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Abstract: The primary purpose of this study is to solve the economic growth acceleration model
with memory effects for the quadratic cost function (Riccati fractional differential equation), using
Combined Theorem of Adomian Polynomial Decomposition and Kashuri–Fundo Transformation
methods. The economic growth model (EGM) with memory effects for the quadratic cost function is
analysed by modifying the linear fractional differential equation. The study’s significant contribution
is to develop a linear cost function in the EGM for a quadratic non-linear cost function and determine
the specific conditions of the Riccati fractional differential equation (RFDEs) in the EGM with memory
effects. The study results showed that RFDEs in the EGM involving the memory effect have a solution
and singularity. Additionally, this study presents a comparison of exact solutions using Lie symmetry,
Combined Theorem of Adomian Polynomial Decomposition, and Kashuri–Fundo Transformation
methods. The results showed that the three methods have the same solution. Furthermore, this
study provides a numerical solution to the RFDEs on the EGM with memory effects. The numerical
simulation results showed that the output value of Y(t) for the quadratic cost function in the economic
growth model is significantly affected by the memory effect.

Keywords: riccati fractional differential equation; economic growth model; combined theorem;
adomian decomposition method; Kashuri–Fundo transformation

1. Introduction

The differential equation (DE) has been widely investigated in many scientific fields
and technological applications, including, economic [1] and financial models [2], pest
management [3], accounting [4], supply chain system [5], biology [6], chemistry [6], electro-
chemistry [7], electronic circuit [8], memristors [9], mechanical models [10], encryption [11],
robotics [12] and engineering application [13–15].

Some studies related to the Adomian Decomposition Method (ADM) can be seen in
Refs. [16–21]. Bhakelar and Listdar-Gejji [16] employed the ADM and homotopy perturba-
tion technique (HPM) for solving the logistic fractional differential equation (FDE). Mahdy
and Marai [17] obtained the approximate solution of RFDE using the combination of ADM
and Sumudu integral transformation (SIT). Hu et al. [18] proposed the ADM for solving the
linear fractional differential equation (FDE), and Daftardar-Gejji and Jafari [19] applied the
ADM to obtain a solution to multi-order FDE. Additionally, Bildik and Bayramoglu [20]
studied the ADM to solve the two-dimensionality of a non-linear differential equation. It
was also considered for solving the Bagley Torvik equation by Ray and Bera [21].

Studies related to FDE have attracted the interest and attention of mathematicians.
Ren et al. [22] proposed the iterative technique and established the convergence analysis
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of a unique solution for a singular FDE from the co-evolution process of eco-economic
complex systems. With demand as type-2 fuzzy number, Debnath et al. [23] investigated the
multi-objective sustainable fuzzy economic production quantity (SFEPQ) model. Based on
the differential equations, [24] studied the optimization of the management of dynamic eco-
nomic systems. Ming, Wang and Fečkan [25] simulated the Gross Domestic Product (GDP)
growth using Caputo’s fractional order calculus. Tejado, Valério, Pérez and Valério [26]
discussed the modeling of national economic growth, namely the gross domestic product
(GDP) in Spain, using the fractional calculus model. Tarasova and Tarasov [27] proposed
accelerating economic growth involving memory effects using a discrete-time approach.
Tarasov [28] proved that the economic process involving short and long-term memory
effects is modeled by Grunwald-Letnikov, while the exact solution is obtained using the
Fourier transform. However, the economic growth model proposed above is still a linear
function. In contrast, our proposed model has non-linear properties.

This study aims to develop a quadratic non-linear cost function in the economic growth
model (EGM) and analyze the proposed EGM to obtain the exact solution. Additionally,
this study evaluates the numerical solution of the RFDEs on the EGM with memory effects
using Combined Theorem of Adomian Polynomial Decomposition and Kashuri–Fundo
Transformation methods.

2. Background Theory
2.1. Integral and Fractional Derivative

The fractional integral and derivatives are integral to fractional order [29–32]. The
fractional-order derivatives can be represented in different forms, including Riemann-
Liouville and Caputo [33–35]. Some definitions and theorems related to fractional deriva-
tives (FD) include fractional integrals (FI) or Caputo fractional derivatives (CFD) as follows.

Definition 1. The CFD of f with respect to t with order α > 0 is given as [36].

C
a Dα

t f (t) =
1

Γ(n− α)

∫ t

a
(t− v)n−α−1 f (n)(v) dv, n− 1 < α ≤ n.

Theorem 1. The CFD of order α > 0 with n − 1 < α < n, where n is a natural number, from the
function f(t) = tβ for β ≥ 0, is

CDα
t tβ =

{ Γ(β+1)
Γ(β−α+1) tβ−α β > n− 1

0 β ≤ n− 1.

Theorem 2. The CFD of order α > 0 with n − 1 < α < n, from f(t) = tβ where β ≥ 0, is

Iαtβ = CD−α
t tβ =

{ Γ(β+1)
Γ(β+α+1) tβ+α β > n− 1

0 β ≤ n− 1.

2.2. Adomian Decomposition Method

The DE of fractional order is as follows [36]

Dα
t y(t) + Ny(t) + Ry(t) = g(t) with y(0) = c denoting the initial condition, (1)

where Dα
t is the CFD operator, the linear operator, given R, and the non-linear operator

defined as Dα
t ≡ CDα

t . The function y is to be determined, while the function g illustrates
the non-homogeneity of DE and Equation (1) can be re-written Dα

t y(t) as the subject

Dα
t y(t) = g(t)− Ny(t)− Ry(t) (2)
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Meanwhile, Dα
t is a FD operator, and, thus, its inverse is a FI operator Iα = D−α

t , so, if
we integrate both sides of (2) using Iα, Theorem 3 can be written as follows:

y(t) = y(0) + Iα[g(t)]− Iα[Ny(t)]− Iα[Ry(t)] (3)

The ADM resumes decomposing y into an infinite series

y =
∞

∑
n=0

yn (4)

Such that yn can be obtained iteratively. The approach further suggests decomposing
the non-linear operator Ny into an infinite series of polynomial form

Ny =
∞

∑
n=0

An (5)

where An = An(y0, y1, y2, . . . , yn), it is defined as the Adomian polynomial.

An(y0, y1, y2, . . . , yn) =
1
n!

dn

dλn

[
N

(
n

∑
k=0

λkyk

)]
λ=0

; n = 0, 1, 2, . . .

where An is a parameter. The polynomial Adomian An can be described as follows:

A0 = 1
0!

d0

dλ0

[
N
(

0
∑

k=0
λkyk

)]
λ=0

= N(y0),

A1 = 1
1!

d1

dλ1

[
N
(

1
∑

k=0
λkyk

)]
λ=0

= y1N′(y0),

A2 = 1
2!

d2

dλ2

[
N
(

2
∑

k=0
λkyk

)]
λ=0

= y2N′(y0) +
y1

2

2! N′′(y0),

...

Substituting the initial conditions, Equations (4) and (5) into Equation (3), the formula
can thus be rewritten as in Equation (6).

y(t) = y(0) + Iα[g(t)]− Iα[Ny(t)]− Iα[Ry(t)] (6)

then obtained
y0 = c + Iα[g(t)]

y1 = −Iα[A0]− Iα[Ry0]

y2 = −Iα[A1]− Iα[Ry1]

y3 = −Iα[A2]− Iα[Ry2]

...

Then, the recursive relation obtained from the solving ODEs of the form (1) is as
follows

y0 = c + Iα[g(t)]

yn+1 = −Iα[An]− Iα[Ryn], n = 0, 1, 2, . . .
(7)

Thus, the approximate solution of (7) is

y ≈
k

∑
n=0

yn, denoted by where lim
k→∞

k

∑
n=0

yn = y.
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2.3. Kashuri–Fundo Transformation

This section presents the fundamental theories and concepts related to the fractional
calculus and the Kashuri–Fundo transformation.

Definition 2. Given a set of functions [37]

W =

w(x) : ∃M, k1, k2 > 0, |w(x)| < Me
|x|
k2

j , x ∈ (−1)j × [0, ∞)

,

The Kashuri–Fundo transformation is defined as

K[w(x)] = A(v) =
1
v

∞∫
0

e−
x

v2 w(x)dx, x ≥ 0,−k1 < v < k2.

Furthermore, the inverse of the Kashuri-Fando transformation is

K−1[A(v)] = w(x), x ≥ 0.

Meanwhile, for α is a fractional number, then

K[xα] = Γ(α + 1)v2α+1 (8)

So that it is obtained
K−1

[
v2α+1

]
=

xα

Γ(α + 1)

Theorem 3. The Kashuri-Fando transformation of the Caputo fractional derivative for a = 0 is
defined as [37]

K
[

CDα
xw(x)

]
=

A(v)
v2α

−
n−1

∑
k=0

w(k)(0)
v2(α−k)−1

, n− 1 < α ≤ n.

2.4. The Effect of Memory on the Economic Growth Mode

In the natural economic growth model, Y(t) represents a function for the output value
at time t. It is assumed the unsaturated market forecast shows that all products produced
have been sold out, thereby not affecting the goods price (P), i.e., P > 0 constant. The
function expressing the net investment is denoted by I(t). This investment is considered for
the development of production.

The mathematical model of economic growth involving the memory effect can be seen
in Equation (9) (

Dα
0+Y

)
(t) = 1

v · I(t)(
Dα

0+Y
)
(t) = 1

v{m(PY(t)− C(t))}
(9)

Furthermore, if the linear production cost C(t) = aY(t) + b, Equation (9) reduces to(
Dα

0+Y
)
(t) = m

v (PY(t)− (aY(t) + b))(
Dα

0+Y
)
(t) = m

v (P− a)Y(t)− mb
v

(10)

Thus, if the cost function C(t) is linear, then Equation (10) is called a linear DE of
fractional order α > 0. Furthermore, Equation (11) becomes

Dα
t Y(t) = k1Y(t) + k2, (11)
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where k1 = m
v (P− a) dan k2 = −mb

v , with initial condition is y(0) = c.
In Equation (9), the linear cost function is assumed to be C(t) = aY(t) + b. Then, we

propose a new nonlinear cost function with C(t) = aY2(t) + kY(t) + b with a, k representing
the margin costs and b denoting the independent costs, then Equation (9) becomes(

Dα
0+Y

)
(t) = m

v
(

PY(t)−
(
aY2(t) + kY(t) + b

))
(

Dα
0+Y

)
(t) = −ma

v Y2(t) +
[

m(P−k)
v

]
Y(t)− mb

v
(12)

If the cost function C(t) is quadratic, then Equation (13) is a non-linear RFDEs of order
α > 0 with memory effect. Furthermore, Equation (13) reduces to

Dα
t Y(t) = k1Y2(t) + k2Y(t) + k3, (13)

where k1 = −ma
v , k2 = m(P−k)

v and k3 = f (t) = −mb
v .

The parameters of a system (9) can be defined as follows:

a.
(

Dα
0+Y

)
(t) = FD of order α from Y(t) with respect to t

b. Dα
0+ = FD operators of order α with respect t, where t > 0

c. Y(t) = the value of the number of products produced during the production process
d. m = net investment figure (0 < m < 1), i.e., the sharing of profit process for net

investment
e. a = marginal cost (additional cost if production increases/depends on the value of

output)
f. k = marginal cost
g. b = independent costs (costs that do not depend on the number of products produced
h. v = positive constant which is referred to ratio of investment describing the accelera-

tion rate (v > 0)

The evaluation results showed that Riccati fractional differential equation in EGM
with memory effect (11) has a solution and singularity for each value of k, k1, k2 and k3 ε R.
The value of k < 0 means that there is a marginal cost reduction in the output value of Y(t).
Meanwhile, if k = 0, then there is no additional cost or marginal cost reduction, and if k > 0,
then there is an additional marginal cost at the output value of Y(t).

3. Results and Discussions
3.1. Main Theorems

This section presents the Combined Theorem of Adomian Polynomial Decomposition
and Kashuri–Fundo Transformation methods for solving Riccati fractional differential
equations.

Theorem 4. (Combined Theorem).
Given the Riccati fractional differential equation as follows:

Dα
xw(x) = P + Qw(x) + Rw2(x), x > 0 (14)

with initial conditions w(0) = c and Dα
x are Caputo’s fractional derivative operator, where 0 < α ≤ 1,

then the solution of Equation (14) is

w(x) =
∞

∑
n=0

wn(x),

with
w0(x) = w(0) +K−1[v2αK[P]

]
,

wn+1(x) = K−1[v2αK[Qwn]
]
+K−1[v2αK[RAn]

]
, n = 0, 1, 2, . . . .
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Proof. Based on Equation (14), the Riccati fractional differential equation is as follows

Dα
xw(x) = P + Qw(x) + Rw2(x), x > 0,

with initial conditions w(0) = c, and Dα
x ≡ CDα

x are Caputo’s fractional derivative operator,
where 0 < α ≤ 1. Transform equation (14) with the Kasturi-Fundo transformation, such
that using Theorem 4, we obtain

K[Dα
xw(x)] = K

[
P + Qw(x) + Rw2(x)

]
,

w(v)
v2α −

n−1
∑

k=0

w(k)(0)
v2(α−k)−1 = K[P] +K[Qw(x)] +K

[
Rw2(x)

]
,

w(v)
v2α −

w(0)
v2α−1 = K[P] +K[Qw(x)] +K

[
Rw2(x)

]
w(v)− vw(0) = v2αK[P] + v2αK[Qw(x)] + v2αK

[
Rw2(x)

]
w(v) = vw(0) + v2αK[P] + v2αK[Qw(x)] + v2αK

[
Rw2(x)

]
(15)

Then, using the inverse of the Kashuri–Fundo transformation and Equation (8) in
Equation (15), we obtain

K−1[w(v)] = K−1[vw(0) + v2αK[P] + v2αK[Qw(x)] + v2αK
[
Rw2(x)

]]
w(x) = w(0) +K−1[v2αK[P]

]
+K−1[v2αK[Qw(x)]

]
+K−1[v2αK

[
Rw2(x)

]]
.

(16)

The Adomian decomposition method (4) assumes that the function w can be decom-
posed into an infinite polynomial series as follows

w(x) =
∞

∑
n=0

wn(x), (17)

where wn can be specified recursively. This method also assumes that the non-linear opera-
tor w2 can be decomposed into an infinite polynomial series so that based on Equation (5),
we obtain:

N(w) = w2 =
∞

∑
n=0

An, (18)

where An is an Adomian polynomial, defined as

An =
1
n!

dn

dλn

[
N

(
n

∑
k=0

λkwk

)]
λ=0

, n = 0, 1, 2, . . .

where λ is a parameter. Adomian polynomial An can be described as follows

A0 = N(w0) = w2
0,

A1 = w1N′(w0) = 2w0w1,

A2 = w2N′(w0) +
w2

1
2! N′′ (w0) = 2w0w1 + w2

1,

A3 = w3N′(w0) + w1w2N′′ (w0) +
w1
3! N′′′ (w0) = 2w0w3 + 2w1w2,

...
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Substituting Equations (17) and (18) into Equation (16), we obtain

∞
∑

n=0
wn(x) = w(0)+K−1[v2αK[P]

]
+K−1

[
v2αK

[
Q

∞
∑

n=0
wn(x)

]]
+K−1

[
v2αK

[
R

∞
∑

n=0
An

]]
.

w0(x) + w1(x)+w2(x) + . . .

= w(0) +K−1[v2αK[P]
]
+K−1[v2αK[Q(w0 + w1 + w2 + . . .)]

]
+K−1[v2αK[R(A0 + A1 + A2 + . . .)]

]
(19)

So, that the combined theorem is obtained from the recursive relation of the solution
of the fractional ordinary differential equation using the Adomian Decomposition Method
and the Kashuri–Fundo Transform (8) as follows

w0(x) = w(0) +K−1[v2αK[P]
]
,

w1(x) = K−1[v2αK[Qw0]
]
+K−1[v2αK[RA0]

]
w2(x) = K−1[v2αK[Qw1]

]
+K−1[v2αK[RA1]

]
w3(x) = K−1[v2αK[Qw2]

]
+K−1[v2αK[RA2]

]
wn+1(x) = K−1[v2αK[Qwn]

]
+K−1[v2αK[RAn]

]
, n = 0, 1, 2, . . . .

(20)

and the proof is completed. �

3.2. The Comparison of the Exact Solution of the Symmetry Lie with Odetunde and Taiwo

In this subsection, we present the exact solution of the Riccati differential equation
using the concept of Lie symmetry as in [38] and compare the solution with the exact
solution from Odetunde and Taiwo [39].

Example 1. Given the Riccati fractional differential equation as follows [39]

y′ =
dy
dx

= 1 + 2y− y2,

We will determine the exact solution for y(0) = 0 f or 0 ≤ x ≤ 1 and its graph using the
concept of Lie Symmetry, then compare it with the exact solution and graph from Odetunde and
Taiwo [39].

a. Tangent Vector

With the help of MAPLE, the vector tangent at the point (x, y) is obtained

ξ(x, y) = 1

η(x, y) = 0.

Then, the vector tangent at the point (x, y) is (ξ(x, y), η(x, y)) = (1, 0). So, the tangent
vector is the vector tangent of dy

dx = 1 + 2y− y2.

b. Reduced Characteristics

The reduced characteristic equation is presented as follows

Q(x, y) = η(x, y)−ω(x, y)ξ(x, y)

Q(x, y) = 0−
(
1 + 2y− y2)(1)

Q(x, y) = −1− 2y + y2 6= 0.
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Because Q(x, y) 6= 0, then Lie symmetry with vector tangent (ξ(x, y), η(x, y)) = (1, 0) is
non-trivial Lie symmetry.

c. Canonical coordinates (r, s)

The canonical coordinates (r, s) can be found with

dy
dx

=
η(x, y)
ξ(x, y)∫

dy =
∫

0dx

y = c(x)

c = y = r.

So, we obtain r = y.

s =
∫ dx

ξ(x, y(p, x))

∣∣∣∣
p=p(x, y)

s =
∫ 1

1
dx

s = x.

So, we obtain the canonical coordinates (r, s) = (y, x).

d. Solving the Riccati Equation

The following is the solution to the Riccati Equation using
ds
dr

.

ds
dr

=
sx + ω(x, y)sy

rx + ω(x, y)ry

ds
dr

=
1 +

(
1 + 2y− y2)(0)

(0) + (1 + 2y− y2)(1)∫
ds =

∫ 1(√
2
)2
− (r− 1)2

dr

s + c =
1

2
√

2
ln

∣∣∣∣∣ r− 1 +
√

2
r− 1−

√
2

∣∣∣∣∣+ c

e2
√

2s+K =
r− 1 +

√
2

r− 1−
√

2

r =

(√
2 + 1

)
e2
√

2s+K +
(√

2− 1
)

e2
√

2s+K − 1

Furthermore, converting coordinates (r, s) to coordinates (x, y), with r = y and s = x, we obtain

y =

(√
2 + 1

)
e2
√

2x+K +
(√

2− 1
)

e2
√

2x+K − 1
.

If y(0) = 0, we obtained

0 =

(√
2 + 1

)
e2
√

2·0+K +
(√

2− 1
)

e2
√

2·0+K − 1

eK =
1−
√

2√
2 + 1
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So, the exact solution of Riccati differential equation using the concept of Lie Symmetry is

y =
−e2

√
2x + 1

e2
√

2x
(

1−
√

2
)
−
(√

2 + 1
)

Meanwhile, the exact solution of Odetunde and Taiwo [39] is

y(x) = 1 +
√

2tanh

[
√

2x +
1
2

log

[√
2− 1√
2 + 1

]]
.

The Comparison of Exact Solution between Lie Symmetry and Odetunde and Taiwo [39] is
presented in Figure 1. Based on Figure 1, the graph of the exact solution (green dot) using the
concept of Lie Symmetry coincides with the graph of the exact solution (red line) from Odetunde
and Taiwo [39]. It shows that RFDEs exact solution using the Lie Symmetry concept has the same
solution as the exact solution from Odetunde and Taiwo [39].
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Figure 1. The graph of the exact solution (green dot) using the concept of Lie Symmetry coincides
with the exact solution (red line) from Odetunde and Taiwo [39], for 0 ≤ x ≤ 1. The comparison of
the exact solution of the Combined Theorem with Odetunde and Taiwo [39].

Example 2. Given the Riccati fractional differential equation as follows

Dα
xw(x) = 1 + 2w− w2(x), x > 0, 0 < α ≤ 1, (21)

with the initial condition is w(0) = 0, and the exact solution of Odetunde and Taiwo [39], i.e.,

w(x) = 1 +
√

2tanh

[
√

2x +
1
2

log

[√
2− 1√
2 + 1

]]
. (22)

We will draw the graph of the solution to the Riccati Fractional differential equation w(x) using
the Combined Theorem for α = 0.7; 0.8; 0.9 and 1 f or 0 ≤ x ≤ 1 to determine whether the
solution graph of the w(x) using the combined method for α = 1 coincides with the exact solution
of Odetunde and Taiwo [39].

Based on the Combined Theorem, the approximate solution of the Riccati fractional differential
Equation (21) is obtained:

w0(x) = 0 +K−1[v2αK[P]
]
,

w0 = K−1[v2αK[1]
]
,

wn+1(x) = K−1[v2αK[2.wn]
]
+K−1[v2αK[−1.An]

]
, n = 0, 1, 2, . . . .

wn+1(x) = 2K−1[v2αK[wn]
]
−K−1[v2αK[An]

]
, n = 0, 1, 2, . . . .

(23)
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where An is the Adomian polynomial of the non-linear operator Nw = w2, which can be described
as follows:

A0 = w2
0,

A1 = 2w0w1,

A2 = 2w0w2 + w2
1,

...

The following is a description of the approach solution (23):

w0 = w0(x) = K−1[v2αK[1]
]
= K−1[v2αv

]
= K−1[v2α+1] = xα

Γ(α+1)

w1 = w1(x) = 2K−1[v2αK[w0]
]
−K−1[v2αK[A0]

]
= 2K−1[v2αK[w0]

]
−K−1[v2αK

[
w2

0
]]

= 2K−1
[
v2αK

[
xα

Γ(α+1)

]]
−K−1

[
v2αK

[
x2α

Γ2(α+1)

]]
= 2K−1

[
v2α Γ(α+1)

Γ(α+1)v2α+1
]
−K−1

[
v2α Γ(2α+1)

Γ2(α+1) v4α+1
]

= 2K−1[v4α+1]−K−1
[

Γ(2α+1)
Γ2(α+1) v6α+1

]
= 2 x2α

Γ(2α+1) −
Γ(2α+1)

Γ2(α+1)Γ(3α+1) x3α

w2 = w2(x) = 2K−1[v2αK[w1]
]
−K−1[v2αK[A1]

]
= 2K−1[v2αK[w1]

]
−K−1[v2αK[2w0w1]

]
= 2K−1

[
v2αK

[
2 x2α

Γ(2α+1) −
Γ(2α+1)

Γ2(α+1)Γ(3α+1) x3α
]]

−K−1
[
v2αK

[
2 xα

Γ(α+1)

(
2 x2α

Γ(2α+1) −
Γ(2α+1)

Γ2(α+1)Γ(3α+1) x3α
)]]

= 2K−1
[
v2αK

[
2 x2α

Γ(2α+1) −
Γ(2α+1)

Γ2(α+1)Γ(3α+1) x3α
]]

−K−1
[
v2αK

[
4 x3α

Γ(α+1)Γ(2α+1) −
2Γ(2α+1)

Γ3(α+1)Γ(3α+1) x4α
]]

= 2K−1
[
v2α
(

2 Γ(2α+1)
Γ(2α+1)v4α+1 − Γ(2α+1)Γ(3α+1)

Γ2(α+1)Γ(3α+1) v6α+1
)]

−K−1
[
v2α
(

4 Γ(3α+1)
Γ(α+1)Γ(2α+1)v6α+1

− 2Γ(2α+1)Γ(4α+1)
Γ3(α+1)Γ(3α+1) x8α+1

)
]

= 2K−1
[
2v6α+1 − Γ(2α+1)

Γ2(α+1) v8α+1
]

−K−1
[

4Γ(3α+1)
Γ(α+1)Γ(2α+1)v8α+1 − 2Γ(2α+1)Γ(4α+1)

Γ3(α+1)Γ(3α+1) x10α+1
]

= 2
(

2 x3α

Γ(3α+1) −
Γ(2α+1)

Γ2(α+1)Γ(4α+1) x4α
)

− 4Γ(3α+1)
Γ(α+1)Γ(2α+1)Γ(4α+1) x4α

+ 2Γ(2α+1)Γ(4α+1)
Γ3(α+1)Γ(3α+1)Γ(5α+1) x5α

w2(x) = 4 x3α

Γ(3α+1) −
2Γ(2α+1)

Γ2(α+1)Γ(4α+1) x4α − 4Γ(3α+1)
Γ(α+1)Γ(2α+1)Γ(4α+1) x4α

+ 2Γ(2α+1)Γ(4α+1)
Γ3(α+1)Γ(3α+1)Γ(5α+1) x5α

w(x) = w0(x) +w1(x) + w2(x) + . . .

= xα

Γ(α+1) + 2 x2α

Γ(2α+1) −
Γ(2α+1)

Γ2(α+1)Γ(3α+1) x3α + 4 x3α

Γ(3α+1)

− 2Γ(2α+1)
Γ2(α+1)Γ(4α+1) x4α − 4Γ(3α+1)

Γ(α+1)Γ(2α+1)Γ(4α+1) x4α

+ 2Γ(2α+1)Γ(4α+1)
Γ3(α+1)Γ(3α+1)Γ(5α+1) x5α + . . .
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Figure 2 shows the approximate solution to the tenth iteration of the Riccati fractional
differential equation using the Combined Theorem (23) for different values assisted by
MAPLE software. Additionally, Figure 2 shows the exact solution (22) in black, coinciding
with the approximate solution, using the Combined Theorem for α = 1 and the Maple
application help as follows:
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Figure 2. The approximation result of the Riccati fractional differential Equation (21) using the
Combined Theorem with the parameter α = 0.7; 0.8; 0.9; and 1, for 0 ≤ x ≤ 1.

Figure 3 displays the green exact solution curve (Odetunde and Taiwo [39]) which
coincides with the approximation solution using the Combined Theorem for α = 1 (black
dot). It shows that the approximate solution to the Riccati fractional differential equation using
the Combined Theorem of the Adomian Decomposition Method and the Kashuri–Fundo
Transformation is very accurate within the interval [0, 1].
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3.3. Numerical Simulation of Economic Growth Model using Combined Theorem

Example 3. Given the Riccati fractional differential equation in the economic growth model as
follows

(Dα
t Y)(t) = −ma

v
Y2(t) +

[
m(P− k)

v

]
Y(t)− mb

v
(24)

with m = 1
2 , P = 42, a = −2, b = 20, v = 10, k = 2 and the initial condition Y(0) = 1, and the exact

solution, i.e.,

Y(t) =
√

110
11

(
−
√

110 + 11
√

110tanh

(√
110

110

(√
110arctanh

(
1

10

√
110
)
− 11t

) ))
. (25)

We draw the graph of the solution to the Riccati Fractional differential equation Y(t) using
the Combined Theorem for α = 0.7; 0.8; 0.9 and 1 f or 0 ≤ x ≤ 1 as follows.

We will show that the solution Y(t) using the combined method for α = 1 coincides with the
exact solution. Note that,

k1 = −ma
v = − ( 1

2 )(−2)
10 = 0.1; k2 = m(P−k)

v =
( 1

2 )(42−2)
10 = 2;

k3 = −mb
v = − ( 1

2 )(20)
10 = −1

Thus, the Riccati fractional differential equation in Equation (24) is as follows

Dα
t Y(t) = k1Y2(t) + k2Y(t) + k3,

Dα
t Y(t) = 0.1Y2(t) + 2Y− 1, t > 0, 0 < α ≤ 1,

(26)

Based on the Combined Theorem, for the approximate solution of the Riccati fractional differen-
tial Equation (26) in the economic growth model, the output value is obtained as follows

Y(t) =
∞

∑
n=0

Yn(t)

with
Y0(t) = Y(0) +K−1[v2αK[k3]

]
,

Y0(t) = 1 +K−1[v2αK[−1]
]
,

Y0(t) = 1−K−1[v2αK[1]
]
,

Yn+1(t) = K−1[v2αK[k2Yn]
]
+K−1[v2αK[k1 An]

]
, n = 0, 1, 2, . . . .

Yn+1(t) = K−1[v2αK[2·Yn]
]
+K−1

[
v2αK

[
1
10 ·An

]]
, n = 0, 1, 2, . . . .

Yn+1(t) = 2K−1[v2αK[Yn]
]
+ 1

10K−1[v2αK[An]
]
, n = 0, 1, 2, . . . .

(27)

where Anis the Adomian polynomial of the non-linear operator NY = Y2, which can be described
as follows

A0 = Y2
0 ,

A1 = 2Y0Y1,

A2 = 2Y0Y2 + Y2
1 ,

...



Symmetry 2022, 14, 192 13 of 18

The following is a description of the approximate solution (27):

Y0 = Y0(t) = 1−K−1[v2αK[1]
]
= 1−K−1[v2αv

]
= 1−K−1[v2α+1] = 1− tα

Γ(α+1)

Y1 = Y1(t) = 2K−1[v2αK[Y0]
]
+ 0.1K−1[v2αK[A0]

]
= 2K−1[v2αK[Y0]

]
+ 0.1K−1[v2αK

[
Y2

0
]]

= 2K−1
[
v2αK

[
1− tα

Γ(α+1)

]]
+ 1

10K−1
[
v2αK

[
1− 2tα

Γ(α+1) +
t2α

Γ2(α+1)

]]
= 2K−1

[
v2α
(

v− Γ(α+1)
Γ(α+1)v2α+1

)]
+ 1

10K−1
[
v2α
(

v− 2Γ(α+1)
Γ(α+1) v2α+1 + Γ(2α+1)

Γ2(α+1) v4α+1
)]

= 2K−1[v2α+1 − v4α+1]+ 1
10K−1

[
v2α+1 − 2v4α+1 + Γ(2α+1)

Γ2(α+1) v6α+1
]

= 2
(

tα

Γ(α+1) −
t2α

Γ(2α+1)

)
+ 1

10

(
tα

Γ(α+1) −
2t2α

Γ(2α+1) +
Γ(2α+1)

Γ2(α+1)Γ(3α+1) t3α
)

Y2 = Y2(t) = 2K−1[v2αK[Y1]
]
+ 1

10K−1[v2αK[A1]
]

= 2K−1[v2αK[Y1]
]
+ 1

10K−1[v2αK[2Y0Y1]
]

= 2K−1
[
v2αK

[
21tα

10Γ(α+1) −
22t2α

10Γ(2α+1) +
Γ(2α+1)

10Γ2(α+1)Γ(3α+1) t3α
]]

+ 1
10K−1

[
v2αK

[
2
(

1− tα

Γ(α+1)

)(
21tα

10Γ(α+1) −
22t2α

10Γ(2α+1)

+ Γ(2α+1)
10Γ2(α+1)Γ(3α+1) t3α

)
]]

= 2K−1
[
v2αK

[
21tα

10Γ(α+1) −
22t2α

10Γ(2α+1) +
Γ(2α+1)

10Γ2(α+1)Γ(3α+1) t3α
]]

+ 1
10K−1

[
v2αK

[
42tα

10Γ(α+1) −
44t2α

10Γ(2α+1) +
2Γ(2α+1)

10Γ2(α+1)Γ(3α+1) t3α

− 42t2α

10Γ2(α+1) +
44t3α

10Γ(α+1)Γ(2α+1)

− 2Γ(2α+1)
10Γ3(α+1)Γ(3α+1) t4α

]
]

= 2K−1
[
v2α
(

21Γ(α+1)
10Γ(α+1)v2α+1 − 22Γ(2α+1)

10Γ(2α+1)v4α+1

+ Γ(2α+1)Γ(3α+1)
10Γ2(α+1)Γ(3α+1)v6α+1

)
]

+ 1
10K−1

[
v2α
(

42Γ(α+1)
10Γ(α+1)v2α+1 − 44(2α+1)

10Γ(2α+1)v4α+1

+ 2Γ(2α+1)Γ(3α+1)
10Γ2(α+1)Γ(3α+1)v6α+1 − 42Γ(2α+1)

10Γ2(α+1) v4α+1

+ 44Γ(3α+1)
10Γ(α+1)Γ(2α+1)v6α+1

− 2Γ(2α+1)Γ(4α+1)
10Γ3(α+1)Γ(3α+1) t8α+1

)
]

= 2K−1
[

21
10 v4α+1 − 24

10 v6α+1 + Γ(2α+1)
10Γ2(α+1)v8α+1

]
+ 1

10K−1
[

42
10 v4α+1 − 44

10 v6α+1 + 2Γ(2α+1)
10Γ2(α+1)v8α+1

− 42Γ(2α+1)
10Γ2(α+1) v6α+1 + 44Γ(3α+1)

10Γ(α+1)Γ(2α+1)v8α+1

− 2Γ(2α+1)Γ(4α+1)
10Γ3(α+1)Γ(3α+1) t10α+1

]
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= 2
(

21t2α

10Γ(2α+1) −
22t3α

10Γ(3α+1) +
Γ(2α+1)

10Γ2(α+1)Γ(4α+1) t4α
)

+ 1
10

(
42t2α

10Γ(2α+1) −
44t3α

10Γ(3α+1) +
2Γ(2α+1)

10Γ2(α+1)Γ(4α+1) t4α

− 42Γ(2α+1)
10Γ2(α+1)Γ(3α+1) t3α

+ 44Γ(3α+1)
10Γ(α+1)Γ(2α+1)Γ(4α+1) t4α

− 2Γ(2α+1)Γ(4α+1)
10Γ3(α+1)Γ(3α+1)Γ(5α+1) t5α

)
= 21t2α

5Γ(2α+1) −
22t3α

5Γ(3α+1) +
Γ(2α+1)

5Γ2(α+1)Γ(4α+1) t4α + 42t2α

100Γ(2α+1)

− 44t3α

100Γ(3α+1)

+ 2Γ(2α+1)
100Γ2(α+1)Γ(4α+1) t4α − 42Γ(2α+1)

100Γ2(α+1)Γ(3α+1) t3α

+ 44Γ(3α+1)
100Γ(α+1)Γ(2α+1)Γ(4α+1) t4α

− 2Γ(2α+1)Γ(4α+1)
100Γ3(α+1)Γ(3α+1)Γ(5α+1) t5α

= 462t2α

100Γ(2α+1) −
484t3α

100Γ(3α+1) +
22Γ(2α+1)

100Γ2(α+1)Γ(4α+1) t4α

− 42Γ(2α+1)
100Γ2(α+1)Γ(3α+1) t3α

+ 44Γ(3α+1)
100Γ(α+1)Γ(2α+1)Γ(4α+1) t4α

− 2Γ(2α+1)Γ(4α+1)
100Γ3(α+1)Γ(3α+1)Γ(5α+1) t5α

= 231t2α

50Γ(2α+1) −
121t3α

25Γ(3α+1) +
11Γ(2α+1)

50Γ2(α+1)Γ(4α+1) t4α

− 21Γ(2α+1)
50Γ2(α+1)Γ(3α+1) t3α

+ 11Γ(3α+1)
25Γ(α+1)Γ(2α+1)Γ(4α+1) t4α

− Γ(2α+1)Γ(4α+1)
50Γ3(α+1)Γ(3α+1)Γ(5α+1) t5α

= 2tα

Γ(α+1) −
2t2α

Γ(2α+1) +
tα

10Γ(α+1) −
2t2α

10Γ(2α+1)

+ Γ(2α+1)
10Γ2(α+1)Γ(3α+1) t3α

= 21tα

10Γ(α+1) −
22t2α

10Γ(2α+1) +
Γ(2α+1)

10Γ2(α+1)Γ(3α+1) t3α

Y(t) = Y0(t) +Y1(t) + Y2(t) + . . .

= 1− tα

Γ(α+1) +
21tα

10Γ(α+1) −
22t2α

10Γ(2α+1)

+ Γ(2α+1)
10Γ2(α+1)Γ(3α+1) t3α + 231t2α

50Γ(2α+1) −
121t3α

25Γ(3α+1)

+ 11Γ(2α+1)
50Γ2(α+1)Γ(4α+1) t4α − 21Γ(2α+1)

50Γ2(α+1)Γ(3α+1) t3α

+ 11Γ(3α+1)
25Γ(α+1)Γ(2α+1)Γ(4α+1) t4α

− Γ(2α+1)Γ(4α+1)
50Γ3(α+1)Γ(3α+1)Γ(5α+1) t5α + . . .

where An is the Adomian polynomial of the non-linear operator NY = Y2.

Figure 4 shows the approximate solution graph (up to the twentieth iteration) of the
Riccati fractional differential equation using the Combined Theorem for α = 0.7; 0.8; 0.9
and 1. Additionally, Figure 5 displays the exact solution (green line) coinciding with the
approximate solution using the Combined Theorem for α = 1 (black dot) using MAPLE
software.
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Figure 4 shows a graph of the approximate solution to Riccati’s fractional differential
equation (until the twentieth iteration) using the Combined Theorem with a value close
to 1. The graph is close to the exact solution (the blue graph is α = 1), which shows that
the output value Y(t) for the quadratic cost function in the economic growth model is
significantly affected by the memory effect.

Figure 5 captures the exact solution (green line) graph coinciding with the approximate
solution, using the Combined Theorem (black dot line graph) for =1. It shows that using
the Combined Theorem of the Adomian Decomposition Method and the Kashuri–Fundo
Integral Transformation are very accurate, useful, and easy to solve Riccati’s fractional
differential equation on the economic growth model.

The numerical simulation results presented in Table 1 for t are close to 1. The output
value Y(t) increases as it reaches closer to 1, then Y(t) becomes smaller. This shows that
the output value of Y(t) for the quadratic cost function in the economic growth model is
significantly affected by the memory effect.
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Table 1. The exact solution for the economic growth model using Combined Theorem.

t
Solution (Parameter)

α = 0.7 α = 0.8 α = 0.9 α = 1

0 1 1 1 1
0.2 1.728498143 1.506712214 1.369271728 1.276860564
0.4 3.002050323 2.316656002 1.944323102 1.711986036
0.6 5.882651068 3.824839163 2.915933103 2.408325602
0.8 14.19800451 6.984128952 4.655630493 3.555588489
1 44.34351690 14.96196042 8.080142879 5.539184163

4. Conclusions

This paper has successfully developed the Riccati fractional differential equation in
the new economic growth acceleration model with a memory effect for the quadratic cost
function. We have identified that the RFDEs in the economic growth model with memory
effect for the quadratic cost function in Equation (11) has a solution and singularity. The
value of k < 0 means a marginal cost reduction in the output value of Y(t). Meanwhile,
if k = 0, then there is no additional cost or marginal cost reduction, and if k > 0, then
there is an additional marginal cost at the output value of Y(t). Additionally, we have
presented a comparison of exact solutions using Lie Symmetry, Combined Theorem of
Adomian Polynomial Decomposition, and Kashuri–Fundo Transformation methods. The
exact solution showed a similar result. In addition, we have tested the developed Riccati
fractional differential equation numerically on an EGM involving memory effects. The
numerical simulation results showed that the output value of Y(t) for the quadratic cost
function in the economic growth model is significantly affected by the memory effect.
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