
����������
�������

Citation: Zheng, Y.; Yuan, Y.;

Zheng, Q.; Lei, D. A Hybrid

Imperialist Competitive Algorithm

for the Distributed Unrelated Parallel

Machines Scheduling Problem.

Symmetry 2022, 14, 204. https://

doi.org/10.3390/sym14020204

Academic Editor: Mihai Postolache

Received: 17 December 2021

Accepted: 14 January 2022

Published: 21 January 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

symmetryS S

Article

A Hybrid Imperialist Competitive Algorithm for the
Distributed Unrelated Parallel Machines Scheduling Problem
Youlian Zheng 1, Yue Yuan 2, Qiaoxian Zheng 1,* and Deming Lei 2,*

1 Faculty of Computer Science and Information Engineering, Hubei University, Wuhan 430061, China;
zhengyl@hubu.edu.cn

2 School of Automation, Wuhan University of Technology, Wuhan 430062, China; 9366@whut.edu.cn
* Correspondence: zqxlm1978@163.com (Q.Z.); deminglei11@163.com (D.L.)

Abstract: In this paper, the distributed unrelated parallel machines scheduling problem (DUPMSP)
is studied and a hybrid imperialist competitive algorithm (HICA) is proposed to minimize total
tardiness. All empires were categorized into three types: the strongest empire, the weakest empire,
and other empires; the diversified assimilation was implemented by using different search operator
in the different types of empires, and a novel imperialist competition was implemented among all
empires except the strongest one. The knowledge-based local search was embedded. Extensive
experiments were conducted to compare the HICA with other algorithms from the literature. The
computational results demonstrated that new strategies were effective and the HICA is a promising
approach to solving the DUPMSP.

Keywords: imperialist competitive algorithm; local search; distributed unrelated parallel machines
scheduling problem

1. Introduction

In recent years, single-factory or centralized production has been continuously re-
placed by multi-factory production or distributed manufacturing with the further devel-
opment of globalization. Distributed manufacturing enables manufacturers to be closer
to their customers and suppliers, to produce and market their products more effectively,
to respond to market changes more quickly and achieve better product quality, lower
production cost, reduce management risk, etc. As an important part of manufacturing
systems, scheduling is shifted from single-factory scheduling to distributed scheduling
with the change of production mode. Distributed scheduling has been considered fully in
the past decade [1–30].

As a common distributed scheduling problem, the distributed parallel machine
scheduling problem (DPMSP) has attracted some attention since the works of Hooker [1].
Chen and Pundoor [2] analyzed the computational complexity of scheduling in supply
chains and proposed some fast heuristics. Terrazas-Moreno and Grossmann [3] gave a
hybrid bi-level and spatial Lagrangian decomposition method for the scheduling and plan-
ning problem in multiple factories with different sites. Behnamian and Fatemi Ghomi [4]
applied a heuristic and a genetic algorithm (GA) with a new encoding scheme to minimize
the makespan in heterogeneous factories. Behnamian [5] provided a decomposition-based
hybrid variable neighborhood search/tabu search algorithm to deal with a DPMSP with
the total cost of some factories and the profit of other factories. Behnamian and Fatemi
Ghomi [6] developed a Monte-Carlo-based heuristic with seven local search algorithms to
minimize the cost-related objective. Behnamian [7] designed a two-phase algorithm with
particle swarm optimization for a DPMSP with parallel jobs.

Lei et al. [8] dealt with the distributed unrelated parallel machine scheduling prob-
lem (DUPMSP) in heterogeneous factories and proposed a novel imperialist competitive
algorithm (ICA) with memory, new revolution, and imperialist competition to minimize

Symmetry 2022, 14, 204. https://doi.org/10.3390/sym14020204 https://www.mdpi.com/journal/symmetry

https://doi.org/10.3390/sym14020204
https://doi.org/10.3390/sym14020204
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/symmetry
https://www.mdpi.com
https://doi.org/10.3390/sym14020204
https://www.mdpi.com/journal/symmetry
https://www.mdpi.com/article/10.3390/sym14020204?type=check_update&version=1


Symmetry 2022, 14, 204 2 of 18

the makespan. Lei and Liu [9] studied the DUPMSP with preventive maintenance and
makespan minimization and presented an artificial bee colony algorithm in which the
wholes swarm is divided into one employed bee colony and three onlooker bee colonies,
and the four colonies differed from each other in their search strategies. Lei et al. [10] consid-
ered a multi-objective DUPMSP and developed an improved ABC algorithm to minimize
the makespan and total tardiness simultaneously, in which problem-related knowledge was
proven and knowledge-based neighborhood search was proposed. Pan et al. [11] solved
an energy-efficient DUPMSP by using a knowledge-based two-population optimization
algorithm to minimize total energy consumption and total tardiness simultaneously, in
which the nondominated sorting genetic algorithm-II and differential evolution performed
cooperatively and two knowledge-based local search operators were proposed.

The ICA is constructed by simulating sociopolitical behaviors. It is made up of
initialization, initial empires, assimilation, revolution, and imperialist competition. Unlike
other meta-heuristics [31–33], the ICA has some characteristic features, which are a good
neighborhood search ability, an effective global search property, and a good convergence
rate [34].

As an effective method for solving production scheduling [35], the ICA has been
extensively applied to many scheduling problems. Banisadr et al. [36] gave a hybrid
ICA for single-machine scheduling. For assembly flow shop scheduling, Shokrollahpour
et al. [37] developed a new ICA to optimize two conflicting objectives, and Seidgar et al. [38]
proposed an ICA to solve a two-stage problem. With respect to the flexible job shop
scheduling problem, Zandieh et al. [39] applied an improved ICA to solve the problem with
maintenance. Karimi et al. [40] developed a hybrid algorithm with the ICA and simulated
annealing for a problem with transportation times. Lei et al. [41] presented a two-phase
algorithm based on the ICA and variable neighborhood search for a problem with an energy
consumption threshold. Abedi et al. [42] gave a multi-objective ICA for identical parallel
batch-processing machines’ scheduling. Yazdani et al. [43] proposed a hybrid algorithm
with the ICA and local search for a two-agent parallel machine scheduling problem. An
improved ICA was proposed by Zhang et al. [44] to solve photolithography machines’
scheduling. Li et al. [45] presented an ICA with empire cooperation for solving a fuzzy
distributed assembly scheduling problem. Li et al. [46] proposed an ICA with feedback to
solve an energy-efficient FJSP with transportation and a sequence-dependent setup time.

As a meta-heuristic with significant features, the ICA has great potential to generate
high-quality solutions for the DPMSP; on the other hand, in the existing ICA [34–36], each
empire has the same search operator in assimilation, all empires compete in imperialist
competition, and the problem-related properties are not used fully. In general, assimilation
and revolution should be performed based on the features of the empires. Generally,
assimilation in the weakest empire should be intensified and implemented by moving
colonies toward imperialists of other empires or other good solutions. It is useful to avoid
prematurely excluding the strongest empire from imperialist competition, and the effective
usage of problem-related properties or knowledge can improve the search efficiency. Thus,
it is beneficial to investigate these improvements of the ICA to solve the DUPMSP efficiently.

In this study, the DUPMSP with total tardiness was considered and a hybrid impe-
rialist competitive algorithm (HICA) is proposed. In the HICA, all empires are divided
into three types: the strongest empire, the weakest empire, and other empires. Diversified
assimilation was implemented, that is each kind of empire was provided a different assim-
ilation from other kinds of empires. A novel imperialist competition was implemented
among all empires except the first type of empire. Problem-related knowledge was in-
cluded in the local search, and an effective way was applied to integrate knowledge with
the ICA. Many computational experiments were conducted. The computational results
validated the effectiveness of the new strategies of the HICA and its promising advantages
in the DUPMSP.



Symmetry 2022, 14, 204 3 of 18

The paper is organized as follows. The problem description is introduced in Section 2.
The HICA for the DUPMSP is described in Section 3. Numerical test experiments are given
in Section 4, and the conclusions and the future topics are provided in the final section.

2. Problem Description

The DUPMSP is described below. There exist n jobs J1, J2, · · · , Jn processed among F
factories at different sites. Factory f = 1, 2, · · · , F possesses m f unrelated parallel machines,

which are Ms f +1, · · · , Ms f +m f and available at all times, where s f = ∑
f−1
l=1 ml , f > 1, s1 = 0.

The total number of machines in all factories is W = ∑F
f=1 m f . Each job Ji is available at

Time 0 and has a due date di and pik, which is the processing time of job Ji on machine Mk,
k = 1, 2, · · · , W.

There are some constraints on jobs and machines.
Each machine can deal with at most one job at a time.
No jobs can be processed on more than one machine at a time.
Operations are not allowed to be interrupted.
The goal of the problem is to minimize the total tardiness.

Tardtot = ∑n
i=1 Ti (1)

where Ci and Ti are the completion time and tardiness of job Ji, Ti = max{Ci − di, 0}, and
Tardtot indicates the total tardiness.

The DUPMSP is the extended version of the unrelated parallel machine scheduling
problem (PMSP). The PMSP with total tardiness is NP-hard, so the DUPMSP with total
tardiness is also NP-hard. When all parallel machines are identical and the objective is
the makespan, any two machines are symmetrical to each other, for example for Ms f +1
and Ms f +2, a job can be finished at the same time when it is processed on these two
machines, respectively. In the DUPMSP, there is a certain amount of destruction of the
above symmetry; however, the symmetry still exists.

For the DUPMSP with total tardiness, it consists of three sub-problems: factory assign-
ment, machine assignment, and scheduling. Factory assignment is used to decide which
jobs are allocated into each factory, and machine assignment is for selecting an appropriate
machine for each job in a factory. Lei et al. [8] analyzed the strong coupled relation among
sub-problems and pointed out that two assignment sub-problems can be integrated into an
extended machine assignment, in which each job is allocated to one of W machines, not
limited to a machine in a factory.

3. HICA for the DUPMSP

In ICA, a country represents a solution of the problem, and solutions in population
P are categorized into two parts: imperialists and colonies, the former are some best
solutions in P and the latter are all solutions of P except imperialists. The main steps of the
ICA consist of the initial empires’ construction, assimilation, revolution, and imperialist
competition.

In the existing ICA [34,36,41], the improvements are made by using new strategies on
initial empires, assimilation, revolution, and imperialist competition; however, assimilation
and revolution are frequently executed in the same ways for all empires and seldom
implemented in terms of the characteristics of empires; on the other hand, if the strongest
empire has the biggest normalized total cost TCk, then this empire wins likely in the
imperialist competition, and colonies can be easily reallocated into the empire; as a result,
premature removal may occur. A novel algorithm named the HICA is designed based on
the above analyses.

3.1. Initialization and Initial Empires

As stated above, the DUPMSP is composed of an extended machine assignment
and scheduling. Lei et al. [10] proposed a two-string representation. For the DUPMSP,



Symmetry 2022, 14, 204 4 of 18

its solution is represented as a machine assignment string [Mh1 , Mh2 , · · · , Mhn ] and a
scheduling string [q1, q2, · · · , qn]. Machine Mhi

is allocated for job Ji, and ql is a real number
and corresponds to Jl . The decoding procedure [10] was directly used in this study.

Initial population P with N solutions is randomly generated, then all solutions are
sorted according to the cost. Nim solutions with the smallest cost are chosen as imperialists,
and the remaining countries are used as colonies, then the initial empires are constructed.
Algorithm 1 shows the steps of the initial empires, where Tardtot,i is the total tardiness of
the i-th imperialist, and Fk and NCk are defined by:

Fk = c̄k

/
∑l∈Sim

c̄l (2)

NCk = round(Fk × Ncol) (3)

NCk is the number of colonies possessed by imperialist k. Sim is the set of all impe-
rialists. Ncol = N − Nim indicates the number of colonies. round(x) denotes the nearest
integer to x.

Algorithm 1 Initial empires.

1: Determine Nim imperialists from population P, and sort them in ascending order of total tardiness
2: Compute the normalized cost c̄k = Tardtot,Nim−k+1 for imperialist k = 1, 2, · · · , Nim
3: Calculate the power Fk and NCk and randomly allocate NCk colonies for each imperialist

In the HICA, the cost ci of a solution xi is defined as its objective value. When all
imperialists are sorted, Imperialist 1 has the smallest total tardiness Tard1,tot, Imperialist
2 possesses the second smallest total tardiness Tard2,tot, and so on; obviously, Tard1,tot ≤
Tard2,tot ≤ · · · ≤ TardNim ,tot.

For each initial empire k, its total cost TCk is computed. Suppose that TC1 ≤ TC2 ≤
· · · ≤ TCNim , that is Empire 1 is the strongest one and empire Nim is the weakest one. All
empires are divided into three types: the first type just has Empire 1, and third type only
has empire Nim; the second type is made up of empires 2, · · · , Nim − 1.

TCk = ck + ζ ∑λ∈Qk
cλ/NCk (4)

where Qk is the set of colonies possessed by imperialist k and ζ is a real number and set
to 0.1.

3.2. Diversified Assimilation and New Revolution

Assimilation and revolution are the main paths to produce new solutions. In general,
the process of assimilation is identical for all empires. In the HICA, diversified assimilation
is implemented, that is assimilation is performed differently in the different kinds of
empires. Algorithm 2 shows the steps of diversified assimilation, where α is a real number,
β is an integer, and the retained set Ω is used to store the solutions generated in Empire 1,
that is a new solution is produced in Empire 1 and added into Ω directly, UAi and URi are
the probability of assimilation and revolution. In this study, we set UA2 = 0.8, UR2 = 0.1,
UR3 = 0.2, α = 0.1, and β = 5 based on experiments.

Assimilation is executed by a global search between the colony and its learning object.
In all empires except the worst one, the learning objective of the colony is its imperialist.
For colony xi and its learning object y, the global search is shown below. Two positions
k1, k2 are stochastically decided, and machines between these positions on the first string of
xi are directly replaced with those on the first string of y; a new solution z is generated; if z
has smaller Tardtot than or identical Tardtot with xi, then replace xi with z; otherwise, genes
of z between two positions k1 and k2 of the scheduling string are displaced by those of y on
the same positions; if the newly obtained solution z and xi meets the above condition, then
z substitutes for xi.



Symmetry 2022, 14, 204 5 of 18

Algorithm 2 Diversified assimilation and new revolution.
1: Add all solutions of Empire 1 into the retained set Ω
2: Choose colonies from Empire 1 by probability UA1 , and execute assimilation between each chosen

colony and its imperialist.
3: Select colonies of Empire 1 in terms of revolution probability UR2 , and apply multiple neighbor-

hood search to each chosen colony.
4: Choose the best NC1 + 1 solutions from the retained set Ω; replace all solutions in Empire 1;

decide on the new imperialist.
5: for k = 2 to Nim − 1 do
6: calculate c̃k = ∑xi∈Qk

(ci − ck)
/

NCk.
7: if c̃k < α× ck then
8: implement assimilation with UA1 and revolution with UR1 as done in Empire 1.
9: else

10: execute assimilation with 1−UA1 and revolution with 1−UR1 as done in Empire 1.
11: end if
12: end for
13: For empire Nim, choose colonies with probability UA2 ; execute assimilation between each chosen

colony and one of the best β solutions in Ω; perform revolution with UR3 in the same way as for
Empire 1.

In Algorithm 2, the assimilation probability or learning object differ from each other
in different types of empires. For example, in the worst empire, its imperialist may have
low quality and cannot guide the colony, so the colony learns from one best solution of P to
obtain high-quality solutions.

Algorithm 2 also shows revolution in each type of empire. A multiple-neighborhood
search is used in revolution. There are seven neighborhood structures: N1,N2, · · · ,N7.

N1 is described as follows. Move a job with the biggest tardiness from its current
machine Mk to a randomly chosen machine Mw (w 6= k). N2 is performed for two randomly
chosen machines Mk1 and Mk2 ; shift the job with the biggest tardiness from Mk1 to Mk2 .
N3 is also applied for two randomly chosen machines Mk1 and Mk2 by exchanging the job
with the biggest tardiness on Mk1 and the job with the smallest tardiness on Mk2 .

N4 acts on the scheduling string by exchanging two randomly chosen genes qi1 and
qi2 . N5 is used to produce a new solution by inserting a randomly chosen gene qi into a
new position l, l 6= i. N6 is shown as follows. Two positions k1 and k2 are randomly chosen,
and genes between two positions are reversed.

N7 is depicted below. Begin with machine Mk with the biggest total tardiness of jobs;
all jobs on Mk are in the ascending order of their due dates, then let the sequence of their ql
of these jobs be identical to the order of the due dates. For example, for jobs J1, J17, J11 on
machine M1, the ascending order of their due dates is J11, J17, J1, and the sequence of their
ql becomes 0.33, 0.23, 0.32, that is new q1 is 0.33, new q11 = 0.23, and new q17 = 0.32.

The revolution of colony xi is shown as follows. Let g = 1, t = 1; repeat the following
steps until t = R: a new solution z ∈ Ng(xi) is produced; if xi can be replaced with z
according to the condition in the assimilation, then z substitutes for xi; otherwise, g = g + 1;
let g = 1 if g = 8. t = t + 1.

When there are only two empires, colonies are chosen in terms of UA1 for assimilation
between the colony and its imperialist, and revolution is implemented using UR1 and the
above multiple-neighborhood search.

When assimilation and revolution are performed in all empires, the exchange step is
executed. In each empire k, if the total tardiness of imperialist k is bigger than that of a
colony, then imperialist k is exchanged with the colony.

Total cost TCk is calculated for each empire k, and all empires are categorized into
three types, as done in Section 3.1.



Symmetry 2022, 14, 204 6 of 18

3.3. Imperialist Competition

In general, all empires compete with each other, and the weakest colony of the weak-
est empire is directly added into the winning empire; in this study, a new imperialist
competition was applied and shown in Algorithm 3, where TCk is defined by:

TCk = TCNim−k+1 (5)

When Nim ≤ 2, all empires compete with each other, as done in the above procedure.

Algorithm 3 Imperialist competition.

1: Determine the normalized total cost TCk for empire k = 2, 3, · · · , Nim
2: Compute power POWk for empire k = 2, · · · , Nim and construct vector

[POW2 − r2, · · · , POWNim − rNim ]
3: Decide on an empire g with the biggest POWg − rg
4: Randomly choose a solution x from Empire 1; directly substitute for the weakest colony; add into

empire g; then, execute multiple-neighborhood search on x, as done in revolution.

Unlike the existing imperialist competition, our competition process directly eliminates
the possibility of including the weakest colony in empire g because the weakest colony is a
worse solution and difficult to improve even if it is included in a strong empire.

3.4. Local Search

Problem-related knowledge was incorporated in the search procedure of the schedul-
ing algorithm [10,11,47–49]. The inclusion of knowledge can avoid useless searching and
make the algorithm search in the possible regions of the optimal solutions. There are some
papers on knowledge-based scheduling [47–49], and the knowledge used is mainly about
the makespan. In this study, the knowledge-based local search acts on the imperialist of
each empire to intensify the local search ability of the HICA.

Theorem [10]: For two adjacent jobs Ji and Jj on a machine Mk, suppose t is the
beginning time of Ji:

(1) If Ti > 0 and Tj > 0:

a. If t + pjk − dj ≤ 0 and t + pik − dj > 0, then the sum of their tardiness will
diminish after two jobs are exchanged;

b. If t + pjk − dj > 0 and pik − pjk > 0, then the sum of their tardiness will diminish
after two jobs are exchanged;

(2) If Ti ≤ 0, Tj > 0, and one of the following conditions is met:

a. t + pik + pjk − di ≤ 0;
b. t + pik + pjk − di > 0, t + pjk − dj ≤ 0, and di > dj;
c. t + pik + pjk − di > 0, t + pjk − dj > 0, di − t− pjk > 0; then the sum of their

tardiness will diminish after two jobs are exchanged.

T∗i and T∗j are the tardiness of Ji and Jj after the exchange.
The local search is shown below. For empire k = 1, 2, · · · , Nim, the following steps are

executed on the imperialist of the empire: on each machine Ml , l = 1, 2, · · · , W, start with
the first job on Ml ; repeat the following steps until all adjacent jobs are checked: for Job Ji
and its adjacent job Jj, exchange them if they meet the conditions in the theorem.

3.5. Algorithm Description

The HICA is shown in Algorithm 4, and its flow chart is described in Figure 1.



Symmetry 2022, 14, 204 7 of 18

Algorithm 4 HICA.
1: Randomly produce an initial population P
2: while stopping condition is not met do
3: Construct initial empires
4: if Nim > 2 then
5: Sort empires, and categorize empires into three types
6: Execute Algorithm 2, and exchange for each empire
7: Implement the new imperialist competition for all empires except Empire 1
8: else
9: Perform Algorithm 2, and exchange

10: Execute imperialist competition
11: end if
12: Apply local search to the imperialist of each empire
13: end while

Figure 1. Flowchart of the HICA.

The HICA has the following time complexity O(N × R× max_g), where max_g in-
dicates the repeated number of Lines 3–12 of Algorithm 4. The HICA has the following
features: (1) Three types of empires are constructed, and diversified assimilation is per-



Symmetry 2022, 14, 204 8 of 18

formed in these types of empires. (2) A new imperialist competition is implemented. Not
all empires compete with each other, and the weakest colony is not included in the win-
ning empire and replaced with a solution produced by the multiple-neighborhood search.
(3) The knowledge-based local search is used to improve the imperialists of all empires for
high search efficiency. The above features can provide a good balance between exploration
and exploitation for the HICA and result in good performance.

4. Computational Experiments

Extensive experiments were conducted to test the performance of the HICA for the
DUPMSP with total tardiness. All experiments were implemented by using Microsoft
Visual C++ 2015 and run on a 4.0 G RAM 2.00 GHz CPU PC.

4.1. Test Instances, Metrics, and Comparative Algorithms

Ninety-six combinations were randomly generated, and their basic descriptions are
given in Table 1. Five instances were stochastically produced for each combination, and
four-hundred eighty instances were obtained. The due date of Ji is decided by:

di = ∑W
j=1 pij × n

/
2W2 (6)

Table 1. Information on combinations.

Instance F m f Instance n

1–9 2 4 5 1,10,19,28,37,46,55,64,78,84,90,96 80
10–18 3 4 5 6 2,11,20,29,38,47,56,65 100
19–27 4 4 5 6 3 3,12,21,30,39,48,57,66 120
28–36 5 4 5 6 3 7 4,13,22,31,40,49,58,67 140
37–45 2 3 4 5,14,23,32,41,50,59,68 160
46–54 3 3 4 4 6,15,24,33,42,51,60,69 180
55–63 4 3 4 4 2 7,16,25,34,43,52,61,70 200
64–72 5 3 4 4 2 5 8,17,26,35,44,53,62,71 220
73–78 2 2 3 9,18,27,36,45,54,63,72 240
79–84 3 2 3 3 73,79,85,91 30
85–90 4 2 3 3 2 74,80,86,92 40
91–96 5 2 3 3 2 2 75,81,87,93 50

76,82,88,94 60

pik ∈ [30, 50] 77,83,89,95 70

Behnamian and Fatemi Ghomi [4] proposed a GA for the DPMSP. Hulett et al. [50]
presented a particle swarm optimization (PSO [50]) algorithm for a non-identical PMSP
with total weighted tardiness. This GA can be directly applied to solve the DUPMSP. This
PSO algorithm also can be used to solve our DUPMSP after the decoding part is replaced
with the decoding procedure in the HICA, so they were chosen as comparative algorithm.

Each algorithm ran 20 times for each instance. For a combination, mni and mxi were
the best solution, the worst solution obtained in 20 runs for its instance i = 1, 2, 3, 4, 5,
respectively. agi is the average makespan of 20 elite solutions for instance i. Three indices
Min, Max, and Avg are defined by Min = ∑5

i=1 mni/5, Max = ∑5
i=1 mxi/5, and Avg =

∑5
i=1 agi/5.

4.2. Parameter Settings

The HICA has the following parameters: N, Nim, max_it, UA1 , UR1 . The Taguchi
method is often applied to decide parameter settings for optimization algorithm and was
also adopted in this study. Table 2 describes the levels of all parameters.



Symmetry 2022, 14, 204 9 of 18

Table 2. Parameters and their levels.

Parameter
Factor Level

1 2 3

N 80 100 120
Nim 5 6 7

max_it 80,000 100,000 120,000
UA1 0.6 0.7 0.8
UR1 0.2 0.3 0.4

The HICA ran 20 times for an instance of Problem Combination 14. the orthogonal
array L27(35) was executed. The results of the Min and S/N ratio are shown in Figure 2.
The S/N ratio is defined as −10 log10

(
0.1×Min2), where Min denotes the best solution

obtained in 20 runs. As shown in Figure 2, the best settings were N = 100, Nim = 6,
max_it = 105, UA1 = 0.7, UR1 = 0.3.

 

Figure 2. The mean Min and the mean S/N ratio of the Min.

4.3. Results and Discussion

Two variants named HICA1 and HICA2 are given. HICA1 was obtained after the
knowledge-based local search was deleted from the HICA. The comparison between the
HICA and HICA1 was to validate the impact of the local search on the performance of
the HICA. In HICA2, when assimilation was performed, each colony moved toward its
imperialist. The usage of HICA2 was to show if the diversified assimilation was useful to
improve the performance of the HICA.

Tables 3–6 describe the computational results of the HICA, the two variants, and
the two comparative algorithms, in which data highlighted in bold are results of HICA
being better than any other algorithms. The Wilcoxon test was performed, and the cor-
responding results are shown in Table 7. The box plots of all algorithms are given in
Figure 3. The convergence curves of all algorithms on Combinations 24 and 76 are listed in
Figures 4 and 5.



Symmetry 2022, 14, 204 10 of 18

Table 3. Computational results of all algorithms on Min.

Ins HICA HICA1 HICA2 PSO GA Ins HICA HICA1 HICA2 PSO GA

1 1947.9 1951.2 1995.2 2636.9 3712.0 49 4446.0 4590.6 4621.0 6549.2 9700.8
2 2899.3 2939.5 2942.2 3709.9 6153.5 50 5821.7 5953.0 5914.4 8411.9 13,050
3 4056.7 3955.3 4143.9 5777.0 8730.9 51 7214.5 7490.5 7518.9 10,617 16,315
4 5446.6 5526.2 5449.8 8083.3 11,836 52 8863.0 9336.3 8862.4 13,163 19,163
5 6797.9 7193.9 6974.0 9818.1 14,518 53 10,815 11,061 10,863 16,159 24,050
6 8620.1 8621.3 8806.1 13,108 19,976 54 13,078 12,916 13,164 18,194 28,495
7 10,628 11,140 10,581 15,763 24,182 55 1457.2 1485.1 1563.7 2063.0 3294.1
8 12,735 13,340 13,484 20,572 28,028 56 2200.6 2175.5 2272.0 3131.2 4824.8
9 15,003 15,609 15,595 22,002 33,668 57 2971.2 3022.6 3118.6 4401.6 6599.4
10 1441.9 1389.3 1447.3 1753.6 2843.6 58 4036.7 4011.7 4127.6 6000.7 8789.3
11 1995.1 1961.7 2026.7 2584.6 3997.1 59 5111.9 5209.3 5269.2 7187.7 11,781
12 2768.9 2808.3 2930.4 3660.3 6098.7 60 6440.0 6590.3 6297.7 9362.4 14,327
13 3637.5 3676.8 3662.6 5195.9 7896.9 61 8063.4 7895.1 7825.1 11,786 17,114
14 4690.8 4651.6 4666.4 6505.5 10,745 62 9562.6 9868.5 9389.9 14,110 21,170
15 5794.6 5947.0 5905.0 8133.6 13,215 63 11,010 11,718 10,968 16,094 24,475
16 7187.8 7240.0 6912.8 10,217 16,849 64 1218.7 1244.6 1251.2 1649.0 2486.9
17 8560.6 8704.4 8446.9 12,470 19,056 65 1811.4 1799.0 1861.6 2415.0 3744.6
18 10,193 10,564 10,443 14,676 21,849 66 2377.2 2256.4 2414.3 3352.6 5008.1
19 1258.3 1271.7 1300.7 1649.0 2463.2 67 3201.1 3026.8 3163.6 4429.4 6823.8
20 1849.5 1761.0 1864.6 2415.0 3804.5 68 3965.6 4109.1 4126.6 5557.0 9059.4
21 2407.2 2349.0 2306.0 3352.6 4799.2 69 5229.4 5077.0 5242.3 6796.8 11,469
22 3078.0 3206.2 3152.1 4429.4 7010.2 70 6045.5 6140.0 6142.0 8721.3 13,997
23 4053.5 4078.9 4204.0 5557.0 8623.0 71 7116.5 7490.0 7446.1 10,603 16,531
24 5115.2 5206.7 5061.5 6796.8 11,079 72 8699.2 8938.0 8669.7 12,517 19,977
25 6118.8 6176.3 6192.2 8721.3 14,144 73 610.00 616.00 629.00 658.60 830.40
26 7376.1 7518.1 7381.8 10,603 16,652 74 959.40 942.00 982.60 1039.6 1426.4
27 8615.0 8787.0 8576.6 12,517 19,640 75 1368.0 1379.0 1363.0 1645.0 2367.0
28 1040.1 1042.5 1039.4 1203.8 2223.8 76 1849.6 1850.8 1918.8 2117.6 3408.6
29 1587.2 1555.8 1629.8 1867.5 3365.1 77 2451.6 2453.0 2506.2 3205.8 4639.0
30 1903.2 1907.3 1920.9 2539.1 4515.7 78 2950.8 3054.0 3165.6 3832.0 6242.6
31 2616.5 2471.7 2442.0 3382.9 5927.7 79 432.42 428.30 433.23 474.95 654.86
32 3230.0 3270.3 3160.0 4384.6 7567.1 80 673.75 669.31 661.44 761.63 1064.3
33 4035.4 4145.3 4083.9 5429.3 9204.3 81 934.42 926.27 958.02 1047.5 1662.9
34 4795.0 4944.6 4820.8 6626.0 10,775 82 1251.8 1212.1 1238.4 1610.2 2465.2
35 5640.9 5786.4 5716.0 7713.6 13,871 83 1657.8 1676.9 1687.0 2108.7 3216.3
36 6665.7 6771.7 6563.8 9498.1 14,968 84 2060.9 2085.8 2144.0 2635.5 4429.1
37 2314.2 2305.0 2279.1 2931.8 4815.8 85 385.15 393.15 398.00 399.70 618.50
38 3336.9 3445.0 3498.3 4413.2 7375.8 86 592.20 588.80 600.20 649.80 997.20
39 4813.1 4814.1 5000.3 6990.1 11,026 87 826.00 823.25 804.25 939.50 1438.5
40 6533.6 6674.3 6567.7 9515.3 14,633 88 1090.6 1074.1 1066.3 1421.1 2135.7
41 8428.2 8635.5 8512.7 12,280 17,861 89 1411.2 1460.7 1399.4 1866.9 2630.2
42 10,476 10,903 11,013 16,216 24,908 90 1792.4 1753.4 1807.6 2458.2 3392.8
43 12,963 13,606 13,150 20,764 29,993 91 382.17 385.97 385.96 402.63 623.90
44 15,960 16,431 16,175 26,088 36,909 92 521.75 528.17 517.67 571.06 872.31
45 18,729 20,151 19,521 29,486 40,083 93 744.85 709.73 740.42 863.57 1364.2
46 1725.9 1719.2 1684.9 2248.0 3454.0 94 1015.1 999.42 1003.1 1061.7 1937.4
47 2490.6 2471.6 2529.5 3218.7 5230.0 95 1276.4 1249.3 1252.8 1662.1 2434.6
48 3384.2 3486.1 3590.9 5029.9 7563.4 96 1523.2 1547.1 1518.3 1950.4 3048.9



Symmetry 2022, 14, 204 11 of 18

Table 4. Computational results of all algorithms on Max.

Ins HICA HICA1 HICA2 PSO GA Ins HICA HICA1 HICA2 PSO GA

1 2144.4 2231.1 2135.2 2741.2 4489.2 49 4907.3 5028.7 4960.0 7012.8 11,949
2 3195.6 3145.4 3135.5 4217.9 7010.6 50 6135.9 6388.7 6339.7 8585.7 15,309
3 4487.2 4591.4 4399.2 6018.2 10,320 51 7709.8 7954.7 8009.6 11,287 19,728
4 5844.4 6022.8 6114.9 8785.6 13,535 52 9615.9 9732.5 9676.8 13,249 24,731
5 7485.3 7592.8 7492.8 10,935 18,122 53 11,497 12,124 11,927 17,396 29,209
6 9212.9 9670.0 9238.6 13,475 24,590 54 14,461 14,114 13,900 18,332 33,131
7 11,610 11,699 11,660 16,978 30,082 55 1623.1 1664.8 1696.0 2171.4 3453.6
8 13,679 14,853 13,811 21,057 33,401 56 2345.7 2389.5 2418.5 3224.0 5472.3
9 16,449 17,289 16,906 24,130 41,408 57 3278.5 3282.8 3397.8 4425.6 7303.3
10 1592.0 1578.1 1606.2 1767.6 3259.5 58 4423.0 4603.7 4315.9 6170.1 10,419
11 2237.9 2183.7 2301.8 2768.1 4922.6 59 5414.5 5712.1 5606.8 7863.8 13,143
12 3153.2 3166.3 3176.6 3733.1 7027.6 60 6699.3 7011.9 7050.5 9603.0 16,804
13 3990.5 4126.5 3996.5 5370.4 9961.5 61 8487.0 8826.4 8475.1 12,117 21,839
14 5078.6 5056.4 5153.8 6908.9 12,328 62 10,173 10,622 10,127 15,035 25,253
15 6458.6 6469.6 6439.0 8504.0 16,348 63 11,809 12,656 11,883 16,723 27,980
16 7709.6 7829.9 7780.9 10,600 19,084 64 1409.3 1332.3 1390.3 1737.7 3044.7
17 9359.8 9616.1 9325.9 13,029 23,261 65 2016.0 1949.4 1967.3 2490.0 4267.4
18 11,386 11,342 10,994 15,013 25,834 66 2649.0 2596.2 2618.4 3378.6 6094.5
19 1412.8 1366.8 1427.7 1737.7 3059.2 67 3519.9 3425.8 3506.4 4585.6 8016.1
20 2006.5 1985.1 2002.2 2490.0 4815.9 68 4522.9 4468.4 4555.9 5931.4 9955.4
21 2650.0 2787.6 2582.0 3378.6 6454.4 69 5451.7 5628.2 5587.4 7235.0 13,841
22 3606.4 3463.7 3619.5 4585.6 7786.0 70 6604.2 6632.2 6637.1 8975.3 15,733
23 4584.1 4514.8 4564.1 5931.4 11,277 71 8074.4 8222.1 7910.2 10,623 20,741
24 5422.7 5559.9 5716.4 7235.0 13,419 72 9606.8 9802.5 9444.3 12,899 25,562
25 6795.2 6810.9 6718.2 8975.3 16,083 73 646.60 667.40 653.80 693.60 1025.0
26 7933.9 8438.3 8176.4 10,623 21,031 74 999.40 1046.0 1092.2 1138.2 1806.8
27 9674.3 9684.2 9715.6 12,899 23,756 75 1604.0 1479.0 1491.0 1721.0 2717.0
28 1147.1 1161.5 1256.3 1282.4 2521.3 76 2028.6 2078.6 2119.4 2291.0 4023.0
29 1777.0 1752.3 1788.1 1915.5 3895.7 77 2790.4 2734.4 2747.2 3320.6 5453.2
30 2131.1 2120.4 2113.6 2722.6 5342.7 78 3349.8 3379.4 3386.0 4188.2 7193.8
31 2841.2 2818.7 2764.8 3451.9 6667.5 79 491.83 458.91 527.95 500.66 814.91
32 3537.3 3529.6 3565.9 4495.0 9292.2 80 732.81 762.75 752.81 768.50 1400.9
33 4375.8 4602.7 4703.6 5640.1 11,199 81 1071.0 1006.1 1051.7 1234.7 1940.1
34 5473.2 5220.8 5325.4 6843.2 13,188 82 1331.9 1368.9 1373.8 1729.3 3107.8
35 6285.0 6339.3 6253.3 8071.2 16,488 83 1830.6 1788.1 1854.8 2365.8 3732.5
36 7337.0 7576.3 7223.6 9712.7 18,942 84 2240.3 2229.4 2497.9 2856.4 5045.9
37 2550.9 2516.7 2578.2 3180.0 5511.4 85 438.30 434.15 458.80 416.30 780.65
38 3800.3 3735.2 3850.5 4939.9 8454.0 86 643.60 688.80 690.20 682.80 1243.8
39 5187.8 5174.7 5408.9 8057.2 13,239 87 915.00 921.00 927.75 1025.3 1810.5
40 6857.6 7199.7 7158.4 10,683 17,267 88 1241.3 1173.5 1214.1 1518.3 2545.8
41 9538.5 9458.1 9844.5 12,765 21,890 89 1604.5 1608.9 1555.2 2022.1 3274.0
42 11,108 12,032 11,719 16,862 27,020 90 1980.0 1896.6 1980.2 2532.2 4188.0
43 14,073 14,808 14,859 21,386 33,387 91 402.38 410.88 404.50 448.21 808.35
44 17,680 19,137 18,337 26,708 43,549 92 550.11 548.50 562.47 595.03 1139.2
45 20,789 21,749 21,480 30,067 51,569 93 789.12 798.17 842.88 963.72 1619.8
46 1876.7 1863.6 1828.8 2327.6 3892.5 94 1090.8 1086.6 1101.0 1164.4 2220.4
47 2679.1 2761.5 2709.0 3659.1 6012.3 95 1366.2 1377.7 1393.5 1717.5 2843.5
48 3804.7 3762.8 3795.2 5147.7 8219.2 96 1632.9 1662.9 1655.8 2036.9 3787.4



Symmetry 2022, 14, 204 12 of 18

Table 5. Computational results of all algorithms on Avg.

Ins HICA HICA1 HICA2 PSO GA Ins HICA HICA1 HICA2 PSO GA

1 2035.6 2064.8 2057.8 2691.4 4243.9 49 4698.8 4831.4 4797.1 6704.5 10,896
2 3002.2 3053.5 3057.6 3890.5 6473.0 50 6022.4 6155.7 6097.4 8524.4 14,070
3 4223.8 4215.4 4250.3 5914.6 9605.7 51 7510.6 7698.6 7701.1 10,903 17,516
4 5613.9 5708.7 5718.7 8243.4 12,941 52 9201.3 9481.6 9272.1 13,195 22,054
5 7156.8 7366.3 7289.2 10,046 16,776 53 11,048 11,536 11,241 16,924 26,378
6 8880.1 9150.4 8999.2 13,352 21,420 54 13,393 13,665 13,412 18,283 30,927
7 11,038 11,448 11,147 16,221 26,089 55 1561.5 1590.0 1617.9 2073.9 3356.0
8 13,313 13,907 13,714 20,684 30,579 56 2276.5 2299.9 2329.6 3181.0 5105.2
9 15,651 16,800 16,290 22,970 36,951 57 3164.9 3172.7 3239.1 4406.0 6951.7
10 1522.5 1472.0 1530.0 1755.0 3043.6 58 4175.3 4227.6 4214.1 6030.8 9334.8
11 2111.4 2065.0 2166.2 2646.1 4490.8 59 5297.2 5433.7 5417.4 7461.0 12,347
12 2972.9 3032.0 3019.6 3684.7 6490.1 60 6574.7 6818.3 6715.3 9450.2 15,622
13 3843.1 3867.9 3878.2 5249.3 8493.0 61 8213.3 8320.4 8141.0 11,827 18,956
14 4878.4 4894.2 4949.5 6728.2 11,613 62 9800.6 10,126 9867.1 14,551 23,048
15 6107.9 6211.7 6179.9 8303.1 14,497 63 11,411 12,159 11,623 16,234 26,497
16 7436.2 7618.5 7506.0 10,418 18,180 64 1300.3 1288.8 1312.9 1676.6 2809.3
17 8964.1 9100.8 8747.5 12,677 21,782 65 1912.5 1860.1 1907.4 2432.6 3957.0
18 10,604 10,933 10,713 14,783 24,038 66 2470.2 2488.7 2524.0 3366.4 5469.4
19 1329.5 1313.1 1351.9 1676.6 2834.0 67 3388.8 3252.1 3304.7 4504.5 7534.8
20 1931.2 1899.8 1934.5 2432.6 4163.4 68 4196.4 4248.4 4299.0 5696.7 9494.5
21 2530.2 2535.8 2510.0 3366.4 5683.4 69 5319.4 5246.2 5348.8 6980.8 12,284
22 3327.8 3382.8 3399.0 4504.5 7498.1 70 6295.2 6453.8 6364.9 8801.1 14,707
23 4302.8 4266.8 4399.1 5696.7 9992.6 71 7568.2 7845.5 7618.2 10,605 18,240
24 5301.4 5392.4 5404.8 6980.8 12,282 72 9046.8 9268.3 8952.3 12,709 21,217
25 6453.6 6542.3 6464.6 8801.1 15,046 73 629.66 640.70 639.68 665.20 904.20
26 7662.4 8003.4 7791.1 10,605 18,636 74 978.68 999.32 1029.1 1078.7 1633.1
27 9113.0 9250.6 9155.8 12,709 21,583 75 1437.0 1429.2 1441.5 1704.5 2509.7
28 1090.1 1098.8 1108.7 1243.2 2407.5 76 1946.0 1963.7 1990.0 2176.8 3767.7
29 1683.8 1657.5 1731.3 1883.6 3552.8 77 2554.4 2555.0 2585.6 3256.1 4988.9
30 1987.7 1984.8 2006.9 2586.7 4821.6 78 3170.3 3175.8 3234.2 3957.7 6701.8
31 2721.0 2649.2 2641.3 3403.7 6351.5 79 447.43 444.50 459.59 483.07 732.87
32 3320.7 3392.2 3361.7 4440.3 8187.9 80 707.75 703.47 716.30 765.96 1164.5
33 4250.9 4305.8 4354.5 5497.2 10,175 81 990.89 956.92 996.13 1111.8 1808.7
34 5097.6 5090.9 5083.6 6765.3 11,815 82 1284.1 1290.1 1319.8 1647.0 2638.4
35 5963.4 6081.7 5996.0 7853.2 15,015 83 1755.9 1729.6 1753.0 2196.7 3525.7
36 6958.3 7132.0 6872.4 9619.8 17,167 84 2146.8 2160.8 2207.6 2782.2 4720.6
37 2398.8 2381.6 2430.1 3104.5 5079.1 85 416.04 416.14 413.36 403.54 699.71
38 3602.8 3588.7 3640.2 4562.0 7939.3 86 631.92 642.00 637.68 665.32 1125.4
39 4982.1 5027.9 5154.4 7369.9 11,807 87 873.58 872.88 881.6 972.38 1606.3
40 6692.5 6868.9 6792.8 9987.4 15,872 88 1171.3 1144.8 1168.1 1469.8 2278.1
41 8871.3 8922.3 8868.9 12,601 20,413 89 1518.7 1520.0 1512.4 1923.2 3007.6
42 10,801 11,431 11,361 16,432 25,801 90 1852.1 1831.6 1877.9 2477.5 3879.1
43 13,501 14,028 13,789 20,970 31,844 91 390.75 394.54 394.75 414.03 717.61
44 16,891 17,488 16,871 26,544 39,894 92 538.26 541.04 543.13 574.71 1029.5
45 19,930 20,912 20,373 29,599 45,940 93 768.41 759.94 782.24 879.57 1512.9
46 1773.2 1783.7 1772.7 2265.0 3703.7 94 1045.9 1050.0 1037.7 1126.4 1998.2
47 2586.4 2614.8 2608.8 3321.4 5623.1 95 1319.0 1302.5 1335.8 1669.5 2674.3
48 3649.5 3640.2 3689.0 5056.9 7902.6 96 1596.7 1604.3 1581.4 1973.4 3432.8



Symmetry 2022, 14, 204 13 of 18

Table 6. Computational results of the five algorithms on metric Std.

Instance HICA HICA1 HICA2 PSO GA Instance HICA HICA1 HICA2 PSO GA

1 64.592 81.659 61.212 36.281 218.84 49 123.48 114.59 123.40 185.23 580.19
2 80.080 62.621 59.686 159.12 246.46 50 98.966 122.97 138.13 57.304 661.26
3 124.15 151.02 79.150 74.637 498.95 51 132.39 141.64 143.98 257.70 886.46
4 114.59 171.28 176.50 253.56 484.62 52 237.57 139.02 247.10 39.833 1537.1
5 192.64 123.85 176.14 341.27 1023.7 53 210.31 304.32 308.27 327.58 1502.1
6 216.92 304.43 111.85 103.13 1263.3 54 403.67 322.32 220.00 61.193 1580.5
7 293.76 166.53 340.71 382.55 1584.7 55 55.726 64.038 40.212 32.523 58.745
8 236.31 418.52 101.54 176.97 1451.9 56 45.996 65.209 48.409 32.398 174.61
9 461.58 511.25 385.46 892.76 2096.4 57 92.341 69.442 83.776 9.0250 237.24

10 40.789 50.186 53.977 4.2000 132.89 58 124.74 166.33 66.110 48.322 477.68
11 81.350 69.732 77.438 62.690 248.87 59 90.399 155.12 125.42 225.83 418.85
12 97.549 117.37 73.253 20.745 253.90 60 86.427 135.58 224.19 75.957 856.96
13 102.54 125.53 89.390 63.110 598.38 61 113.29 286.39 192.64 96.859 1177.7
14 127.77 143.34 153.85 112.01 545.43 62 186.12 240.55 222.73 358.68 1133.1
15 175.88 168.69 180.15 138.90 971.14 63 245.48 244.08 254.60 165.99 1161.0
16 134.55 164.77 257.70 156.08 768.97 64 52.725 27.652 47.187 25.169 192.51
17 204.76 246.05 260.76 184.94 1049.3 65 58.271 48.583 32.906 25.187 158.90
18 317.30 203.60 167.80 96.781 1246.0 66 80.386 110.76 61.890 12.278 346.99
19 40.544 28.394 35.943 25.169 171.73 67 113.83 101.46 102.78 37.022 372.04
20 40.077 72.506 40.059 25.187 294.41 68 172.50 107.70 136.68 98.365 215.83
21 70.752 132.42 76.236 12.278 430.30 69 67.291 160.17 107.15 129.48 606.22
22 147.43 84.221 131.12 37.022 267.88 70 196.40 167.57 129.13 93.038 546.25
23 161.07 126.98 102.95 98.365 739.01 71 248.17 235.40 127.08 5.8524 1116.1
24 108.45 116.11 181.21 129.48 740.44 72 292.83 263.67 221.59 98.095 1515.6
25 214.52 197.63 179.32 93.038 643.46 73 12.360 15.480 8.1507 10.892 69.643
26 164.00 260.50 253.46 5.8524 1313.1 74 16.101 34.463 30.366 26.850 115.16
27 294.44 298.82 307.09 98.095 1335.2 75 63.887 25.463 37.025 21.139 105.22
28 33.956 31.167 57.815 23.557 107.58 76 50.010 76.592 57.765 49.321 208.33
29 61.444 55.095 50.979 13.568 171.47 77 97.412 78.212 66.040 43.161 226.59
30 68.121 68.678 53.899 54.716 284.16 78 126.09 93.546 65.632 114.13 292.21
31 77.914 104.96 89.017 20.532 224.80 79 17.243 10.743 25.834 8.8486 46.016
32 89.028 77.661 122.22 41.395 528.60 80 16.777 33.587 24.106 3.1662 89.043
33 107.50 129.55 168.55 74.696 596.14 81 37.285 26.053 28.279 60.188 75.397
34 200.77 89.597 165.51 69.103 606.58 82 24.203 49.112 35.666 46.434 183.81
35 184.90 161.39 170.09 101.9 743.40 83 63.174 36.079 48.430 79.620 138.93
36 207.98 250.55 209.06 63.564 1022.2 84 60.590 40.744 103.70 86.945 180.85
37 64.053 58.114 92.794 89.894 228.30 85 15.611 12.697 16.776 5.0279 54.738
38 136.51 91.828 113.95 170.77 386.66 86 14.511 29.229 24.374 12.273 64.962
39 126.86 117.41 120.42 379.27 585.97 87 34.738 29.642 36.062 30.091 115.75
40 116.69 155.74 185.42 319.56 866.03 88 45.453 28.014 42.436 28.557 115.37
41 316.88 240.44 366.72 153.21 1316.8 89 50.914 45.798 41.662 48.458 209.48
42 195.24 302.56 174.97 276.65 828.45 90 51.044 53.206 61.197 20.645 225.61
43 310.43 404.96 537.20 184.91 1011.0 91 6.0981 7.3517 5.8396 16.294 46.835
44 519.81 713.56 660.90 252.45 2129.6 92 9.1908 6.0423 12.694 7.2325 92.698
45 579.61 572.59 665.16 181.97 3264.7 93 12.683 29.535 32.935 29.320 75.813
46 41.188 48.871 44.995 28.589 135.69 94 22.694 29.216 27.806 41.225 81.823
47 70.778 103.05 64.466 145.58 259.37 95 31.513 37.417 40.741 16.417 129.29
48 121.14 81.980 66.900 30.808 249.62 96 32.529 37.904 46.590 31.404 237.22

Table 7. Results of the Wilcoxon test.

Wilcoxon-Test Min Max Avg Std

Wilcoxon test (H, H1) 0.000 0.001 0.000 0.262
Wilcoxon test (H, H2) 0.000 0.000 0.000 0.764
Wilcoxon test (H, P) 0.000 0.000 0.000 0.002
Wilcoxon test (H, G) 0.000 0.000 0.000 0.000



Symmetry 2022, 14, 204 14 of 18

GPH2H1H

40000

30000

20000

10000

0

M
in

GPH2H1H

50000

40000

30000

20000

10000

0

M
a
x

GPH2H1H

50000

40000

30000

20000

10000

0

A
vg

GPH2H1H

3500

3000

2500

2000

1500

1000

500

0

S
td

Figure 3. Box plot of the five algorithms.

Figure 4. Convergence curves on an instance of Combination 24.

It can be found from Tables 3–6 that the HICA performed better than its two variants on
the three metrics. The HICA produced better Min than HICA1 on 65 combinations; the Max
of HICA1 was less than that of the HICA on 37 combinations; the HICA had a smaller Avg
than HICA1 on 69 combinations. Obviously, the HICA had better convergence performance
than HICA1, and the inclusion of the local search really improved the performance of the
HICA. HICA2 could not generate better results than the HICA on most of the instances and
was superior to the HICA on a limited number of instances. In the HICA, assimilation was
implemented differently in different types of empires. The comparison between the HICA
and HICA2 really proved the effectiveness of the diversified assimilation. Table 7 reveals
that the HICA had a better Min, Max, and Avg than HICA1 and HICA2 in the statistical
sense and produced a similar Std as its two variants; this conclusion also can be seen from
Figures 3–5. Thus, it is necessary to add the local search and the diversified assimilation to
the HICA.



Symmetry 2022, 14, 204 15 of 18

Figure 5. Convergence curves on an instance of Combination 76.

The parameters of the GA and the PSO algorithm were directly adopted from Behnamian
and Fatemi Ghomi [4] and Hulett et al. [50], except the stopping condition. Three algorithms
had the same termination condition: max_it = 105. The computational results and times are
shown in Tables 3–6 and 8, respectively.

Table 8. Computational times of the HICA and the two comparative algorithms.

Ins
Running Time (s)

Ins
Running Time (s)

Ins
Running Time (s)

Ins
Running Time (s)

HICA PSO GA HICA PSO GA HICA PSO GA HICA PSO GA

1 4.08 7.04 47.3 25 13.3 46.8 146 49 8.34 15.9 61.1 73 1.29 1.57 6.98
2 5.22 10.1 58.0 26 14.9 51.2 162 50 9.71 19.8 69.8 74 1.89 2.48 9.05
3 6.61 12.7 70.8 27 16.5 49.5 179 51 11.7 22.6 79.5 75 2.34 2.91 11.2
4 8.26 14.8 82.7 28 5.32 20.9 80.6 52 13.4 26.1 92.9 76 3.06 3.56 14.1
5 10.3 18.1 98.4 29 6.53 29.3 90.9 53 15.5 28.8 108 77 3.60 4.35 17.3
6 12.0 19.8 111 30 7.84 35.9 113 54 17.4 36.0 117 78 4.36 5.26 20.6
7 14.2 25.5 126 31 9.28 38.6 131 55 4.10 11.5 31.6 79 1.39 2.17 7.79
8 15.9 26.4 140 32 11.0 50.1 147 56 5.37 13.5 39.1 80 1.68 2.89 9.40
9 18.2 30.7 148 33 12.4 56.1 166 57 6.47 15.0 45.4 81 2.17 3.54 12.7
10 4.27 12.4 61.0 34 13.8 57.8 179 58 8.20 18.1 55.3 82 2.87 4.76 14.8
11 5.44 13.8 74.3 35 15.8 69.4 203 59 9.78 21.3 68.7 83 3.32 5.47 17.2
12 6.70 19.9 86.5 36 17.5 72.6 226 60 11.4 26.1 74.9 84 3.87 6.20 20.0
13 8.28 22.0 105 37 4.13 5.88 33.9 61 13.1 29.0 84.8 85 1.49 2.30 7.15
14 9.81 28.2 121 38 5.39 7.87 48.1 62 14.5 32.8 95.4 86 1.75 3.26 9.48
15 11.2 28.5 138 39 6.96 10.3 56.4 63 17.0 39.8 105 87 2.36 4.18 11.6
16 13.2 32.6 155 40 8.85 12.8 65.4 64 4.47 16.1 49.5 88 2.71 5.43 13.7
17 15.0 40.7 173 41 10.8 15.0 72.9 65 5.67 17.1 56.1 89 3.30 7.80 16.3
18 16.9 42.5 186 42 12.6 17.7 80.9 66 6.92 21.0 70.6 90 3.79 9.15 18.7
19 4.45 15.1 56.0 43 15.0 20.6 90.1 67 8.31 25.5 82.3 91 1.49 2.91 6.67
20 5.78 18.7 71.5 44 16.8 24.3 99.1 68 10.3 32.6 94.3 92 1.93 3.95 8.95
21 7.08 21.0 85.1 45 20.0 26.9 107 69 11.4 34.3 99.1 93 2.38 5.40 10.8
22 8.33 26.7 103 46 4.00 9.93 34.4 70 13.1 44.4 124 94 2.96 6.13 13.4
23 9.95 29.7 117 47 5.29 10.4 42.4 71 14.8 49.0 140 95 3.43 7.93 15.7
24 11.3 39.8 133 48 6.43 13.1 51.3 72 16.4 48.1 144 96 3.91 9.12 18.3

As shown in Tables 3–7, the HICA generated a smaller Min than the two comparative
algorithms on all instances, that is the HICA converged significantly better than the PSO
algorithm and the GA. The Max and Avg of the HICA were less than those of the PSO
algorithm on 95 of 96 combinations and better than those of the GA on all combinations.



Symmetry 2022, 14, 204 16 of 18

The HICA obtained a smaller Std than the GA on most of the instances. The performance
differences on the Max, Min, and Avg with respect to the HICA, PSO algorithm, and GA
also can be found from Figures 3–5. Although HICA performed worse than the PSO
algorithm on the Std, the HICA possessed better convergence, smaller average results, and
a smaller Max than its two comparative algorithms.

In the HICA, The strongest empire was excluded from imperialist competition to avoid
premature removal. The diversified assimilation and new revolution were implemented
differently in the different types of empires, and the local search could effectively improve
the search efficiency; on the contrary, the PSO algorithm and GA have a strong global search
ability; however, their local search ability was not intensified, and this feature was the main
reason for their low performance. Thus, the HICA can effectively solve the DUPMSP.

5. Conclusions

In this study, a new algorithm by hybridizing the ICA with the knowledge-based
local search was proposed to solve the DUPMSP with total tardiness minimization, in
which empires were divided into three types. To obtain high-quality solutions, the di-
versified assimilation and new revolution were designed; imperialist competition was
newly implemented on Nim − 1 empires without the strongest one; the problem-related
properties were proven; the knowledge-based local search was applied to improve the
quality of the imperialists. Extensive experiments were conducted on 480 instances. The
computational results demonstrated that the new strategies were effective and that the
HICA had promising advantages in the considered DUPMSP.

The DPMSP is an important scheduling topic. We will focus on the DPMSP with
various constraints such as additional resources and machine eligibility and try to solve
the problem by using meta-heuristics with new optimization mechanisms such as rein-
forcement learning. Other distributed scheduling problems including distributed assembly
hybrid flow shop scheduling are also our future topics. We will solve distributed schedul-
ing problems with factory eligibility or energy-related constraints by using reinforcement-
learning-based meta-heuristics.

Author Contributions: Methodolog, Y.Z.; computation experiments, Y.Z.; writing, Y.Z.; methodology,
Y.Y.; computation experiments; Q.Z.; Writing, D.L. All authors have read and agreed to the published
version of the manuscript.

Funding: This work was supported by the National Natural Science Foundation of China (61803149).

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Hooker, J.N. A hybrid method for the planning and scheduling. Constraints 2005, 10, 385–401. [CrossRef]
2. Chen, Z.L.; Pundoor, G. Order assignment and scheduling in a supply chain. Oper. Res. 2006, 54, 555–572. [CrossRef]
3. Terrazas, M.; Grossmann, I.E. A multiscale decomposition method for the optimal planning and scheduling of multi-site

continuous multiproduct plants. Chem. Eng. Sci. 2011, 66, 4307–4318. [CrossRef]
4. Behnamian, J.; Ghomi, S.F. The heterogeneous multi-factory production network scheduling with adaptive communication policy

and parallel machine. Inform. Sci. 2013, 219, 181–196. [CrossRef]
5. Behnamian, J. Decomposition based hybrid VNS-TS algorithm for distributed parallel factories sceduling with virtual corporation.

Comput. Oper. Res. 2014, 52, 181–191. [CrossRef]
6. Behnamian, J.; Ghomi, S.F. Minimizing cost-related objective in synchronous scheduling of parallel factories in the virtual

production network. Appl. Soft Comput. 2015, 29, 221–232. [CrossRef]
7. Behnamian, J. Graph colouring-based algorithm to parallel jobs scheduling on parallel factories. Int. J. Prod. Res. 2016, 29, 622–635.

[CrossRef]
8. Lei, D.M.; Yuan, Y.; Cai, J.C.; Bai, D.Y. An imperialist competitive algorithm with memory for distributed unrelated parallel

machines scheduling. Int. J. Prod. Res. 2020, 58, 597–614. [CrossRef]
9. Lei, D.M.; Liu, M.Y. An artificial bee colony with division for distributed unrelated parallel machine scheduling with preventive

maintenance. Comput. Ind. Eng. 2020, 141, 106320. [CrossRef]
10. Lei, D.M.; Yuan, Y.; Cai, J.C. An improved artificial bee colony for multi objective distributed unrelated parallel machine

scheduling. Int. J. Prod. Res. 2020, 59, 5259–5271. [CrossRef]

http://doi.org/10.1007/s10601-005-2812-2
http://dx.doi.org/10.1287/opre.1060.0280
http://dx.doi.org/10.1016/j.ces.2011.03.017
http://dx.doi.org/10.1016/j.ins.2012.07.020
http://dx.doi.org/10.1016/j.cor.2013.11.017
http://dx.doi.org/10.1016/j.asoc.2015.01.003
http://dx.doi.org/10.1080/0951192X.2015.1099074
http://dx.doi.org/10.1080/00207543.2019.1598596
http://dx.doi.org/10.1016/j.cie.2020.106320
http://dx.doi.org/10.1080/00207543.2020.1775911


Symmetry 2022, 14, 204 17 of 18

11. Pan, Z.X.; Lei, D.M.; Wang, L. A knowledge-based two-population optimization algorithm for distributed energy-effificient
parallel machines scheduling. IEEE Trans. Cyber. 2021, in press.

12. Zhao, F.; Zhao, L.; Wang, L.; Song, H. An ensemble discrete differential evolution for the distributed blocking flowshop scheduling
with minimizing makespan criterion. Exp. Syst. Appl. 2020, 160, 113678. [CrossRef]

13. Shao, Z.; Pi, D.; Shao, W. Hybrid enhanced discrete fruit fly optimization algorithm for scheduling blocking flow-shop in
distributed environment. Exp. Syst. Appl. 2020, 145, 113147. [CrossRef]

14. Chen, S.; Pan, Q.-K.; Gao, L.; Sang, H.-Y. A population-based iterated greedy algorithm to minimize total flowtime for the
distributed blocking flowshop scheduling problem. Eng. Appl. Artif. Intel. 2021, 104, 104375. [CrossRef]

15. Ribas, I.; Companys, R.; Tort-Martorell, X. An iterated greedy algorithm for the parallel blocking flow shop scheduling problem
and sequence-dependent setup times. Exp. Syst. Appl. 2021, 184, 115535. [CrossRef]

16. Li, Y.-Z.; Pan, Q.-K.; Li, J.-Q.; Gao, L.; Tasgetiren, M.F. An adaptive iterated greedy algorithm for distributed mixed no-idle
permutation flowshop scheduling problems. Swarm Evol. Comput. 2021, 63, 100874. [CrossRef]

17. Lu, C.; Gao, L.; Gong, W.; Hu, C.; Yan, X.; Li, X. Sustainable scheduling of distributed permutation flow-shop with non-identical
factory using a knowledge-based multi-objective memetic optimization algorithm. Swarm Evol. Comput. 2021, 60, 100803.
[CrossRef]

18. Cai, J.C.; Zhou, R.; Lei, D.M. Dynamic shuffled frog-leaping algorithm for distributed hybrid flow shop scheduling with
multiprocessor tasks. Eng. Appl. Artif. Intel. 2020, 90, 103540. [CrossRef]

19. Jiang, E.D.; Wang, L.; Wang, J.J. Decomposition-based multi-objective optimization for energy-aware distributed hybrid flow
shop scheduling with multiprocessor tasks. Tsinghua Sci. Technol. 2021, 26, 646–663. [CrossRef]

20. Cai, J.C.; Lei, D.M.; Li, M. A shuffled frog-leaping algorithm with memeplex quality for bi-objective distributed scheduling in
hybrid flow shop. Int. J. Prod. Res. 2021, 59, 5404–5421. [CrossRef]

21. Zheng, J.; Wang, L.; Wang, J.J. A cooperative coevolution algorithm for multi-objective fuzzy distributed hybrid flow shop.
Know-Based Syst. 2020, 194, 105536. [CrossRef]

22. Wang, L.; Li, D.D. Fuzzy distributed hybrid flow shop scheduling problem with heterogeneous factory and unrelated parallel
machine: A shuffled frog leaping algorithm with collaboration of multiple search strategies. IEEE Access 2020, 8, 214209–214223.
[CrossRef]

23. Cai, J.C.; Lei, D.M. A cooperated shuffled frog-leaping algorithm for distributed energy-efficient hybrid flow shop scheduling
with fuzzy processing time. Complex Intel. Syst. 2021, 7, 2235–2253. [CrossRef]

24. Lei, D.M.; Wang, T. Solving distributed two-stage hybrid flowshop scheduling using a shuffled frog-leaping algorithm with
memeplex grouping. Eng. Optim. 2020, 52, 1461–1474. [CrossRef]

25. Cai, J.C.; Zhou, R.; Lei, D.M. Fuzzy distributed two-stage hybrid flow shop scheduling problem with setup time: Collaborative
variable search. J. Intel. Fuzzy Syst. 2020, 38, 3189–3199. [CrossRef]

26. Shao, Z.S.; Shao, W.S.; Pi, D.C. Effective constructive heuristic and metaheuristic for the distributed assembly blocking flow-shop
scheduling problem. Appl. Intel. 2020, 50, 4647–4649. [CrossRef]

27. Zhao, F.Q.; Zhao, J.L.; Wang, L.; Tang, J.X. An optimal block knowledge driven backtracking search algorithm for distributed
assembly No-wait flow shop scheduling problem. Appl. Soft Comput. 2021, 112, 107750. [CrossRef]

28. Zhang, G.; Xing, K.; Cao, F. Scheduling distributed flowshops with flexible assembly and set-up time to minimize makespan.
Int. J. Prod. Res. 2018, 56, 3226–3244. [CrossRef]

29. Lin, J.; Zhang, S. An effective hybrid biogeography-based optimization algorithm for the distributed assembly permutation
flow-shop scheduling problem. Comput. Ind. Eng. 2016, 97, 128–136. [CrossRef]

30. Lin, J.; Wang, Z.J.; Li, X.D. A backtracking search hyper-heuristic for the distributed assembly flow-shop scheduling problem.
Swarm Evol. Comput. 2017, 36, 124–135. [CrossRef]

31. Farshi, T.R. Battle royale optimization algorithm. Neural Comput. Appl. 2020, in press.
32. Seyyedabbasi, A.; Kiani, F. I-GWO and Ex-GWO: Improved algorithms of the grey wolf optimizer to solve global optimization

problems. Eng. Comput. 2021, 37, 509–532. [CrossRef]
33. Nadimi-Shahraki, M.H.; Fatahi, A.; Zamani, H. Migration-based moth-flame optimization algorithm. Processes 2021, 9, 2276.

[CrossRef]
34. Hosseini, S.; Khaled, A.A. A survey on the imperialist competitive algorithm metaheuristic: Implementation in engineering

domain and directions for future research. Appl. Soft Comput. 2014, 24, 1078–1094. [CrossRef]
35. Lei, D.M.; Cai, J.C. Multi-population meta-heuristics for production scheduling: A survey. Swarm Evol. Comput. 2020, 58, 100739.

[CrossRef]
36. Banisadr, A.H.; Zandieh, M.; Mahdavi, I. A hybrid imperialist competitive algorithm for single-machine scheduling problem with

linear earliness and quadratic tardiness penalties. Int. J. Adv. Manuf. Technol. 2013, 65, 981–989. [CrossRef]
37. Shokrollahpour, E.; Zandieh, M.; Dorri, B. A novel imperialist competitive algorithm for bi-criteria scheduling of the assembly

flow shop problem. Int. J. Prod. Res. 2011, 49, 3087–3103. [CrossRef]
38. Seidgar, H.; Kiani, M.; Abedi, M.; Fazlollahtabar, H. An efficient imperialist competitive algorithm for scheduling in the two-stage

assembly flow shop problem. Int. J. Prod. Res. 2014, 52, 1240–1256. [CrossRef]
39. Zandieh, M.; Kahmati, A.R.; Rahmati, S.H.A. Flexible job shop scheduling under condition-based maintenance: Improved version

of imperialist competitive algorithm. Appl. Soft Comput. 2017, 58, 449–464. [CrossRef]

http://dx.doi.org/10.1016/j.eswa.2020.113678
http://dx.doi.org/10.1016/j.eswa.2019.113147
http://dx.doi.org/10.1016/j.engappai.2021.104375
http://dx.doi.org/10.1016/j.eswa.2021.115535
http://dx.doi.org/10.1016/j.swevo.2021.100874
http://dx.doi.org/10.1016/j.swevo.2020.100803
http://dx.doi.org/10.1016/j.engappai.2020.103540
http://dx.doi.org/10.26599/TST.2021.9010007
http://dx.doi.org/10.1080/00207543.2020.1780333
http://dx.doi.org/10.1016/j.knosys.2020.105536
http://dx.doi.org/10.1109/ACCESS.2020.3041369
http://dx.doi.org/10.1007/s40747-021-00400-2
http://dx.doi.org/10.1080/0305215X.2019.1674295
http://dx.doi.org/10.3233/JIFS-191175
http://dx.doi.org/10.1007/s10489-020-01809-x
http://dx.doi.org/10.1016/j.asoc.2021.107750
http://dx.doi.org/10.1080/00207543.2017.1401241
http://dx.doi.org/10.1016/j.cie.2016.05.005
http://dx.doi.org/10.1016/j.swevo.2017.04.007
http://dx.doi.org/10.1007/s00366-019-00837-7
http://dx.doi.org/10.3390/pr9122276
http://dx.doi.org/10.1016/j.asoc.2014.08.024
http://dx.doi.org/10.1016/j.swevo.2020.100739
http://dx.doi.org/10.1007/s00170-012-4233-x
http://dx.doi.org/10.1080/00207540903536155
http://dx.doi.org/10.1080/00207543.2013.848490
http://dx.doi.org/10.1016/j.asoc.2017.04.060


Symmetry 2022, 14, 204 18 of 18

40. Karimi, S.; Ardalan, Z.; Naderi, B.; Mohammadi, M. Scheduling flexible job-shops with transportation times: Mathematical
models and a hybrid imperialist competitive algorithm. Appl. Math. Model. 2017, 41, 667–682. [CrossRef]

41. Lei, D.M.; Li, M.; Wang, L. A two-phase meta-heuristic for multi-objective flexible job shop scheduling problem with total energy
consumption threshold. IEEE Trans. Cyber. 2019, 49, 1097–1109. [CrossRef]

42. Abedi, M.; Seidgar, H.; Fazlollahtabar, H.; Bijani, R. Bi-objective optimisation for scheduling the identical parallel batch-processing
machines with arbitary job sizes, unequal job release times and capacity limits. Int. J. Prod. Res. 2015, 53, 1680–1711. [CrossRef]

43. Yazdani, M.; Khalili, S.M.; Jolai, F. A parallel machine scheduling problem with two-agent and tool change activities: An efficient
hybrid metaheuristic algorithm. Int. J. Comput. Int. Manuf. 2016, 29, 1075–1088. [CrossRef]

44. Zhang, P.; Lv, Y.L.; Zhang, J. An improved imperialist competitive algorithm based photolithography machines scheduling. Int. J.
Prod. Res. 2018, 56, 1017–1029. [CrossRef]

45. Li, M.; Su, B.; Lei, D.M. A Novel imperialist competitive algorithm for fuzzy distributed assembly flow shop Scheduling. J. Intel.
Fuzzy Syst. 2021, 40, 4545–4561. [CrossRef]

46. Li, M.; Lei, D.M. An imperialist competitive algorithm with feedback for energy-efficient flexible job shop scheduling with
transportation and sequence-dependent setup times. Eng. Appl. Artif. Intel. 2021, 103, 104307. [CrossRef]

47. Zheng, X.L.; Wang, L. A collaborative multiobjective fruit fly optimization algorithm foe the resource constrained unrelated
parallel machine green scheduling problem. IEEE Trans. Syst. Man, Cyber. Syst. 2018, 48, 790–800. [CrossRef]

48. Wang, J.J.; Wang, L. A knowledge-Based cooperative algorithm for energy-efficient scheduling of distributed flow-shop.
IEEE Trans. Syst. Man Cyber. Syst. 2020, 50, 1805–1819. [CrossRef]

49. Wang, L.; Zheng, X.L. A knowledge-guided multi-objective fruit fly optimization algorithm for the multi-skill resource constrained
project scheduling problem. Swarm Evol. Comput. 2018, 38, 54–63. [CrossRef]

50. Hulett, M.; Damodaran, P.; Amouie, M. Scheduling non-identical parallel batch processing machines to minimize total weighted
tardiness using particle swarm optimization. Comput. Ind. Eng. 2017, 113, 425–436. [CrossRef]

http://dx.doi.org/10.1016/j.apm.2016.09.022
http://dx.doi.org/10.1109/TCYB.2018.2796119
http://dx.doi.org/10.1080/00207543.2014.952795
http://dx.doi.org/10.1080/0951192X.2015.1130261
http://dx.doi.org/10.1080/00207543.2017.1346320
http://dx.doi.org/10.3233/JIFS-201391
http://dx.doi.org/10.1016/j.engappai.2021.104307
http://dx.doi.org/10.1109/TSMC.2016.2616347
http://dx.doi.org/10.1109/TSMC.2017.2788879
http://dx.doi.org/10.1016/j.swevo.2017.06.001
http://dx.doi.org/10.1016/j.cie.2017.09.037

	Introduction
	Problem Description
	HICA for the DUPMSP
	Initialization and Initial Empires
	Diversified Assimilation and New Revolution
	Imperialist Competition
	Local Search
	Algorithm Description

	Computational Experiments
	Test Instances, Metrics, and Comparative Algorithms
	Parameter Settings
	Results and Discussion

	Conclusions
	References

