function. Raja et al. [27] proved
some properties of the following fractional differential evolution equations{ (CDq

0+ − A($)
)
u($) = R($) + f ($, u($)), $ ∈ [0, T],

u(0) = u0, u′(0) = u1,

where cDq is the Mittag–Leffler-fractional derivative of order q ∈ (1, 2]. Kamal Shah et al. [28]
studied some properties of solutions for controllability problem of the following evolution
equation { (MLDq

0+ −Φ($)
)
u($) = f ($, u($), Zu($)), $ ∈ [0, T],

u(0) = u0 +
∫ T

0
(T−η)q−1

Γ(q) }(u(η))dη,

where MLDq is the Mittag–Leffler-FD of order q ∈ (0, 1].
Motivated by the above argumentations, we investigate the sufficient conditions for

the existence and uniqueness as well as different types of stability results for an important
class of differential equations, called evolution equations which used to explain the law of
differentiation to describe the development of dynamic systems described as follows

(
ABCDq;g

0+ −Φ($)
)

u($) = f ($, u($),RL Iδ,gu($)), $ ∈ J := [0, T],

u(0) = 0, u(T) =
∫ T

0 g′(η) (g(T)−g(η))δ−1

Γ(δ) }(u(η))dη,
(1)

where

(i) ABCDq;g is the g-ABC-fractional derivative of order q ∈ (1, 2].
(ii) RL Iδ,g is g-R-L fractional integral of order δ ∈ (0, 1].
(iii) g is an increasing function, having a continuous derivative g′ on (0, T) such that

g′($) 6= 0, for all $ ∈ J.
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(iv) f : J ×R2 → R is a continuous function fulfilled some conditions described later.
(v) Φ,} : J → R are continuous functions.

To the best of our knowledge, this is the first work considering fractional-order equa-
tion with AB fractional derivative with respect to another function g. Various approaches
to the definition of the fractional derivative with different kernels have been proposed in
the literature. As a result, the researchers are motivated to use the operator that is best
suited to the model they are studying. Fractional derivative with a nonsingular kernel
has attracted a lot of attention in the recent past due to some physical phenomena that are
difficult to model as a result of the singularities. The proposed problem (1) for different
values of a function g includes the study of problems involving the results in [28] and many
other results which do not study yet.

Observe that our approach used in this work is new because we prove the existence,
uniqueness, and different types of stability results without using semigroup property and
relies on a minimum number of hypotheses. More than that, the proposed problem (1) for
different values of a function g includes the study of problems involving the results in [28]
and many other results which do not study yet.

This paper has the following structure: In Section 2, we will introduce some symbols,
auxiliary lemmas, and some basic definitions used throughout this paper. In addition, we
deduced the equivalent solution formula of the g-ABC problem (1). The existence and
uniqueness results for the g-ABC problem (1) have been discussed in Section 3. In Section 4,
we analyse the stability results in the sense of Ulam-Hyers. Some examples provide to
illustrate our results in section 5. In the last section, we present a summary comment on
the results.

2. Preliminaries

This part is dedicated to reviewing some concepts, definitions, and auxiliary proposi-
tions that will be used later. Let J = [0, T] ⊂ R. Let X be a Banach space with the norm
‖·‖. Let C(J,X ) be a Banach space of all continuous functions u : J→ X equipped with
the norm

‖u‖ = sup{‖u($)‖ : $ ∈ J},

where u ∈ C(J,X ).

Definition 1 ([2,5]). Let q > 0 and u ∈ L1(J). Then, the following expression

RL Iq,g
0+ u($) =

∫ $

0
g′(s)

(g($)− g(s))q−1

Γ(q)
u(s)ds,

is called the left g-RL-FI of u of order q. Furthermore, the g-RL-FD of u of order q ∈ (n, n + 1], n ∈
N is given by

RLDq,g
0+ u($) =

(
1

g′($)
d

d$

)n(
RL In−q,g

0+ u($)
)

.

Definition 2 ([29] Theorem 4). The left-sided g-ABC-FD of a function u of order q ∈ (0, 1] are
defined respectively by

ABCDq,g
0+ u($) =

B(q)

1− q

∞

∑
n=0

(
−q

1− q

)n
D−nq−1

0+
u′($)
g′($)

,

where the normalization function B(q) satisfied B(0) = B(1) = 1.

Definition 3 ([30] Lemma 3.1). The correspondent g-AB fractional integral of order q ∈ (0, 1] of
the left-sided g-ABC-FD of a function u is defined by

AB Iq,g
0+ u($) =

1− q

B(q)
u($) +

q

B(q)

RL
Iq,g
0+ u($).
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Lemma 1 ([29]). Let 0 < q ≤ 1 . If g-ABC fractional derivative exists, then we have

AB Iq,g
0+

ABCDq,g
0+ u($) = u($)− u(a).

Lemma 2 ([15,18]). Let u($) be a function defined on J and n < q ≤ n + 1, for some n ∈ N0, we
have (

AB Iq,ABC
0+ Dq

0+u
)
($) = u($)−

n

∑
i=0

u(i)(0)
i!

[$]i.

Theorem 1 ([31]). Let K be a closed subspace of a Banach space X. If there is a contraction mapping
G : K→ K, then G has a fixed point in K.

Theorem 2 ([32]). Assume that K is a closed, convex, bounded and nonempty subset of space X. If
there is two operators Ξ1, Ξ2 such that Ξ1u + Ξ2v ∈ X, u, v ∈ X, Ξ1 is completely continuous and
Ξ2 is contraction mapping, then there exists a solution z ∈ K such that z = Ξ1z + Ξ2z.

Lemma 3 ([18] Example 3.3). Let q ∈ (1, 2] and w ∈ C(J,X ), w(0) = 0. Then the solution of
the following linear problem { ABCDq

0+u($) = w($),
u(0) = c1, u′(0) = c2,

is given by

u($) = c1 + c2$ +
2− q

B(q− 1)

∫ $

0
w(η)dη +

q− 1
B(q− 1)

∫ $

0

($− η)q−1

Γ(q)
w(η)dη.

3. Equivalent Integral Equation

In this section, we obtain the equivalent integral equation of the problem (1).

Theorem 3. Let q ∈ (1, 2], δ ∈ (0, 1], f : J×R2 → R be a continuous function and Φ,} : J → R
be continuous functions. Then u ∈ C(J,X ) is a solution of the following g-ABC-problem

(
ABCDq;g

0+ −Φ($)
)

u($) = f ($, u($),RL Iδ,gu($)), $ ∈ [0, T],

u(0) = 0, u(T) =
∫ T

0 g′(η) (g(T)−g(η))δ−1

Γ(δ) }(u(η))dη,
(2)

if and only if, u satisfies the following fractional integral equation

u($) =
(g($)− g(0))
(g(T)− g(0))

[∫ T

0
g′(η)

(g(T)− g(η))δ−1

Γ(δ)
}(u(η))dη

− 2− q

B(q− 1)

∫ T

0

[
Φ(η)u(η) + f (η, u(η),RL Iδ,gu(η))

]
dη

− q− 1
B(q− 1)

∫ T

0
g′(η)

(g(T)− g(η))q−1

Γ(q)

[
Φ(η)u(η) + f (η, u(η),RL Iδ,gu(η))

]
dη

]

+
2− q

B(q− 1)

∫ $

0

[
Φ(η)u(η) + f (η, u(η),RL Iδ,gu(η))

]
dη

+
q− 1

B(q− 1)

∫ $

0
g′(η)

(g($)− g(η))q−1

Γ(q)[
Φ(η)u(η) + f (η, u(η),RL Iδ,gu(η))

]
dη. (3)

Proof. First, we assume that u is a function satisfies (2). Inserting the operator AB Iq,g
0+ on

both sides of the following equation

ABCDq,g
0+ u($) = Φ($)u($) + f ($, u($),RL Iδ,gu($)).
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With the help of Lemma 3, we get

u($) = c1 + c2(g($)− g(0))

+
2− q

B(q− 1)

∫ $

0

[
Φ(η)u(η) + f (η, u(η),RL Iδ,gu(η))

]
dη

+
q− 1

B(q− 1)

∫ $

0
g′(η)

(g($)− g(η))q−1

Γ(q)[
Φ(η)u(η) + f (η, u(η),RL Iδ,gu(η))

]
dη. (4)

By the first condition (u(0) = 0), we get c1 = 0 and hence Equation (4) reduce to the
following equation

u($) = c2(g($)− g(0))

+
2− q

B(q− 1)

∫ $

0

[
Φ(η)u(η) + f (η, u(η),RL Iδ,gu(η))

]
dη

+
q− 1

B(q− 1)

∫ $

0
g′(η)

(g($)− g(η))q−1

Γ(q)[
Φ(η)u(η) + f (η, u(η),RL Iδ,gu(η))

]
dη.

By the second condition
(

u(T) =
∫ T

0 g′(η) (g(T)−g(η))δ−1

Γ(δ) }(u(η))dη

)
, we obtain

c2 =
1

(g(T)− g(0))

[∫ T

0
g′(η)

(g(T)− g(η))δ−1

Γ(δ)
}(u(η))dη

− 2− q

B(q− 1)

∫ T

0

[
Φ(η)u(η) + f (η, u(η),RL Iδ,gu(η))

]
dη

− q− 1
B(q− 1)

∫ T

0
g′(η)

(g(T)− g(η))q−1

Γ(q)[
Φ(η)u(η) + f (η, u(η),RL Iδ,gu(η))

]
dη
]
.

Substitute c1, c2 in (4), we get (3).
Conversely, assume that u satisfies integral Equation (3). Then, by applying the

operator ABCDq,g
0+ on both sides of (3), we get

ABCDq,g
0+ u($) = ABCDq,g

0+
(g($)− g(0))
(g(T)− g(0))

[∫ T

0
g′(η)

(g(T)− g(η))δ−1

Γ(δ)
}(u(η))dη

− 2− q

B(q− 1)

∫ T

0

[
Φ(η)u(η) + f (η, u(η),RL Iδ,gu(η))

]
dη

− q− 1
B(q− 1)

∫ T

0
g′(η)

(g(T)− g(η))q−1

Γ(q)[
Φ(η)u(η) + f (η, u(η),RL Iδ,gu(η))

]
dη
]

+ABCDq,g
0+

(
2− q

B(q− 1)

∫ $

0

[
Φ(η)u(η) + f (η, u(η),RL Iδ,gu(η))

]
dη

+
q− 1

B(q− 1)

∫ $

0
g′(η)

(g($)− g(η))q−1

Γ(q)[
Φ(η)u(η) + f (η, u(η),RL Iδ,gu(η))

]
dη
)

.
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It follows from the fact ABCDq,g
0+ (g($)− g(0)) = 0, that

ABCDq,g
0+ u($) = ABCDq,g

0+

(
2− q

B(q− 1)

∫ $

0

[
Φ(η)u(η) + f (η, u(η),RL Iδ,gu(η))

]
dη

+
q− 1

B(q− 1)

∫ $

0
g′(η)

(g($)− g(η))q−1

Γ(q)[
Φ(η)u(η) + f (η, u(η),RL Iδ,gu(η))

]
dη
)

= ABCDq,g
0+

AB Iq,g
0+

[
Φ($)u($) + f ($, u($),RL Iδ,gu($))

]
.

Thus, we get (
ABCDq;g

0+ −Φ($)
)

u($) = f ($, u($),RL Iδ,gu($)).

This means that u satisfies the fractional boundary value problem (2).
Next, to prove Atangana–Baleanu fractional integral conditions, by take $ = 0 in (3),

we get u(0) = 0. On the other hand, taking again $ = T in (3), we get

u(T) =
∫ T

0
g′(η)

(g(T)− g(η))δ−1

Γ(δ)
}(u(η))dη.

Thus, the Atangana–Baleanu fractional integral conditions are satisfied. The proof is
completed.

4. Existence and Uniqueness Results

We devote our intention in this part to prove the existence and uniqueness of solutions
for the g-ABC-fractional differential Equation (1). To our analysis, we present the following
necessary assumptions;

Hypothesis 1 (H1). Let } be bounded linear operator and there exists constant Z} > 0 such that
for any u, û ∈ C(J,X ), we have

‖}(u)− }(û)‖ ≤ Z}‖u− û‖.

Hypothesis 2 (H2). For a bounded linear operator }, there exist constantsW} > 0,A} ≥ 0, such
that for any u ∈ C(J,X ), we have

‖}(u)‖ ≤ W}‖u‖+A}.

Hypothesis 3 (H3). Let f be a continuous function and there exists constants L1,L2 > 0 such
that for any u, û, v, v̂ ∈ C(J,X ), we have

‖ f ($, u, v)− f ($, û, v̂)‖ ≤ L1‖u− û‖+ L2‖v− v̂‖.

Hypothesis 4 (H4). Let f be a continuous function and there existsW f ($) ∈ C(J,X ) such that

‖ f ($, u, û)‖ ≤ W f ($),

with sup$∈J

∣∣∣W f ($)
∣∣∣ =W∗f .

To simplify our analysis, we used the following notations

G =

[
(g(T)− g(0))δ

Γ(δ + 1)
Z} + Πg,q

(
KΦ + L1 + L2

(g(T)− g(0))δ

Γ(δ + 1)

)]
,
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and

Πg,q = 2
[

(q− 1)
B(q− 1)

(g(T)− g(η))q

Γ(q+ 1)
+

(2− q)

B(q− 1)

]
. (5)

Theorem 4. Assume that (H1)–(H3) hold. Then, the g-ABC-fractional differential Equation (1)
has a unique solution provided that G < 1.

Proof. We first convert the equivalent g-ABC-fractional differential Equation (1) to a fixed-
point problem. In view of Theorem 3, we define the operator Ξ : C(J,X )→ C(J,X ) by

Ξu($) =
(g($)− g(0))
(g(T)− g(0))

[∫ T

0
g′(η)

(g(T)− g(η))δ−1

Γ(δ)
}(u(η))dη

− 2− q

B(q− 1)

∫ T

0

[
Φ(η)u(η) + f (η, u(η),RL Iδ,gu(η))

]
dη

− q− 1
B(q− 1)

∫ T

0
g′(η)

(g(T)− g(η))q−1

Γ(q)[
Φ(η)u(η) + f (η, u(η),RL Iδ,gu(η))

]
dη
]

+
2− q

B(q− 1)

∫ $

0

[
Φ(η)u(η) + f (η, u(η),RL Iδ,gu(η))

]
dη

+
q− 1

B(q− 1)

∫ $

0
g′(η)

(g($)− g(η))q−1

Γ(q)[
Φ(η)u(η) + f (η, u(η),RL Iδ,gu(η))

]
dη. (6)

Define a closed ball Πϕ as

Πϕ = {u ∈ C(J,X ) : ‖u‖ ≤ ϕ},

with radius ϕ ≥ G1
1−G , where

G1 =
(g(T)− g(0))δ

Γ(δ + 1)
A} + Πg,qω f ,

and ω f = max$∈J‖ f ($, 0, 0)‖. Clearly, Πϕ is nonempty, bounded, convex and closed. Now,
in order to apply Theorem 1, we divided the proof into two steps as follows.

Step (1): We will show that ΞΠϕ ⊂ Πϕ. Since Φ($) is bounded function, then, there
exists constant number KΦ > 0, such that |Φ($)| ≤ KΦ for each $ ∈ J. By (H3), we obtain

‖ f ($, u($), Zu($))‖ ≤
∥∥∥ f ($, u($),RL Iδ,gu($))− f ($, 0, 0)

∥∥∥+ ‖ f ($, 0, 0)‖

≤ L1‖u‖+ L2

∥∥∥RL Iδ,gu
∥∥∥+ ω f .
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Now, for all u ∈ Πϕ, $ ∈ J, we have

‖Ξu‖ ≤ (g($)− g(0))
(g(T)− g(0))

[∫ T

0
g′(η)

(g(T)− g(η))δ−1

Γ(δ)
‖}(u(η))‖dη

+
2− q

B(q− 1)

∫ T

0

[
|Φ(η)|‖u(η)‖+

∥∥∥ f (η, u(η),RL Iδ,gu(η))
∥∥∥]dη

+
q− 1

B(q− 1)

∫ T

0
g′(η)

(g(T)− g(η))q−1

Γ(q)[
|Φ(η)|‖u(η)‖+

∥∥∥ f (η, u(η),RL Iδ,gu(η))
∥∥∥]dη

]
+

2− q

B(q− 1)

∫ $

0

[
|Φ(η)|‖u(η)‖+

∥∥∥ f (η, u(η),RL Iδ,gu(η))
∥∥∥]dη

+
q− 1

B(q− 1)

∫ $

0
g′(η)

(g($)− g(η))q−1

Γ(q)[
|Φ(η)|‖u(η)‖+

∥∥∥ f (η, u(η),RL Iδ,gu(η))
∥∥∥]dη

≤ (g($)− g(0))
(g(T)− g(0))

[
(g(T)− g(0))δ

Γ(δ + 1)
(W}ϕ +A})

+
(2− q)

B(q− 1)

(
KΦ ϕ + L1 ϕ + L2

[g(T)− g(0)]δ

Γ(δ + 1)
ϕ + ω f

)

+
(q− 1)
B(q− 1)

(g(T)− g(η))q

Γ(q+ 1)

(
KΦ ϕ + L1 ϕ + L2

(g(T)− g(0))δ

Γ(δ + 1)
ϕ + ω f

)]

+
(2− q)

B(q− 1)

(
KΦ ϕ + L1 ϕ + L2

[g(T)− g(0)]δ

Γ(δ + 1)
ϕ + ω f

)

+
q− 1

B(q− 1)
(g(T)− g(η))q

Γ(q+ 1)

(
KΦ ϕ + L1 ϕ + L2

(g(T)− g(0))δ

Γ(δ + 1)
ϕ + ω f

)
.

We used fact that g is an increasing function, it follows that (g($)−g(0))
(g(T)−g(0)) < 1, for $ < T.

Consequently,

‖Ξu‖ ≤
[
(g(T)− g(0))δ

Γ(δ + 1)
W} + Πg,q

(
KΦ + L1 + L2

(g(T)− g(0))δ

Γ(δ + 1)

)]
ϕ

+
(g(T)− g(0))δ

Γ(δ + 1)
A} + Πg,qω f

≤ Gϕ + G1 < ϕ. (7)

Thus ΞΠϕ ⊂ Πϕ.
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Step (2): We will show that Ξ is a contraction mapping. Let u, û ∈ Πϕ and $ ∈ J. Then,
we estimate

‖Ξu− Ξû‖

≤
∫ T

0
g′(η)

(g(T)− g(η))δ−1

Γ(δ)
‖}(u(η))− }(û(η))‖dη

+
2− q

B(q− 1)

∫ T

0
[|Φ(η)|‖u(η)− û(η)‖

+
∥∥∥ f ($, u($),RL Iδ,gu($))− f ($, û($),RL Iδ,gû($))

∥∥∥]dη

+
q− 1

B(q− 1)

∫ T

0
g′(η)

(g(T)− g(η))q−1

Γ(q)
[|Φ(η)|‖u(η)− û(η)‖

+
∥∥∥ f ($, u($),RL Iδ,gu($))− f ($, û($),RL Iδ,gû($))

∥∥∥]dη

+
2− q

B(q− 1)

∫ $

0
[|Φ(η)|‖u(η)− û(η)‖

+
∥∥∥ f ($, u($),RL Iδ,gu($))− f ($, û($),RL Iδ,gû($))

∥∥∥]dη

+
q− 1

B(q− 1)

∫ $

0
g′(η)

(g($)− g(η))q−1

Γ(q)
[|Φ(η)|‖u(η)− û(η)‖

+
∥∥∥ f ($, u($),RL Iδ,gu($))− f ($, û($),RL Iδ,gû($))

∥∥∥]dη.

From (H3), we obtain ∥∥∥ f (η, u(η),RL Iδ,gu(η))− f (η, û(η),RL Iδ,gû(η))
∥∥∥

≤ L1‖u(η)− û(η)‖+ L2

∥∥∥RL Iδ,gu(η)−RL Iδ,gû(η)
∥∥∥

≤ L1‖u− û‖+ L2
(g(T)− g(0))δ

Γ(δ + 1)
‖u− û‖

≤
(
L1 + L2

(g(T)− g(0))δ

Γ(δ + 1)

)
‖u− û‖. (8)

Hence

‖Ξu− Ξû‖ = sup
$∈J
|Ξu($)− Ξû($)|

≤
[
(g(T)− g(0))δ

Γ(δ + 1)
Z} + Πg,q

(
KΦ + L1 + L2

(g(T)− g(0))δ

Γ(δ + 1)

)]
‖u− û‖

≤ G‖u− û‖.

Due to G < 1, we conclude that Ξ is a contraction operator. Hence, Theorem 1, implies that
Ξ has a unique fixed point.

Theorem 5. Assume that (H1)–(H4) hold. If Q = T + Y < 1, where

T =
(g(T)− g(0))δ

Γ(δ + 1)
Z},

Y =
Πg,q

2

(
KΦ + L1 + L2

[g(T)− g(0)]δ

Γ(δ + 1)

)
,
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and [
(g(T)− g(0))δ

Γ(δ + 1)
W} + Πg,qKΦ

]
< 1,

(Πg,q is given by (5)), then the g-ABC-fractional differential Equation (1) has at least one solution.

Proof. We consider the operator Ξ defined in Theorem 4 and will divide it into two
operators Ξ1 and Ξ2 such that

(Ξu)($) = (Ξ1u)($) + (Ξ2u)($),

where

(Ξ1u)($) =
(g($)− g(0))
(g(T)− g(0))

[∫ T

0
g′(η)

(g(T)− g(η))δ−1

Γ(δ)
}(u(η))dη

− 2− q

B(q− 1)

∫ T

0

[
Φ(η)u(η) + f (η, u(η),RL Iδ,gu(η))

]
dη

− q− 1
B(q− 1)

∫ T

0
g′(η)

(g(T)− g(η))q−1

Γ(q)[
Φ(η)u(η) + f (η, u(η),RL Iδ,gu(η))

]
dη
]
,

and

(Ξ2u)($) =
2− q

B(q− 1)

∫ $

0

[
Φ(η)u(η) + f (η, u(η),RL Iδ,gu(η))

]
dη

+
q− 1

B(q− 1)

∫ $

0
g′(η)

(g($)− g(η))q−1

Γ(q)[
Φ(η)u(η) + f (η, u(η),RL Iδ,gu(η))

]
dη.

Define a closed ball Πr as

Πr = {u ∈ C(J,X ) : ‖u‖ ≤ r},

with

r ≥
(g(T)−g(0))δ

Γ(δ+1) A} + Πg,qW∗f

1−
[
(g(T)−g(0))δ

Γ(δ+1) W} + Πg,qKΦ

] .

Clearly, Πr is nonempty, bounded, convex and closed. In order to apply Theorem 2, we
will divide the proof into three steps as follows

Step 1: We shall show that Ξ1u + Ξ2û ∈ Πr. For all u, û ∈ Πr, we have

‖(Ξ1u)‖ ≤ (g(T)− g(0))δ

Γ(δ + 1)
(W}r +A})

+
(q− 1)
B(q− 1)

(g(T)− g(η))q

Γ(q+ 1)

(
KΦr +W∗f

)
+

(2− q)

B(q− 1)

(
KΦr +W∗f

)
, (9)
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and

‖(Ξ2u)‖ ≤ (2− q)

B(q− 1)

(
KΦr +W∗f

)
+

q− 1
B(q− 1)

(g(T)− g(η))q

Γ(q+ 1)

(
KΦr +W∗f

)
. (10)

Thus, by (9) and (10), we obtain

‖Ξ1u + Ξ2û‖ ≤ ‖(Ξ1u)‖+ ‖(Ξ2u)‖

≤
[
(g(T)− g(0))δ

Γ(δ + 1)
W} + Πg,qKΦ

]
r

+
(g(T)− g(0))δ

Γ(δ + 1)
A} + Πg,qW∗f

≤ r.

This implies that Ξ1u + Ξ2û ∈ Πr.
Step 2: Ξ1 is a contraction map. Let u, û ∈ Πr and $ ∈ J. Then, we estimate

‖Ξ1u− Ξ1û‖

≤ (g($)− g(0))
(g(T)− g(0))

[∫ T

0
g′(η)

(g(T)− g(η))δ−1

Γ(δ)
‖}(u(η))− }(û(η))‖dη

+
2− q

B(q− 1)

∫ T

0
[|Φ(η)|‖u(η)− û(η)‖

+
∥∥∥ f ($, u($),RL Iδ,gu($))− f ($, û($),RL Iδ,gû($))

∥∥∥]dη

+
q− 1

B(q− 1)

∫ T

0
g′(η)

(g(T)− g(η))q−1

Γ(q)
[|Φ(η)|‖u(η)− û(η)‖

+
∥∥∥ f ($, u($),RL Iδ,gu($))− f ($, û($),RL Iδ,gû($))

∥∥∥]dη
]
.

We used fact that g is an increasing function, it follows that (g($)−g(0))
(g(T)−g(0)) < 1, for $ < T.

Consequently,
‖(Ξ1u)($)− (Ξ1û)‖ ≤ Q‖u− û‖.

Due to Q < 1, we conclude that the operator Ξ1 is a contraction map.
Step 3: Ξ2 is completely continuous. From the continuity of f and by the Lebesgue

dominated convergence theorem, we conclude that Ξ2 is continuous too. In addition,
by (10), Ξ2 is uniformly bounded on Πr. Next, we will show that Ξ2(Πr) is equicontinuous.
For this purpose, let u ∈ Πr, 0 ≤ $1 < $2 ≤ T. Then, we obtain

‖(Ξ2u)($2)− (Ξ2u)($1)‖

≤
∣∣∣∣ 2− q

B(q− 1)

∫ $2

0

[
Φ(η)u(η) + f (η, u(η),RL Iδ,gu(η))

]
dη

− 2− q

B(q− 1)

∫ $1

0

[
Φ(η)u(η) + f (η, u(η),RL Iδ,gu(η))

]
dη

∣∣∣∣
+

q− 1
B(q− 1)

∫ $1

0
g′(η)

(g($2)− g(η))q−1 − (g($1)− g(η))q−1

Γ(q)[
|Φ(η)|‖u(η)‖+

∥∥∥ f (η, u(η),RL Iδ,gu(η))
∥∥∥]dη

+
q− 1

B(q− 1)

∫ $2

$1

g′(η)
(g($2)− g(η))q−1

Γ(q)

[
|Φ(η)|‖u(η)‖+

∥∥∥ f (η, u(η),RL Iδ,gu(η))
∥∥∥]dη
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≤
∣∣∣∣ 2− q

B(q− 1)

∫ $2

0

[
Φ(η)u(η) + f (η, u(η),RL Iδ,gu(η))

]
dη

− 2− q

B(q− 1)

∫ $1

0

[
Φ(η)u(η) + f (η, u(η),RL Iδ,gu(η))

]
dη

∣∣∣∣
+

q− 1
B(q− 1)

(g($2)− g(0))q − (g($1)− g(0))q

Γ(q+ 1)

(
KΦr +W∗f

)
→ 0 as $2 → $1.

According to the above steps with Arzela–Ascoli theorem, we understand that (Ξ2Πr) is
relatively compact. Consequently, Ξ2 is completely continuous. Thus, by Theorem 2, we
infer that g-ABC-fractional differential Equation (1) has at least one solution on J.

5. Stability Results

Ulam’s question about the stability of group homomorphisms in 1940 [33] inspired the
problem of functional equation stability. Hyers [34] presented a positive interpretation of the
Ulam question within Banach spaces the next year, which was the first important advance
and step toward more solutions in this topic. Many studies on various generalisations of
the Ulam problem and Hyers theory have been published since then. Rassias [35] was
the first to extend Hyers idea of mappings across Banach spaces in 1978. Rassias result
drew the attention of many mathematicians all over the world, who began looking into
the difficulties of functional equation stability. For more information about the stability of
solutions, we refer the readers to the papers [36,37].

This part is dedicated to studying different kinds of stability for (1), namely Ulam-
Hyers, generalized Ulam-Hyers, Ulam-Hyers-Rassias and generalized Ulam-Hyers-Rassias
stability. Before that, for ε > 0, we define a continuous function αφ : J→R+ such that satisfy
the following inequalities∣∣∣(ABCDq;g −Φ($)

)
û($) = f ($, û($),RL Iδ,gû($))

∣∣∣ ≤ ε, $ ∈ J, (11)

and ∣∣∣(ABCDq;g −Φ($)
)

û($) = f ($, û($),RL Iδ,gû($))
∣∣∣ ≤ εαφ($). (12)

Definition 4. The g-ABC-fractional differential Equation (1) is Ulam-Hyers stable if there exists a
positive number C f > 0 such that, for each ε > 0 and for each û ∈ C(J,X ) satisfies the inequal-
ity (11), there exist a unique solution u ∈ C(J,X ) of g-ABC-fractional differential Equation (1)
such that

‖û− u‖ ≤ C f ε.

Also, the g-ABC-fractional differential Equation (1) is generalized Ulam-Hyers stable if there exists
ϕ f : (0, ∞]→ (0, ∞] with ϕ f (0) = 0 such that

‖û− u‖ ≤ ϕ f ε.

Remark 1. If there exists a function P ∈ C(J,X ), then û ∈ C(J,X ) is a solution of (11) if and
only if

(i) |P($)| ≤ ε for all $ ∈ J,
(ii) ABCDq;gû($) = Φ($)û($) + f ($, û($),RL Iδ,gû($)) + P($), $ ∈ J.

Proof. See [5].

Lemma 4. If u ∈ C(J,X ) is a function that satisfies the inequality (11), then u satisfies the
following inequality

‖u−Ψu‖ ≤ εΠg,q,
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where

Ψu =
(g($)− g(0))
(g(T)− g(0))

[∫ T

0
g′(η)

(g(T)− g(η))δ−1

Γ(δ)
}(u(η))dη

− 2− q

B(q− 1)

∫ T

0

[
Φ(η)u(η) + f (η, u(η),RL Iδ,gu(η))

]
dη

− q− 1
B(q− 1)

∫ T

0
g′(η)

(g(T)− g(η))q−1

Γ(q)

[
Φ(η)u(η) + f (η, u(η),RL Iδ,gu(η))

]
dη

]

+
2− q

B(q− 1)

∫ $

0

[
Φ(η)u(η) + f (η, u(η),RL Iδ,gu(η))

]
dη

+
q− 1

B(q− 1)

∫ $

0
g′(η)

(g($)− g(η))q−1

Γ(q)

[
Φ(η)u(η) + f (η, u(η),RL Iδ,gu(η))

]
dη.

Proof. In view of Remark 1, we have
(ABCDq;g −Φ($)

)
u($) = f ($, u($),RL Iδ,gu($)) + P($),

û(0) = u(0) = 0,

u(T) = û(T) =
∫ T

0
[g(T)−g(η)]δ−1

Γ(δ) g′(η)}(u(η))dη.
(13)

Then, by Theorem 3, the solution of problem (13) is given by

u($) = Ψu −
(g($)− g(0))
(g(T)− g(0))

[
2− q

B(q− 1)

∫ T

0
P(η)dη

− q− 1
B(q− 1)

∫ T

0
g′(η)

(g(T)− g(η))q−1

Γ(q)
P(η)dη

]

+
2− q

B(q− 1)

∫ $

0
P(η)dη +

q− 1
B(q− 1)

∫ $

0
g′(η)

(g($)− g(η))q−1

Γ(q)
P(η)dη.

Due to the fact
(

(g($)−g(0))
(g(T)−g(0)) < 1, $ < T

)
, we obtain

‖u−Ψu‖ ≤
2− q

B(q− 1)

∫ T

0
|P(η)|dη +

q− 1
B(q− 1)

∫ T

0
g′(η)

(g(T)− g(η))q−1

Γ(q)
P(η)dη

+
2− q

B(q− 1)

∫ $

0
|P(η)|dη +

q− 1
B(q− 1)

∫ $

0
g′(η)

(g($)− g(η))q−1

Γ(q)
|P(η)|dη

≤ εΠg,q.

Theorem 6. Assume that (H1)–(H4) hold. Under the Lemma 4, the following equation

ABCDq;gu($) = Φ($)u($) + f ($, u($),RL Iδ,gu($)), $ ∈ [0, T], (14)

is Ulam-Hyers stable as well as generalized Ulam-Hyers stable provided that G < 1.

Proof. Let û be satisfied (11), let u ∈ C(J,X ) be a unique solution to the following problem
(ABCDq;g −Φ($)

)
u($) = f ($, u($),RL Iδ,gu($)), $ ∈ [0, T]

u(0) = û(0) = 0

u(T) = û(T) =
∫ T

0
[g(T)−g(η)]δ−1

Γ(δ) g′(η)}(u(η))dη.
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Then, by Theorem 3, we get
u($) = Ψu.

It follows from Theorem 4 and Lemma 4, that

‖u− û‖ = sup
$∈J
|u($)−Ψû| ≤ sup

$∈J
|u($)−Ψu|+ sup

$∈J
|Ψu −Ψû|

≤ εΠg,q + G‖u− û‖.

Thus
‖u− û‖ ≤ C f ε,

where

C f =
Πg,q

1− G > 0.

Now, by choosing ϕ f (ε) = C f ε such that ϕ f (0) = 0, then the g-ABC problem (14) has
generalized Ulam-Hyers stability.

To prove the Ulam-Hyers-Rassias stability, we need the following hypothesis;

Hypothesis 5 (H5). Let αφ ∈ C(J,X ) be an increasing function. Then, there existsR > 0 such
that for any $ ∈ J, we have

AB Iq,g
0+ αφ($) ≤ Rαφ($). (15)

Definition 5. Let û ∈ C(J,X ) be a function satisfies (12) and u ∈ C(J,X ) be a solution of
g-ABC-fractional differential Equation (1). If there exists 0 < N ∈ R and non-decreasing function
αφ($) such that

‖u− û‖ ≤ N εαφ($), $ ∈ J, ε > 0,

then, the g-ABC-fractional differential Equation (14) is Ulam-Hyers-Rassias stable with respect to
αφ($).

Remark 2. A function û ∈ C(J,X ) satisfies (12) if and only if there exists a function z ∈ C(J,X )
such that

(i) |z($)| ≤ εαφ($), κ ∈ J,
(ii) ABCDq;gû($) = Φ($)û($) + f ($, û($),RL Iδ,gû($)) + z($), $ ∈ J.

Lemma 5. If u ∈ C(J,X ) is a solution to inequality (11), then u satisfies the following inequality

‖u−Ψu‖ ≤ εRαφ($).

Proof. Indeed, by Remark 2 and Theorem 3, one can easily prove that

‖u−Ψu‖ ≤ εRαφ($).

Theorem 7. Suppose that (H1)–(H5) hold. If G < 1, then g-ABC-fractional differential Equa-
tion (14) is Ulam-Hyers-Rassias as well as generalized Ulam-Hyers-Rassias stable.

Proof. Let û be satisfied (12), let u ∈ C(J,X ) be a unique solution to the following problem
(ABCDq;g −Φ($)

)
u($) = f ($, u($), Zu($)), $ ∈ [0, T],

u(0) = û(0) = 0,

u(T) = û(T) =
∫ T

0
[g(T)−g(η)]δ−1

Γ(δ) g′(η)}(u(η))dη.
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Then, by Theorem 3, we get
u($) = Ψu.

It follows from Theorem 4 and Lemma 5 that

‖u− û‖ = sup
$∈J
|u($)−Ψû| ≤ sup

$∈J
|u($)−Ψu|+ sup

$∈J
|Ψu −Ψû|

≤ εRαφ($) + G‖u− û‖.

Thus
‖u− û‖ ≤ N εαφ($),

where
N =

R
1− G > 0.

Hence, the g-ABC-fractional differential Equation (14) is Ulam-Hyers-Rassias stable as
well as generalized Ulam-Hyers-Rassias stable.

6. An Application

Taking q = 9
7 , g($) =e$, With the choice of operator Φ($) = 1

100e$−1 . Then, we have the
following problem

(
ABCD

9
7 ,e$

0+ −
1

100e$−1

)
u($) = 1

50e$−1

(
|u($)|

1+|u($)| +
RL Iδ,g |u($)|
1+|Zu($)|

)
+ $ + 1, $ ∈ [0, 1],

u(0) =
∫ 1

0 eη (e−eη)
9
7−1

Γ( 9
10 )

u(η)
50 dη.

(16)

Here, we have

f ($, u($), Zu($)) =
1

50e$−1

(
|u($)|

1 + |u($)| +
RL Iδ,g|u($)|
1 + |Zu($)|

)
+ $ + 1,

and
RL Iδ,gu($) =

∫ $

0
eη (e− eη)

9
7−1

Γ( 9
10 )

u(η)
50

dη.

In addition, we have

}(u($)) = u($)
5

.

Let u, u ∈ C(J,X ). Then, for all $ ∈ J, we obtain∣∣∣ f ($, u($),RL Iδ,gu($))− f ($, u($),RL Iδ,gu($))
∣∣∣

≤ e
50

[
|u($)− u($)|+

∣∣∣RL Iδ,gu($)−RL Iδ,gu($)
∣∣∣],

and ∣∣∣ f ($, u($),RL Iδ,gu($))
∣∣∣ ≤ e

50

[
|u($)|+

∣∣∣RL Iδ,gu($)
∣∣∣].

In addition, it is easy to see that |Φ($)| ≤ e
100 , |}(u($))| ≤ |u($)|50 and

|}(u($))− }(u($))| ≤ |u($)− u($)|
50

.

Therefore, the hypotheses (H1)–(H4) hold with KΦ = e
100 , Z} = W} = 1

50 ,A} = 0,
L1 = L2 = e

50 . According to the given data with some simple calculations, we find that
Πg,q = 1.36. It follows that G = 0.19. Thus, all conditions in Theorem 4 are satisfied. Hence,
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the g-ABC-fractional differential Equation (16) has a unique solution. Moreover, for every
ε = max{ε1, ε2} > 0 and each û ∈ C(J,X ) satisfies∣∣∣ABCDq;gû($)−Φ($)û($)− f ($, û($),RL Iδ,gû($))

∣∣∣ ≤ ε, $ ∈ (0, 1),

there exists a solution u ∈ C(J,X ) of the g-ABC-fractional differential Equation (16) with

|û($)− u($)| ≤ C f ε,

where C f =
Πg,q
1−G = 1.68 > 0.

7. Conclusions Remarks

The theory of fractional operators in the context of the Atangana–Baleanu operator
has recently piqued researchers’ interest, motivating them to look into and improve several
qualitative properties of solutions to FDEs using such operators. To do this, we investigated
adequate conditions for the existence and uniqueness of solutions for the evolution equation
in the context of a novel nonsingular FD in ABC type fractional derivative with respect to
another function.

Our approach was based on the reduction of the proposed problem into the fractional
integral equation and using some standard fixed point theorems due to Banach-type and
Krasnoselskii-type. Furthermore, through mathematical analysis techniques, we analyzed
the stability results in Ulam-Hyers sense. An example was provided to justify the main
results. In fact, our outcomes generalize those in [26,28]. The supposed problem with given
integro-derivative boundary conditions can describe some mathematical models of real
and physical processes in which some parameters are frequently acclimated to appropriate
circumstances. So, the value of these parameters can change the impacts of fractional
integrals and derivatives. The main results are illustrated with a numerical example.
Further, our current problem was a general extension of the previous standard cases of
FDEs by assigning different values for all existing orders and parameters or defining the
g function in the aforesaid problem. In future works, we will extend this work with a
delay function.
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