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Abstract: A four-dimensional integral containing g(x, y, z, t)C(λ)
n (x) is derived. C(λ)

n (x) is the Gegen-
bauer polynomial, g(x, y, z, t) is a product of the generalized logarithm quotient functions and the
integral is taken over the region 0 ≤ x ≤ 1, 0 ≤ y ≤ 1, 0 ≤ z ≤ 1, 0 ≤ t ≤ 1. The integral is difficult
to compute in general. Special cases are given and invariant index forms are derived. The zero
distribution of almost all Hurwitz–Lerch zeta functions is asymmetrical. All the results in this work
are new.
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1. Significance Statement

The definite integral of the Gegenbauer polynomial is evaluated in the work by Askey
et al. [1]. In the work by Srivastava [2] the author obtained an inversion formula for
a singular integral transform involving Gegenbauer polynomials. In the work done by
Bingham [3] the author performed the passage to the limit so as to obtain a complete and
explicit description of measures which is of importance in probabilistic work on random
walks on spheres. The Gegenbauer polynomial has many mathematical applications which
are detailed in Andrews et al. [4] (1999, Chapter 9). See also section (14.30) in [5]. Physical
applications of these polynomials are detailed in section (18.38) in [5]. Other applications
are detailed in section (18.39) in [5]. We extend the previous important work by adding
three more dimensions to the previously derived integrals in this paper. A quadruple
integral will be derived and expressed in terms of a Hurwitz–Lerch zeta function. The
Hurwitz–Lerch zeta function zeta(s, v), the digamma function psi(0)(s), the Riemann zeta
function zeta(k), and log(2) are used to deduce special cases.

2. Introduction

In this paper, we derive the quadruple definite integral given by
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where the parameters k, a, λ, n are general complex numbers and 1/2 < Re(m) < 1. The
method used by us in [6] are followed in the derivations. This method employs a form of
the generalized Cauchy’s integral formula, which is given by
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where C is in general an open contour in the complex plane where the bilinear concomitant
has the same value at the end points of the contour.

3. Definite Integral of the Contour Integral

We use the method in [6,7]. The variable of integration in the contour integral is
r = w + m. Using a generalization of Cauchy’s integral formula we form the quadruple
integral by replacing y by

log
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then taking the definite integral with respect to x ∈ [0, 1], y ∈ [0, 1], z ∈ [0, 1] and t ∈ [0, 1]
to obtain
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from Equation (18.17.37) in [5] and Equation (4.215.1) in [8] where Re(m + w) > 0, Re(λ) >
0, Re(n) > 0, 1/2 < Re(m) < 1 and using the reflection Formula (8.334.3) in [8] for the
Gamma function. The reversal of the order of integration over x, y, z and t is done by using
Fubini’s theorem for multiple integrals see (9.112) in [9], since the integrand is of bounded
measure over the space C× [0, 1]× [0, 1]× [0, 1]× [0, 1].

4. The Hurwitz–Lerch Zeta Function and Infinite Sum of the Contour Integral

In this section, we use Equation (2) to derive the contour integral representations for
the Hurwitz–Lerch Zeta function.
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4.1. The Hurwitz–Lerch Zeta Function

The Hurwitz–Lerch zeta function see [5,10] has a series representation given by

Φ(z, s, v) =
∞

∑
n=0

(v + n)−szn (4)

where |z| < 1, vs. 6= 0,−1, . . . and is continued analytically by its integral representation
given by
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where Re(v) > 0, and either |z| ≤ 1, z 6= 1, Re(s) > 0, or z = 1, Re(s) > 1.

4.2. Infinite Sum of the Contour Integral

Using Equation (2) and replacing y by log(a) + iπ(2y + 1)− log(2) then multiplying

both sides by − iπ22−2λ−m+2eiπm(2y+1)Γ(n+2λ)
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simplifying in terms of the Hurwitz–Lerch zeta function we obtain
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from Equation (1.232.2) in [8] where Im(π(m + w)) > 0 in order for the sum to converge.

5. Definite Integral in Terms of the Hurwitz–Lerch Zeta Function

Theorem 1. For all k, a, λ, n ∈ C, 1/2 < Re(m) < 1 then,

∫ 1

0

∫ 1

0

∫ 1

0

∫ 1

0
xm−1

(
1− x2

)λ− 1
2 log−m

(
1
t

)
C(λ)

n (x) log
1
2 (m−n−1)

(
1
z

)

logλ+ 1
2 (m+n−1)

(
1
y

)
logk

 ax
√

log
(

1
y

)√
log
(

1
z

)
log
(

1
t

)
dxdydzdt

=
ik−1πk+2eiπm2k−2λ−m+2Γ(n + 2λ)Φ

(
e2imπ ,−k, −i log(a)+i log(2)+π

2π

)
n!Γ(λ)

(7)

Proof. The right-hand sides of relations (3) and (6) are identical; hence, the left-hand sides
of the same are identical too. Simplifying with the Gamma function yields the desired
conclusion.
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Example 1. The degenerate case
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Proof. Use Equation (7) and set k = 0 and simplify using entry (2) in Table below (64:12:7)
in [11].

Example 2. The Hurwitz zeta function ζ(s, v)
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Proof. Use Equation (7) and set m = 1/2 and simplify using entry (4) in Table below
(64:12:70) in [11].

Example 3. The Digamma function ψ(0)(s)
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Proof. Use Equation (9) and apply l’Hopital’s rule as k→ −1 and simplify using Equation
(64:4:1) in [11].
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Example 4. The fundamental constant log(2)
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Proof. Use Equation (10) and set a = −2 and simplify.

Example 5. The Riemann zeta function ζ(s)
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Proof. Use Equation (7) and set m = 1/2 and simplify using entry (4) in Table below
(64:12:7) in [11].

Example 6. Apéry’s constant ζ(3)
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Proof. Use Equation (12) and set k = −3 and simplify.

Example 7. The fundamental constant ζ(5)
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Proof. Use Equation (12) and set k = −5 and simplify.
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6. Discussion

This paper uses our contour integral method for deriving a new quadruple integral
containing the Gegenbauer polynomial C(λ)

n (x), along with some interesting special cases
with many more possible. The evaluations in this present work were numerically verified
for both real and imaginary and complex values of the parameters in the integrals using
Mathematica by Wolfram.
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