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Abstract: Traditional bivariate meta-analyses adopt the bivariate normal model. As the bivariate
normal distribution produces symmetric dependence, it is not flexible enough to describe the true
dependence structure of real meta-analyses. As an alternative to the bivariate normal model, recent
papers have adopted “copula” models for bivariate meta-analyses. Copulas consist of both symmetric
copulas (e.g., the normal copula) and asymmetric copulas (e.g., the Clayton copula). While copula
models are promising, there are only a few studies on copula-based bivariate meta-analysis. Therefore,
the goal of this article is to fully develop the methodologies and theories of the copula-based bivariate
meta-analysis, specifically for estimating the common mean vector. This work is regarded as a
generalization of our previous methodological/theoretical studies under the FGM copula to a broad
class of copulas. In addition, we develop a new R package, “CommonMean.Copula”, to implement the
proposed methods. Simulations are performed to check the proposed methods. Two real dataset are
analyzed for illustration, demonstrating the insufficiency of the bivariate normal model.

Keywords: bivariate distribution; copula; correlation; FGM copula; maximum likelihood estimator;
meta-analysis; normal distribution

1. Introduction

Bivariate outcomes often arise in meta-analyses on scientific studies, such as educa-
tion and medicine. Educational researchers may analyze bivariate exam scores on verbal
and mathematics [1,2], or on mathematics and statistics [3]. Medical experts may ana-
lyze bivariate risk scores on myocardial infection and cardiovascular death for diabetes
patients [4,5]. Bivariate meta-analyses are statistical methods designed for these meta-
analytical studies [6]. Dependence between two outcomes should be considered while
performing bivariate meta-analyses. If one simply considers univariate (marginal) analysis
for each outcome separately, any possible dependence between the outcomes is ignored.
Riley [2] and Copas et al. [7] showed that ignoring the dependence between two outcomes
increases the error for estimating parameters due to the loss of information. In medical
research, dependence itself can be of clinical importance, e.g., dependence between two
survival outcomes in meta-analysis [8–11].

In the traditional bivariate meta-analyses, the parameters of interest are the means
of a bivariate normal model [6]. However, the bivariate normal model is not flexible
enough to describe the true dependence structure of real meta-analyses. It will be shown
that the bivariate normal mode fits poorly to the dependence structure of real bivariate
meta-analyses (Section 8). This has motivated researchers to consider alternative models.

As an alternative to the bivariate normal model, recent papers have adopted “copula”
models for bivariate meta-analyses [3,5,12–15]. Copula models are flexible as they allow a
variety of dependence structures. Copulas consist of both symmetric copulas (e.g., the normal
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copula) and asymmetric copulas (e.g., the Clayton copula). Copula models have become
very popular in all areas of science by replacing the traditional multivariate normal models.
In astronomy, Takeuchi [16] constructed the bivariate luminosity density functions using
the FGM copula; see reference [17] for the application of the FGM copula to engineering.
In ecology, Ghosh et al. [18] applied copulas to model the dependence structure in environ-
mental and biological variables. In environmental science, Alidoost et al. [19] used bivariate
copulas in the analysis of temperature. See the survey of [20] for applications to energy,
forestry, and environmental sciences. The books of [21,22] are devoted to the applications of
copulas in survival analysis; see also references [11,23–25].

While bivariate copula models for meta-analyses are promising, there are only a few
methodologically and theoretically solid studies on copula-based bivariate meta-analysis.
For instance, the detailed theoretical studies of [3] are limited to the FGM copula.
Other copula-based meta-analyses published in biostatistical journals, such as [5,12–15],
are proposed without theoretical details. Furthermore, copula-based bivariate meta-analyses
have not been implemented in a free software environment.

Therefore, the goal of this article is to fully develop the methodologies and theo-
ries of the copula-based bivariate meta-analysis for estimating the common mean vector.
This work is regarded as a large generalization of our previous methodological/theoretical
studies under the FGM copula model [3] to a broad class of copula models. In this ar-
ticle, we obtain theoretical results, including the formula of the information matrix and
large sample theories. Our theoretical results guarantee the applications of many copulas,
such as the Clayton, Gumbel, Frank, and normal copulas, in addition to the FGM copula.
In addition, we developed a new R package, “CommonMean.Copula” [26], to implement
the proposed methods under the five copulas. Therefore, the aim of the article is to make
a solid development of the methodologies, theories, and practical implementations of
copula-based bivariate meta-analysis for the common mean, which are not yet available in
the literature.

The article is organized as follows. Section 2 reviews the background of this research.
Section 3 introduces the proposed model and estimator. Section 4 provides the asymptotic
theory and Section 5 gives confidence sets. Section 6 introduces our new R package.
Section 7 conducts simulations to check the accuracy of the proposed methods. Section 8
analyzes two real datasets for illustration. Section 9 extends the proposed methods to
non-normal data. Finally, Section 10 concludes with a discussion.

2. Background

This section reviews the literature on bivariate meta-analyses and the concept of copulas.

2.1. Bivariate Meta-Analysis

We review the bivariate meta-analysis method for bivariate continuous outcomes [6,27].
For each study i, let the bivariate outcomes, Yi1 and Yi2, follow a bivariate normal distribution

Yi =

[
Yi1
Yi2

]
∼ N

(
µ =

[
µ1
µ2

]
, Ωi =

[
σ2

i1 ρiσi1σi2
ρiσi1σi2 σ2

i2

])
, i = 1, 2, . . . , n, (1)

where ρi ∈ (−1, 1) is the within-study correlation for each i. In Equation (1), all the
responses (Yis) share the common mean vector (µ). The covariance matrix Ωi is assumed
to be known (from the i-th study) in usual bivariate meta-analyses. We do not consider a
setting where the covariance is unknown [28,29].

Then, the MLE of the common mean vector is quite easily computed as

µ̂Normal
n =

[
µ̂Normal

n,1
µ̂Normal

n,2

]
=

(
n

∑
i=1

Ω−1
i

)−1 n

∑
i=1

Ω−1
i Yi.

One could use the R package mvmeta [30], although the above computation is easy.
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The bivariate normal model (1) does not allow for a different dependence structure
between the two outcomes. In practice, the bivariate normal model (1) can be too restrictive,
as there are various dependence patterns between two outcomes. For example, to model
the luminosity function of galaxies, Takeuchi [16] pointed out that the FGM copula model
offers a more ideal shape than the normal copula model from a physical point of view.
Such a limitation motivates us to construct a general copula model that can describe various
dependence structures.

2.2. Copulas

This subsection prepares the basic terms on copulas that will subsequently be used.
A copula is a bivariate distribution function whose margins are uniformly distributed

on the unit interval [31,32]. Copulas are indispensable tools when modelling a depen-
dence structure between two random variables. We specifically consider the following
parametric copulas.

The normal copula: The copula function is

CNormal
ρ (u, v) = Φρ

{
Φ−1(u), Φ−1(v)

}
, −1 < ρ < 1, 0 < u, v < 1,

where Φρ(·, ·) is the cumulative distribution function (CDF) of the bivariate standard nor-
mal distribution with correlation ρ and Φ−1 is the inverse of the standard normal CDF Φ.
While this copula is easy to understand, it has a complex form involving two implicit functions
Φρ and Φ−1. The following two copulas provide simpler forms than the normal copula.

The Farlie–Gumbel–Morgenstern (FGM) copula [33]: The copula function is

CFGM
θ (u, v) = uv{1 + θ(1− u)(1− v)}, −1 ≤ θ ≤ 1, 0 < u, v < 1.

The FGM copula has a very simple form, and is a fundamental copula, which has been
extended to a variety of copulas, called the generalized FGM copulas [34–38].

The Clayton copula [39]: The copula function is

CClayton
α (u, v) = (u−α + v−α − 1)−1/α, α > 0, 0 < u, v < 1.

The Clayton copula is one of the simplest and most frequently used copulas in ap-
plications. The Clayton copula is derived from the gamma frailty model, leading to its
remarkable popularity in survival data analysis [22,40]. It has a lower tail dependence [31],
but is not tractable for modeling negative dependence.

The Gumbel copula [41]: The copula function is

CGumbel
β (u, v) = exp[−

{
(− log u)β + (− log v)β

}1/β
], β ≥ 1, 0 < u, v < 1.

The Gumbel copula is a popular copula with upper tail dependence [31]. The Gumbel
copula does not offer a negative dependence, as in the Clayton copula.

The Frank copula [42]: The copula function is

CFrank
γ (u, v) = − 1

γ
log
{

1 +
(e−γu − 1)(e−γv − 1)

e−γ − 1

}
, γ 6= 0, 0 < u, v < 1.

The Frank copula does not have tail dependence [31]. Unlike the Clayton and Gumbel
copulas, it can model both positive and negative dependences as the normal copula.

Under the null parameter (e.g., θ = 0), all the above copulas reduce to the indepen-
dence copula Π(u, v) = uv. As the parameter departs from the null, the dependence
gets stronger.
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We define the notations for partial derivatives (if they exist) as

C[j,k](u, v) =
∂j+k

∂uj∂vk C(u, v); j, k ∈ {0, 1, 2, . . .}.

For instance,

C[1,0](u, v) =
∂

∂u
C(u, v), C[0,1](u, v) =

∂

∂v
C(u, v), C[1,1](u, v) =

∂2

∂u∂v
C(u, v),

where C[1,1] is called the copula density.
The copula is symmetric if C[1,1](u, v) = C[1,1](1− u, 1− v). This means that the normal

and FGM copulas are symmetric while the Clayton and Gumbel copulas are asymmetric.
This symmetry should not be confused with the exchangeability C(u, v) = C(v, u). All the
aforementioned parametric copulas are exchangeable.

3. Proposed Methods

This section proposes a general copula-based approach for estimating a bivariate common
mean vector. We first define the bivariate copula model and provide sufficient conditions for the
copula parameter to be identifiable. We then develop a maximum likelihood estimator (MLE)
for the common mean vector. In addition, we derive the expression for the information matrix.

3.1. General Copula Model for the Common Mean

This subsection proposes a new model for estimating the common mean in bivariate
meta-analyses.

For i = 1, 2, . . . , n, let Yi = (Yi1, Yi2) be a random vector satisfying

Yi1 ∼ N
(

µ1, σ2
i1

)
, Yi2 ∼ N

(
µ2, σ2

i2

)
, µ ≡ E(Yi) =

[
E(Yi1)
E(Yi2)

]
=

[
µ1
µ2

]
,

Ωi ≡ Cov(Yi) =

[
Var(Yi1) Cov(Yi1, Yi2)

Cov(Yi1, Yi2) Var(Yi2)

]
=

[
σ2

i1 ρiσi1σi2
ρiσi1σi2 σ2

i2

]
.

Here, we call µ = (µ1, µ2) the ‘common mean vector’ since it is common across
i = 1, 2, . . . , n. Our target is the estimation of µ when Ωi, i = 1, 2, . . . , n are known. In
general, Ωi 6= Ωj for some i 6= j, and, therefore, the random vectors Yi, i = 1, 2, . . . , n are
independent but not identically distributed (i.n.i.d.). While the marginal normality is speci-
fied, the bivariate normality is unspecified. We only specify the equation Corr(Yi1, Yi2) = ρi,
where ρi is known.

We now specify a bivariate distribution for Yi. According to Sklar’s Theorem [43],
for copulas Cθi , i = 1, 2, . . . , n, we define the bivariate CDFs

Pr(Yi1 ≤ y1, Yi2 ≤ y2) = Cθi

{
Φ

(
y1 − µ1

σi1

)
, Φ

(
y2 − µ2

σi2

)}
, i = 1, 2, . . . , n.

However, since ρi is known, the copula can be restricted. To see the problem clearly,
we define the correlation function ρC : Θ 7→ RC as

ρC(θ) = E
{(

Yi1 − µ1

σi1

)(
Yi2 − µ2

σi2

)}
=
∫ ∞

−∞

∫ ∞

−∞
z1z2dCθ{Φ(z1), Φ(z2)},

where RC ≡ {ρC(θ) : θ ∈ Θ} denotes the range of ρC that depends on the choice of Cθ.
The correlation function ρC does not depend on µ. For the copula to be useful in real
meta-analyses, θi has to be identifiable from ρi. This means that one has to be able to solve
the equation ρC(θ) = ρ. Now, we define our general copula model for a bivariate common
mean vector.
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Definition 1. (Copula-based common mean model): The copula-based common mean model is

Pr(Yi1 ≤ y1, Yi2 ≤ y2) = Cθi

{
Φ

(
y1 − µ1

σi1

)
, Φ

(
y2 − µ2

σi2

)}
, i = 1, 2, . . . , n, (2)

where the copula parameter θi is identified by ρC(θi) = ρi for i = 1, 2, . . . , n.

To explain the flexibility and generality of our model, we give examples for Cθi .

Example 1. (the normal copula): Under the normal copula, the model in Equation (2) becomes

Pr(Yi1 ≤ y1, Yi2 ≤ y2) = CNormal
ρi

{
Φ

(
y1 − µ1

σi1

)
, Φ

(
y2 − µ2

σi2

)}
= Φρi

(
y1 − µ1

σi1
,

y2 − µ2

σi2

)
.

Under this model, the correlation function is the identity function ρCNormal(ρ) = ρ. In addition, one
has the copula parameter space ΘCNormal = (−1, 1) , and the range of correlations RCNormal = (−1, 1).
Without doubt, for any ρi ∈ (−1, 1) , the copula parameter can be identified.

Example 2. (the FGM copula): Under the FGM copula, the model in Equation (2) becomes

Pr(Yi1 ≤ y1, Yi2 ≤ y2) = Φ
(

y1 − µ1

σi1

)
Φ
(

y2 − µ2

σi2

)[
1 + θi

{
1−Φ

(
y1 − µ1

σi1

)}{
1−Φ

(
y2 − µ2

σi2

)}]
.

Under this model, the correlation function is ρCFGM(θ) = θ/π for −1 ≤ θ ≤ 1 [44]. Thus,
the copula parameter is identified by θi = πρi, as long as ρi ∈ [−1/π, 1/π] ≈ [− 0.32, 0.32]. If
ρi /∈ [−1/π, 1/π], we suggest θi = −1 or θi = 1, using θi ≡ πρ∗i , where ρ∗i = min[−1/π,
max{ρi, 1/π}]. Hence, θi can still be identified by ρi. This boundary enforcement is illustrated in
Figure 1.
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Figure 1. The boundary correction for the correlation coefficient under the bivariate FGM and
Clayton models. The first step forces the correlation ρi to fall in a range that can be modeled by
the chosen copula. The second step transforms the corrected correlation ρ∗i to the corresponding
copula parameter.

Example 3. (The Clayton copula): Under the Clayton copula, the model in Equation (2) becomes

Pr(Yi1 ≤ y1, Yi2 ≤ y2) =

{
Φ

(
y1 − µ1

σi1

)−αi

+ Φ

(
y2 − µ2

σi2

)−αi

− 1

}−1/αi

.

for αi > 0. The correlation function does not have a closed-form, and is written as
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ρCClayton(α) = (α + 1)
∫ ∞

−∞

∫ ∞

−∞

z1z2 ϕ(z1)ϕ(z2)

Φ(z1)
α+1Φ(z2)

α+1
{

Φ(z1)
−α + Φ(z2)

−α − 1
}1/α+2 dz1dz2.

It is known that limα→0ρCClayton(α) = 0 and limα→∞ρCClayton(α) = 1. In addition, if α2 ≥ α1 then

CClayton
α2 (u, v) ≥ CClayton

α1 (u, v) for all u, v ∈ (0, 1) [45]. Then, we conclude that the range of the
correlation is RCClayton = (0, 1). Thus, one can identify by solving ρCClayton(αi) = ρi numerically if
ρi > 0. If ρi ≤ 0 , we suggest the independence model (Figure 1)

Pr(Yi1 ≤ y1, Yi2 ≤ y2) = Φ

(
y1 − µ1

σi1

)
Φ

(
y2 − µ2

σi2

)
.

Example 4. (The Gumbel copula): Under the Gumbel copula, the model in Equation (2) becomes

Pr(Yi1 ≤ y1, Yi2 ≤ y2) = exp

−[{− log Φ

(
y1 − µ1

σi1

)}βi

+

{
− log Φ

(
y2 − µ2

σi2

)}βi
]1/βi


for βi ≥ 1. Similar to the Clayton copula, the correlation function does not have a closed-form, and is
not displayed here. It is known that ρCGumbel(1) = 0 and limβ→∞ρCGumbel(β) = 1. If ρi < 0 , we
suggest the independence model as in the Clayton copula.

Example 5. (The Frank copula): Under the Frank copula, the model in Equation (2) becomes

Pr(Yi1 ≤ y1, Yi2 ≤ y2) = −
1
γi

log

1 +

[
exp

{
−γiΦ

(
y1−µ1

σi1

)}
− 1
][

exp
{
−γiΦ

(
y2−µ2

σi2

)}
− 1
]

e−γi − 1


for γi 6= 0. Again, the correlation function does not have a closed-form, and is not displayed here.
It is known that limγ→−∞ρCFrank(γ) = −1 and limγ→∞ρCFrank(γ) = 1. Thus, the Frank copula
parameter does not require boundary correction.

3.2. Statistical Inference Methods

This subsection develops statistical inference methods under the proposed model.
We propose the MLE for µ under the general copula model (Definition 1) in Equation (2).

Suppose that the copula density C[1,1]
θ exists. Then, the joint density of Yi is

fi,µ(y) =
∂2

∂y1∂y2
Pr(Yi1 ≤ y1, Yi2 ≤ y2) =

1
σi1σi2

ϕ

(
y1 − µ1

σi1

)
ϕ

(
y2 − µ2

σi2

)
C[1,1]

θi

{
Φ

(
Y1 − µ1

σi1

)
, Φ

(
Y2 − µ2

σi2

)}
.

where y = (y1, y2) and ϕ(·) is the density of N(0, 1). Given the samples, the log-likelihood
function is

`n(µ) = constant +
n

∑
i=1

log
[

C[1,1]
θi

{
Φ

(
Yi1 − µ1

σi1

)
, Φ

(
Yi2 − µ2

σi2

)}]
− 1

2

2

∑
j=1

n

∑
i=1

(
Yij − µj

σij

)2

.

The MLE of the common mean vector is defined as

µ̂n =

[
µ̂n,1
µ̂n,2

]
= argmax

µ∈R2
`n(µ),

where R = (−∞, ∞) is a real line. The MLE does not have a closed-form expression except
for the normal copula. Thus, the MLE can also be obtained by the Newton–Raphson
algorithm or some software functions (e.g., the R functions optim or nlm). One may also
apply our R package CommonMean.Copula [26], which will be explained in Section 6.
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3.3. Information Matrix

For the MLE to be well-behaved, it is necessary to show that the (Fisher) information
matrix exists and is non-singular. In other words, the MLE, without verifying these conditions,
may have some problems, e.g., the non-existence, inconsistency, or inefficiency of the MLE.
Furthermore, the information matrix describes how a copula influences the MLE.

We define the 2× 2 information matrix Ii(µ) for i = 1, 2, . . . , n as

Ii,jk(µ) = E

{
∂ log fi,µ(Yi)

∂µj

∂ log fi,µ(Yi)

∂µk

}
, j, k = 1, 2.

The following theorem gives the formula of the information matrix.

Lemma 1. If C[3,1]
θ , C[1,3]

θ , and C[2,2]
θ exist in (0, 1)2, for each i, the following equalities hold

E

{
∂ log fi,µ(Yi)

∂µj

∂ log fi,µ(Yi)

∂µk

}
= E

{
−

∂2 log fi,µ(Yi)

∂µj∂µk

}
; j, k = 1, 2.

The proof of Lemma 1 is given in Appendix A.1.
Many copulas have C[3,1]

θ , C[1,3]
θ , and C[2,2]

θ in (0, 1)2, such as the normal, FGM, and Clayton
copulas (Appendix A.2.). The following theorem gives the formula of the information matrix.

Theorem 1. Under the copula-based model (Definition 1), the information matrix does not depend
on µ. Furthermore, if C[3,1]

θ , C[1,3]
θ , and C[2,2]

θ exist in (0, 1)2, it can be decomposed into the sum of
the information matrix for the independent model and the additional information by the copula,

Ii =

 1
σ2

i1
0

0 1
σ2

i2

+

 1
σ2

i1
E11

C (θi)
1

σi1σi2

{
E12

C (θi)− ρC(θi)
}

1
σi1σi2

{
E12

C (θi)− ρC(θi)
} 1

σ2
i2

E22
C (θi)

, (3)

where

E11
C (θi) = E

 ϕ(Zi1)C
[2,1]
θi
{Φ(Zi1), Φ(Zi2)}

C[1,1]
θi
{Φ(Zi1), Φ(Zi2)}


2

,

E22
C (θi) = E

 ϕ(Zi2)C
[1,2]
θi
{Φ(Zi1), Φ(Zi2)}

C[1,1]
θi
{Φ(Zi1), Φ(Zi2)}


2

,

E12
C (θi) = E

 ϕ(Zi1)ϕ(Zi2)C
[2,1]
θi
{Φ(Zi1), Φ(Zi2)}C

[1,2]
θi
{Φ(Zi1), Φ(Zi2)}

C[1,1]
θi
{Φ(Zi1), Φ(Zi2)}2

.

Theorem 1 can be proved by straightforward calculations as Lemma 1 (Appendix A.1.).
Theorem 1 helps us interpret the role of the copula Cθi on the information matrix.

Theorem 2. The determinant of Ii can be expressed as

det(Ii) =
1

σ2
i1σ2

i2

{
E11

C (θi)E22
C (θi)− E12

C (θi)
2
}

+ 1
σ2

i1σ2
i2

{
E11

C (θi) + E22
C (θi) + 2ρC(θi)E12

C (θi)}+ 1
σ2

i1σ2
i2

{
1− ρC(θi)

2
}

.

In addition, det(Ii) > 0 and Ii is positive definite.
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Proof of Theorem 2. The expression of det(Ii) is obtained by straightforward calculations.
Clearly, we have |ρC(θi)| < 1. Then, by the Cauchy-Schwarz inequality,

E11
C (θi)E22

C (θi) ≥ E12
C (θi)

2.

Furthermore, by the arithmetic-geometric mean inequality, we have

E11
C (θi) + E22

C (θi) ≥ 2
{

E11
C (θi)E22

C (θi)
}1/2

≥ 2
∣∣∣E12

C (θi)
∣∣∣ > 2

∣∣∣ρC(θi)E12
C (θi)

∣∣∣.
Then we obtain det(Ii) > 0. Since E11

C (θi)/σ2
i1 + 1/σ2

i1 > 0, both the upper left 1× 1
and 2× 2 determinants of Ii are positive. Thus, Ii is positive definite. �

Based on Theorem 1, one can derive the information matrix Ii(µ) for parametric
copulas. Below, we show examples of the normal, FGM, and Clayton copulas.

Example 6. (The normal copula): Under the normal copula

E11
CNormal(ρi) = E22

CNormal(ρi) =
ρ2

i
1− ρ2

i
, E12

CNormal(ρi) = −
ρ3

i
1− ρ2

i
.

Then, by Theorem 1, the information matrix in Equation (3) becomes

Ii =

 1
σ2

i1
0

0 1
σ2

i2

+


1

σ2
i1

ρ2
i

1−ρ2
i

1
σi1σi2

(
− ρ3

i
1−ρ2

i
− ρi

)
1

σi1σi2

(
− ρ3

i
1−ρ2

i
− ρi

)
1

σ2
i2

ρ2
i

1−ρ2
i


= 1

1−ρ2
i

 1
σ2

i1
− ρi

σi1σi2

− ρi
σi1σi2

1
σ2

i2

 = Ω−1
i .

and its determinant is det(INormal
i ) = 1/

(
σ2

i1σ2
i2
)
. Clearly, INormal

i is positive definite.

Example 7. (The FGM copula): Under the FGM copula

E11
CFGM(θi) = E22

CFGM(θi) = 4θ2
i

∫ ∞

−∞

∫ ∞

−∞

ϕ(z1)
3{1− 2Φ(z2)}2 ϕ(z2)

1 + θi{1− 2Φ(z1)}{1− 2Φ(z2)}
dz1dz2,

E12
CFGM(θi) = 4θ2

i

∫ ∞

−∞

∫ ∞

−∞

ϕ(z1)
2{1− 2Φ(z1)}ϕ(z2)

2{1− 2Φ(z2)}
1 + θi{1− 2Φ(z1)}{1− 2Φ(z2)}

dz1dz2, ρCFGM(θ) =
θ

π
.

Then, by Theorem 1, the information matrix in Equation (3) becomes

IFGM
i =

 1
σ2

i1
0

0 1
σ2

i2

+

 1
σ2

i1
E11

CFGM(θi)
1

σi1σi2
E12

CFGM(θi)− θi
πσi1σi2

1
σi1σi2

E12
CFGM(θi)− θi

πσi1σi2
1

σ2
i2

E22
CFGM(θi)

.

By Theorem 2, its determinant is

det(Ii) =
1

σ2
i1σ2

i2

{
E11

CFGM(θi)
2 − E12

CFGM(θi)
2
}

+ 2
σ2

i1σ2
i2

{
E11

CFGM(θi) +
θi
π E12

CFGM(θi)
}
+ 1

σ2
i1σ2

i2

(
1− θ2

i
π2

)
.

This result agrees with [3] who considered the FGM model.

Example 8. (The Clayton copula): Under the Clayton copula
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E11
CClayton(αi) = E22

CClayton(αi) = (αi + 1)
∫ ∞

−∞

∫ ∞

−∞

ϕ(z1)
3 ϕ(z2)

{
αiΦ(z1)

−αi − (αi + 1)Φ(z2)
−αi + (αi + 1)

}2

Φ(z1)
αi+3Φ(z2)

αi+1
{

Φ(z1)
−αi + Φ(z2)

−αi − 1
}1/αi+4 dz1dz2,

E12
CClayton(αi) =

∫ ∞
−∞

∫ ∞
−∞

ϕ(z1)
2{αiΦ(z1)

−αi−(αi+1)Φ(z2)
−αi+(αi+1)}

Φ(z1)
αi+2{Φ(z1)

−αi+Φ(z2)
−αi−1}1/2αi+2

× ϕ(z2)
2{αiΦ(z2)

−αi−(αi+1)Φ(z1)
−αi+(αi+1)}

Φ(z2)
αi+2{Φ(z1)

−αi+Φ(z2)
−αi−1 }1/2αi+2 dz1dz2,

ρCClayton(αi) = (αi + 1)
∫ ∞

−∞

∫ ∞

−∞

z1z2 ϕ(z1)ϕ(z2)

Φ(z1)
αi+1Φ(z2)

αi+1
{

Φ(z1)
−αi + Φ(z2)

−αi − 1
}1/αi+2 dz1dz2.

Then, by Theorems 1 and 2, we obtain IClayton
i anddet(IClayton

i ) accordingly.

4. Asymptotic Theory

To assess the sampling variability of µ̂n, its asymptotic distribution is presented in this
section.

A technical burden comes from the fact that our samples Yi, i = 1, 2, . . . , n are in-
dependent and non-identically distributed (i.n.i.d.) owing to heterogeneous variances
(Ωi 6= Ωj, i 6= j). The existence of the asymptotic distribution requires the stabilization of
the information matrix [3,46,47] in large samples. For the asymptotic variance of µ̂n, to be
defined, we assume the existence of a 2× 2 positive definite matrix I ≡ limn→∞ ∑n

i=1 Ii/n.

We further assume that the copula’s derivatives C[4,1]
θ , C[3,2]

θ , C[2,3]
θ , and C[1,4]

θ exist in (0, 1)2.
With these conditions and many other technical conditions given in [48], we establish the
consistency and asymptotic normality of µ̂n:

Theorem 3. Under the copula model (Definition 1), if some regularity conditions hold, then

(a) Existence and consistency: With probability tending to one, there exists the MLE
µ̂n = (µ̂n,1, µ̂n,2) such that µ̂n → pµ , as n→ ∞ ;

(b) Asymptotic normality: n1/2(µ̂n − µ)→ dN
(
0, I−1) , as n→ ∞ .

The proof of Theorem 3 and the required regularity conditions are given in the Ph.D
dissertation of [48]. The proof approximates n1/2(µ̂n − µ) by the sum of independent
random variables, and then applies the weak law of large numbers for i.n.i.d. random
variables from Theorem 1.14 in [49] and the Lindeberg–Feller multivariate central limit
theorem from Proposition 2.27 in [50]. The proof is fairly technical, but similar to those of
Theorem 6.5.1 in [51], Theorem 1 in [47], and Theorem 5.1 in [3].

5. SE and Confidence Sets

As Section 4 has established the asymptotic theory to evaluate the variability of the
proposed MLE, we can derive the SE, confidence interval (CI), and confidence ellipse (CE).

Let g : R2 7→ R be a differentiable function, and g(µ) be the parameter of interest. For
instance, g(µ) = µ1 and g(µ) = µ2 − µ1 can be considered. The SE of g(µ̂n) is

SE{g(µ̂n)} =

{∂g(µ)
∂µ

}T{
−∂2`n(µ)

∂µ∂µT

}−1{
∂g(µ)

∂µ

}∣∣∣∣∣
µ=µ̂n

1/2

.
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This formula is based on the delta method and the large sample approximation

I ≈ 1
n

n

∑
i=1

Ii ≈ −
1
n

∂2`n(µ)

∂µ∂µT

∣∣∣∣
µ=µ̂n

.

The 95% CI for g(µ) is g(µ̂n)± 1.96× SE{g(µ̂n)}.
Moreover, based on Theorem 3, we construct a 95% CE for µ:

CE =

{
µ : (µ̂n − µ)T

(
−∂2`n(µ)

∂µ∂µT

∣∣∣∣
µ=µ̂n

)
(µ̂n − µ) ≤ χ2

df=2,0.95

}
,

where χ2
df=2,0.95 is be the 95% point of the χ2-distribution with two degrees of freedom.

6. R Package

We implement the proposed methods in an R package CommonMean.Copula [26].
R users can easily compute the MLE with its SE and 95% CI under the FGM, Clayton,
Gumbel, Frank, and normal copulas. In this package, the log-likelihood is maximized by
the R optim function, where the initial values are set as the univariate estimators

µ
(0)
j =

(
n

∑
i=1

1
σ2

ij

)−1 n

∑
i=1

Yij

σ2
ij

, j = 1, 2.

For illustration, we fitted the Clayton copula by the following R codes:
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Here, $CommonMean1 shows µ̂
Clayton
n,1 = 33.95, SE(µ̂Clayton

n,1 ) = 0.439, and the 95% CI

(33.089, 34.812); $CommonMean2 is similar. $V shows the covariance matrix Cov(µ̂Clayton
n ).

$‘Log-likelihood values’ shows `Clayton
n (µ̂

Clayton
n ) = −285.65. One can fit other copulas

by changing “Clayton” to “FGM”, “Gumbel”, “Frank”, or “normal”.

7. Simulation Studies

We conducted Monte Carlo simulations to examine the accuracy of the proposed
methods. We report the results for the Clayton copula; more results are available from [48].

We generated Yi, i = 1, 2, . . . , n, under the Clayton copula with αi ∼ Gamma(64, 1/8),
Gamma(4, 1/2), or Gamma(1, 1), leading to E[αi] = 8, E[αi] = 2, or E[αi] = 1, respectively.
In all three cases, we have Var[αi] = 1. Without loss of generality, we set µ = (0, 0).
To set σ2

i1 and σ2
i2, we followed the simulation setting of [52]. That is, σ2

i1, σ2
i2 ∼ χ2

d f=1/4,

restricted in the interval [0.009, 0.6]. This setting leads to E
[
σ2

i1]= E[σ2
i2
]
= 0.173. Based

on the generated data, we computed µ̂
Clayton
n,1 , µ̂

Clayton
n,2 − µ̂

Clayton
n,1 , and µ̂

Clayton
n , and their

SEs and 95% CIs (CEs) by using the R function CommonMean.Copula (Section 6). We then
evaluated the coverage probability (CP) of the 95% CI (CE) to see how the confidence set
can cover the true value. We consider a small sample size n ∈ {5, 10, 15} and a large sample
size n ∈ {50, 100, 300}. Our simulations are based on 1000 repetitions.

Table 1 summarizes the results. For µ̂
Clayton
n,1 and µ̂

Clayton
n,2 − µ̂

Clayton
n,1 , the SDs of the

estimates decrease when n increases from n = 5 to n = 300. We report the boxplots
summarizing the 1000 repetitions for µ̂

Clayton
n,1 in Figure 2. This clearly visualizes how the

variability of the estimates vanishes as the sample sizes increase. Table 1 also shows that
the SDs are close to the average SEs, except for n = 5 (due to the very small samples).
Consequently, the CPs are close enough to the nominal level of 0.95, especially when sample
sizes are large, which is consistent with our asymptotic theories. For µ̂

Clayton
n , the CPs of

the 95% CEs are also reasonably close to the nominal level. In summary, the proposed
estimators and the asymptotic theory work fairly well in finite samples.

Table 1. Simulation results based on 1000 repetitions.

^
µ

Clayton

n,1
^
µ

Clayton

n,2 −^
µ

Clayton

n,1
^
µ

Clayton

n

Parameters n SD SE CP SD SE CP CP

E[αi] = 8 5 0.064 0.046 0.888 0.042 0.033 0.885 0.859
10 0.033 0.026 0.913 0.023 0.019 0.931 0.894
15 0.021 0.019 0.933 0.015 0.014 0.936 0.919
50 0.010 0.009 0.952 0.007 0.007 0.954 0.950
100 0.007 0.006 0.955 0.005 0.005 0.943 0.944
300 0.004 0.004 0.948 0.003 0.003 0.942 0.948

E[αi] = 2 5 0.105 0.092 0.938 0.100 0.086 0.920 0.909
10 0.061 0.057 0.937 0.060 0.055 0.929 0.919
15 0.049 0.045 0.938 0.045 0.042 0.943 0.930
50 0.023 0.023 0.959 0.022 0.021 0.944 0.943
100 0.016 0.016 0.942 0.015 0.015 0.957 0.950
300 0.009 0.009 0.946 0.008 0.008 0.946 0.949

E[αi] = 1 5 0.115 0.105 0.932 0.128 0.120 0.935 0.922
10 0.069 0.068 0.950 0.079 0.075 0.937 0.937
15 0.058 0.053 0.941 0.062 0.058 0.947 0.937
50 0.028 0.027 0.942 0.029 0.030 0.955 0.943
100 0.019 0.019 0.942 0.021 0.020 0.936 0.945
300 0.010 0.011 0.958 0.011 0.012 0.960 0.959

SD = standard deviation, SE = standard error, CP = coverage probability of the 95% CI (CE).
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under the copula parameters E[αi] = 8, E[αi] = 2, or E[αi] = 1. The sample size varies from n = 5
to n = 300.

8. Data Analysis

We analyze two real datasets to illustrate the usefulness of the proposed methods.

8.1. The Entrance Exam Data

The first dataset we analyzed was the entrance exam scores on mathematics and
statistics, which was introduced by [3]. The data come from undergrad students who
took written exams from 2013 to 2017 to enter the Graduate Institute of Statistics, National
Central University, Taiwan. The possible score range is from 0 to 100 for both subjects. Let
i = 1, 2, . . . , 5 be indices for years 2013, 2014, . . . , 2017. Table 2 provides the data, including
the values of mathematics (Yi1 = mean math score) and statistics (Yi2 = mean stat score),
and their covariance matrix (Ωi).

Table 2. The entrance exam data from [3].

i Year
Mean Math Score

(Yi1)
Mean Stat Score

(Yi2)
Covariance Matrix

(Ωi)
Copula Parameter

ρi θi αi βi γi

1 2013 35.17 30.41
[

1.77 0.89
0.89 2.99

]
0.38 1.00 0.67 1.34 2.68

2 2014 23.43 31.63
[

1.89 1.76
1.76 3.61

]
0.67 1.00 1.92 1.90 6.00

3 2015 30.74 48.11
[

2.15 2.12
2.12 6.13

]
0.58 1.00 1.37 1.65 4.67

4 2016 50.91 65.22
[

3.87 2.91
2.91 5.02

]
0.66 1.00 1.82 1.85 5.76

5 2017 61.62 40.22
[

3.17 2.10
2.10 3.29

]
0.65 1.00 1.75 1.83 5.60

ρi = the Pearson correlation; θi = the FGM copula parameter; αi = the Clayton copula parameter; βi = the Gumbel
copula parameter; γi = the Frank copula parameter.

We fitted the data to the proposed model using the R function CommonMean.Copula(.)
in our R package (Section 6). Table 3 summarizes the fitted results for the FGM, Clay-
ton, Gumbel, Frank, and normal copulas. According to the values of the log-likelihood,
the Gumbel copula produces the best fit, the Frank copula the second best, and the bivariate
normal model the worst fit. The FGM copula failed to capture the dependence and fitted at
the boundary θi = 1 for all i (Table 2).



Symmetry 2022, 14, 186 13 of 27

Table 3. Estimation results for the entrance exam data.

Copula Math: Estimate (95% CI) Stat: Estimate (95% CI) Log-likelihood CV

FGM 37.16 (35.85, 38.47) 41.17 (39.65, 42.70) −291.80 2723.91
Clayton 32.56 (31.71, 33.40) 43.80 (42.55, 45.05) −322.84 2644.03
Gumbel 37.67 (36.30, 39.03) 42.56 (40.79, 44.33) −279.28 2860.21
Frank 37.23 (35.97, 38.49) 39.76 (38.13, 41.40) −287.63 2738.09

Normal 35.83 (34.51, 37.16) 38.64 (36.94, 40.34) −342.65 2773.41

Since the number of unknown parameters across different copulas is the same, model
selection by the Akaike information criterion (AIC) is equivalent to model selection by the
log-likelihood value. An alternative way of selecting a copula is based on a leave-one-out
cross validation (CV), defined as

CV =
n

∑
i=1
{
(

Yi1 − µ̂
(−i)
n,1

)2
+
(

Yi2 − µ̂
(−i)
n,2

)2
},

where µ̂
(−i)
n,1 and µ̂

(−i)
n,2 are the MLE obtained without the ith sample. Here, CV measures

how a sample is predicted by the others under a copula model. A smaller CV corresponds
to a better performance of the model.

Table 3 reports the values of CV for each copula. It shows that the Clayton copula
has the best performance while the Gumbel copula has the worst. The normal copula has
the second worst performance. Overall, our analysis clearly shows the insufficiency of the
bivariate normal model.

Figure 3 shows the 95% CEs for the mean vector µ. This visualizes how the resultant
estimates vary from the choice of copulas. Interestingly, the CE under the Clayton copula
is far away from the other four, although it has a larger log-likelihood value than the
normal copula. The normal and Clayton copulas produce the rotated oval shape of the CEs,
representing a positive dependence between math and stat scores. The FGM and Gumbel
copulas produce similar shapes for their CE. We adopt the 95% CE given by the Gumbel
copula because it has the largest log-likelihood value.

Figure 4 gives the 3D plot of the log-likelihood surface under the Gumbel copula
model. The plot shows that the estimate of the common mean µ̂Gumbel

n = (37.67, 42.56)
attains the global maximum of the log-likelihood function.
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8.2. The Blood Pressure Data

The second dataset we used contains 10 studies that examined the effectiveness of
hypertension treatment for lowering blood pressure. Each study provides complete data
on two treatment effects, the difference in systolic blood pressure (SBP) and diastolic blood
pressure (DBP) between the treatment and the control groups, where these differences
are adjusted for the participants’ baseline blood pressures. The within-study correlations
of the two outcomes range from ρi = 0.45 to ρi = 0.78, exhibiting positive dependence.
This dataset is available in R package mvmeta [30] and was previously analyzed by [53].

We fitted the data to the proposed copula models using the R function Common-
Mean.Copula(.) in our R package (Section 6). Table 4 summarizes the fitted results for all
the copulas. Based on the log-likelihood values, the Frank copula produces the best fit, the
Gumbel copula the second best, and the Clayton copula produces the worst fit. The FGM
copula failed to capture the dependence and fitted at the boundary θi = 1 for all i. Again,
our analysis reveals the insufficiency of the bivariate normal model; the Frank copula best
captured the correlations in the blood pressure data. We also compared CV across all
the copulas (Table 4). The results show that the Clayton copula has the best performance
while the normal copula has the worst. Again, our analysis shows the insufficiency of the
normal model.

Table 4. Estimation results for the blood pressure data.

Copula SBP: Estimate (95% CI) DBP: Estimate (95% CI) Log-likelihood CV

FGM −9.18 (−9.32, −9.04) −3.94 (−4.00, −3.89) −530.29 177.23
Clayton −9.53 (−9.70, −9.36) −4.34 (−4.38, −4.29) −787.02 163.04
Gumbel −8.99 (−9.16, −8.83) −3.94 (−4.00, −3.89) −514.67 184.67
Frank −9.20 (−9.40, −9.00) −3.94 (−3.99, −3.88) −513.34 179.81

Normal −8.43 (−8.60, −8.25) −3.95 (−4.01, −3.90) −771.82 206.49

SBP = the difference in systolic blood pressure; DBP = the difference in diastolic blood pressure.

Figure 5 shows the 95% CEs for the mean vector µ. The CE under the Clayton and
normal copula are far away from the other three. The CE under the FGM copula was almost
fully covered by the CE under the Frank copula. We adopt the 95% CE given by the Frank
copula, since it has the largest log-likelihood value (Table 4).
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Figure 6 depicts the 3D plot of the log-likelihood surface under the Frank copula
model. The plot shows that the estimate of the common mean µ̂Frank

n = (−9.20,−3.94)
attains the global maximum of the log-likelihood function.
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9. Extension to Non-Normal Models

So far, we have considered a common mean model under the marginal normality.
This section explains how the proposed methods can be extended to non-normal models.
For this reason, we specifically consider a common mean model under the marginal
exponential distributions.

_
Fj(y) ≡ Pr(Yij > y) = exp(−λjy), y > 0, λj > 0, j = 1, 2.

Thus, the common mean vector is µ = (1/λ1, 1/λ2).
We consider the Clayton copula to specify the bivariate distribution because it has

simple derivatives with respect to the copula parameter [54]. Therefore, we propose a
bivariate common mean Clayton copula model with exponential margins as follows:

Pr(Yi1 > y1, Yi2 > y2) = CClayton
αi

{ _
F1(y1),

_
F2(y2)

}
= {exp(αiλ1y1) + exp(αiλ2y2)− 1}−1/αi , (4)

where αi is known for i = 1, 2, . . . , n. Note that copula CClayton
αi is a survival copula for

(Yi1, Yi2) as the usual way to model a survival function [22]. Using similar arguments to [55],
the information matrix with respect to λ = (λ1, λ2) can be decomposed as

Ii(λ) =

 1
λ2

1
0

0 1
λ2

2

+

 2α2
i (αi+1)

λ2
1(3αi+1)

− αi(2αi+1)
λ1λ2

φ(αi)

− αi(2αi+1)
λ1λ2

φ(αi)
2α2

i (αi+1)
λ2

2(3αi+1)

, (5)

where

φ(α) =
1

3α + 1
+

1
2(3α + 1)(2α + 1)

{
Ψ

(
1

2α

)
−Ψ

(
α + 1

2α

)}
, Ψ(α) =

d2 log Γ(α)

dα2 .

See Appendix A.3. for detailed derivations. The expression of Ii(λ) is an extension of
Theorem 3 to the exponential model. With the information matrix, the properties of the
MLE and the asymptotic theory are similar to the normal models.
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We conducted Monte Carlo simulations to examine the correctness of Equation (5) by
comparing it with their empirical version. We set λ1 = λ2 = 1 and αi = 1 for all i. We
generated data (Yi1, Yi2), i = 1, . . . , n from the model in Equation (4) and computed the
empirical versions of Ii,11(λ) and Ii,12(λ) as

1
n

n

∑
i=1

∂2 log f Clayton
i,λ (Yi1, Yi2)

∂λ2
1

,
1
n

n

∑
i=1

∂2 log f Clayton
i,λ (Yi1, Yi2)

∂λ1∂λ2
.

The formulas for the derivatives of the log-density are found in Equations (A1) and (A2) in
Appendix A.3. Our simulations were based on 1000 repetitions with n ∈ {100, 200, 300, 400, 500}.

Figure 7 depicts the simulation results based on 1000 repetitions. It clearly shows
that the empirical versions are scattered around the theoretical values of Ii,11(λ) = 2
and Ii,12(λ) = −1.16. The variability of the empirical versions vanishes as n increases.
The simulation results assert the correctness of Equation (5).
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Ii,12(λ) = −1.16 (dashed lines) under the Clayton copula model in Equation (4) with parameter = 1.
The sample size varies from n = 100 to n = 300.

10. Conclusions

At present, copula models are very popular in all areas of science. Bivariate meta-
analyses are among those research areas that require sophisticated copula-based methods
and theories. Nonetheless, there are only a few studies on copula-based bivariate meta-
analysis from a methodological/theoretical perspective. This article fully develops the
methodologies and theories of the copula-based bivariate meta-analysis, specifically for
estimating the common mean vector. These developments will provide solid methodologi-
cal/theoretical bases that are not available to date.

In this article, we emphasize the flexibility of the proposed copula models that allow
for a variety of dependence structures. In the two real data examples, we employed
the log-likelihood value as a criterion for model selection (Section 8). Even if the best
copula is selected, it still raises the issue of goodness-of-fit, which is difficult to assess
under the meta-analysis setting. The classical methods, such as Kolmogorov–Smirnov
or Cramér–von Mises type statistics, cannot be directly applied to the non-identically
distributed samples for which the empirical distribution function is difficult to interpret.
Therefore, the development of goodness-of-fit tests is a possible research direction.

The fundamental assumption made in the proposed model is the common mean
model, with known within-study correlations. The common mean assumption, although
convenient for summarizing the data for a small number of studies [56], may not always
hold in real meta-analyses [6]. Therefore, the extension of the proposed estimator to random
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means (random-effects models) or ordered means [57,58] is an important direction for future
research. To model the random effects, we need another bivariate copula. The estimation
problem for these hierarchical copula-based models is beyond the scope of the paper.
Nonetheless, the results presented in this paper serve as fundamental knowledge before
the exploration of more advanced models.
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Appendix A

Appendix A.1. Proof of Lemma 1

We first prepare a lemma:

Lemma A1. Under the general copula model (Definition 1), if C[2,2]
θ exists in (0, 1)2, the correlation

function has alternative expressions

ρC(θi) = E

[
Zi2 ϕ(Zi1)C

[2,1]
θi
{Φ(Zi1),Φ(Zi2)}

C[1,1]
θi
{Φ(Zi1),Φ(Zi2)}

]

= E

[
Zi1 ϕ(Zi2)C

[1,2]
θi
{Φ(Zi1),Φ(Zi2)}

C[1,1]
θi
{Φ(Zi1),Φ(Zi2)}

]

= E

[
ϕ(Zi1)ϕ(Zi2)C

[2,2]
θi
{Φ(Zi1),Φ(Zi2)}

C[1,1]
θi
{Φ(Zi1),Φ(Zi2)}

]
,

where Zi1 and Zi2 have the joint density

fi(z1, z2) = ϕ(z1)ϕ(z2)C
[1,1]
θi
{Φ(z1), Φ(z2)}.

Proof of Lemma A1. We only prove the first identity for illustration. If C[2,2]
θ exists, then

ρC(θi) =
∫ ∞
−∞ z2 ϕ(z2)

∫ ∞
−∞ z1 ϕ(z1)C

[1,1]
θi
{Φ(z1), Φ(z2)}dz1dz2

=
∫ ∞
−∞ z2 ϕ(z2)

∫ ∞
−∞ ϕ(z1)

2C[2,1]
θi
{Φ(z1), Φ(z2)}dz1dz2,
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where the last equality follows from Stein’s identity. Thus, we obtain

ρC(θi) =
∫ ∞
−∞

∫ ∞
−∞ z2 ϕ(z2)ϕ(z1)

2C[2,1]
θi
{Φ(z1), Φ(z2)}dz1dz2

=
∫ ∞
−∞

∫ ∞
−∞ z2 ϕ(z1)

C[2,1]
θi
{Φ(z1),Φ(z2)}

C[1,1]
θi
{Φ(z1),Φ(z2)}

fi(z1, z2)dz1dz2

= E

[
Zi2 ϕ(Zi1)C

[2,1]
θi
{Φ(Zi1),Φ(Zi2)}

C[1,1]
θi
{Φ(Zi1),Φ(Zi2)}

]
.

The proof completes. �

Lemma A1 is a generalization of Lemma 3.2 in [3].
Now, we prove Lemma 1 for j = 1 and k = 2. If C[2,2]

θ exists, by straightforward
calculations,

E
{

∂ log fi,µ(Yi)

∂µj

∂ log fi,µ(Yi)

∂µk

}
= 1

σi1σi2

(
E(Zi1Zi2)− E

[
Zi2 ϕ(Zi1)C

[2,1]
θi
{Φ(Zi1),Φ(Zi2)}

C[1,1]
θi
{Φ(Zi1),Φ(Zi2)}

]

−E

[
Zi1 ϕ(Zi2)C

[1,2]
θi
{Φ(Zi1),Φ(Zi2)}

C[1,1]
θi
{Φ(Zi1),Φ(Zi2)}

]

+E

[
ϕ(Zi1)ϕ(Zi2)C

[2,1]
θi
{Φ(Zi1),Φ(Zi2)}C

[1,2]
θi
{Φ(Zi1),Φ(Zi2)}

C[1,1]
θi
{Φ(Zi1),Φ(Zi2)}2

])
.

On the other hand,

E
{
− ∂2 log fi,µ(Yi)

∂µj∂µk

}
= 1

σi1σi2

(
E

[
ϕ(Zi1)ϕ(Zi2)C

[2,1]
θi
{Φ(Zi1),Φ(Zi2)}C

[1,2]
θi
{Φ(Zi1),Φ(Zi2)}

C[1,1]
θi
{Φ(Zi1),Φ(Zi2)}2

]

−E

[
ϕ(Zi1)ϕ(Zi2)C

[2,2]
θi
{Φ(Zi1),Φ(Zi2)}

C[1,1]
θi
{Φ(Zi1),Φ(Zi2)}

])
.

Based on the above results, it suffices to show

E(Zi1Zi2)− E

[
Zi2 ϕ(Zi1)C

[2,1]
θi
{Φ(Zi1),Φ(Zi2)}

C[1,1]
θi
{Φ(Zi1),Φ(Zi2)}

]

−E

[
Zi1 ϕ(Zi2)C

[1,2]
θi
{Φ(Zi1),Φ(Zi2)}

C[1,1]
θi
{Φ(Zi1),Φ(Zi2)}

]

+E

[
ϕ(Zi1)ϕ(Zi2)C

[2,2]
θi
{Φ(Zi1),Φ(Zi2)}

C[1,1]
θi
{Φ(Zi1),Φ(Zi2)}

]
= 0

which is asserted by Lemma A1. Hence, the proof is completed. �

Appendix A.2. Derivatives for Copulas

The normal copula:

CNormal [1,1]
ρ (u, v) =

1√
1− ρ2

exp

{
−ρ2Φ−1(u)2

2(1− ρ2)
− ρ2Φ−1(v)2

2(1− ρ2)
+

ρΦ−1(u)Φ−1(v)
1− ρ2

}
,
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CNormal [2,1]
ρ (u, v) =

√
2π√

1− ρ2
exp

{(
1− 2ρ2)Φ−1(u)2

2(1− ρ2)
− ρ2Φ−1(v)2

2(1− ρ2)
+

ρΦ−1(u)Φ−1(v)
1− ρ2

}

×
{

ρΦ−1(v)
1− ρ2 −

ρ2Φ−1(u)
1− ρ2

}
,

CNormal [2,2]
ρ (u, v) =

2π√
1− ρ2

exp

{(
1− 2ρ2)Φ−1(u)2

2(1− ρ2)
−
(
1− 2ρ2)Φ−1(v)2

2(1− ρ2)
+

ρΦ−1(u)Φ−1(v)
1− ρ2

}

×
[{

ρΦ−1(u)
1− ρ2 −

ρ2Φ−1(v)
1− ρ2

}{
ρΦ−1(v)

1− ρ2 −
ρ2Φ−1(u)

1− ρ2

}
+

ρ

1− ρ2

]
,

CNormal [3,1]
ρ (u, v) =

2π√
1− ρ2

exp

{(
2− 3ρ2)Φ−1(u)2

2(1− ρ2)
− ρ2Φ−1(v)2

2(1− ρ2)
+

ρΦ−1(u)Φ−1(v)
1− ρ2

}

×
[{(

1− 2ρ2)Φ−1(u)
1− ρ2 +

ρΦ−1(v)
1− ρ2

}{
ρΦ−1(v)

1− ρ2 −
ρ2Φ−1(u)

1− ρ2

}
− ρ2

1− ρ2

]
,

CNormal [3,2]
ρ (u, v) =

(2π)3/2√
1− ρ2

exp

{(
2− 3ρ2)Φ−1(u)2

2(1− ρ2)
−
(
1− 2ρ2)Φ−1(v)2

2(1− ρ2)
+

ρΦ−1(u)Φ−1(v)
1− ρ2

}

×
[{(

1− 2ρ2)Φ−1(u)
1− ρ2 +

ρΦ−1(v)
1− ρ2

}{
ρΦ−1(v)

1− ρ2 −
ρ2Φ−1(u)

1− ρ2

}
− ρ2

1− ρ2

+
ρ

1− ρ2

{
ρΦ−1(v)

1− ρ2 +
ρ2Φ−1(u)

1− ρ2

}
+

ρ

1− ρ2

{(
1− 2ρ2)Φ−1(u)

1− ρ2 +
ρΦ−1(v)

1− ρ2

}]
,

CNormal [4,1]
ρ (u, v) =

(2π)3/2√
1− ρ2

exp

{(
3− 4ρ2)Φ−1(u)2

2(1− ρ2)
− ρ2Φ−1(v)2

2(1− ρ2)
+

ρΦ−1(u)Φ−1(v)
1− ρ2

}

×
[{(

1− 2ρ2)Φ−1(u)
1− ρ2 +

ρΦ−1(v)
1− ρ2

}{
ρΦ−1(v)

1− ρ2 −
ρ2Φ−1(u)

1− ρ2

}
− ρ2

1− ρ2

+
1− 2ρ2

1− ρ2

{
ρΦ−1(v)

1− ρ2 +
ρ2Φ−1(u)

1− ρ2

}
− ρ2

1− ρ2

{(
1− 2ρ2)Φ−1(u)

1− ρ2 +
ρΦ−1(v)

1− ρ2

}]
.

The FGM copula:

CFGM [1,1]
θ (u, v) = 1 + θ(1− 2u)(1− 2v), CFGM [2,1]

θ (u, v) = −2θ(1− 2v),

CFGM [2,2]
θ (u, v) = 4θ, CFGM [3,1]

θ (u, v) = CFGM [3,2]
θ (u, v) = CFGM [4,1]

θ (u, v) = 0.

The Clayton copula:

CClayton [j,k]
α (u, v) = (α + 1)u−α−jv−α−k(u−α + v−α − 1)−1/α−(j+k)

ωj,k(u, v),

where (j, k) ∈ {(1, 1), (2, 1), (2, 2), (3, 1), (3, 2), (4, 1)},

ω1,1(u, v) = 1, ω2,1(u, v) = αu−α + (α + 1)
(
1− v−α

)
,

ω2,2(u, v) = −α(α + 1)u−2α − (α + 1)u−α +
(

4α2 + 3α + 1
)

u−αv−α − α(α + 1)v−2α − (α + 1)v−α + (α + 1)2.

ω3,1(u, v) = α(α− 1)u−2α + (4α− 1)(α + 1)
(
1− v−α

)
u−α + (α + 1)(α + 2)(1− v−α)

2,
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ω3,2(u, v) = −α(α− 1)(α + 1)u−3α − (α + 1)
(

3α2 + 4α− 1
)

u−2α + 3(α− 1)(α + 1)2u−α

+ α(α + 1)(α + 2)v−3α − (α− 1)(α + 1)(α + 2)v−2α − (α + 1)(α + 2)2v−α

+
(

11α3 + 7α2 + α− 1
)

u−2αv−α − (α + 1)
(

11α2 + 5α + 2
)

u−αv−2α

+ (α + 1)
(

8α2 + 5α + 5
)

u−αv−α + (α + 1)2(α + 2).

ω4,1(u, v) = α(α− 1)(α− 2)u−3α + (α− 1)(α + 1)(11α− 2)
(
1− v−α

)
u−2α

+ (α + 1)
(

11α2 + 14α− 7
)(

1− v−α
)2u−α + (α + 1)(α + 2)(α + 3)

(
1− v−α

)3.

Appendix A.3. The Information Matrix under the Clayton Copula with Exponential Margins

The Clayton copula model with exponential margins is given as

Pr(Yi1 > y1, Yi2 > y2) = CClayton
αi

{ _
F1(y1),

_
F2(y2)

}
= {exp(αiλ1y1) + exp(αiλ2y2)− 1 }−1/αi .

Then, the joint density is

f Clayton
i,λ (y1, y2) =

∂2

∂y1∂y2
Pr(Yi1 > y1, Yi2 > y2) =

(αi + 1)λ1λ2eαiλ1y1+αiλ2y2

(eαiλ1y1 + eαiλ2y2 − 1)1/αi+2 ,

where λ = (λ1, λ2). The log-density is

log f Clayton
i,λ (y1, y2) = log(αi + 1) + log λ1 + log λ2 + αiλ1y1 + αiλ2y2 −

(
1
αi

+ 2
)

log
(

eαiλ1y1 + eαiλ2y2 − 1
)

.

The first-order partial derivative of log f Clayton
i,λ (y1, y2) with respect to λj is

∂ log f Clayton
i,λ (y1, y2)

∂λj
=

1
λj

+ αiyj − (2αi + 1)
yje

αiλjyj

eαiλ1y1 + eαiλ2y2 − 1
, j = 1, 2.

The second-order partial derivatives of log f Clayton
αi (y1, y2) are

∂2 log f Clayton
i,λ (y1, y2)

∂λ2
j

= − 1
λ2

j
− αi(2αi + 1)

 y2
j eαiλjyj

eαiλ1y1 + eαiλ2y2 − 1
−

y2
j e2αiλjyj

(eαiλ1y1 + eαiλ2y2 − 1)2

, j = 1, 2, (A1)

∂2 log f Clayton
i,λ (y1, y2)

∂λ1∂λ2
= αi(2αi + 1)

y1y2eαiλ1y1+αiλ2y2

(eαiλ1y1 + eαiλ2y2 − 1)2 . (A2)

Then, the Fisher information matrix is

IClayton
i,jk (λ) = E

−∂2 log f Clayton
i,λ (Yi)

∂λj∂λk

, j, k = 1, 2.

For j = k = 1, we have

IClayton
i,11 (λ) = E

−∂2 log f Clayton
i,λ (Yi)

∂λ2
1


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=
1

λ2
1
+

αi(2αi + 1)
λ2

1

[
E

(
λ2

1Y2
i1eαiλ1Yi1

eαiλ1Yi1 + eαiλ2Yi2 − 1

)
− E

{
λ2

1Y2
i1e2αiλ1Yi1

(eαiλ1Yi1 + eαiλ2Yi2 − 1)2

}]
.

To compute the first expectation, we consider the change in variable λjyj = xj, j = 1, 2.
Then,

E

(
λ2

1Y2
i1eαiλ1Yi1

eαiλ1Yi1 + eαiλ2Yi2 − 1

)
= (αi + 1)

∫ ∞

0

∫ ∞

0

λ3
1y2

1λ2e2αiλ1y1+αiλ2y2

(eαiy1 + eαiy2 − 1)1/αi+3 dy1dy2

= (αi + 1)
∫ ∞

0

∫ ∞

0

x2
1e2αix1+αix2

(eαix1 + eαix2 − 1)1/αi+3 dx1dx2

= (αi + 1)
∫ ∞

0
x2

1e2αix1

∫ ∞

0

eαix2

(eαix1 + eαix2 − 1)1/αi+3 dx1dx2.

For the inner integral,

∫ ∞

0

eαix2

(eαix1 + eαix2 − 1)1/αi+3 dx2 = − 1
2αi + 1

{
1

(eαix1 + eαix2 − 1)1/αi+2

∣∣∣∣∣
∞

0

}
=

1
2αi + 1

e−(2αi+1)x1 .

It follows that∫ ∞

0
x2

1e2αix1

{
1

2αi + 1
e−(2αi+1)x1

}
dx1 =

1
2αi + 1

∫ ∞

0
x2

1e−x1 dx1 =
2

2αi + 1
.

Thus, we obtain

E

(
λ2

1Y2
i1eαiλ1Yi1

eαiλ1Yi1 + eαiλ2Yi2 − 1

)
=

2(αi + 1)
2αi + 1

.

The second expectation is computed as

E

{
λ2

1Y2
i1e2αiλ1Yi1

(eαiλ1Yi1 + eαiλ2Yi2 − 1)2

}
= (αi + 1)

∫ ∞

0

∫ ∞

0

λ3
1y2

1λ2e3αiλ1y1+αiλ2y2

(eαiy1 + eαiy2 − 1)1/αi+4 dy1dy2

= (αi + 1)
∫ ∞

0

∫ ∞

0

x2
1e3αix1+αix2

(eαix1 + eαix2 − 1)1/αi+4 dx1dx2

= (αi + 1)
∫ ∞

0
x2

1e3αix1

∫ ∞

0

eαix2

(eαix1 + eαix2 − 1)1/αi+4 dx1dx2.

For the inner integral,

∫ ∞

0

eαix2

(eαix1 + eαix2 − 1)1/αi+4 dx2 = − 1
3αi + 1

{
1

(eαix1 + eαix2 − 1)1/αi+3

∣∣∣∣∣
∞

0

}
=

1
3αi + 1

e−(3αi+1)x1 .

It follows that∫ ∞

0
x2

1e3αix1

{
1

3αi + 1
e−(3αi+1)x1

}
dx1 =

1
3αi + 1

∫ ∞

0
x2

1e−x1 dx1 =
2

3αi + 1
.

Thus, we obtain

E

{
λ2

1Y2
i1e2αiλ1Yi1

(eαiλ1Yi1 + eαiλ2Yi2 − 1)2

}
=

2(αi + 1)
3αi + 1

.
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Combining the above results, we have

IClayton
i,11 (λ) =

1
λ2

1
+

1
λ2

1

2α2
i (αi + 1)
3αi + 1

.

In a similar fashion, for j = k = 2, we also have

IClayton
i,22 (λ) =

1
λ2

2
+

1
λ2

2

2α2
i (αi + 1)
3αi + 1

.

For j = 1, k = 2, we have

IClayton
i,12 (λ) = E

−∂2 log f Clayton
i,λ (Yi)

∂λ1∂λ2

 = −
(

1
αi

+ 2
)

E

{
λ1λ2Yi1Yi2eαiλ1Yi1+αiλ2Yi2

(eαiλ1Yi1 + eαiλ2Yi2 − 1)2

}

= −αi(2αi + 1)
λ1λ2

E

{
λ1λ2Yi1Yi2eαiλ1Yi1+αiλ2Yi2

(eαiλ1Yi1 + eαiλ2Yi2 − 1)2

}
.

We consider

E

{
λ1λ2Yi1Yi2eαiλ1Yi1+αiλ2Yi2

(eαiλ1Yi1 + eαiλ2Yi2 − 1)2

}
= (αi + 1)

∫ ∞

0

∫ ∞

0

λ2
1λ2

2y1y2e2αiλ1y1+2αiλ2y2

(eαiy1 + eαiy2 − 1)1/αi+4 dy1dy2

= (αi + 1)
∫ ∞

0

∫ ∞

0

x1x2e2αix1+2αix2

(eαix1 + eαix2 − 1)1/αi+4 dx1dx2

= (αi + 1)
∫ ∞

0
x1e2αix1

∫ ∞

0

x2e2αix2

(eαix1 + eαix2 − 1)1/αi+4 dx1dx2.

For the inner integral,

∫ ∞

0

x2e2αix2

(eαix1 + eαix2 − 1)1/αi+4 dx1

= − 1
3αi + 1

∫ ∞

0
x2eαix2 d

{
1

(eαix1 + eαix2 − 1)1/αi+3

}

= − 1
3αi + 1

{
x2eαix2

(eαix1 + eαix2 − 1)1/αi+3

∣∣∣∣∣
∞

0

−
∫ ∞

0

1

(eαix1 + eαix2 − 1)1/αi+3 d(x2eαix2)

}

=
1

3αi + 1

∫ ∞

0

eαix2 + αix2eαix2

(eαix1 + eαix2 − 1)1/αi+3 dx2

=
1

3αi + 1

∫ ∞

0

eαix2

(eαix1 + eαix2 − 1)1/αi+3 dx2 +
αi

3αi + 1

∫ ∞

0

x2eαix2

(eαix1 + eαix2 − 1)1/αi+3 dx2,

where the second equality follows from integration by parts. For the first integral,

1
3αi + 1

∫ ∞

0

eαix2

(eαix1 + eαix2 − 1)1/αi+3 dx2

= − 1
(3αi + 1)(2αi + 1)

(
1

(eαix1 + eαix2 − 1)1/αi+2

∣∣∣∣∣
∞

0

)

=
1

(3αi + 1)(2αi + 1)
e−2(αi+1)x1 .
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The second integral is

αi
3αi + 1

∫ ∞

0

x2eαix2

(eαix1 + eαix2 − 1)1/αi+3 dx2

= − αi
(3αi + 1)(2αi + 1)

∫ ∞

0
x2d

(
1

(eαix1 + eαix2 − 1)1/αi+2

)

= − αi
(3αi + 1)(2αi + 1)

{
x2

(eαix1 + eαix2 − 1)1/αi+2

∣∣∣∣∣
∞

0

−
∫ ∞

0

1

(eαix1 + eαix2 − 1)1/αi+2 dx2

}

=
αi

(3αi + 1)(2αi + 1)

∫ ∞

0

1

(eαix1 + eαix2 − 1)1/αi+2 dx2,

where the second equality follows from integration by parts. Now, the expectation becomes

E

{
λ1λ2Yi1Yi2eαiλ1Yi1+αiλ2Yi2

(eαiλ1Yi1 + eαiλ2Yi2 − 1)2

}

=
αi + 1

(3αi + 1)(2αi + 1)

∫ ∞

0
x1e−x1 dx1 +

αi(αi + 1)
(3αi + 1)(2αi + 1)

∫ ∞

0

∫ ∞

0

x1e2αix2

(eαix1 + eαix2 − 1)1/αi+2 dx1dx2,

=
αi + 1

(3αi + 1)(2αi + 1)
+

αi(αi + 1)
(3αi + 1)(2αi + 1)

∫ ∞

0

∫ ∞

0

x1e2αix2

(eαix1 + eαix2 − 1)1/αi+2 dx1dx2.

For the integral in the above expression, we consider its inner integral,

∫ ∞

0

x1e2αix2

(eαix1 + eαix2 − 1)1/αi+2 dx1

= − 1
αi + 1

∫ ∞

0
x1eαix1 d

{
1

(eαix1 + eαix2 − 1)1/αi+1

}

= − 1
αi + 1

{
x1eαix1

(eαix1 + eαix2 − 1)1/αi+1

∣∣∣∣∣
∞

0

−
∫ ∞

0

1

(eαix1 + eαix2 − 1)1/αi+1 d(x1eαix1)

}

=
1

αi + 1

∫ ∞

0

eαix2 + αix1eαix1

(eαix1 + eαix2 − 1)1/αi+1 dx1

=
1

αi + 1

∫ ∞

0

eαix2

(eαix1 + eαix2 − 1)1/αi+1 dx1 +
αi

αi + 1

∫ ∞

0

x1eαix1

(eαix1 + eαix2 − 1)1/αi+1 dx1,

where the second last equality follows from integration by parts. We compute the above
two integrals separately. We have

1
αi + 1

∫ ∞

0

eαix2

(eαix1 + eαix2 − 1)1/αi+1 dx1 = − 1
αi + 1

{
1

(eαix1 + eαix2 − 1)1/αi

∣∣∣∣∣
∞

0

}
=

1
αi + 1

e−x2 .

On the other hand, we have

αi
αi + 1

∫ ∞

0

x1eαix1

(eαix1 + eαix2 − 1)1/αi+1 dx1

= − αi
αi + 1

∫ ∞

0
x1d

{
1

(eαix1 + eαix2 − 1)1/αi

}
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= − αi
αi + 1

{
x1

(eαix1 + eαix2 − 1)1/αi

∣∣∣∣∣
∞

0

−
∫ ∞

0

1

(eαix1 + eαix2 − 1)1/αi
dx1

}

=
αi

αi + 1

∫ ∞

0

1

(eαix1 + eαix2 − 1)1/αi
dx1.

Then,

∫ ∞

0

{
1

αi + 1
e−x2 +

αi
αi + 1

∫ ∞

0

1

(eαix1 + eαix2 − 1)1/αi
dx1

}
dx2 =

1
αi + 1

+
αi

αi + 1

∫ ∞

0

∫ ∞

0

1

(eαix1 + eαix2 − 1)1/αi
dx1dx2.

Combine all the results, one has

E

{
λ1λ2Yi1Yi2eαiλ1Yi1+αiλ2Yi2

(eαiλ1Yi1 + eαiλ2Yi2 − 1)2

}

=
αi + 1

(3αi + 1)(2αi + 1)
+

αi
(3αi + 1)(2αi + 1)

+
α2

i
(3αi + 1)(2αi + 1)

∫ ∞

0

∫ ∞

0

1

(eαix1 + eαix2 − 1)1/αi
dx1dx2

=
1

3αi + 1
+

α2
i

(3αi + 1)(2αi + 1)

∫ ∞

0

∫ ∞

0

1

(eαix1 + eαix2 − 1)1/αi
dx1dx2.

Let αix1 = s and αix2 = t, according to [52], we have

∫ ∞

0

∫ ∞

0

α2
i

(eαix1 + eαix2 − 1)1/αi
dx1dx2 =

∫ ∞

0

∫ ∞

0

1

(es + et − 1)1/αi
dsdt =

1
2

{
Ψ

(
1

2αi

)
−Ψ

(
αi + 1

2αi

)}
.

Hence, we obtain

E

{
λ1λ2Yi1Yi2eαiλ1Yi1+αiλ2Yi2

(eαiλ1Yi1 + eαiλ2Yi2 − 1)2

}
=

1
3αi + 1

+
1

2(3αi + 1)(2αi + 1)

{
Ψ

(
1

2αi

)
−Ψ

(
αi + 1

2αi

)}
.

Finally, combining the above results, we have

IClayton
i,12 (λ) = −αi(2αi + 1)

λ1λ2
φ(αi),

where

φ(α) =
1

3αi + 1
+

1
2(3α + 1)(2α + 1)

{
Ψ

(
1

2α

)
−Ψ

(
α + 1

2α

)}
.
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