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Abstract: In this article, we introduce a new inertial multi-step regularized generalized Popov’s
extra-gradient method to solve the hierarchical variational inequality problem (HVIP). We extend the
previous Lipschitzian and strongly monotone mapping to a hemicontinuous, generalized Lipschitzian
and strongly monotone mapping. We also obtain a strong convergence theorem about the new
Popov’s algorithm. Furthermore, we utilize some numerical experiments to highlight the feasibility
and effectiveness of our method.
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hemicontinuous mapping; multi-step inertial iteration; regularized generalized Popov’s method
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1. Introduction

LetH be a real Hilbert space, and C be a nonempty, closed, and convex subset ofH.
The variational inequality problem is a fundamental nonlinear problem, which plays a
significant role in engineering, economy, and control fields [1–8]. Specifically, it is to find a
point ỹ ∈ C such that

〈Aỹ, w− ỹ〉 ≥ 0, ∀w ∈ C, (1)

where A : H → H is a mapping. We define VI(A, C) as the solution set of (1). In recent
years, plenty of scholars have studied the hierarchical variational inequality problem
(HVIP), which plays an important role in physical and practical issues, and so on. HVIP is
to find a point w∗ ∈ VI(A, C) such that

〈Fw∗, z− w∗〉 ≥ 0, ∀z ∈ VI(A, C), (2)

where mapping A : C → H is Lipschitzian and monotone, and mapping F : H → H is
Lipschitzian and strongly monotone.

In order to study HVIP, many scholars proposed different iterative methods. The
simplest iteration method is the projection algorithm,

wn+1 = PC(wn − λAwn), (3)

where λ > 0, and mapping A is L-Lipschitzian and strongly monotone. However, if we
want to establish the convergence of this algorithm, we should control the condition of A
strictly. If A does not satisfy the strongly monotone condition, we will not obtain a strong
convergence result, or even a weak convergence result. To weaken the conditions of A,
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Korpelevich [9] proposed the extra-gradient algorithm in which A is a Lipschitzian and
monotone mapping. The algorithm is as follows:{

zn = PC(wn − λAwn),
wn+1 = PC(wn − λAzn),

where λ > 0. Afterwards, Popov [10] presented the following algorithm:{
wn+1 = PC(wn − λAzn),
zn+1 = PC(wn+1 − λAzn),

where λ ∈
(

0,
√

2−1
L

)
. Through observation, it is not difficult to find that Popov’s method

only needs to compute the value of zn under the action of operator A at each iteration,
but does not need to know the value of wn under the action of operator A. Therefore,
compared with the extra-gradient method, the computation of Popov is reduced. How-
ever, Popov’s method still requires two projections on C. If the spatial structure of C is
intricate, then Popov’s method is also difficult to implement. In order to solve this problem,
Malitsky et al. [11] proposed the following algorithm, which converts one of the projections
on C into the projection on a half-space Tn,

Tn = {y ∈ H : 〈wn − λAzn−1 − zn, y− zn〉 ≤ 0},
wn+1 = PTn(wn − λAzn),
zn+1 = PC(wn+1 − λAzn),

(4)

where λ ∈
(

0, 1
3L

)
, mapping A is L-Lipschitzian and monotone. However, L is not always

easy to obtain. In 2019, Hieu et al. [12] proposed a new step size, whose calculation is
independent of the Lipschitz constant of A. The algorithm is as follows,

Tn = {w ∈ H : 〈wn − λn Azn−1 − zn, w− zn〉 ≤ 0},
wn+1 = PTn(wn − λn Azn),

zn+1 = PC(wn+1 − λn+1 Azn),

where

λn+1 =

{
min

{
λn, µ‖zn−1−zn‖

‖Azn−Azn−1‖

}
, if Azn 6= Azn−1,

λn, otherwise,

and they established the weak convergence of {wn}, {zn}, which generated by the above
algorithm.

The regularization method is an important method to solve VIP. Many scholars con-
ducted a lot of research on the regularization method. In 2020, Hieu et al. [13] proposed
regularization of Popov’s extra-gradient method (RPEGM) to solve HVIP ( 2). The proposed
algorithm is given as

Tn = {y ∈ H : 〈wn − λn(Azn−1 + αnFwn)− zn, y− zn〉 ≤ 0},
wn+1 = PTn [wn − λn(Azn−1 + αnFwn)],

zn+1 = PC [wn+1 − λn+1(Azn + αn+1Fwn+1)],

where

λn+1 =

{
min

{
λn, µ‖zn−1−zn‖

‖Azn−Azn−1‖

}
, if Azn 6= Azn−1,

λn, otherwise.

In recent years, many scholars studied HVIP (2) with the inertial method. Jiang
et al. [14] proposed a new method (IRSEGM) for solving HVIP (2) with the hemicontinuous,
generalized Lipschitzian and strongly monotone mapping, which combines multi-step
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inertial and regularization methods. The algorithm is as follows, and a strong convergence
theorem is obtained when the parameters satisfy certain conditions:

un = wn +
min{N,n}

∑
i=1

αi,n(wn−i+1 − wn−i),

zn = PC [un − λn(Aun + βnFun)],

Tn = {w ∈ H : 〈un − λn(Aun + βnFun)− zn, w− zn〉 ≤ 0},
wn+1 = PTn [un − λn(Azn + βnFun)],

(5)

where

λn+1 =

{
min

{
λn, µ‖zn−1−zn‖

‖Azn−Azn−1‖

}
, if Azn 6= Azn−1,

λn, otherwise,

αi,n =

{
min

{
αi,

σi,n
‖wn−i+1−wn−i‖

}
, if wn−i+1 6= wn−i,

λn, otherwise,

N is a chosen positive integer, mapping A is L-Lipschitzian and monotone, and mapping F
is hemicontinuous, generalized Lipschitzian and strongly monotone.

In this article, motivated by the above results, we propose a new multi-step inertial
regularized generalized Popov’s extra-gradient method for the sake of accelerating the
convergence of sequences. On the basis of previous studies, we extend F in HVIP (2) to the
hemicontinuous and generalized Lipschitzian. Finally, we obtain the strong convergence
result of our new algorithm under the suitable conditions. The structure of our paper is as
follows. In the first part, we mainly give some of the research background. In the second
part, we introduce some important definitions and lemmas. In the third part, we present a
new method to deal with HVIP (2), combining the multi-step inertial regularization method
with Popov’s extra-gradient method in Hilbert space, and get a strong convergence theorem
for our algorithm involving mapping F as hemicontinuous, generalized Lipschitzian and
strongly monotone. In the last part, numerical examples are used to exhibit the validity of
our algorithm.

2. Preliminaries

In this part, we give some significant lemmas and definitions, which are important for
the rest of the proof.

We respectively use → to represent strong convergence and ⇀ to represent weak
convergence.

Definition 1 ([14,15]). Let A : H → H be a mapping.

(i) If mapping A satisfies

〈Aw− Az, w− z〉 ≥ 0, ∀w, z ∈ H.

then A is monotone.
(ii) If for η > 0, mapping A satisfies

〈Aw− Az, w− z〉 ≥ η‖w− z‖2, ∀w, z ∈ H,

then A is η-strongly monotone.
(iii) If for L > 0, mapping A satisfies

‖Aw− Az‖ ≤ L‖w− z‖, ∀w, z ∈ H,

then A is L-Lipschitzian.
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(iv) If for L > 0, mapping A satisfies

‖Aw− Az‖ ≤ L(‖w− z‖+ 1), ∀w, z ∈ H,

then A is L-generalized Lipschitzian.
(v) A is hemicontinuous if

∀w, h ∈ H, tn → 0⇒ A(w + tnh) ⇀ Aw as n→ ∞.

Remark 1. According to the definition of Lipschitzian and generalized Lipschitzian, it is not
difficult to find that the generalized Lipschitzian is broader than Lipschitzian. In fact, the generalized
Lipschitzian is not even necessarily hemicontinuous. A specific example is as follows.

Example 1. Let g : R→ R, and

g(w) =


w− 1, w < −1,
w−

√
1− (w + 1)2, −1 ≤ w ≤ 0,

w +
√

1− (w− 1)2, 0 ≤ w ≤ 1,
w + 1, w > 1.

Through simple proofs, it is not difficult to show that g(w) is generalized Lipschitzian, but
it is clearly not Lipschitzian. Therefore, the algorithm proposed by us is valuable and meaningful.
Other examples can be found in the literature ([14,16]).

Lemma 1 ([16]). Supposing that the mapping A : H → H is hemicontinous and strongly
monotone in VIP (1), then VIP (1) has one and only one solution.

Lemma 2 ([17,18]). If for any w ∈ H, there is one and only one element q ∈ C that meets
‖w− q‖ ≤ ‖w− z‖, for any y ∈ C, in that way we denote that q = PCw, whereH is a real Hilbert
space, C is a nonempty closed convex subset of theH, and we have

q = PCw⇔ 〈w− q, z− q〉 ≤ 0, ∀z ∈ C.

Lemma 3 ([19]). Let {bn} be a non-negative real sequence such that

bn+1 ≤ (1− κn)bn + κnσn + δn, n = 1, 2, . . . ,

where {κn}, {σn} and {δn} meet the following criteria respectively:

(i) {κn} ⊂ (0, 1);
(ii) ∑∞

n=1 κn = ∞;
(iii) lim sup σn ≤ 0;
(iv) ∑∞

n=1 |δn| < ∞.

Then, limn→∞ bn = 0.

3. Main Results

In this part, we raise a new method to deal with HVIP (2), which combines the multi-
step inertia method with the regularization technique in Popov’s extra-gradient method.
Through a series of derivations and proofs, the main result of our paper is obtained. Next,
we assume that our algorithm satisfies the following conditions:

(C1) A is k-Lipschitzian onH and monotone on C .
(C2) F is hemicontinuous, β-generalized Lipschitzian and γ-strongly monotone onH.
(C3) The solution set VI(A, C) is nonempty.
(C4) Let {αn} be a sequence of (0, ∞) and meet ∑∞

n=1 αn = ∞, ∑∞
n=1 α2

n < ∞, limn→∞
αn+1−αn

α2
n

= 0.
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(C5) Let {σi,n} be a sequence and satisfy {σi,n} ⊂ (0, ∞), limn→∞
σi,n
αn

= 0, ∑∞
n=1 σi,n < ∞,

where i = 1, 2, 3, · · · , N (where N is a chosen positive integer).

Remark 2. In condition (C4), we can take αn = n−p, where 1
2 < p < 1.

Now, we represent our new multi-step inertial regularized generalized Popov’s extra-
gradient method.

Lemma 4. The sequence {λn} generated by our Algorithm 1 is not increasing, and limn→∞ λn ≥
min{λ1, µ

k } > 0.

Algorithm 1: The multi-step inertial regularized generalized Popov’s extra-
gradient method.

Initialization: Given λ0, λ1, α0 > 0, µ ∈ (0,
√

2− 1). Let w0, z0, u0 be any three
members ofH.

Step 1. Compute
w1 = PC [u0 − λ0(Az0 + α0Fu0)],

u1 = w1 + θ1,1(w1 − w0),

z1 = PC [u1 − λ1(Az0 + α1Fu1)].

Step 2. Given the current iterate wn, zn, and zn−1, compute wn+1 as follows:

Tn = {w ∈ H : 〈un − λn(Azn−1 + αnFun)− zn, w− zn〉 ≤ 0}.

wn+1 = PTn [un − λn(Azn + αnFun)],

Step 3. Compute

un+1 = wn+1 +
min{N,n+1}

∑
i=1

θi,n+1(wn+2−i − wn+1−i),

zn+1 = PC [un+1 − λn+1(Azn + αn+1Fun+1)].

where 0 < θi,n < θi, for some θi ∈ H with

θi,n =

{
min

{
θi,

σi,n
‖wn+1−i−wn−i‖

}
, if wn+1−i 6= wn−i,

θi, otherwise,

λn+1 =

{
min

{
λn, µ‖zn−1−zn‖

‖Azn−Azn−1‖

}
, if Azn 6= Azn−1,

λn, otherwise.

Step 4. Set n := n + 1 and go to Step 1.

Proof. By definition of the sequence {λn}, it is obvious that the sequence {λn} is not
increasing. Since A is k-Lipschitz continuous with k ≥ 0, we have

‖Aw− Az‖ ≤ k‖w− z‖, ∀w, z ∈ H

In the case of Azn 6= Azn−1, we have

µ‖zn−1 − zn‖
‖Azn − Azn−1‖

≥ µ‖zn−1 − zn‖
k‖zn − zn−1‖

=
µ

k
.

Clearly, the lower bound of the sequence {λn} is min{λ1, µ
k }.
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By conditions (C1)–(C3), we can easily see that (A + αF) is hemicontinous and
strongly monotone. Therefore, in the light of Lemma 1, it is easy to conclude that for
each α > 0, there is only one solution wα for the following variational problem (6).

Find z ∈ C, such that 〈(A + αF)z, w− z〉 ≥ 0, ∀w ∈ C, (6)

where α > 0. In the same way, for every n ∈ N, there is a unique member wαn ∈ C that makes

〈(A + αnF)wαn , w− wαn〉 ≥ 0, ∀w ∈ C. (7)

On the other hand, according to Lemma 1, it is easy to find that when conditions
(C1)–(C3) are satisfied, there is a unique solution w∗ to HVIP (2).

Lemma 5 ([14]). For wα and w∗ above, we have the following:

(i) For all µ, ν > 0, ‖wµ − wν‖ ≤ |µ−ν|
µ τ, where τ is a positive constant,

τ =
1
γ

[(
1 +

β

γ

)
‖Fw∗‖+ 2β‖w∗‖+ β

]
.

(ii) {wα} is bounded, and ‖wα‖ ≤ 1
η ‖Fw∗‖+ ‖w∗‖.

(iii) limα→0+ wα = w∗.

Lemma 6. For all n + 1 ≥ N,

‖un+1 − zn‖2 ≤
(

1 +
N

∑
i=1

σi,n+1

)
‖wn+1 − zn‖2 + σn+1,

where σn+1 = ∑N
i=1 σ2

i,n+1 + 2 ∑1≤i<j≤N σi,n+1σj,n+1 + ∑N
i=1 σi,n+1.

Proof. By the definition of un, we deduce

‖un+1 − zn‖2

=

∥∥∥∥∥(wn+1 − zn) +
N

∑
i=1

θi,n+1(wn+2−i − wn+1−i)

∥∥∥∥∥
2

≤
(
‖wn+1 − zn‖+

N

∑
i=1

θi,n+1‖wn+2−i − wn+1−i‖
)2

= ‖wn+1 − zn‖2 +
N

∑
i=1

θ2
i,n+1‖wn+2−i − wn+1−i‖2

+2‖wn+1 − zn‖
N

∑
i=1

θi,n+1‖wn+2−i − wn+1−i‖

+2 ∑
1≤i<j≤N

θi,n+1θj,n+1‖wn+2−i − wn+1−i‖‖wn+2−j − wn+1−j‖

≤ ‖wn+1 − zn‖2 +
N

∑
i=1

σ2
i,n+1 + ‖wn+1 − zn‖2

N

∑
i=1

σi,n+1

+
N

∑
i=1

σi,n+1 + 2 ∑
1≤i<j≤N

σi,n+1σj,n+1

=

(
1 +

N

∑
i=1

σi,n+1

)
‖wn+1 − zn‖2 + σn+1.
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Lemma 7. Let m and n be two arbitrary real numbers and a be an arbitrary positive real number,
then we have

(i) mn ≤ 1
2

(
am2 + 1

a n2
)

,

(ii) (m + n)2 ≤ (2 +
√

2)m2 +
√

2n2.

Proof. (i) Since (n − am)2 = n2 − 2amn + a2m2 ≥ 0, we get 2amn ≤ n2 + a2m2, so we
deduce

mn ≤ 1
2

(
am2 +

1
a

n2
)

.

Peculiarly, taking a =
√

2, then we obtain mn ≤ 1
2

(√
2m2 + 1√

2
n2
)

.

(ii) Taking a = 1 +
√

2 in (i), we have

2mn ≤ (1 +
√

2)m2 + (
√

2− 1)n2,

then we deduce
(m + n)2 ≤ (2 +

√
2)m2 +

√
2n2.

Theorem 1. Assuming that Algorithm 3.1 satisfies condition (C1)–(C5), then the sequence {wn}
produced by the algorithm strongly converges to the unique solution w∗ of HVIP (2).

Proof. According to Lemma 5, we have wαn → w∗. So we just have to prove ‖wαn −wn‖ →
0 to get wαn → w∗, and the proof is as follows. Since

‖un − wαn‖2

= ‖un − wn+1‖2 + ‖wn+1 − wαn‖2 + 2〈un − wn+1, wn+1 − wαn〉,

from (7), we have

‖wαn − wn+1‖2

= ‖un − wαn‖2 − 2〈wn+1 − un, wαn − wn+1〉 − ‖un − wn+1‖2

= ‖un − wαn‖2 − 2〈wn+1 − un, wαn − wn+1〉 − ‖(wn+1 − zn) + (zn − un)‖2

= ‖un − wαn‖2 − 2〈wn+1 − un, wαn − wn+1〉 − ‖wn+1 − zn‖2 − ‖un − zn‖2

−2〈wn+1 − zn, zn − un〉
= ‖un − wαn‖2 − ‖wn+1 − zn‖2 − ‖un − zn‖2

+2〈un − λn(Azn−1 + αnFun)− zn, wn+1 − zn〉
+2〈un − λn(Azn + αnFun)− wn+1, wαn − wn+1〉
+2λn〈Azn−1 + αnFun, wn+1 − zn〉+ 2λn〈Azn + αnFun, wαn − wn+1〉

= ‖un − wαn‖2 − ‖wn+1 − zn‖2 − ‖un − zn‖2

+2〈un − λn(Azn−1 + αnFun)− zn, wn+1 − zn〉
+2〈un − λn(Azn + αnFun)− wn+1, wαn − wn+1〉
+2λn〈Azn−1 − Azn + Azn + αnFun, wn+1 − zn〉
+2λn〈Azn + αnFun, wαn − wn+1〉

= ‖un − wαn‖2 − ‖wn+1 − zn‖2 − ‖un − zn‖2
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+2〈un − λn(Azn−1 + αnFun)− zn, wn+1 − zn〉
+2〈un − λn(Azn + αnFun)− wn+1, wαn − wn+1〉
+2λn〈Azn + αnFun, wαn − zn〉+ 2λn〈Azn−1 − Azn, wn+1 − zn〉.

By the definition of wn+1 and Tn, we have

2〈un − λn(Azn−1 + αnFun)− zn, wn+1 − zn〉 ≤ 0. (8)

Similarly, by the definition of wn+1, Lemma 2, and wαn ∈ C ⊂ Tn, we also have

〈un − λn(Azn + αnFun)− wn+1, wαn − wn+1〉 ≤ 0. (9)

Combining (8) and (9), we obtain

‖wαn − wn+1‖2

≤ ‖un − wαn‖2 − ‖wn+1 − zn‖2 − ‖un − zn‖2

+2λn〈Azn + αnFun, wαn − zn〉+ 2λn〈Azn−1 − Azn, wn+1 − zn〉. (10)

Now let us think about 2λn〈Azn−1− Azn, wn+1− zn〉 and 2λn〈Azn + αnFun, wαn − zn〉.
According to the definition of {λn} and Lemma 7, we have

2λn〈Azn−1 − Azn, wn+1 − zn〉
≤ 2λn‖Azn − Azn−1‖‖wn+1 − zn‖

≤ 2λnµ

λn+1
‖zn − zn−1‖‖wn+1 − zn‖

≤ λnµ

λn+1

(
1√
2
‖zn − zn−1‖2 +

√
2‖wn+1 − zn‖2

)
≤ λnµ

λn+1

[
1√
2
‖(zn − un) + (un − zn−1)‖2 +

√
2‖wn+1 − zn‖2

]
≤ λnµ

λn+1

{
1√
2

[
(2 +

√
2)‖zn − un‖2 +

√
2‖un − zn−1‖2

]
+
√

2‖wn+1 − zn‖2
}

≤ (1 +
√

2)λnµ

λn+1
‖un − zn‖2 +

λnµ

λn+1
‖un − zn−1‖2

+

√
2λnµ

λn+1
‖wn+1 − zn‖2. (11)

Next, we consider 2λn〈Azn + αnFun, wαn − zn〉. Since αn → 0 and σi,n+1
αn+1

→ 0 for each
i = 1, 2, · · · , N, let ξ1, ξ2, ξ3 be three positive real numbers and satisfy

2γ− βξ1 − ξ2 − ξ3 > 0,

N

∑
i=1

σi,n ≤ ξ3λnαn, ∀n ≥ n0.

From Lemma 4, it is not difficult to know that there is a constant c that makes 0 < c ≤
λn ≤ λ1. So with αn → 0 as n→ ∞, we obtain λnαn β

ξ1
→ 0. On the other hand, from Lemma

4, we have (1+
√

2)µλn
λn+1

→ (1 +
√

2)µ. Since µ ∈ (0,
√

2− 1), without loss of generality, we
have

1− (1 +
√

2)λnµ

λn+1
− λnαnβ

ξ1
− ξ2 > 0, ∀n ≥ n0. (12)

Due to wαn ∈ VI(A + αnF, C), zn ∈ C, we have

〈Awαn + αnFwαn , wαn − zn〉 ≤ 0. (13)
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Combining the conditions (C1) and (C2), we abtain

2λn〈Azn + αnFun, wαn − zn〉
= 2λn〈Azn − Awαn , wαn − zn〉+ 2λn〈Awαn + αnFun, wαn − zn〉
≤ 2λn〈Awαn + αnFun, wαn − zn〉
= 2λn〈Awαn + αnFwαn , wαn − zn〉+ 2λn〈αnFun − αnFwαn , wαn − zn〉
≤ 2λn〈αnFun − αnFwαn , wαn − zn〉
= 2λn〈αnFun − αnFwαn , wαn − un〉+ 2λn〈αnFun − αnFwαn , un − zn〉
≤ −2λnαnγ‖un − wαn‖2 + 2λn〈αnFun − αnFwαn , un − zn〉
≤ −2λnαnγ‖un − wαn‖2 + 2λnαn‖Fun − Fwαn‖‖un − zn‖
≤ −2λnαnγ‖un − wαn‖2 + 2λnαnβ(‖un − wαn‖+ 1)‖un − zn‖
= −2λnαnγ‖un − wαn‖2 + 2λnαnβ‖un − wαn‖‖un − zn‖

+2λnαnβ‖un − zn‖

≤ −2λnαnγ‖un − wαn‖2 + 2λnαnβ

(
1
2

ξ1‖un − wαn‖2 +
1

2ξ1
‖un − zn‖2

)
+2
(

1
2

ξ2‖un − zn‖2 +
λ2

nα2
nβ2

2ξ2

)
= −(2γ− ξ1β)λnαn‖un − wαn‖2 +

(
λnαnβ

ξ1
+ ξ2

)
‖un − zn‖2

+
λ2

nα2
nβ2

ξ2
. (14)

Substituting (11) and (14) into (10), we deduce

‖wαn − wn+1‖2

≤ ‖un − wαn‖2 − ‖wn+1 − zn‖2 − ‖un − zn‖2

+2λn〈Azn−1 − Azn, wn+1 − zn〉+ 2λn〈Azn + αnFun, wαn − zn〉

≤ [1− (2γ− ξ1β)λnαn]‖un − wαn‖2 −
(

1−
√

2λnµ

λn+1

)
‖wn+1 − zn‖2

−
[

1− (1 +
√

2)λnµ

λn+1
− λnαnβ

ξ1
− ξ2

]
‖un − zn‖2

+
λnµ

λn+1
‖un − zn−1‖2 +

λ2
nα2

nβ2

ξ2
. (15)

Combining (12) and (15), for all n ≥ n0, we have

‖wαn − wn+1‖2

≤ [1− (2γ− ξ1β)λnαn]‖un − wαn‖2 −
(

1−
√

2λnµ

λn+1

)
‖wn+1 − zn‖2

+
λnµ

λn+1
‖un − zn−1‖2 +

λ2
nα2

nβ2

ξ2
. (16)
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From Lemma 6, without loss of generality, for all n ≥ n0, we obtain

‖wn+1 − zn‖2 ≥ ‖un+1 − zn‖2 − σn+1

1 + ∑N
1=1 σi,n+1

≥ ‖un+1 − zn‖2 − σn+1

1 + ξ3λnαn

=
1

1 + ξ3λnαn
‖un+1 − zn‖2 − σn+1

1 + ξ3λnαn
. (17)

Analogous to the proof of Lemma 6, for all n ≥ n0, we obtain

‖un − wαn‖2 ≤ (1 + ξ3λnαn)‖wn − wαn‖2 + σn+1. (18)

Substituting (17) and (18) into (16),for all n ≥ n0, we obtain

‖wαn − wn+1‖2

≤ [1− (2γ− ξ1β)λnαn]
[
(1 + ξ3λnαn)‖wn − wαn‖2 + σn+1

]
−
(

1−
√

2λnµ

λn+1

)
1

1 + ξ3λnαn
‖un+1 − zn‖2

+
λnµ

λn+1
‖un − zn−1‖2 +

λ2
nα2

nβ2

ξ2
+

(
1−
√

2λnµ

λn+1

)
σn+1

1 + ξ3λnαn

≤ [1− (2γ− ξ1β)λnαn](1 + ξ3λnαn)‖wn − wαn‖2

−
(

1−
√

2λnµ

λn+1

)
1

1 + ξ3λnαn
‖un+1 − zn‖2 +

λ2
nα2

nβ2

ξ2

+
λnµ

λn+1
‖un − zn−1‖2 +

σn+1

1 + ξ3λnαn
+ [1− (2γ− βξ1)αnλn]σn+1

=
[
1− (2γ− βξ1 − ξ3)λnαn − (2γ− βξ1)ξ3λ2

nα2
n

]
‖wn − wαn‖2

−
(

1−
√

2λnµ

λn+1

)
1

1 + ξ3λnαn
‖un+1 − zn‖2 +

λ2
nα2

nβ2

ξ2

+
λnµ

λn+1
‖un − zn−1‖2 +

σn+1

1 + ξ3λnαn
+ [1− (2γ− βξ1)αnλn]σn+1

≤ [1− (2γ− βξ1 − ξ3)λnαn]‖wn − wαn‖2

−
(

1−
√

2λnµ

λn+1

)
1

1 + ξ3λnαn
‖un+1 − zn‖2

+
λnµ

λn+1
‖un − zn−1‖2 +

λ2
nα2

nβ2

ξ2
+

σn+1

1 + ξ3λnαn
+ σn+1.

According to limn→∞ αn = 0, limn→∞ λn = λ, without loss generality, for n ≥ n0, we
deduce 1− ξ2λnαn ≥ 0. From Lemma 5 and Lemma 7, we obtain

‖wn+1 − wαn‖2

= ‖wn+1 − wαn+1‖
2 + ‖wαn+1 − wαn‖2 − 2〈wαn+1 − wn+1, wαn+1 − wαn〉

≥ ‖wn+1 − wαn+1‖
2 + ‖wαn+1 − wαn‖2 − 2‖wn+1 − wαn+1‖‖wαn+1 − wαn‖

≥ ‖wn+1 − wαn+1‖
2 + ‖wαn+1 − wαn‖2 − ξ2λnαn‖wn+1 − wαn+1‖

2

− 1
ξ2λnαn

‖wαn+1 − wαn‖2
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= (1− ξ2λnαn)‖wn+1 − wαn+1‖
2 +

(
1− 1

ξ2λnαn

)
‖wαn+1 − wαn‖2

= (1− ξ2λnαn)‖wn+1 − wαn+1‖
2 − 1− ξ2λnαn

ξ2λnαn
‖wαn+1 − wαn‖2

≥ (1− ξ2λnαn)‖wn+1 − wαn+1‖
2 − 1− ξ2λnαn

ξ2λnαn

(αn+1 − αn)2

α2
n

τ2.

By rearranging the above inequalities, for n ≥ n0, we obtain

(1− ξ2λnαn)‖ωn+1 − wαn+1‖
2

≤ [1− (2γ− βξ1 − ξ3)λnαn]‖wn − wαn‖2

−
(

1−
√

2λnµ

λn+1

)
1

1 + ξ3λnαn
‖un+1 − zn‖2 +

λnµ

λn+1
‖un − zn−1‖2

+
λ2

nα2
nβ2

ξ2
+

σn+1

1 + ξ3λnαn
+ σn+1 +

1− ξ2λnαn

ξ2λnαn

(αn+1 − αn)2

α2
n

τ2

≤ [1− (2γ− βξ1 − ξ3)λnαn]‖wn − wαn‖2

−
(

1−
√

2λnµ

λn+1

)
1

1 + ξ3λnαn
‖un+1 − zn‖2 +

λnµ

λn+1
‖un − zn−1‖2

+
λ2

nα2
nβ2

ξ2
+ 2σn+1 +

1− ξ2λnαn

ξ2λnαn

(αn+1 − αn)2

α2
n

τ2.

Therefore, we have

‖wn+1 − wαn+1‖
2

≤ 1− (2γ− βξ1 − ξ3)λnαn

1− ξ2λnαn
‖wn − wαn‖2 +

λnµ

(1− ξ2λnαn)λn+1
‖un − zn−1‖2

− 1
(1− ξ2λnαn)(1 + ξ3λnαn)

(
1−
√

2λnµ

λn+1

)
‖un+1 − zn‖2

+
1

1− ξ2λnαn

(
λ2

nα2
nβ2

ξ2
+ 2σn+1

)
+

(αn+1 − αn)2

ξ2λnα3
n

τ2

=
1− (2γ− βξ1 − ξ3)λnαn

1− ξ2λnαn

{
‖wn − wαn‖2

+
λnµ

[1− (2γ− ξ1β− ξ3)λnαn]λn+1
‖un − zn−1‖2

}
− 1
(1− ξ2λnαn)(1 + ξ3λnαn)

(
1−
√

2λnµ

λn+1

)
‖un+1 − zn‖2

+
1

1− ξ2λnαn

(
λ2

nα2
nβ2

ξ2
+ 2σn+1

)
+

(αn+1 − αn)2

ξ2λnα3
n

τ2.

Adding λn+1µ
λn+2[1−(2γ−βξ1−ξ3)λn+1αn+1]

‖un+1 − zn‖2 both sides of this inequality, we de-
duce

‖wn+1 − wαn+1‖
2 +

λn+1µ

λn+2[1− (2γ− βξ1 − ξ3)λn+1αn+1]
‖un+1 − zn‖2

≤ 1− (2γ− βξ1 − ξ3)λnαn

1− ξ2λnαn

{
‖wn − wαn‖2
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+
λnµ

[1− (2γ− ξ1β− ξ3)λnαn]λn+1
‖un − zn−1‖2

}
−
{

1
(1− ξ2λnαn)(1 + ξ3λnαn)

(
1−
√

2λnµ

λn+1

)

− λn+1µ

λn+2[1− (2γ− βξ1 − ξ3)λn+1αn+1]

}
‖un+1 − zn‖2

+
1

1− ξ2λnαn

(
λ2

nα2
nβ2

ξ2
+ 2σn+1

)
+

(αn+1 − αn)2

ξ2λnα3
n

τ2.

Since µ ∈
(

0,
√

2− 1
)

, we get

lim
n→∞

{
1

(1− ξ2λnαn)(1 + ξ3λnαn)

(
1−
√

2λnµ

λn+1

)

− λn+1µ

λn+2[1− (2γ− βξ1 − ξ3)λn+1αn+1]

}
= 1− (

√
2 + 1)µ

> 0.

So, without loss of generality, for all n ≥ n0, we have

1
(1− ξ2λnαn)(1 + ξ3λnαn)

(
1−
√

2λnµ

λn+1

)

− λn+1µ

λn+2[1− (2γ− βξ1 − ξ3)λn+1αn+1]

> 0. (19)

From (19), for all n ≥ n0, we have

‖wn+1 − wαn+1‖
2 +

λn+1µ

λn+2[1− (2γ− βξ1 − ξ3)λn+1αn+1]
‖un+1 − zn‖2

≤ 1− (2γ− βξ1 − ξ3)λnαn

1− ξ2λnαn

{
‖wn − wαn‖2

+
λnµ

[1− (2γ− βξ1 − ξ3)λnαn]λn+1
‖un − zn−1‖2

}
+

1
1− ξ2λnαn

(
λ2

nα2
nβ2

ξ2
+ 2σn+1

)
+

(αn+1 − αn)2

ξ2λnα3
n

τ2

= (1− ςn)

{
‖wn − wαn‖2 +

λnµ

[1− (2γ− βξ1 − ξ3)λnαn]λn+1
‖un − zn−1‖2

}
+ςnδn + εn,

where

ςn =
(2γ− βξ1 − ξ2 − ξ3)λnαn

1− ξ2λnαn
,

δn =

(
αn+1 − αn

α2
n

)2 1− ξ2λnαn

(2γ− βξ1 − ξ2 − ξ3)ξ2λ2
n

τ2,

εn =
1

1− ξ2λnαn

(
λ2

nα2
nβ2

ξ2
+ 2σn+1

)
.
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Because ςn = (2γ−βξ1−ξ2−ξ3)λnαn
1−ξ2λnαn

≥ (2γ− βξ1− ξ2− ξ3)λnαn, ∑∞
n=1 αn = ∞, limn→∞ αn =

0, so ∑∞
n=1 ςn = ∞, and limn→∞ ςn = 0. It is easy to know that limn→∞ δn = 0, ∑∞

n=1 εn < ∞.
So using Lemma 3, we can obtain

‖wn − wαn‖2 +
λnµ

[1− (2γ− βξ1 − ξ3)λnαn]λn+1
‖un − zn−1‖2 → 0.

Thus, we have
‖wn − wαn‖ → 0.

This finishes the proof.

4. Numerical Examples

In the part, three numerical experiments are used to compare the effectiveness of
our proposed algorithm. Through the analysis of results, it is not difficult to find that the
efficiency of our algorithm proposed in our paper is higher. In the following three numerical
experiments, we demonstrate the advantages of our proposed algorithms by studying
the effects of one-step, two-step and three-step inertia on sequence convergence. All the
procedures are compiled in Matlab 9.0 and executed on PC Desktop Intel(R) Core(TM)
i5-1035G1 CPU @ 1.00 GHz 1.19 GHz, RAM 16.0 GB.

Example 2. Let C = [−2, 5]. Denote mapping A : H → H as follows,

Aw = w + sin w,

for each w ∈ R, where H = R. By the definition of A, we can show that the operator A is
Lipschitzian and monotone. We use IRPEGM, 2-MIRPEGM and 3-MIRPEGM to denote the
one-step, two-step and three-step inertia regularized Popov’s extra-gradient methods in this paper,
respectively. For IRPEGM, 2-MIRPEGM and 3-MIRPEGM, we take w0 = z0 = u0 = 1, θi = 0.1,
σi,n = 1

n2 ; for RPEGM, we take w0 = z0 = 1; and we take µ = 0.3, α0 = 1 and αn = (n + 1)−
3
4

for each method. Let F = I; through calculation, it is not difficult to deduce that VI(A, C)= {0}.
Therefore, HVIP (2) has one and only one solution: w∗ = 0. In this case, we set the algorithm
to stop when ‖wn − w∗‖ ≤ 10−6, and for each algorithm, we take λ0 = λ1 =0.2, 0.1, and 0.05,
respectively. The numerical experimental results are represented in Figures 1–3.

0 10 20 30 40 50 60
Number of Iterations

10-7

10-6

10-5

10-4

10-3

10-2

10-1

100

E
n=

||w
n-w

*|
|

RPEGM
IRPEGM
2-MIRPEGM
3-MIRPEGM

Figure 1. Comparison of RPEGM, IRPEGM, 2-MIRPEGM and 3-MIRPEGM in Example 2 with
λ1 = 0.2.
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10-2

10-1

100
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||w
n-w

*|
|

RPEGM
IRPEGM
2-MIRPEGM
3-MIRPEGM

Figure 2. Comparison of RPEGM, IRPEGM, 2-MIRPEGM and 3-MIRPEGM in Example 2 with
λ1 = 0.1.

0 50 100 150
Number of Iterations

10-7

10-6

10-5

10-4

10-3

10-2

10-1

100

E
n=

||w
n-w

*|
|

RPEGM
IRPEGM
2-MIRPEGM
3-MIRPEGM

Figure 3. Comparison of RPEGM, IRPEGM, 2-MIRPEGM and 3-MIRPEGM in Example 2 with
λ1 = 0.05.

It is not difficult to find from Figures 1–3 that the number of steps required for sequence conver-
gence in our IRPEGM, 2-MIRPEGM and 3-MIRPEGM is about 15%, 30%, and 40% less than that
of RPEGM in [13], respectively. So, we can obtain that our algorithm is much broader, and much more
efficient.

Example 3. Let Q, K, and S ∈ Rs×s, where K is symmetric matrices, and S is diagonal matrices
with positive diagonal terms. We denote that M = QQT + K + S, then M is positive definite. Set
mapping A : Rs → Rs to be defined as

Aw = Mw + p, (20)

for each w ∈ Rs, where p ∈ Rs. LetH = Rs, and set C to be defined as

C = {(w(1), w(2), w(3), · · · , w(s))T ∈ Rs : −2 ≤ w(j) ≤ 5, j = 1, 2, · · · , s}. (21)
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According to the definition of mapping A, it is obvious that operator A is Lipschitzian and
monotone. Similarly, we use IRPEGM, 2-MIRPEGM, and 3-MIRPEGM to denote one-step, two-
step and three-step inertia regularized Popov’s extra-gradient algorithm, respectively. For IRPEGM,
2-MIRPEGM, and 3-MIRPEGM, we take σi,n = n

−2 , θi = 0.2, w0 = z0 = u0 = (1, 1, 1, · · · , 1)T

for RPEGM, and take w0 = z0 = (1, 1, 1, · · · , 1)T, µ = 0.3, α0 = 1, αn = (n + 1)−
3
2 for each

method. Letting F = I, it is easy for us to obtain the solution set VI(A, C) = {(0, 0, 0, · · · , 0)T};
therefore, for HVIP (2), there is a unique solution w∗, and w∗ = (0, 0, 0, · · · , 0)T. In this case,
the algorithm stops when ‖wn − w∗‖ ≤ 10−4, and we consider s = 10, 20, 30, respectively.
Throughout this experiment, p = (0, 0, · · · , 0)T and the diagonal term of D is stochastically and
evenly created in (0,2), and all terms of Q and K are stochastically and equally created in (−2,2).
Then, we get Figures 4–6.

By looking at the features of Figures 4–6, we can easily see that our algorithm has obvious
advantages over RPEGM.

0 50 100 150 200 250 300
Number of Iterations

10-5

10-4

10-3

10-2

10-1

100

101

102

E
n=

||w
n-w

*|
|

RPEGM
IRPEGM
2-MIRPEGM
3-MIRPEGM

Figure 4. Comparison of RPEGM, IRPEGM, 2-MIRPEGM and 3-MIRPEGM in Example 3 with s = 10.
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IRPEGM
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Figure 5. Comparison of RPEGM, IRPEGM, 2-MIRPEGM and 3-MIRPEGM in Example 3 with s = 20.
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Figure 6. Comparison of RPEGM, IRPEGM, 2-MIRPEGM and 3-MIRPEGM in Example 3 with s = 30.

Example 4. SetH, C, and A as in Example 2. By definition of A, we can show that the operator
A is Lipschitzian and monotone. We use IRPEGM to denote the one-step inertial regularized
subgradient extra-gradient method, which is proposed by Jiang et al. [14]. For IRPEGM, IRSEGM,
we take w0 = z0 = u0 = 1, θ1 = 0.1, σi,n = 1

n2 , α0 = 1, αn = (n + 1)−
3
4 for each method. Let

F(w) =


w− 1, w < −1,
w−

√
1− (w + 1)2, −1 ≤ w ≤ 0,

w +
√

1− (w− 1)2, 0 ≤ w ≤ 1,
w + 1, w > 1,

it is easy to verify that F is hemicontinuous, generalized Lipschitzian and strongly monotone
onH, but not Lipschitzian. Through calculation, it is not difficult to deduce that VI(A, C)= {0};
therefore, HVIP (2) has one and only one solution w∗ = 0. In this case, we set that the algorithm
stops when ‖wn − w∗‖ ≤ 10−6. The numerical experiment results are represented in Table 1.

Table 1. Numerical results of IRPEGM and IRSEGM as regards Example 4.

µ λ1
IRPEGM IRSEGM

Iter. Time [s] Iter. Time [s]

0.2
0.2 128 0.9596 167 1.2030
0.3 73 0.5893 99 0.8926
0.4 73 0.5891 167 1.2683

0.3
0.2 76 0.6052 188 1.3341
0.3 157 1.0814 184 1.3190
0.4 76 0.6191 184 1.3587

5. Conclusions

In the paper, we propose a new multi-step inertial regularized generalized Popov’s
extra-gradient method to solve the hierarchical variational inequality problem based on
previous studies. Compared with previous algorithms, our algorithm has the following
advantages. Firstly, compared with that of Hieu et al. [13], of the proposed algorithm, we
introduce the multi-step inertial method to accelerate the convergence of the sequence.
Secondly, we extend that F is Lipschitzian in [13] to hemicontinuous and generalized
Lipschitzian; therefore, it is clear that our algorithm is relatively broader. Thirdly, compared
with that of Jiang et al. [14], our algorithm only requires obtaining the value of zn under the
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action of A, with no need to discuss the behavior of wn under the action of A, and therefore,
our algorithm is relatively simpler and more efficient.
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