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Abstract: Cooling of heat-generating elements in different engineering fields is a very important
and crucial topic. The present research is devoted to numerical analysis of thermogravitational
convection of a pseudoplastic nanosuspension in a chamber with two heated bottom wall sections
of various heat fluxes and isothermally cooling vertical walls. A mathematical model formulated
employing the time-dependent Oberbeck–Boussinesq equations with non-primitive variables has
been worked out by the finite difference technique. It has been revealed that a mixture of 1%
carboxymethylcellulose with water can be the most effective medium to cool the heat-generating
elements. At the same time, aluminum oxide nano-sized solid particles have a more essential cooling
impact on the heated sections.

Keywords: pseudoplastic nanofluid; natural convection; heat-generated wall sections; mathemati-
cal modeling

1. Introduction

The use of liquids in various mechanical and industrial tools, as well as in heat
exchangers, is common. The most popular working media are air, water, ethylene glycol
and engine oil, which have very low heat conductivity. However, in order to save energy
and costs, it is necessary to use media with higher thermal characteristics. As a result, many
studies, theoretical and practical experiments have been carried out aimed at increasing
the thermal conductivity of working fluids. One of the ways to solve the problem was the
addition of millimeter- and micrometer-sized particles. However, this approach showed
many disadvantages, such as a high pressure drop, erosion of details, and settling of
particles. All these difficulties led Choi [1] to pioneer the study of nanometer-sized particles
in base fluids and achieve improved thermal performance. Such liquids became known as
nanofluids and they consist of a base medium and nanoadditives, which are metal or metal
oxide particles, single-walled or multi-walled carbon nanotubes. Hybrid nanofluids, which
use two types of nanoparticles, have also become widespread. The obtained improved
working media are used in many technical applications, including cooling equipment,
nuclear reactors, imaging and sensing, drug delivery, fuel cells, and microchips [2–5].

Many authors have devoted their research to studying the properties of liquids with
nanoparticles. For example, Akhter et al. [6] have studied the convective energy transport
of a Cu-Al2O3/water hybrid nanosuspension inside a porous cavity, on the walls of which
there are heated and cooling sections. A heat-conducting cylinder is placed in the center of
the chamber. The outcomes have demonstrated that an increase in the Rayleigh number
and the Darcy number intensifies the convective flow. The work of Ibrahim et al. [7] deals
with the study of natural convective heat transfer of Al2O3/water nanoliquid in a square
chamber inclined by 45◦. On the lower wall, there are two semicircular isothermal heat
sources, and the upper wall is cold. During the study, it has been found that an increase in
Ra from 103 to 106 increases the energy transport rate by almost six times. Additionally,
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a square cavity has been used for analysis by Al-Farhany et al. [8]. The convective flow has
been formed due to the temperature difference of the side walls, while the right wall is
characterized by a variable heat generation. A vertical partition is located on the bottom
border of the cavity. Using numerical simulations, it has been revealed that an increase
in Ra and a baffle length Lb = 0.3 provide better heat transfer characteristics. Al-Maliki
et al. [9] has performed research on experimental analysis of the hybrid nanofluid natural
convection in a rectangular differentially heated cavity. A special feature is the presence of
a partition filled with a phase change material. The results have shown that an increase in
the concentration of nanoparticles enhances convective heat exchange. The influence of the
magnetic field and temperature gradient on the natural convection of a hybrid nanofluid
in a square cavity is estimated by Ghali et al. [10]. This case had two sections of the wall
with different temperatures and a porous insert. The authors have found that an increase
in the Rayleigh number and the volume fraction of nanoparticles enhances heat transfer
inside the cavity. A numerical study of MHD natural convection of a hybrid H2O/Ag-MgO
nanosuspension in a triangular porous cavity has been carried out by Redouane et al. [11].
The cathetuses are maintained at a high temperature, and the hypotenuse has a wavy shape
and is maintained at a low temperature. A rotating cylinder is inside the cavity. Modeling
has shown that the strength of energy transfer can be enhanced by increasing the size of
the solid particles.

Comparison of the efficiency of using a CuO/H2O nanofluid and water in the process
of natural convective heat exchange in a vacuum tube solar collector has been carried out by
Tabarhoseini and Sheikholeslami [12]. The authors have found that when using a nanofluid,
the heat transfer coefficient is higher than when using water. Additionally, the solar collector
has been studied analytically by Panda et al. [13], where a CuO/H2O nanosuspension has
also been used as a working medium. The authors have evaluated the effects of the Grashof
number and the nanoparticle concentration, resulting in a strengthening of convective
heat transfer with an increase in these parameters. A combination of active (electric field)
and passive (adding carbon nanotube nanoparticles) approaches to enhance heat transfer
in a dielectric oil filling a concentric cavity has been evaluated by Rejeb et al. [14]. The
inner cylinder is hot and the outer one is cold. The results have shown that the application
of an electric field can improve heat transfer by up to 3% to 77%, and the addition of
0.5% volume fraction of carbon nanotubes provides an improvement in heat transfer
of approximately 27%. A numerical study of MHD nanofluid convection in a channel
immersed in a porous medium has been carried out by Khan and Alqahtani [15]. The
channel walls have different temperatures and are permeable. The authors have revealed
a significant influence of the volume fraction of nanoparticles on both velocity profiles and
temperature patterns. Nabwey et al. [16] have studied the MHD convection of a Cu/H2O
nanosuspension in a tilted U-shaped chamber, where a source of fixed volumetric energy
production has been located on the bottom border. In the course of the study, an increase
in the mean Nu has been obtained with an increment of nanoparticle concentration, as
well as when the source moved towards the right boundary of the cavity. A comparison of
the thermal characteristics of two nanofluids, γAl2O3-C2H6O2 and γAl2O3-H2O, has been
carried out by Asifa et al. [17]. Liquids are filled in the differentially heated channel and the
flow occurs due to natural convection. The analysis has shown that a mixture of water and
γAl2O3 nanoparticles improves heat transfer more efficiently than dispersion of γAl2O3 in
ethylene glycol.

Algehyne et al. [18] have also compared a hybrid and a trihybrid nanofluid with
a pseudoplastic base medium in the problem of convective energy transport over a heated
stretching plate under the magnetic field impact. The main conclusion is that the thermal
conductivity of the base fluid rises with the addition of hybrid and trihybrid nanocom-
posites to 32% and 61%, respectively. Rahman et al. [19] have investigated the thermal
convection of a micropolar non-Newtonian hybrid nanofluid, MWCNT-Fe3O4/water, in
an inclined ⊥-shaped cavity. A semicircular source of constant temperature has been
placed on the bottom boundary. The authors have found that an increase in the micro-
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rotation parameter, the chamber inclination angle and the Hartmann parameter leads
to a decrease in the mean Nu. Additionally, a ⊥-shaped porous cavity has been studied
by Abderrahmane et al. [20], where the natural convective flow of a nano-enhanced phase
change material has been simulated. The lower wall of the cavity is trapezoidal and it has
been maintained at a constant high temperature. Modeling has shown that convective
heat transfer can be increased with increasing Rayleigh and Darcy numbers. The work
of Reddy and Panda [21] is devoted to the MHD natural convection of a non-Newtonian
nanofluid in a trapezoidal chamber, and the lower boundary of this region has a wavy
shape and it is maintained at a high temperature. The side walls are cooled down. The
authors have ascertained that the energy transport rate augments significantly with in-
creasing Hartmann number. Thermal and hydrodynamic characteristics of non-Newtonian
nanofluid have been studied by Ganesh et al. [22]. The cavity is a square shell with wavy
horizontal boundaries, the lower of which is partially heated and a cylindrical partition
is placed within the chamber. The boundary conditions of the insert have been changed
between thermal insulation, heating, and cooling effects. As a result, regardless of the type
of obstacle, the intensification of convective heat transfer can be achieved with an increase
in the Casson parameter, Rayleigh number, nanoadditive concentration, and the radiation
parameter. The convective flow of a nanoencapsulated material with a phase transition
inside a porous differentially heated cavity with a wavy top wall has been studied by Hus-
sain et al. [23]. The performed simulations have shown that an increase in the Darcy and
Rayleigh numbers intensifies the convective heat transfer within the cavity. Additionally,
Hussain et al. [24–26] have conducted a detailed study on the bioconvection of oxytactic
microorganisms with nanoencapsulated materials with a phase transition in porous cavities
of various shapes. The authors have found that an increase in the Darcy number improves
the oxygen isoconcentration and the isoconcentration of microorganisms.

The performed analysis of published studies has shown that the chosen topic has
a high popularity due to huge practical application and fundamental interest. However,
there is still much to be learned to fill in the gaps. That is why the purpose of this study
is to simulate the transient regimes of thermogravitational transport of a pseudoplastic
nanosuspension in a closed chamber with two heated sections of the bottom wall.

2. Formulation of the Problem

In this paper, a study of the pseudoplastic nanofluid natural convective heat transfer
in a closed chamber with two thermally generating sections of the bottom wall has been
performed. The convective flow is unsteady and laminar. The cavity is a square with
a characteristic size of L. The horizontal boundaries are completely thermally insulated,
while the vertical ones are maintained at a minimum temperature Tc. Gravity force is
directed vertically down. The geometry of the analyzed region is presented in Figure 1.
It is supposed that viscous dissipation and thermal radiation are neglected due to weak
convective flow within the chamber and non-diathermal nature of the working liquid,
where thermal radiation has a weak influence on the total heat transfer rate. Moreover,
the single-phase nanofluid model and local thermal equilibrium approach are used for
mathematical description of the considered phenomenon.

A nanofluid is used as a working medium, the base fluid of which is a mixture of
0.1% carboxymethylcellulose (CMC) with water. The following materials are employed
for nanoadditives: Cu, Al2O3, CuO, and TiO2. All properties of the materials used are
presented in Table 1 [27].

The resulting suspension of the base medium and nanoparticles is a pseudoplastic
liquid that satisfies the Boussinesq approximation. Such substances are effective in cool-
ing tasks, as they have a viscosity that reduces with an increase in the strain rate. The
pseudoplastic nature of the fluid flow is described by the Ostwald–de Waele power law [28]:

τij = 2µn f Dij (1)
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Here, τij is the deviatoric portion of the stress tensor, Dij = 1
2

(
∂ui
∂xj

+
∂uj
∂xi

)
are the

components of the strain rate tensor, and ui, uj are the velocity vector components; µnf is
the effective coefficient of viscosity of the nanosuspension, which has been calculated using
the experimental Corcione correlation [29]:

µn f =
µb f

1− 34.87
(

dp/db f

)−0.3
φ1.03

(2)
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Table 1. Thermal characteristics of materials.

Properties cp, J·kg−1·K−1 ρ, kg·m−3 k, W·m−1·K−1

CMC/water
(0.0–0.3%) 4179 997.1 0.613

Cu 385 8933 400
Al2O3 765 3970 40
CuO 535.6 6500 20
TiO2 686.2 4250 8.9538

The viscosity of the host liquid taking into account the Ostwald–de Waele law is

defined by the following relationship: µb f = K(2Dkl Dkl)
n−1

2 , where K is the consistency
and n is an indicator of liquid nature. Considering that the fluid behavior index is n < 1, we
can conclude that the medium has pseudoplastic rheology. Table 2 presents the variants of
the fluid behavior indicator that will be considered in this work [27].

Table 2. Host liquid rheology characteristics.

Properties n K/Nsn, M−2 Pr

CMC/water (0.0%) 1 0.000855 5.85
CMC/water (0.1%) 0.91 0.006319 26.8
CMC/water (0.2%) 0.85 0.017540 299.05
CMC/water (0.3%) 0.81 0.0313603 669.87
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The nanosuspension heat conductivity is also defined using the experimental data [29]

kn f =

1 + 4.4Re0.4Pr0.66

(
T

Tf r

)10(
kp

kb f

)0.03

φ0.66

 · kb f (3)

The flow structure and energy transport of the liquid in the chamber are defined em-
ploying a single-phase approach with effective properties and primitive variables [30–32]:

∂u
∂x

+
∂v
∂y

= 0 (4)

ρn f

(
∂u
∂t

+ u
∂u
∂x

+ v
∂u
∂y

)
= −∂p

∂x
+

∂τxx

∂x
+

∂τxy

∂x
(5)

ρn f

(
∂v
∂t

+ u
∂v
∂x

+ v
∂v
∂y

)
= −∂p

∂y
+

∂τxy

∂x
+

∂τyy

∂y
+ g(ρβ)n f (T − Tc) (6)

(ρc)n f

(
∂T
∂t

+ u
∂T
∂x

+ v
∂T
∂y

)
=

∂

∂x

(
kn f

∂T
∂x

)
+

∂

∂y

(
kn f

∂T
∂y

)
(7)

The correlations for nanosuspension properties are [33,34]

ρn f = ρb f (1−φ) + ρpφ,
(ρβ)n f = (ρβ)b f (1−φ) + (ρβ)pφ,
(ρc)n f = (ρc)b f (1−φ) + (ρc)pφ.

(8)

To reduce the mathematical difficulties, the stream functionψ (u = ∂ψ/∂y, v = −∂ψ/∂x)
and vorticityω (ω = ∂v/∂x− ∂u/∂y), as well as reference parameters presented in Table 3 [32],
are introduced into Equations (4)–(7). L is chosen as the length scale; ∆T = qL/kb f is used for
the temperature difference.

Table 3. Reference parameters.

Parameters Formula

Velocity
√

gβL∆T

Time
√

L/(gβ∆T)

Stream function
√

gβL3∆T

Vorticity
√

gβ∆T/L
Temperature Θ = (T − Tc)/∆T

As a result of this mentioned transformation, we have obtained the following system
of time-dependent partial differential equations including the conservation equations for
mass, momentum and energy based on non-primitive variables [30–32]

∂2Ψ
∂X2 +

∂2Ψ
∂Y2 = −Ω (9)

∂Ω
∂τ

+
∂Ψ
∂Y

∂Ω
∂X
− ∂Ψ

∂X
∂Ω
∂Y

= H1(φ)

(
Ra
Pr

) n−2
2 [
∇2(MΩ

)
+ SΩ

]
+ H2(φ)

∂Θ
∂X

(10)

∂Θ
∂τ

+
∂Ψ
∂Y

∂Θ
∂X
− ∂Ψ

∂X
∂Θ
∂Y

=
H3(φ)√
Ra · Pr

[
∂

∂X

(
kn f

kb f
· ∂Θ

∂X

)
+

∂

∂Y

(
kn f

kb f
· ∂Θ

∂Y

)]
(11)
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Non-dimensional viscosity M and source term SΩ from Equation (10) are [31,32]

M =

[
4
(

∂2Ψ
∂X∂Y

)2
+
(

∂2Ψ
∂Y2 − ∂2Ψ

∂X2

)2
] n−1

2
,

SΩ = 2
[

∂2 M
∂X2

∂2Ψ
∂Y2 + ∂2 M

∂Y2
∂2Ψ
∂X2 − 2 ∂2 M

∂X∂Y
∂2Ψ

∂X∂Y

]
The formulated set of Equations (9)–(11) includes the Rayleigh number Ra = gβ∆TL3/(να)

and the Prandtl number Pr = ν/α. The kinetic viscosity is defined as ν =
(

K
ρ

) 1
2−n · L

2−2n
2−n .

Additional dimensionless complexes are

H1(φ) =
ρb f
ρn f

= 1
(1−φ+φρp/ρb f )

H2(φ) =
(ρβ)n f
(ρβ)b f

ρb f
ρn f

=
1−φ+φ(ρβ)p/(ρβ)b f

1−φ+φρp/ρb f

H3(φ) =
(ρc)b f
(ρc)n f

= 1
1−φ+φ(ρc)p/(ρc)b f

(12)

The additional restrictions for the considered Equations (9)–(11) can be formulated as
Equation (13), where qr =

q2
q1

is the thermal flux density ratio.

τ = 0→ Ψ = Ω = 0, Θ = 0.5;
τ > 0→

X = 0 and X = 1, 0 ≤ Y ≤ 1, Ψ = 0, ∂Ψ
∂X = 0, Θ = 0;

Y = 0, 0 ≤ X ≤ 0.2 and 0.4 ≤ X ≤ 0.6 and 0.8 ≤ X ≤ 1, Ψ = 0, ∂Ψ
∂Y = 0, ∂Θ

∂Y = 0;

Y = 0, 0.2 ≤ X ≤ 0.4, Ψ = 0, ∂Ψ
∂Y = 0, ∂Θ

∂Y = − kb f
kn f

;

Y = 0, 0.6 ≤ X ≤ 0.8, Ψ = 0, ∂Ψ
∂Y = 0, ∂Θ

∂Y = − kb f
kn f

qr;

Y = 1, 0 ≤ X ≤ 1, Ψ = 0, ∂Ψ
∂Y = 0, ∂Θ

∂Y = 0.

(13)

3. Numerical Technique

To approximate and solve the described system of time-dependent differential Equa-
tions (9)–(11), various difference schemes have been used based on the finite difference
method. The method of successive under relaxation has been applied to solve the Poisson
Equation (9). The dimensionless viscosity has been approximated using regularization
scheme. The Samarskii locally one-dimensional scheme has been used to write the equa-
tions of motion and energy (10) and (11) in one-dimensional form. Next, the convective
terms have been discretized based on the pattern with donor cells, and the diffusion
members have been approximated using mean differences, while for an approximation of
time-dependent terms, the Euler scheme of the first order has been used. The resulting set
of linear equations has been worked out by the Thomas algorithm.

The developed algorithm for solving the problem and the resulting program code
have been tested using simple problems. Figure 2 shows the geometric statement of
the test problem. A non-Newtonian power-law liquid fills a closed differentially heated
chamber. The horizontal surfaces are adiabatic. Comparisons of the results have been
made on the basis of the normalized values of the mean Nu calculated on the heated
boundary, depending on time and the liquid nature parameter n according to the formula

Nuavg =
1∫

0

(
− ∂Θ

∂X

)
dY. The comparison is shown in Figure 3. Our data are indicated by

white points; the data of Turan et al. [35] are indicated by black points. It can be seen that
the agreement is good, which indicates the performance of our code.
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Separately, an analysis has been conducted for the impact of mesh parameters on
solution convergence according to the profiles of the average Nu and average temperature
calculated on the left heater, which are shown in Figure 4 for Al2O3 at Ra = 105, φ = 0.01,

qr = 1. The average Nusselt number is calculated by the relation: Nuavg = 1
0.2

0.4∫
0.2

(
1

ΘY=0

)
dX.

It can be seen that the grids of 100× 100 and 150× 150 elements did not lead to essential dif-
ferences, so the subsequent calculations have been carried out for a mesh of 100 × 100 cells
to diminish the calculation time.
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4. Results

In this work, mathematical modeling of the time-dependent modes of laminar thermal
convection of a pseudoplastic nanosuspension CMC/water + nanoparticles of Cu, Al2O3,
CuO, TiO2 has been carried out.

An analysis of the impact of the properties of the base medium on the process of
convective heat transfer has been conducted. Note that the behavior index n < 1 character-
izes the pseudoplastic nature of the liquid, while n = 1 is for the Newtonian liquid. Thus,
Figure 5 shows a comparison of the mean Nu and average temperature for various n at
Al2O3, Ra = 105, φ = 0.01, and qr = 1. It can be seen that at n = 0.91, the convective heat trans-
fer is the most intense, since Nuavg in this case has the maximum values, with an advantage
even over the Newtonian medium. At the same time, the mean temperature of the right
heater has low magnitudes, which indicates effective heat removal. Thus, these results
confirm the effectiveness of using a pseudoplastic base fluid for cooling a heated element.
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Separately, a study has been conducted of the influence of the nanoparticle material on
the process at Ra = 105 and φ = 0.01. Figure 6 demonstrates the profiles of the mean Nu and
mean temperature with time and the substance of which the nanoparticles are composed.
Nuavg and Θavg values have been calculated using the second source at qr = 2. It can be seen
that the maximum Nuavg and minimum Θavg values correspond to the use of aluminum
oxide nanoparticles. The results of calculations using titanium oxide almost coincide with
the curves for aluminum oxide, but are still less efficient. Thus, Al2O3 nanoparticles have
been used for further calculations. Moreover, it is interesting to note that the distributions of
the average Nu are directly proportional to the heat capacity of the considered nanoparticle
material and inversely proportional to its density, while one can find the opposite influence
for the average heater temperature.
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Figure 7 presents the isoline patterns of stream function and temperature with the
volume fraction of Al2O3 nanoparticles dispersed in the base medium. The distributions
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are built for Ra = 105 and qr = 1. The streamlines reflect the structure of the liquid motion
within the chamber. Two convective cells are apparent, the right of which has a clockwise
direction, and the left one has a counterclockwise direction. The flow pattern practically
does not change with φ—only a change in the shape of the cells and a decrease in cores
are noticeable. In this case, if one pays attention to the numerical values of the stream
functions, one can notice a decrease in the flow velocity with an increase in the nanoparticle
concentration. The second line of the figure illustrates the change in the distribution of
isotherms depending on φ. The origin of a two-dimensional heat plume can be observed in
the absence of nanoadditives. However, with an increase in φ, a degradation of the plume
occurs, which reflects the attenuation of convective energy transport.
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Figure 7. Impact of the nanoadditive concentration on streamlines and isotherms at Al2O3, Ra = 105,
qr = 1.

The conclusions obtained for Figure 7 confirm the profiles of the mean Nu and tem-
perature in Figure 8 at Ra = 105 and qr = 1. Convective energy transport is weakened with
an increase in nanoadditive concentration, while the average source temperature increases.
It should be noted that an increase in φ also results in an increment of the required time to
reach the steady-state regime. This result can be explained by an increase in the viscosity of
the working medium with an increase in the volume fraction of nanoparticles.
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Separately, the influence of the thermal flux density ratio on the structure of the fluid
flow and heat transfer has been analyzed for Al2O3 nanoparticles at Ra = 105 and φ = 0.01.
It can be seen from Figure 9 that an ascending flow is formed over a more heated source
in all cases; but at qr = 0.5 and qr = 2, this flow is directed towards the center of the cavity
at an angle, and not straight up, as when qr = 1. Such a flow forms two convective cells
of different power, and a less powerful one is located almost above the source, which has
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a higher heat flux density. In the case when the heat flow of both sources is the same,
symmetrical circulation zones are located in the cavity. If we pay attention to the isotherms,
we again see a symmetrical distribution at qr = 1. At other values of qr, a heat plume forms
over a heated element in the central part of the domain. We can also note a more essential
warming of the chamber for qr = 2.
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Figure 9. Effect of heat flux density on streamlines and isotherms for Al2O3 at Ra = 105 and φ = 0.01.

Figure 10 reflects the integral characteristics depending on the heat flux density ratio
calculated for both heaters when Al2O3 nanoparticles are at Ra = 105 and φ = 0.01. Solid
lines refer to the first source; dashed lines deal with the second one. If we consider the
values of the average Nusselt number, we can note that the values on the first source are
in the range from 6 to 8. The values for the second source have a wider range, from 4 to
12. A similar trend is observed for the mean temperature of the heaters. Note that the
magnitudes of Nuavg and Θavg at equal heat flux qr = 1 coincide at both sources. It is also
worth noting that the most intense convective flow corresponds to the case when qr = 0.5
and the Nuavg values are calculated on the second source. The same case corresponds
to the most efficient cooling of the heated element, since Θavg has minimum values for
these parameters.
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5. Conclusions

The process of thermogravitational energy transport of a pseudoplastic nanosuspen-
sion inside a chamber with two heated sections of the bottom wall has been studied in
this work. An investigation on the influence of the key parameters, including the index
of the behavior of the base medium (n), material of nanoparticles (Cu, Al2O3, CuO, and
TiO2), nanoadditive concentration (φ) and the thermal flux density ratio (qr) has been
conducted. A feature of this research is the use of experimental relations for nanoliquid
physical properties.

It has been found that a mixture of 1% carboxymethylcellulose and water can be the
most effective medium for the cooling process. Comparing the composition of nanoparticles,
it has been found that the use of aluminum oxide particles characterizes more active cooling
of the heated element. Within the framework of the described problem, an increase in
nanoadditive concentration is not efficient, since the lowest source temperature is observed
in the absence of nanoadditives. An assessment of the influence of the thermal flux density
ratio has shown that with more active heating of one element, more efficient heat removal
occurs from the second one.
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Nomenclature

Roman letters
a the beginning of the first local heater at X-axis
b the end of the second local heater at X-axis
d nanoparticles diameter, (nm)
cp heat capacity, (J/K)
Dij the components of the strain rate tensor
g gravitational acceleration, (m·s−2)
H1, H2, H3 secondary functions
K consistency, (Nsn·m−2)
L length of the square cavity, (m)
M non-dimensional viscosity of the base fluid
n power-law index
Nu Nusselt number
p pressure, (N·s−2)
Pr Prandtl number
q1 constant heat flux of the first source, (W·m−2)
q2 constant heat flux of the second source, (W·m−2)
qr relative heat flux
Ra Rayleigh number
Re Reynolds number
SΩ source term
T temperature, (K)
Tc temperature of cold vertical walls, (K)
Tft freezing point of base liquid, (K)
t time, (s)
U, V dimensionless velocity components in X, Y-direction, respectively
u, v velocity components in x, y-direction, respectively, (m·s−1)
X, Y dimensionless Cartesian coordinates
x, y Cartesian coordinates, (m)
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Greek symbols
α base fluid thermal diffusivity, (m2·s−1)
ρ density, (kg·m−3)
ρc volumetric heat capacity, (kg·J·K−1·m−3)
k thermal conductivity, (W·m−1·K−1)
µ effective viscosity coefficient, (Pa·s)
β heat expansion factor, (K−1)
∆T temperature drop, (K)
Θ dimensionaless temperature
ν effective kinematic viscosity, (m2·s−1)
τ dimensionless time
τij components of the deviatoric part of the stress tensor
Ψ dimensionless stream function
ψ stream function, (m2·s−1)
Ω dimensionless vorticity
ω vorticity, (s−1)
φ volume fraction of nanoparticles
Subscripts
avg average
bf base fluid
nf nanofluid
p particles
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