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Abstract: The depth information of abdominal tissue surface and the position of laparoscope are very
important for accurate surgical navigation in computer-aided surgery. It is difficult to determine the
lesion location by empirically matching the laparoscopic visual field with the preoperative image,
which is easy to cause intraoperative errors. Aiming at the complex abdominal environment, this
paper constructs an improved monocular simultaneous localization and mapping (SLAM) system
model, which can more accurately and truly reflect the abdominal cavity structure and spatial
relationship. Firstly, in order to enhance the contrast between blood vessels and background, the
contrast limited adaptive histogram equalization (CLAHE) algorithm is introduced to preprocess
abdominal images. Secondly, combined with AKAZE algorithm, the Oriented FAST and Rotated
BRIEF(ORB) algorithm is improved to extract the features of abdominal image, which improves
the accuracy of extracted symmetry feature points pair and uses the RANSAC algorithm to quickly
eliminate the majority of mis-matched pairs. The medical bag-of-words model is used to replace
the traditional bag-of-words model to facilitate the comparison of similarity between abdominal
images, which has stronger similarity calculation ability and reduces the matching time between
the current abdominal image frame and the historical abdominal image frame. Finally, Poisson
surface reconstruction is used to transform the point cloud into a triangular mesh surface, and the
abdominal cavity texture image is superimposed on the 3D surface described by the mesh to generate
the abdominal cavity inner wall texture. The surface of the abdominal cavity 3D model is smooth and
has a strong sense of reality. The experimental results show that the improved SLAM system increases
the registration accuracy of feature points and the densification, and the visual effect of dense point
cloud reconstruction is more realistic for Hamlyn dataset. The 3D reconstruction technology creates
a realistic model to identify the blood vessels, nerves and other tissues in the patient’s focal area,
enabling three-dimensional visualization of the focal area, facilitating the surgeon’s observation and
diagnosis, and digital simulation of the surgical operation to optimize the surgical plan.

Keywords: 3D texture reconstruction; simultaneous localization and mapping (SLAM); contrast limited
adaptive histogram equalization (CLAHE); Oriented FAST and Rotated BRIEF(ORB); bag-of-words model

1. Introduction

Minimally invasive surgery is a new surgical technology that uses modern medical
instruments and equipment to pass through small wounds on the surface of the human
body and perform multiple actions with human hand–eye cooperation in the human
body [1]. Compared with traditional surgery or early minimally invasive surgery, modern
minimally invasive surgery has the advantages of accurate operation, less bleeding and
faster postoperative recovery. It is increasingly welcomed by patients and widely used
in internal cavity surgery. However, surgeons are prone to disorientation and occasional
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hand–eye imbalance when they perform complex surgery through the 2D visual display of
endoscopic video stream, and it is difficult to determine the lesion location by empirically
matching the endoscopic visual field with the preoperative image, which is easy to cause
intraoperative errors.

In recent years, minimally invasive surgery has been gradually integrated with com-
puter three-dimensional (3D) reconstruction technology. For example, surgeons use surgical
experience and image processing technology to stereo locate the lesion area using endo-
scope system, breaking the limitations of traditional surgery [2]. To help surgeons simulate
actual surgical operations, the digital 3D reconstruction model can be printed out in equal
scale through 3D printing technology [3]. Additionally, the 3D reconstruction model allows
the surgeon to explain the patient’s condition and surgical plan visually [4], facilitating
smooth communication between the surgeon and patient and enhancing the patient’s confi-
dence in treatment. At present, researchers at home and abroad have proposed different
kinds of methods based on computer vision to restore the three-dimensional surface struc-
ture of surgical scene in minimally invasive surgery, which are mainly based on laser, coded
structured light, time camera and video camera. Among them, the surface reconstruction
technology based on endoscope video has many obvious advantages. Specifically, this
method provides intraoperative information without destroying the internal structure of
the human body, and there is no need to introduce additional hardware into the current
surgical platform. Although endoscopic video provides on-site feedback information for
surgeons during surgery, video information has limitations and cannot meet the needs of
doctors. First, there is no clear depth information in two-dimensional images, so surgeons
must estimate the depth according to their experience. In addition, the field of vision of the
endoscope is very narrow, and it is difficult for the surgeon to accurately locate the position
and direction of the endoscope and surgical instruments. More importantly, due to the
limitation of the complex environment of human lumen, the number of cameras to obtain
the surface information of lumen tissue also affects the real-time and anti-interference
ability in the process of 3D reconstruction.

Monocular vision is a three-dimensional reconstruction technology that uses a camera
to capture the image of the target object. There are two main ways to realize the three-
dimensional modeling of monocular vision in the lumen environment. One way is to use the
information of the lumen image itself to obtain the three-dimensional feature information of
the lumen through a specific algorithm. Another way is to calibrate the camera parameters
of the endoscope system to obtain the depth information of the measured point. Because
monocular vision method has the advantages of simple equipment structure, convenient
use and easy data processing, most of the research at home and abroad is to use a monocular
vision algorithm to reconstruct the inner cavity.

In order to improve the accuracy of 3D reconstruction, Wu et al. [5] proposed com-
bining shape from shading (SFS) method and motion shape restoration method for the
inner cavity 3D reconstruction in 2010. This method combines the iterative nearest point
algorithm to reduce the error of coordinate system conversion in multiple artificial spine
images, improve the matching rate and recover the bone boundary line.

In 2012, Ciuti et al. [6,7] proposed a complete set of SFS calibration methods. Assuming
that the light source is close to the organ surface and far away from the optical center, the
spatial three-dimensional coordinates are obtained by triangulating the part of the organ
surface with specular highlights. Without any preoperative data, the endoscope device
performs 3D measurement according to the calculated trajectory and finally realizes the
automatic navigation of the capsule. However, the magnetic levitation capsule cannot
reach the ideal state in the process of movement, and the calibration accuracy needs to
be further improved. In the same year, Tokgozoglu et al. [8] proposed an SFS method
based on color projection, which can minimize the intensity changes caused by different
surface characteristics. In 2015, Goncalves et al. [9] proposed a perspective shape from
shading (PSFS) algorithm based on near light source perspective mapping to solve radial
distortion and reduced image edge resolution. This method establishes the radial distortion
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model, compensates the problem of reduced image edge resolution, and completes the
three-dimensional reconstruction of knee bone. In 2016, Lei et al. [10] proposed perspec-
tive mapping SFS method based on photometric calibration method to reconstruct organ
surface. This method, combined with optical flow method, changes the relative change
of gray gradient field into absolute change, which improves the stability of organ surface
reconstruction. In 2018, Turan et al. [11] used the above method for gastrointestinal surface
reconstruction. However, the gastrointestinal surface is not a smooth area. The uneven
surface will make the gradient vector change rate higher, and the obtained gray value will
also be lower than the real value, resulting in large reconstruction error.

To sum up, the difficulty of SFS algorithm in the process of three-dimensional recon-
struction of inner cavity is that there are multiple mappings between a two-dimensional
image and the surface shape. At the same time, there is only one formula in the brightness
equation, but there are two variables. Therefore, the direction of the object surface cannot
be determined only by the brightness equation. However, SFS algorithm is easy to combine
with other methods and complement each other for 3D reconstruction. At the same time,
SFS algorithm can perform dense calculation on smooth surfaces. Since the 1980s, SLAM
has been proposed for the first time, which specifically refers to the technology that the
subject equipped with a specific sensor moves in an unknown environment, locates itself
and constructs an incremental map [12], which is widely used in real-time reconstruction
of endoscope scenes.

In 2015, Lin et al. [13] proposed to restore the surface structure of three-dimensional
scene of abdominal surgery based on SLAM, improved the texture characteristics of lumen
image, the selection of green channel and the processing of reflective area, and studied a
new type of image features, namely branch points in blood tube features. After detecting
the vascular feature points, the branch segments are jointly detected and matched to match
the vascular features in the image. Finally, three-dimensional blood vessels are recovered
from each frame of image, and three-dimensional blood vessels from different perspectives
are integrated through blood vessel matching to obtain a global three-dimensional blood
vessel network.

In 2016, Yang [14] proposed endoscopic localization and construction of gastrointesti-
nal feature map based on monocular SLAM. In this method, Oriented FAST and Rotated
BRIEF (ORB) algorithm is selected for feature points detection from the perspective of
efficiency and matching accuracy. Combined with local pose optimization algorithm and
triangulation measurement with minimum geometric distance, a large amount of data
redundancy is processed through reselection of key frames and screening of feature points.
However, because the environment is the intestinal tract with non-closed endoscopic trajec-
tory, and the local part tends to be straight, it is different from the closure of most lumen
environments.

In 2019, Mahmoud et al. [15] proposed dense three-dimensional reconstruction of
abdominal cavity based on monocular ORB-SLAM. Firstly, the camera pose of key frames
is estimated by using the detection and matching process of sparse ORB-SLAM, and the se-
lection of key frames is determined according to the parallax criterion. Then, the variational
method combining zero mean normalized cross-correlation (ZNCC) and gradient-robust
kernel norm regularizer is used to calculate the dense matching between key frames in
parallel. This method uses monocular video input and does not need any reference point
or external tracker. It has been verified and evaluated on pig abdominal video sequence,
which shows that it is robust to serious illumination changes and different scene textures.
The main limitation of the system is that the texture feature description of soft tissue surface
is not representative, and there is texture distortion after reconstruction.

In the same year, Xie et al. [16] combined with the measurement data of endoscope in
gastrointestinal tract and introduced the local pose optimization algorithm and triangula-
tion algorithm with minimum geometric distance in terms of pose optimization and spatial
point positioning. In 2021, LaMarca et al. [17] first proposed the tracking and mapping
of deforming scenes from single sequences algorithm, which can run in real time in the
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deformed scene, and divide the calculation into two parallel threads. The deformation
tracking thread is used to estimate the camera pose and the deformation of the scene. The
deformation mapping thread is applied to the pose estimation of the endoscope to better
adapt to the lumen deformation scene, so as to generate an accurate 3D model of the human
lumen. However, it is easy to be affected by uneven illumination, resulting in poor visual
texture, and is not suitable for non-equidistant deformation lumen reconstruction.

In minimally invasive surgery, human tissue will deform and bleed, and often do not
have strong edge characteristics, so it shows the characteristics of highlight and specular
reflection. Facing this complex minimally invasive surgery environment, monocular SLAM
method has high robustness and can process soft tissue sequence images in real time.
Thus, 3D texture reconstruction of abdominal cavity based on monocular vision SLAM for
minimally invasive surgery is proposed in this paper. The rest of this paper is organized as
follows: Section 2 briefly introduces the proposed methods relevant and improvements in
this paper. Sections 3–5 describe improved abdominal cavity feature tracking, mapping and
optimization, Poisson surface reconstruction and texture mapping, and the experimental
results and analysis are given. Section 6 summarizes the conclusions and future work.

2. Proposed Methods

Aiming at the abdominal environment’s lack of features and specular reflection area,
this paper realizes three-dimensional reconstruction of abdominal cavity based on monoc-
ular SLAM. The system flow chart is shown in Figure 1. The system can be divided into
the following five modules: sensor data reading, abdominal cavity image preprocessing,
abdominal cavity feature tracking, local abdominal cavity map construction, loop detection
and map construction. Firstly, the abdominal image is preprocessed to distinguish the
specular reflection area and blood vessels to reduce the influence of the former. Secondly, a
SLAM system is established, which includes the following three parts: tracking thread, local
beam adjustment optimization thread and global pose loop detection. Finally, aiming at the
deficiency that the abdominal cavity point cloud is sparse and cannot fully and intuitively
describe the lumen environment, the multi frame abdominal cavity images of SLAM are
used to provide three-dimensional node data and texture information at the same time,
and a three-dimensional rotating lumen model that can be observed from multiple angles
is constructed.

Our proposed method is more suitable for the narrow, humid environment of an
abdominal cavity environment lacking in features. In this paper, we introduce the CLAHE
algorithm to enhance the vascular details in low-illumination abdominal images and adjust
the histogram to enhance the contrast of the images. This paper generates BoW models
specifically for medical images by extracting visual features of medical images in a way
that reduces the time required to solve for abdominal image similarity and reduces the
accumulated errors in the construction of 3D maps of the human abdominal cavity. As the
abdominal cavity map constructed by the SLAM system is a sparse structure, this paper
uses Poisson surface reconstruction to construct a dense mesh surface and superimposes
the abdominal cavity texture image onto the mesh to generate a smooth inner wall texture
on the surface. By forming a 3D-visualized abdominal cavity texture model, it provides the
surgeon with more intuitive information to make more accurate diagnosis. The simulation
of surgical operations based on the 3D reconstructed textured model allows the surgeon to
have a clear grasp of the surgical procedure before the operation, facilitating the surgeon’s
assessment of surgical risks and the planning of surgical design plans in advance.



Symmetry 2022, 14, 185 5 of 16

Symmetry 2022, 14, x FOR PEER REVIEW 5 of 16 

 

Image 

Frames

Laparoscope

Grayscale
Eliminate 

Specular Reflections

Contrast Limited Adaptive 

Histogram Equalization

Detect Feature Points
Initial Pose Estimation from 

Last Frame or Relocalisation
Track Local Map Select keyframes

KeyFrame 

Insertion
Recent Map Points Culling

New Points 

Creation
Local KeyFrames Culling

Local 

BA

Candidates Detection Compute Sim3 Loop Fusion Optimize Essential Graph

Sparse Point Cloud Map of  

the Abdominal Cavity

Preprocess

Tracking

Local Mapping

Loop Closing

 Create Map

Results of 3D Reconstruction 

of the Abdominal Cavity

Point Cloud 

Splicing

Poisson Surface 

reconstruction

Input

Output

 

Figure 1. Monocular SLAM based 3D reconstruction system for the human abdominal cavity. 

3. Abdominal Cavity Feature Tracking in Monocular SLAM 

Compared with images taken in indoor and outdoor environments, abdominal im-

ages are usually low striation and include low illumination and specular reflection areas 

because they are taken in the human abdomen with smooth and wet tissue surface. In 

order to more accurately and truly reflect the abdominal structure and spatial relationship 

under different viewing angles and different lighting conditions, this paper uses ab-

dominal image preprocessing to eliminate specular reflection and improve image con-

trast, and then uses the feature description algorithm in monocular SLAM system to detect 

and match the feature points of abdominal image. 

3.1. Image Preprossing 

Due to the lack of features, repetition and noise in the abdominal cavity image taken 

by laparoscopy, a sudden change of illumination may occur during the operation, result-

ing in the reduction in visual recognition of abdominal image, as shown in Figure 2. There-

fore, before laparoscopic pose estimation, it is necessary to preprocess the abdominal im-

age collected by laparoscopy in order to extract more feature information from the ab-

dominal image. 

   
(a) (b) (c) 

Figure 2. Abdominal images with different illumination. (a) Specular reflection; (b) Low-light im-

age; (c) Partially low illumination. 

The abdominal cavity images acquired by the laparoscope are RGB images. In order 

to extract feature information quickly and accurately, this paper uses grey-scale processed 

abdominal images, which are less noisy, and converts the abdominal images into an HSV 

Figure 1. Monocular SLAM based 3D reconstruction system for the human abdominal cavity.

3. Abdominal Cavity Feature Tracking in Monocular SLAM

Compared with images taken in indoor and outdoor environments, abdominal images
are usually low striation and include low illumination and specular reflection areas because
they are taken in the human abdomen with smooth and wet tissue surface. In order to
more accurately and truly reflect the abdominal structure and spatial relationship under
different viewing angles and different lighting conditions, this paper uses abdominal image
preprocessing to eliminate specular reflection and improve image contrast, and then uses
the feature description algorithm in monocular SLAM system to detect and match the
feature points of abdominal image.

3.1. Image Preprossing

Due to the lack of features, repetition and noise in the abdominal cavity image taken
by laparoscopy, a sudden change of illumination may occur during the operation, re-
sulting in the reduction in visual recognition of abdominal image, as shown in Figure 2.
Therefore, before laparoscopic pose estimation, it is necessary to preprocess the abdom-
inal image collected by laparoscopy in order to extract more feature information from
the abdominal image.
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The abdominal cavity images acquired by the laparoscope are RGB images. In order
to extract feature information quickly and accurately, this paper uses grey-scale processed
abdominal images, which are less noisy, and converts the abdominal images into an HSV
color model, using the S channel to remove specular reflections from the abdominal images
which contains saturation information.

In order to improve the contrast of abdominal images, Contrast Limited Adaptive His-
togram Equalization (CLAHE) algorithm [18] is selected to preprocess the low illumination
images. Firstly, the abdominal cavity image with low illumination is divided into 8× 8 sub
blocks of the same size, and these sub blocks do not overlap each other. Calculate the gray
histogram of each sub block as follows:

NAVG =
nxny

Ng
(1)

where NAVG represents the average number of pixels allocated to each gray level, nx is
the number of pixels in the horizontal direction, ny is the number of pixels in the vertical
direction, and Ng is the number of gray levels in the sub block.

Set the interception coefficient β of the number of gray level pixels, and calculate the
interception threshold T as:

T = β× NAVG (2)

After determining the interception threshold T, the pixels exceeding the threshold
in the gray histogram of each sub block are cut, and the intercepted pixels are evenly
distributed to each gray level, as shown in Formula (3):

Nre =
Sc

Ng
(3)

where Nre is the number of pixels allocated to each gray and Sc is the total number of
intercepted pixels.

The preprocessing experiment is carried out in the human abdominal cavity image in
Hamlyn medical image database, as shown in Figure 3. It can be seen that after preprocess-
ing, the specular reflection area in the abdominal image is reduced, the contrast between
the blood vessel and the background is enhanced, and the image texture is clearer.
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3.2. Feature Points Extraction and Matching

In computer vision, feature points contain relevant information in an image. In the
case of geometric position, feature points are usually corner points, that is, the points that
change in both directions or axes. Monocular SLAM algorithm creates a sparse map in the
abdominal scene, usually by extracting points containing characteristic information such as
blood vessels as scene features.
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ORB [19] algorithm uses features from accelerated segment testfast (FAST) [20] corner
extraction algorithm and Binary Robust Independent Elementary Features (BRIEF) [21]
descriptor to describe these feature points, which has strong robustness to rotation and
scaling, and good invariance to camera automatic gain, automatic exposure and illumi-
nation changes. However, in the process of corner detection, the repetition rate of feature
points obtained by fast algorithm is low. AKAZE [22] algorithm detects feature points in
the scale space established by nonlinear diffusion filtering, which can adaptively adjust
and retain the edge area information according to the details of the local area of abdominal
image, so as to improve the repeatability and uniqueness of feature points. Combined
with AKAZE algorithm, this paper improves the ORB algorithm, named as AKAZE-ORB
algorithm. Firstly, AKAZE algorithm is used to extract the feature points of abdominal
image to improve the repeatability of feature point extraction, and then the BREF descriptor
is used to describe the detected feature points. The AKAZE-ORB algorithm improves the
number of feature points extracted, and the registration effect is verified by comparative
experiments.

AKAZE implements fast explicit diffusion (FED) [23] embedded in a pyramidal frame-
work that enhances the speed of feature detection in nonlinear scale space. Key points
are located by finding the extrema of the second-order derivatives of the image over the
nonlinear multi-scale pyramid built from the principle of image diffusion [24]. The FED
expression is shown in Formula (4):

Li+1,j+1 =
(

I + τjA
(

Li
))

Li+1,j, j = 0, 1, . . . , n− 1 (4)

τj =
τmax

2 cos2 π(2j+1)
4n+1

(5)

where A(Li) is the conduction matrix of the image Li and τ is a constant time step. I is the
identity matrix. Where n represents the dominant diffusion step, τj is the corresponding step
size, and τmax is the maximum step size when the dominant diffusion stability condition
is met.

Next, this paper uses the BRIEF to establish the feature descriptor. The BRIEF descrip-
tor uses the binary string as the description vector, which describes the feature points by
performing gray scale test on the pixels in the neighborhood of the key points, as shown in
Formula (6):

ε(p; x, y) =
{

1 p(x) < p(y)
0 p(x) ≥ p(y)

(6)

where p(x), p(y) are the gray values of points and pixels, respectively. Through comparison,
n binary code strings are obtained to form an n-dimensional binary vector:

fn(p) = ∑
1≤i≤n

2i−1ε(p; xi, yi) (7)

Feature matching is an important step in the monocular SLAM abdominal 3D re-
construction system. The most basic method is the violent matching, that is, measure
the distance between each feature point and all descriptors, and take the closest distance
as the matching point by sorting. Because the BRIEF descriptor is in binary form, the
distance measurement of the descriptor usually relies on the Hamming distance. In terms
of eliminating mismatches, RANSAC algorithm [25] is used to randomly extract the sub
data sets in the noisy data sets in an iterative way to establish a mathematical model, and
then use the parametric model to evaluate and test the remaining non extracted sub data
sets.

The effect of traditional ORB algorithm and AKAZE-ORB algorithm on extracting
feature points of abdominal image frame is shown in Figure 4. The effect of AKAZE-ORB
algorithm on abdominal image frame feature point matching is shown in Figure 5.
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In order to improve the accuracy of feature matching, this paper uses the symmetry of
feature points to quickly eliminate the majority of mis-matched pairs combined with the
RANSAC algorithm, as shown in Figure 6.

Symmetry 2022, 14, x FOR PEER REVIEW 8 of 16 

 

 

 

  
(a) (b) 

 

Figure 4. Comparison of ORB and AKAZE-ORB algorithm for feature points extraction. (a) ORB; (b) 

AKAZE-ORB. 

 

Figure 5. Feature points matching results obtained by AKAZE-ORB. 

In order to improve the accuracy of feature matching, this paper uses the symmetry 

of feature points to quickly eliminate the majority of mis-matched pairs combined with 

the RANSAC algorithm, as shown in Figure 6. 

 

Figure 6. The results of RANSAC algorithm to identify incorrect matches. 

In this paper, ORB algorithm and AKAZE-ORB algorithm are used to extract feature 

points, respectively, as follows: the number of extracted feature points, the number of 

matching point pairs, the matching rate of abdominal images and running time in the 

50th, 100th, 200th, 300th and 450th frames are counted for Dataset1 (uniform interval) and 

140th, 280th, 365th, 490th, 540th are counted for Dataset2 (random interval) as shown in 

Tables 1 and 2, respectively. It can be seen from Table 1 that the running time of AKAZE-

Figure 6. The results of RANSAC algorithm to identify incorrect matches.

In this paper, ORB algorithm and AKAZE-ORB algorithm are used to extract feature
points, respectively, as follows: the number of extracted feature points, the number of
matching point pairs, the matching rate of abdominal images and running time in the
50th, 100th, 200th, 300th and 450th frames are counted for Dataset1 (uniform interval) and
140th, 280th, 365th, 490th, 540th are counted for Dataset2 (random interval) as shown in
Tables 1 and 2, respectively. It can be seen from Table 1 that the running time of AKAZE-
ORB algorithm is similar to that of ORB algorithm, but in terms of the number of feature
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points extracted, the total number of feature points detected by AKAZE-ORB algorithm
is about 1.5 times that of ORB algorithm. In terms of the number of matching point pairs
of feature points, AKAZE-ORB algorithm is also higher than ORB algorithm, and the
repeatability of feature points is high. In terms of matching accuracy, after eliminating the
wrong matching point pairs, the matching rate of AKAZE-ORB is about 10% higher than
that of ORB algorithm. After the evaluation of four indicators, it can be concluded that
AKAZE-ORB is more suitable for feature extraction of abdominal environment.

Table 1. Comparison of ORB and AKAZE-ORB feature point extraction algorithms for Dataset1.

Frame Methods Time (ms) Initial Match Correct Match Matching Rate (%)

50
ORB 76.33 456 305 66.89

AKAZE-ORB 75.98 531 407 76.72

100
ORB 73.76 450 297 66.00

AKAZE-ORB 74.19 524 395 75.49

200
ORB 70.23 457 293 64.11

AKAZE-ORB 69.54 519 380 73.27

300
ORB 72.67 455 301 66.15

AKAZE-ORB 70.11 521 384 74.76

450
ORB 73.42 457 298 65.21

AKAZE-ORB 74.92 511 379 74.26

Table 2. Comparison of ORB and AKAZE-ORB feature point extraction algorithms for Dataset2.

Frame Methods Time (ms) Initial Match Correct Match Matching Rate (%)

140
ORB 74.18 169 112 66.27

AKAZE-ORB 72.34 221 156 70.58

280
ORB 70.03 136 88 64.71

AKAZE-ORB 67.09 172 120 69.77

365
ORB 67.97 131 90 68.70

AKAZE-ORB 66.61 170 125 73.53

490
ORB 71.54 211 145 69.19

AKAZE-ORB 68.13 283 207 73.14

540
ORB 69.67 129 86 66.67

AKAZE-ORB 67.54 172 123 71.51

After extracting the abdominal cavity image feature information, depth cannot be
recovered from a single image. The relative depth of the abdominal cavity images needs
to be obtained through the continuous motion of the laparoscope to form the parallax
angle. The monocular SLAM system uses initialization to estimate the initial position of
the laparoscope as the initial value to obtain abdominal point cloud depth information and
construct a local abdominal 3D point cloud map.

4. Abdominal Cavity Mapping and Optimization

Compared with the traditional three-dimensional reconstruction method using multi
frame static abdominal images, the monocular SLAM system has the ability to optimize
pose and eliminate cumulative error. By selecting key frames, using a bag-of-words
model and BA optimization, the system reduces the accumulated error in the process of
abdominal cavity map construction, and obtains the sparse three-dimensional point cloud
on the abdominal cavity surface, which lays the foundation for dense reconstruction.
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4.1. Construction of Abdominal Cavity Bag-of-Words Model

Bag of words (bow) [26] is a technology that uses a visual dictionary to convert
images into sparse vectors, which enables this paper to process large image data sets more
efficiently. Words in the visual dictionary refer to the descriptors of ORB features. A word
represents a subset of descriptors of multiple similar features, and the dictionary contains
all words. In the SLAM system, the feature is extracted from each key frame and the
descriptor is calculated. All the features of the current frame are searched in the dictionary,
a word vector is constructed and added to the image database for query. When querying
two images, we mainly consider the similarity between them, that is, the spatial distance of
word vector. Usually, for the latest key frame, a series of key frames with high similarity
are found as loopback candidate frames, and then the key frames with good quality are
retained after verification and screening.

In this paper, 1500 sequence images of human body are extracted from the endoscopic
video database of Hamlyn, a large number of feature points are generated according to
the image data, organized and clustered according to a certain structure, and a vocabulary
specially used for minimally invasive surgery is trained. The fork tree structure is simple
and practical. It is the best choice to represent the word bag. It has logarithmic query effi-
ciency. It can also query directly from a certain layer according to some known information
to improve the query efficiency. Figure 7 shows the structure of the K-ary tree dictionary.
Starting from the root node, each layer node is divided into k nodes downward until the
set depth d is reached. The leaf nodes stored in the dth layer are clustered words. If you
build a dictionary tree with k bifurcation and d depth, the specific process is as follows:

1. The root node represents the set of all features, K-means algorithm is used to cluster
into k classes.

2. In the first layer, continue to cluster use K-means algorithm and separate k nodes to
get the next layer.

3. On the new layer, cycle the second step until the depth of the tree reaches the dth
layer.
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Figure 7. K-tree dictionary structure model.

In the whole tree structure, the leaf layer node is a word, and the intermediate node
(cluster center) generated in the process of establishing a dictionary can be used to query
words quickly. Each word includes parent node number, whether it is a leaf node, descrip-
tion of sub vector, weight and semantic label. The vocabulary words are the leaf nodes
of the tree. The inverse index stores the weight of the words in the images in which they
appear. The direct index stores the features of the images and their associated nodes at a
certain level of the vocabulary tree.
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The word bag vector is sparse and only needs to store the index and value of the
non-zero element of the vector. If the sum of two word bag vectors V1 and V2 is given, a
score D in the interval is obtained by using the L1 norm, which is defined as the similarity
of the two vectors:

D(V1, V2) = 1− 1
2

∣∣∣∣ V1

|V1|
− V2

|V2|

∣∣∣∣ (8)

In the Formula (16), the greater the value of D, the more similar of V1 and V2. Therefore,
by comparing the similarity of word bag vector, if the similarity score reaches the set
threshold, it can be considered that the two abdominal images are similar.

When the number of feature points extracted by ORB algorithm is 392 and 456 matches
are generated, the violent matching takes 46.62 ms to complete the matching, and the BoW
matching takes 40.23 ms. When the number of feature points extracted by AKAZE-ORB
algorithm is 587 and 531 matches are generated, the violent matching takes 41.52 ms to
complete the matching, and the BoW matching takes 36.18 ms, which means that BoW
matching can greatly reduce the time of feature matching.

4.2. BA Optimization

In the process of constructing the abdominal cavity 3D point cloud map, in order to
avoid feature information tracking failure, when the current frame extracts less feature
information, has low correlation with the historical frame, a new abdominal keyframe
needs to be inserted as soon as possible to update the visual correlation map. To ensure
abdominal feature tracking steadily, the system in this paper picks redundant keyframes in
the process of local abdominal map construction to improve the speed of the 3D texture
model. With the continuous addition of the key frames of the abdominal cavity image, the
error will be larger and larger when calculating the camera pose and 3D point coordinates
of the abdominal cavity space of adjacent frames. In this paper, the BA algorithm [27] is
used to construct the least squares problem and solve it iteratively to reduce the cumulative
error and realize the optimization of local map.

There are m three-dimensional points in abdominal space, of which the coordinates of a
point Pn are Pn = [Xn, Yn, Zn]

T and the pixel coordinates of its projection are un = [um, vm]
T .

Then, the relationship between pixel position and spatial point position is shown in
Formula (9):

Sn

 um
vm
1

 = KTl


Xn
Yn
Zn
1

 (9)

where Sn is the lie algebra of the depth Zn of the point Pn and Tl is the lie algebra of the
camera pose. After conversion to matrix form, Formula (9) is as follows:

Snun = KTlPn (10)

There are errors in solving the equation due to the noise of camera observations and
unknown pose. Therefore, in this paper, the error summation is transformed into the
corresponding least squares problem, and then the optimal camera pose can be obtained.

Tl
∗ = argmin

Tl

1
2

m

∑
n=1

∥∥∥∥un −
1

Sn
KTlPn

∥∥∥∥2

2

(11)

Local optimization makes the re-projection error infinitely close to 0, so as to obtain
the optimal camera parameters and the coordinates of three-dimensional space points.
Therefore, the BA algorithm is a method to optimize the position and pose parameters of
feature points, which can improve the positioning accuracy in abdominal space.
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4.3. Local Configuration of Abdominal Cavity Surface

This paper selects Dataset15 (the 15th video) in the Hamlyn laparoscopic video dataset
to verify and analyze the feasibility and effectiveness of the point cloud map construction
method designed in this paper. Figure 8 shows the effect of traditional ORB algorithm and
AKAZE-ORB algorithm on sparse reconstruction of abdominal surface, where the green
mark is the trajectory of laparoscopy, the red mark points represent the map points being
reconstructed, and the black points represent the map points after reconstruction. The
blue line indicates the pose of the camera at the time of key frames, which constitute the
motion trajectory of the camera. It can be seen that the monocular SLAM abdominal 3D
reconstruction system can obtain the 3D reconstruction point cloud based on abdominal
feature points and the motion trajectory of laparoscopy, but the obtained point cloud is very
sparse. The AKAZE-ORB algorithm obtains a denser point cloud effect than the original
system, but it is still unable to obtain a dense abdominal point cloud map.
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5. Poisson Surface Reconstruction and Texture Mapping

Although the 3D reconstruction of an abdominal cavity surface based on the SLAM
system can obtain real-time endoscope motion trajectory and 3D reconstruction point
cloud based on feature points, sparse 3D point cloud surface cannot obtain dense 3D
reconstruction effect. Therefore, the dense abdominal cavity map is obtained by Poisson
surface reconstruction and texture mapping.

The approach of Poisson surface reconstruction [28] is based on the observation that
the (inward pointing) normal field of the boundary of a solid can be interpreted as the
gradient of the solid’s indicator function [29]. Thus, given a set of oriented points sampling
the boundary, and construct the Poisson equation ∆x̃ = ∇ · ∇x̃ = ∇→v . For the problem of
uncertain position, the projection on the function space can best approximate the projection,
and then the minimum value x̃ of the following equation can be obtained.

∑o∈O

∥∥∥∥〈∆x̃−∇ ·
→
V, Fo

〉∥∥∥∥2

= ∑o∈O

∥∥∥∥〈∆x̃, Fo〉 −
〈
∇ ·

→
V, Fo

〉∥∥∥∥2

(12)

Finally, the surface model reconstruction is obtained by extracting the isosurface from
the indicator function. The position of the isosurface should be close to the position of the
input sample, and then the Poisson surface can reflect the real surface of the point cloud
model to be reconstructed.

In order to verify the performance-feature extraction and matching of AKAZE-ORB
algorithm proposed in this paper, a Hamlyn laparoscopic video data set is used to construct
3D sparse point cloud map. Figures 9 and 10 use Dataset1 and Dataset2, respectively, to
reconstruct the abdominal Poisson surface obtained by different algorithms. Poisson surface
reconstruction is to make all points as close to the implicit equation as possible. Therefore,
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it changes the original vertex data in the process, which is robust to external points and
the generated surface is very smooth. Figures 8 and 9 show the 3D reconstruction results
of abdominal cavity of the classical SLAM system, and (b) show the 3D reconstruction
results of abdominal cavity of the improved SLAM (ISLAM) system in this paper. From the
reconstruction results, it can be seen that the abdominal mesh model reconstructed by the
classical SLAM system has some holes, some surface mesh errors, and the reconstructed
surface has uneven parts. For example, the areas in red are sparse and sunken parts of
the mesh which leaves obvious gaps in the reconstructed abdominal model. However, the
reconstructed model surface by our ISLAM system is smooth, and the relevant contour
details are retained, which reduces the generation of holes in the reconstructed surface. The
meshes are more dense in the red area, which characterize the geometry of the abdominal
surface better, makes the abdominal model more real, smooth and delicate, and realizes
more accurate reconstruction of the abdominal model.
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(b) ISLAM.

Figures 11 and 12 are the abdominal reconstruction results of two data sets, respectively.
From the texture mapping results, it can be seen that the reconstruction algorithm after
feature extraction and matching by using the AKAZE-ORB algorithm, the effect of texture
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mapping is better than that of classical SLAM system. The reconstruction effect integrity
of classical SLAM system is low, and it is difficult to characterize the features of blood
vessels and tissues, while the reconstruction surface of ISLAM system is smooth, natural
and realistic with fewer holes for three-dimensional visualization of the abdominal model.
Additionally, the texture after mapping is also transitional and natural, with strong realism.
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6. Conclusions

This paper proposed a novel 3D texture reconstruction of abdominal cavity based
on monocular vision SLAM for minimally invasive surgery. CLAHE algorithm is intro-
duced into abdominal image preprocessing to enhance the contrast between blood vessels
and background. In the aspect of feature points extraction and matching, AZAKE-ORB
algorithm improves the registration accuracy and density. Combined with Poisson surface
reconstruction algorithm, the surface of abdominal cavity 3D model is smooth and has a
strong sense of reality. In addition, the visual features of medical images are extracted and
used to generate a bag-of-words containing abdominal feature information, which makes
the comparison of similarity between abdominal images easier and improves the robustness
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and real-time performance of loop detection. This paper uses the Hamlyn dataset medical
image database to design the registration accuracy and densification evaluation experiment.
The experimental results show that compared with the classical slam system, the system
improves the registration accuracy of feature points, improves the densification, and the
visual effect of dense point cloud reconstruction is more realistic.

In the 3D texture reconstruction of abdominal space, the proposed system cannot deal
with the movement and deformation of internal organs and eliminate vibration effects of
heartbeat, respiratory and surgical factors on non-rigid internal cavity surfaces. Therefore,
the future work would study how to combine the prior knowledge of the internal cavity
and make full use of various medical imaging techniques to build a high-precision 3D
texture reconstruction of the abdominal cavity in a dynamic environment.
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