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Abstract: Longitudinal data modeling is widely carried out using parametric methods. However,
when the parametric model is misspecified, the obtained estimator might be severely biased and lead
to erroneous conclusions. In this study, we propose a new estimation method for longitudinal data
modeling using a mixed estimator in nonparametric regression. The objective of this study was to
estimate the nonparametric regression curve for longitudinal data using two combined estimators:
truncated spline and local linear. The weighted least square method with a two-stage estimation
procedure was used to obtain the regression curve estimation of the proposed model. To account
for within-subject correlations in the longitudinal data, a symmetric weight matrix was given in
the regression curve estimation. The best model was determined by minimizing the generalized
cross-validation value. Furthermore, an application to a longitudinal dataset of the poverty gap index
in Bengkulu Province, Indonesia, was conducted to illustrate the performance of the proposed mixed
estimator. Compared to the single estimator, the truncated spline and local linear mixed estimator
had better performance in longitudinal data modeling based on the GCV value. Additionally, the
empirical results of the best model indicated that the proposed model could explain the data variation
exceptionally well.

Keywords: local linear; longitudinal data; mixed estimator; nonparametric regression; poverty gap
index; truncated spline

1. Introduction

Regression analysis is a statistical technique that plays a crucial role in inferential
statistics and is widely employed in numerous scientific disciplines. The classical regression
method used for many years is parametric regression, which assumes the regression curve’s
shape follows a specified functional form, such as linear, quadratic or cubic [1]. Along with
the development of computational science and limitations in parametric regression models,
i.e., the assumption of the specified regression curve functional form, a nonparametric
regression model that does not necessitate numerous assumptions is becoming more rec-
ommended for solving problems in various applied fields. The nonparametric regression
method has a high degree of flexibility since the data can determine the form of the esti-
mated curve without interference from the researcher’s subjectivity [2]. In nonparametric
regression, there are various functions utilized to estimate the regression curve, which
are local linear [3–5], spline [6–8], kernel [9–11], local polynomial [12–14], and Fourier
series [15–17] functions. In addition [18], developed moving extremes ranked set sampling
(MERSS) to estimate a simple linear regression model.

The nonparametric regression approach, which has been conducted using various
estimators, is capable of modeling a dataset, but the model has a weakness. It is limited
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to one data pattern form, i.e., the non-mixed estimator (often called a single estimator) in
nonparametric regression. Theoretically, it assumes that each predictor variable always
has the same relationship pattern as the response variable. In reality, however, the data
pattern of each predictor has a different form. In addition, nonparametric regression with a
single estimator is unable to handle different data patterns between predictors. Because
of these weaknesses, researchers have developed a nonparametric regression model by
involving two or more estimators in the nonparametric regression model, from now on
referred to as a mixed estimator. The idea of developing a mixed estimator is taken from
the concept of semiparametric regression, such as that carried out by [19]. Several mixed
estimator studies have been conducted to estimate the nonparametric regression curve;
for example [20–22] developed a mixed estimator of spline and kernel for estimating
nonparametric regression curves. Similarly, in [23,24], researchers presented nonparametric
regression curve estimation using an estimator that combined truncated spline and Fourier
series. On the other hand, [25] proposed two nonparametric estimators of the regression
function with mixed measurement errors.

The development of research that uses the regression method not only deals with cross-
sectional data but also with longitudinal data. Longitudinal data modeling commonly uses
a parametric regression method. Several methods in parametric models for longitudinal
data have been developed and can be read about in [26], with related references listed
therein. Occasionally, parametric models for longitudinal data are too restrictive for many
applications because when the parametric model is misspecified, the estimators might
be severely biased and lead to erroneous conclusions. In recent years, a large amount of
literature on longitudinal data analysis has proposed several estimators in nonparametric
regression, such as spline [27,28], kernel [29,30], Fourier series [31], and local linear [32,33]
to overcome this difficulty.

In longitudinal studies, the nonparametric regression model has not dealt with two
combined estimators, i.e., a mixed estimator. Therefore, this study developed an adaptive
method to estimate regression curves for longitudinal data by using a mixed estimator
in nonparametric regression. Among several estimators in nonparametric regression, the
truncated spline is one of the more renowned estimators due to its high flexibility in
handling data that change at particular subintervals. Moreover, this estimator has an
accurate visual interpretation [2]. Meanwhile, the local linear estimator is widely used in
nonparametric regression because it is simple and easy to understand. The local linear
estimator is one of the smoothing techniques used in the nonparametric approach [34]. This
estimator has a good ability to model data that have a monotonous pattern, such as upward
or downward trends. The estimation is obtained by locally fitting a one-degree polynomial
to the data via weighted least squares (WLS) optimization. Considering the advantages of
these two estimators, as mentioned earlier, the primary objective of this study is to acquire
a nonparametric regression curve estimation for longitudinal data using a mixed estimator
that combines truncated spline and local linear functions. The curve estimation was carried
out using WLS optimization through two-stage estimation. In addition, to illustrate the
performance of the proposed model, an application to a real dataset is given for modeling
poverty gap index data in Bengkulu Province, Indonesia.

The remainder of the paper is structured as follows: Section 2 presents an overview
of the longitudinal data nonparametric regression model, truncated spline function,
local linear function, and WLS optimization. Section 3 comprises four subsections. The
estimation of the nonparametric regression curve for longitudinal data using a truncated
spline and local linear mixed estimator is presented in Section 3.1., followed by the
selection of the optimal knot point and bandwidth parameter to obtain the best model
in Section 3.2. Section 3.3 provides the implementation of the proposed model in a real
longitudinal data case. A discussion of the findings and future research are addressed in
the final section.
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2. Materials and Methods

In longitudinal studies, data from individuals are collected repeatedly over time. Lon-
gitudinal data are usually correlated between observations within a subject but are indepen-
dent between subjects [35]. Given a paired longitudinal dataset

(
t1il , . . . , tpil , x1il , . . . , xqil , yil

)
,

the relationship between predictor (t1il , . . . , tpil , x1il , . . . , xqil) and response yil variables is
assumed to follow a nonparametric regression model for longitudinal data, which can be
expressed as:

yil = µil

(
t1il , . . . , tpil , x1il , . . . , xqil

)
+ εil , i = 1, 2, . . . , n, l = 1, 2, . . . , L (1)

where µ is the regression curve and εil is a random error that is assumed to be identical,
independent and normally distributed. In this study, n represents the number of subjects,
p and q denote the number of predictor variables, and L represents the number of obser-
vations for each subject. For simplicity, Equation (1) can be represented in matrix form
as follows:

y = µ(t, x) + ε (2)

The regression curve of µil

(
t1il , . . . , tpil , x1il , . . . , xqil

)
for each i-th subject is assumed

unknown and to be an additive model. Thus, it can be written as:

µil

(
t1il , . . . , tpil , x1il , . . . , xqil

)
=

p

∑
j=1

f ji

(
tjil

)
+

q

∑
k=1

gki(xkil) (3)

in which ∑
p
j=1 f ji

(
tjil

)
represents the truncated spline component and ∑

q
k=1 gki(xkil) is the

local linear component. According to Equations (1) and (3), the paired data(
t1il , . . . , tpil , x1il , . . . , xqil , yil

)
following the nonparametric regression model for longitudi-

nal data can be rewritten as follows:

yil =
p

∑
j=1

f ji

(
tjil

)
+

q

∑
k=1

gki(xkil) + εil (4)

where random error εil has the following assumptions:

E(εil) = 0 ; Cov(εil , εil′) =

{
σ2

i(l) , if l = l′

σi(l,l′) , if l 6= l′
for i = 1, 2, . . . , n and l = 1, 2, . . . , L

such that the error varian-covarian matrix Cov(ε) = V can be written as follows:

V =


V1 0 · · · 0
0 V2 · · · 0
...

...
. . .

...
0 0 · · · Vn

, Vi =


σ2

i(1) σi(1,2) · · · σi(1,L)

σi(2,1) σ2
i(2) · · · σi(2,L)

...
...

. . .
...

σi(L,1) σi(L,2) · · · σ2
i(L)

, i = 1, 2, . . . , n

Furthermore, the regression curve component f ji

(
tjil

)
is approximated by a linear

truncated spline with knots λ1j, λ2j, . . . , λSj, as given in Equation (5):

f ji

(
tjil

)
= θ0i + θ1jitjil +

S

∑
m=1

αmji

(
tjil − λmji

)
+

(5)

with the truncated function,
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(
tjil − λmji

)
+
=

{(
tjil − λmji

)
, tjil ≥ λmji

0 , tjil < λmji
(6)

Meanwhile, the regression curve component gki(xkil) is approximated by a local linear
function at fixed point

(
x01i, x02i, . . . , x0qi

)
. Assume that gki(xkil) are independently on

different interval and has a (d + 1)− st derivative for d = 1 at x0ki. By Taylor expansion,
gki(xkil) can be locally approximated by a local linear function, defined as follows:

gki(xkil) = gki(xkil) + g′ki(xkil)(xkil − x0ki)
= β0i + β1ki(xkil − x0ki)

(7)

where xkil ∈ Ih(x0ki), Ih(x0ki) = (x0ki − h, x0ki + h) is the local neighborhood with the size
specified by a constant h > 0 called the bandwidth parameter.

In general terms, the WLS optimization form for estimating the regression curve of µil
using a mixed estimator of truncated spline and local linear form in Equation (4) is equal to
the goodness of fit component that can be defined by

Min
f j ,gk

 n

∑
i=1

L

∑
l=1

vil

(
yil −

p

∑
j=1

f ji

(
tjil

)
−

q

∑
k=1

gki(xkil)

)2

wh(xkil − x0ki)

 (8)

However, the regression curve estimate of the proposed model in this study is achieved
simultaneously through a two-stage estimation technique. The first stage is to complete the
estimation of the local linear component. The following stage involves the completion of
truncated spline component estimation. The estimation of the two components is carried
out using WLS optimization. The estimation results of each component are given by
Theorems 1 and 2 in Section 3.1.

3. Results
3.1. Estimation of the Nonparametric Regression Curve for Longitudinal Data Using a Truncated
Spline and Local Linear Mixed Estimator

As mentioned previously, a two-stage estimation technique using weighted least
squares (WLS) optimization was adopted to generate the truncated spline and local linear
mixed estimator in the nonparametric regression for longitudinal data. Consequently, some
lemmas and theorems are needed to obtain the regression curve estimation of the proposed
model. The first lemma describes the goodness of fit of the local linear component. The
first stage of estimation, as stated in Theorem 1, is derived by using the result of Lemma
1. Lemma 2 shows the second stage of estimation, i.e., WLS optimization, to estimate the
regression curve of the truncated spline component, with the estimation results presented
in Theorem 2. Appendices A–D provide all the proofs for the lemmas and theorems.

Lemma 1. If the regression curve of the local linear component gki(xkil)in the nonparametric
regression model for longitudinal data is given by Equation (7), then the goodness of fit can be
determined using the following equation:

(y∗ − X(x0)β)
TVWh(y

∗ − X(x0)β)

where Wh = diag(Wh1, Wh2, . . . , Whn) and V = diag(V1, V2, . . . , Vn) are the
nL × nLsymmetric matrix as a weighting of the local linear component and longitudinal
data, respectively.
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y∗ =
(
y∗T1 , y∗T2 , . . . , y∗Tn

)T , y∗i =
(
y∗i1, y∗i2, . . . , y∗iL

)T , y∗
il
= yil −

p
∑

j=1
f ji

(
tjil

)
, i = 1, 2, . . . , n, l = 1, 2, . . . , L,

X(x0) =


X1(x01) 0 · · · 0

0 X2(x02) · · · 0
...

...
. . .

...
0 0 · · · Xn(x0n)

,

Xi(x0i) =


1 (x1i1 − x01i) (x2i1 − x02i) · · ·

(
xqi1 − x0qi

)
1 (x1i2 − x01i) (x2i2 − x02i) · · ·

(
xqi2 − x0qi

)
...

...
...

. . .
...

1 (x1iL − x01i) (x2iL − x02i) · · ·
(
xqiL − x0qi

)
,

β =
[
β1 β2 · · · βn

]T , βi =
(

β0i β11i β12i · · · β1qi
)T .

The proof of the first lemma can be seen in Appendix A.

Theorem 1. If the goodness of fit is given in Lemma 1, then the regression curve estimation of the
local linear component can be obtained from WLS optimization, which is as follows:

ĝ(λ,h)(t, x) = Jy∗ (9)

where y∗ = y− f and J = X(x0)
[
X(x0)

TVWhX(x0)
]−1

X(x0)
TVWh.

The proof of Theorem 1 is provided in Appendix B. Furthermore, Lemma 2 describes
the second stage of WLS optimization to estimate the regression curve of the truncated
spline component, with Theorem 2 being the estimation result.

Lemma 2. If the regression curve of the truncated spline component f ji

(
tjil

)
is as presented in

Equation (5), then the WLS optimization can be formulated as follows:

[(I-J)y− (I-J)T(λ)γ]TV[(I-J)y− (I-J)T(λ)γ]

whereJ = X(x0)
[
X(x0)

TVWhX(x0)
]−1

X(x0)
TVWhandV = diag(V1, V2, . . . , Vn)is thenL×

nLsymmetric matrix as a weighting of the longitudinal data.

T(λ) =


P1 0 · · · 0
0 P2 · · · 0
...

...
. . .

...
0 0 · · · Pn

∣∣∣∣∣∣∣∣∣
R1 0 · · · 0
0 R2 · · · 0
...

...
. . .

...
0 0 · · · Rn

, Pi =


1 t1i1 t2i1 · · · tpi1
1 t1i2 t2i2 · · · tpi2
...

...
...

. . .
...

1 t1iL t2iL · · · tpiL

,

Ri =


(t1i1 − λ11i)+ · · · (t1i1 − λS1i)+ · · ·

(
tpi1 − λ1pi

)
+
· · ·

(
tpi1 − λSpi

)
+

(t1i2 − λ11i)+ · · · (t1i2 − λS1i)+ · · ·
(
tpi2 − λ1pi

)
+
· · ·

(
tpi2 − λSpi

)
+

...
. . .

...
. . .

...
. . .

...
(t1iL − λ11i)+ · · · (t1iL − λS1i)+ · · ·

(
tpiL − λ1pi

)
+
· · ·

(
tpiL − λSpi

)
+

,γ =

[
θ

α

]
,

θ =
[

θ01 θ111 θ121 · · · θ1p1 · · · θ0n θ11n θ12n · · · θ1pn
]T ,

α =
[

α111 · · · αS11 · · · α1p1 · · · αSp1 · · · α11n · · · αS1n · · · α1pn · · · αSpn
]
.

The evidence to support Lemma 2 can be found in Appendix C.
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Theorem 2. If Lemma 2 provides the optimization of WLS, then the regression curve estimation of
the truncated spline component in the nonparametric regression model for the longitudinal data in
Equation (4) can be obtained by WLS optimization, such that

f̂(λ,h)(t,x) = T(λ)K−1Ly (10)

where K =
(
JT − 2

)
VJT(λ)−VT(λ) and L =

(
I− JT)V(I− J).

In addition, an explanation of how to prove Theorem 2 is shown in Appendix D.
After obtaining the estimation of the truncated spline component f̂(λ,h)(t,x) in Theorem

2, the estimation result of ĝ(λ,h)(t, x) in Theorem 1 can be expressed as Equation (12). We
start by substituting Equation (10) into Equation (A9), which yields the following equation:

^
β =

[
X(x0)

TVWhX(x0)
]−1

X(x0)
TVWhy∗

=
[
X(x0)

TVWhX(x0)
]−1

X(x0)
TVWh

(
y−

^
f
)

=
[
X(x0)

TVWhX(x0)
]−1

X(x0)
TVWh

(
y− T(λ)

^
γ

)
=
[
X(x0)

TVWhX(x0)
]−1

X(x0)
TVWh

(
y− T(λ)K−1Ly

)
=
[
X(x0)

TVWhX(x0)
]−1

X(x0)
TVWh

(
I− T(λ)K−1L

)
y

(11)

Finally, the regression curve estimation of the local linear component is obtained by
substituting Equation (11) into Equation (A2) and it can be rewritten as Equation (12).

ĝ(λ,h)(t, x) = X(x0)β̂

= X(x0)
[
X(x0)

TVWhX(x0)
]T

X(x0)
TVWh

(
I− T(λ)K−1L

)
y

= J
(
I− T(λ)K−1L

)
y

(12)

The most important finding of this study is the curve estimation of the truncated
spline and local linear mixed estimator in the nonparametric regression for longitudinal
data. This finding is shown in Corollary 1.

Corollary 1. Based on the estimation of truncated spline and local linear components in Equation (10)
and Equation (12), respectively, the estimation of the nonparametric regression curve for longitudinal
data using the truncated spline and local linear mixed estimator can be expressed as a matrix:

µ̂(λ,h)(t, x) = T(λ)K−1Ly + J
(

I− T(λ)K−1L
)

y

Proof of Corollary 1. The regression curve estimation of the mixed estimator in nonparametric
regression model for longitudinal data in Equation (3) can be rewritten in the following
matrix form:

µ̂(λ,h)(t, x) = f̂(λ,h)(t, x) + ĝ(λ,h)(t, x)

By substituting the regression curve estimation results of f̂(λ,h)(t, x) in Equation (10)
and ĝ(λ,h)(t, x) in Equation (12), µ̂(λ,h)(t, x) can be defined as follows:

µ̂(λ,h)(t, x) = T(λ)K−1Ly + J
(
I− T(λ)K−1L

)
y

= A(λ,h)y + B(λ, h)y
(13)

For simplification, µ̂(λ,h)(t, x) can also be expressed as

µ̂(λ,h)(t, x) =
[
T(λ)K−1L + J

(
I− T(λ)K−1L

)]
y (14)

�
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3.2. Optimal Number of Knots and Bandwidth Selection

One method that is commonly used to determine the optimal knot is generalized cross
validation (GCV) [36], in which the optimal knot is obtained by taking the minimum GCV
value. In the case of longitudinal data, Wu and Zhang, in [35], generalize the GCV method
for selecting the optimal knot. In this study, modifications to the GCV method were carried
out for the selection of the knot and bandwidth parameters on a truncated spline and local
linear mixed estimator in a nonparametric regression model for longitudinal data. The
modified GCV method is given by Lemma 3 and Lemma 4.

Lemma 3. If, given the regression curve estimation of the truncated spline and local linear mixed
estimator in nonparametric regression for longitudinal data, as in Equation (13), then the mean
square error (MSE) of the model is as follows:

MSE(λ, h) =
1
N
‖(I−A(λ, h)− B(λ, h))y‖2

where N = n× L, A(λ, h) = T(λ)K−1L and B(λ, h) = J
(
I− T(λ)K−1L

)
.

Proof of Lemma 3. From Theorems 1 and 2, we obtain the curve estimation of the truncated
spline and local linear mixed estimator in a nonparametric regression model for longitudinal
data written as µ̂(λ,h)(t, x). Thus, based on µ̂(λ,h)(t, x) in Equation (13), the MSE of the
model is given as follows:

MSE(λ, h) = 1
N

(
y− ^

µ(λ,h)(t, x)
)T(

y− ^
µ(λ,h)(t, x)

)
= 1

N (y− (A(λ, h)y + B(λ, h)y))T(y− (A(λ, h)y + B(λ, h)y))
= 1

N (y− (A(λ, h) + B(λ, h))y)T(y− (A(λ, h) + B(λ, h))y)
= 1

N ((I−A(λ, h)− B(λ, h))y)T((I−A(λ, h)− B(λ, h))y)
= 1

N ‖(I−A(λ, h)− B(λ, h))y‖2

�

Lemma 4. If given the regression curve estimation µ̂(λ,h)(t, x) in Equation (13) and MSE(λ, h)
in Lemma 3, then the GCV function for the truncated spline and local linear mixed estimator in a
nonparametric regression model for longitudinal data is given by:

GCV(λ, h) =
1
N

‖(I−A(λ, h)− B(λ, h))y‖2

[N−1trace(I−A(λ, h)− B(λ, h))]2
(15)

Proof of Lemma 4. Based on the regression curve estimation µ̂(λ,h)(t, x) in Equation (13)
and MSE(λ, h) in Lemma 3, the GCV function for the truncated spline and local linear mixed
estimator in a nonparametric regression model for longitudinal data can be formulated
as follows:

GCV(λ, h) = MSE(λ,h)

[N−1trace(I−A(λ,h)−B(λ,h))]
2

= 1
N

‖(I−A(λ,h)−B(λ,h))y‖2

[N−1trace(I−A(λ,h)−B(λ,h))]
2

The optimum knot λ and the bandwidth parameter h are obtained by minimizing the
modification of the GCV function for the proposed mixed estimator model in Equation (15),
as shown below:

GCVopt
(
λopt, hopt

)
= Min

λ,h

{
1
N

‖(I−A(λ, h)− B(λ, h))y‖2

[N−1trace(I−A(λ, h)− B(λ, h))]2

}
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where N = n× L, A(λ, h) = T(λ)K−1L and B(λ, h) = J
(
I− T(λ)K−1L

)
derive from the

regression curve estimation of the proposed mixed estimator model, as in Equation (13). �

3.3. Application to Real Data

In this part, we make an effort to demonstrate how the proposed model can be applied
to a real case. The proposed mixed estimator model, along with its curve estimation
and modified GCV function, was applied in order to model poverty gap index data in
10 regencies across Bengkulu Province, Indonesia, over a twelve-year period (2010–2021).
The dataset was a longitudinal observation consisting of ten regencies as subjects with
twelve repeated times. The observed response (y) in this study was the distribution pattern
of poverty gap index data in each regency. The poverty gap index (hereinafter PGI-P1)
is one of the poverty indicators established by Statistics Indonesia to measure poverty
intensity. PGI-P1 is defined as the average measure of the expenditure gap of each poor
population toward the poverty line. A decrease in PGI-P1 indicates that the average
expenditure of poor people tends to be closer to the poverty line, which means that the
expenditure inequality of the poor is also decreasing [37].

Poverty eradication is the first goal of the Sustainable Development Goals (SDGs)
established by the United Nations in 2015. In Indonesia, the poverty issue has become a
strategic topic and a research priority for both central and local governments. Bengkulu is
one of the provinces in Indonesia that requires tremendous attention in poverty alleviation
programs. The poverty rate in Bengkulu is approximately double the national poverty
rate. BPS socio-economic data (March 2022) report that Bengkulu is among Indonesia’s
10 poorest provinces, with 14.62% of the population living in poverty [38]. According to
BPS socio-economic data, over the past twelve years, the poverty rate in Bengkulu has
generally declined; however, this is not in line with the decrease in the poverty gap index.
In this regard, PGI-P1 could help evaluate (public or private) policy in the area of poverty
reduction programs. Therefore, PGI-P1 was a potential topic to be discussed in this research,
particularly the PGI-P1 data in Bengkulu Province.

Several longitudinal studies have been conducted to analyze the factors that signifi-
cantly affect PGI-P1, such as the average length of school years [39,40], literacy rate [40],
gross regional domestic product (GRDP) per capita [41,42], and percentage of house-
holds working in the agricultural sector [40,42]. However, we used only the average
length of school years and percentage of households working in the agricultural sector
as predictor variables in this study. Furthermore, the partial relationship between the
response variable and each predictor variable for ten regencies is demonstrated by the
scatterplot in Figure 1.

Based on Figure 1, the partial scatterplot between PGI-P1 and the average length of
school years (x) tends to change monotonically with local acuity. Thus, it is assumed that
the average length of school years is a predictor variable for the local linear. Meanwhile,
the partial scatter plot between PGI-P1 and percentage of households working in the
agricultural sector (t) indicated a change in the data pattern at particular subintervals in
some subjects; this is a good fit for the truncated spline component.

Another important point observed in Table 1 is the comparison of some proposed
model combinations. Based on the GCV criterion, the leading PGI-P1 model produces
the smallest GCV of 19.2324, obtained from the model with a combination of 2 knots,
second weight, and bandwidth parameter of 0.9067. This model produces a coefficient of
determination (R-squared) of 92.17% and a mean square error (MSE) equal to 0.2917. The
R-squared value implies that 92.17% of the variance in PGI-P1 in Bengkulu Province could
be explained by predictors in the model. Meanwhile, other variables not incorporated in the
model produce a relatively small contribution to describing the data variability. The results
of knot location for each subject and the best model parameter estimation are presented in
Appendices E and F, respectively.
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Figure 1. Partial scatterplot of 10 subjects between (a) the poverty gap index (PGI-P1) and average
length of school years; (b) the poverty gap index (PGI-P1) and percentage of households working in
the agricultural sector. * scatterplot between response and each predictor.

Table 1. Summary of GCV results for PGI-P1 modeling.

Model 1

Nonparametric Regression with Truncated Spline and Local Linear Mixed
Estimator for Longitudinal Data

Number of Knots Weight Type Bandwidth Parameter
(x)

GCV

1
V = N−1I 0.7771 19.3669
V = n−1I 1.2089 19.7119
V = Σ−1 5.4400 31.5315

2
V = N−1I 0.7953 19.9016
V = n−1I 0.9067 19.2324 *
V = Σ−1 0.3181 68.3926
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Table 1. Cont.

Model 2

Nonparametric Regression with Truncated Spline Estimator for
Longitudinal Data

Number of Knots Weight Type GCV

1 V = N−1I 19.7483
V = n−1I 20.0859
V = Σ−1 24.2408

2 V = N−1I 22.9741
V = n−1I 21.1933
V = Σ−1 24.3359

Model 3

Nonparametric Regression with Local Linear Estimator for Longitudinal Data

Weight Type
Bandwidth Parameter

GCV
x t

V = N−1I 5.44 87.38 30.4703
V = n−1I 5.44 87.38 31.7384
V = Σ−1 5.44 87.38 56.7212

* The minimum value of GCV.

In general, the estimation of the nonparametric regression model for longitudinal
data using the truncated spline and local linear mixed estimator with two knots and two
predictors, one of the predictors following spline function and the other following local
linear function, can be formulated as follows:

ŷil = θ̂0i + θ̂1itil + α̂1i(til − λ1i)+ + α̂2i(til − λ2i)+ + β̂0i + β̂1i(xil − x0i)

for i = 1, 2, . . . , 10, l = 1, 2, . . . , 12.
Based on the results of parameter estimation for the best model in Appendix F, the

nonparametric regression model with a truncated spline and local linear mixed estimator
for modeling the PGI-P1 data of Bengkulu over the past twelve years for each regency
(subject) can be written as follows

Subject 1

ŷ1l = −6.7469 + 0.1778t1l − 0.1705(t1l − 46.36)+ + 0.0721(t1l − 76.44)+ + 2.2127− 0.1967(x1l − 9.26)
= −4.5343 + 0.1778t1l − 0.1705(t1l − 46.36)+ + 0.0721(t1l − 76.44)+ − 0.1967(x1l − 9.26)

Subject 2

ŷ2l = 5.1266− 0.0022t2l + 0.0226(t2l − 35.54)+ − 0.0953(t2l − 78.41)+ − 3.2662− 1.0230(x2l − 8.28)
= 1.8604− 0.0022t2l + 0.0226(t2l − 35.54)+ − 0.0953(t2l − 78.41)+ − 1.0230(x2l − 8.28)

...
Subject 10

ŷ10l = −1.2430 + 0.3772t10l − 0.2532(t10l − 7.98)+ − 0.3447(t10l − 23.92)+ + 2.8213 + 1.3042(x10l − 3.51)
= 1.5783 + 0.3772t10l − 0.2532(t10l − 7.98)+ − 0.3447(t10l − 23.92)+ + 1.3042(x10l − 3.51)

Interpretation of the model in each subject over time is generally divided for each
predictor and each subinterval of the truncated spline function. As an example, for subject
1 (South Bengkulu Regency), the interpretation of the model for predictor (t), percentage of
households working in the agricultural sector, is as follows: if it is assumed that the other
predictor (average length of school years) is constant, then the influence of the percentage
of households working in the agricultural sector on PGI-P1 in South Bengkulu can be
expressed in the following equation:

ŷ1l = 0.1778t1l − 0.1705(t1l − 46.36)+ + 0.0721(t1l − 76.44)+ + c (16)
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in which
c = −4.5343− 0.1967(x1l − 9.26)

The model in Equation (16) possesses three subintervals and it can be interpreted
using the following truncated function:

ŷ1l =


0.1778t1l + c, t1l ≤ 46.36

7.9049 + 0.0073t1l + c, 46.36 < t1l ≤ 76.44
−5.5116 + 0.0794t1l + c, t1l > 76.44

(17)

Based on the truncated function in Equation (17), in which the first subinterval was
assigned to the percentage of households working in the agricultural sector in South
Bengkulu over twelve years that was less than 46.36, an increase of one point in percentage
of households working in the agricultural sector will increase the PGI-P1 by 0.1778 points.
The second subinterval contains the percentage of households working in the agricultural
sector in the range of 46.36 to 76.44 and also had a positive correlation; an escalation of
one point in the percentage of households working in the agricultural sector will add
0.0073 points to PGI-P1. Meanwhile, the last subinterval was applied to the percentage of
households working in the agricultural sector that was greater than 76.44, which occurred
only in 2010. In that year, the percentage of households working in the agricultural sector
also had a positive correlation with PGI-P1. If there is an increase of one point in the
percentage of households working in the agricultural sector, then the index of PGI-P1
would increase by 0.0794 points. This interpretation is applicable to other subjects in the
same way.

Furthermore, based on the empirical results of the best model, it is also possible to
visually compare the actual and fitted values of the response variable for each subject.
A comparison between the response variable (blue line) and the fitted values (red line)
using the proposed model is presented in Figure 2. Some of the fitted values, as shown on
the graph, have a similar pattern to the actual data, while others do not; nonetheless, the
discrepancy is not extremely large. In summary, this application study certainly contributes
to our understanding of the proposed model, which is the truncated spline and local
linear mixed estimator in nonparametric regression for longitudinal data, notwithstanding
its limitations.

Figure 2. Comparison between actual and fitted values for each subject.
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4. Discussion and Conclusions

In this study, nonparametric regression with a new mixed estimator is proposed for
estimating curves in longitudinal data modeling. We combine the truncated spline and the
local linear as the classes of estimators in nonparametric regression. The estimation of the
proposed model’s regression curve using two-stage WLS optimization is as follows:

µ̂(λ,h)(t, x) =
[
T(λ)K−1L + J

(
I− T(λ)K−1L

)]
y

Furthermore, the application of the real dataset to model the PGI-P1 data in Bengkulu
Province shows that the proposed mixed estimator model produces better results compared
to the single estimator model. One of the most important findings is that the best PGI-P1
model is obtained from the proposed model using a combination of two knots, the second
weight, and some value of bandwidth parameters. The best model yields an R-squared
value that is quite significant in explaining the data variability based on the predictors in
the model. In summary, these implementation studies may provide an understanding of
regression curve estimation using the truncated spline and local linear mixed estimator in
the nonparametric regression for longitudinal data.

A major limitation of this research is the absence of a confidence interval estimation
and hypothesis testing of the proposed model. Therefore, further research ought to be
conducted to attain a confidence interval estimation and to perform hypothesis testing.
The applicability of the approach described in this paper to different mixed estimators in
nonparametric regression for longitudinal data is also a potential issue for further research.
Additionally, other case studies could be performed using combinations of the proposed
model with more predictors, higher knot numbers and more varied bandwidth parameters
to learn more about the performance evaluation of the proposed model.
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Appendix A

The regression curve gki(xkil) is assumed to be unknown but smooth and contained
in a specific function space. That regression curve is approximated using a local linear
estimator, as presented in Equation (7). The local linear function gki(xkil) with one predictor
variable, notated by k = 1, can be written as

gki = (gki(xki1), gki(xki2), . . . , gki(xkiL))
T , i = 1, 2, . . . , n

According to Equation (7), the local linear function in the component of regression
curve gki as written above can be described in the following matrix form:
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gki =


gki(xki1)
gki(xki2)

...
gki(xkiL)


= Xki(x0ki)βki

=


β0i + β1ki(xki1 − x0ki)
β0i + β1ki(xki2 − x0ki)

...
β0i + β1ki(xkiL − x0ki)

=


1 (xki1 − x0ki)
1 (xki2 − x0ki)
...

...
1 (xkiL − x0ki)


[

β0i
β1ki

]
(A1)

Consequently, the local linear function with q number of predictors for the component
of regression curve gi given in Equation (A1) can be expressed as follows:

gi = X1i(x01i)β1i + X2i(x02i)β2i + . . . + Xqi
(
x0qi
)
βqi

=
q
∑

k=1
Xki(x0ki)βki

= Xi(x0i)βi,

thus, obtained

g =


gT

1
gT

2
...

gT
n

 =


X1(x01)β1
X2(x02)β2

...
Xn(x0n)βn

 =


X1(x01) 0 · · · 0

0 X2(x02) · · · 0
...

...
. . .

...
0 0 · · · Xn(x0n)



β1
β2
...
βn

 = X(x0)β (A2)

The model of nonparametric regression for longitudinal data in Equation (4) can be
rewritten as

yil −
p

∑
j=1

f ji

(
tjil

)
=

q

∑
k=1

gki(xkil) + εil

y∗
il
=

q

∑
k=1

gki(xkil) + εil , i = 1, 2, . . . , n, l = 1, 2, . . . , L

(A3)

In the matrix form, the model in Equation (A3) can be written as in Equation (A4).

y− f= g + ε

y*= g + ε
(A4)

Thus, based on Equation (A3), where gki(xkil) is the local linear function, the goodness
of fit for WLS optimization as presented in Equation (8) can be written as follows:

n
∑

i=1

L
∑

l=1
vil

(
y∗il −

q
∑

k=1
gki(xkil)

)2

wh(xkil − x0ki)

=
n
∑

i=1

L
∑

l=1
vil

(
y∗il −

q
∑

k=1
(β0i +β1ki(xkil − x0ki))

)2

wh(xkil − x0ki)

(A5)

As a result, the goodness of fit for the local linear component in Equation (A5) can be
represented by the matrix form below

V(y∗ − X(x0)β)
2Wh = (y∗ − X(x0)β)

TVWh(y
∗ − X(x0)β)

Appendix B

According to the goodness of fit in Lemma 2, the WLS optimization in Equation (8)
can be expressed in the form
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Min
f j ,gk

 n

∑
i=1

L

∑
l=1

vil

(
y∗il −

q

∑
k=1

gki(xkil)

)2

wh(xkil − x0ki)

 (A6)

In the matrix from, Equation (A6) is written as

Min
β

{
(y∗ − X(x0)β)

TVWh(y
∗ − X(x0)β)

}
(A7)

Suppose Q(β) = (y∗ − X(x0)β)
TVWh(y∗ − X(x0)β), thus Equation (A7) can be de-

scribed as follows

Q(β) = y∗TVWhy∗ − 2βTX(x0)
TVWhy∗ +βTX(x0)

TVWhX(x0)β

Subsequently, Equation (A7) can be rewritten in the form:

Min
β
{Q(β)} = Min

β

{
y∗TVWhy∗ − 2βTX(x0)

TVWhy +βTX(x0)
TVWhX(x0)β

}
(A8)

The estimator β̂ can be obtained by solving the optimization in Equation (A8). The
completion is done by taking derivative partial Q(β) against β and equating the result
with zero, which is as follows:

Q(β)

β
= 0

y∗TVWhy∗ − 2βTX(x0)
TVWhy∗ +βTX(x0)

TVWhX(x0)β

β
= 0

−2X(x0)
TVWhy∗ + 2X(x0)

TVWhX(x0)β̂= 0

giving the result

β̂ =
[
X(x0)

TVWhX(x0)
]−1

X(x0)
TVWhy∗ (A9)

By substituting β̂ in Equation (A9) into Equation (A2), the regression curve estimation
of the local linear component can be written as

ĝ(λ,h)(t, x) = X(x0)β̂

= X(x0)
[
X(x0)

TVWhX(x0)
]−1

X(x0)
TVWhy∗

= Jy∗
(A10)

in which y∗ = y− f and X(x0)
[
X(x0)

TVWhX(x0)
]−1

X(x0)
TVWh.

Appendix C

The estimation result of Theorem 1 for the local linear component still includes the
linear truncated spline function f, as shown in Equation (5). Therefore, to complete the WLS
optimization in Equation (8), the estimation of the regression curve for the truncated spline
component f ji

(
tjil

)
is required. According to Equation (5), the truncated spline component

in the nonparametric regression curve for longitudinal data, which only has one predictor
(j = 1), can be expressed in the following matrix form:
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fji =


f ji
(
tji1
)

f ji
(
tji2
)

...
f ji
(
tjiL
)
 =



θ0i + θ1jitji1 +
S
∑

m=1
αmji

(
tji1 − λmji

)
+

θ0i + θ1jitji2 +
S
∑

m=1
αmji

(
tji2 − λmji

)
+

...

θ0i + θ1jitjiL +
S
∑

m=1
αmji

(
tjiL − λmji

)
+



=


1 tji1
1 tji2
...

...
1 tjiL


[

θ0i
θ1ji

]
+


(
tji1 − λ1ji

)
+

(
tji1 − λ2ji

)
+
· · ·

(
tji1 − λSji

)
+(

tji2 − λ1ji
)
+

(
tji2 − λ2ji

)
+
· · ·

(
tji2 − λSji

)
+

...
...

. . .
...(

tjiL − λ1ji
)
+

(
tjiL − λ2ji

)
+
· · ·

(
tjiL − λSji

)
+




α1ji
α2ji

...
αSji


= Pjiθji + Rjiαji

(A11)

Therefore, using Equation (A11), the function of truncated spline fi for j = 1, 2, . . . , p
predictors, can be written as follows:

fi = P1iθ1i + R1iα1i + P2iθ2i + R2iα2i + . . . + Ppiθpi + Rpiαpi
=
[
P1iθ1i + P2iθ2i + . . . + Ppiθpi

]
+
[
R1iα1i + R2iα2i + . . . + Rpiαpi

]
= Piθi + Riαi

(A12)

According to Equation (A12), the function of the truncated spline component in
nonparametric regression for longitudinal data can be written in following matrix form:

f =


fT

1
fT

2
...

fT
n

 =


P1θ1
P2θ2

...
Pnθn

+


R1α1
R2α2

...
Rnαn

=


P1 0 · · · 0
0 P2 · · · 0
...

...
. . .

...
0 0 · · · Pn



θ1
θ2
...
θn

+


R1 0 · · · 0
0 R2 · · · 0
...

...
. . .

...
0 0 · · · Rn



α1
α2
...
αn

,

such that

f =


P1 0 · · · 0
0 P2 · · · 0
...

...
. . .

...
0 0 · · · Pn

∣∣∣∣∣∣∣∣∣
R1 0 · · · 0
0 R2 · · · 0
...

...
. . .

...
0 0 · · · Rn





θ1
θ2
...
θn
α1
α2
...
αn


=
[

P| R
][

θ
α

]
(A13)

Equation (A13) can be rewritten in the form

f = T(λ)γ (A14)

where T(λ) =
[

P| R
]

is nL× n(1+ p + S) matrix and γ =
[
θ
α

]
is n(1+ p + S)× 1 vector.

Furthermore, the additive model of nonparametric regression for longitudinal data in
Equation (4) can be expressed in this matrix form:

y = f + g + ε (A15)

Substituting Equation (A10) into Equation (A15) obtained

y = f + Jy∗ + ε (A16)



Symmetry 2022, 14, 2687 16 of 19

In order to estimate the regression curve of the truncated spline component through
WLS optimization, Equation (A16) can be formulated as follows:

y− Jy∗ = f + ε
y− J(y− f) = f + ε
(I− J)y = (I− J)f + ε
(I− J)y = (I− J)T(λ)γ+ ε

(A17)

Thus, the error model ε can be written as

ε = (I− J)y− (I− J)T(λ)γ (A18)

Therefore, the regression curve estimation can be obtained by solving Equation (A18)
using WLS optimization. The WLS is given by

εTVε = [(I-J)y− (I-J)T(λ)γ]TV[(I-J)y− (I-J)T(λ)γ] (A19)

Appendix D

The second stage of the estimation procedure in the proposed method is performed
by estimating the component of regression curve that is approximated by the truncated
spline function using WLS optimization. According to the result of the WLS in Lemma 2,
the WLS optimization can be written as follows:

Min
γ

{
[(I-J)y− (I-J)T(λ)γ]TV[(I-J)y− (I-J)T(λ)γ]

}
If given Q(γ) = [(I-J)y− (I-J)T(λ)γ]TV[(I-J)y− (I-J)T(λ)γ], then by performing the

multiplication of parentheses in Q(γ), we obtain

Q(γ) = (y− Jy + JT(λ)γ− T(λ)γ)TV(y− Jy + JT(λ)γ− T(λ)γ)
= yTVy + yTJTVJy + γTT(λ)TJTVJT(λ)γ+ γTT(λ)TVT(λ)γ− 2yTJTVy+
+2γTT(λ)TJTVy− 2γTT(λ)TVy− 2γTT(λ)TJTVJy + 2γTT(λ)TVJy+
−2γTT(λ)TVJT(λ)γ

The WLS optimization completion is obtained by setting equal to zero the partial
derivative of Q(γ) against γ, i.e.,

∂Q(γ)

γ
= 0,

The partial derivation yields the parameter estimate of γ̂, which is as follows:

2T(λ)TJTVJT(λ)γ̂+ 2T(λ)TVT(λ)γ̂+ 2T(λ)TJTVy− 2T(λ)TVy+
−2T(λ)TJTVJy + T(λ)TVJy− 4T(λ)TVJT(λ)γ̂ = 0

2T(λ)T[JTVJT(λ)γ̂+ VT(λ)γ̂+ JTVy−Vy− JTVJy + VJy− 2VJT(λ)γ̂
]

= 0
JTVJT(λ)γ̂+ VT(λ)γ̂+ JTVy−Vy− JTVJy + VJy− 2VJT(λ)γ̂ = 0

Such that by solving the above equation, the result is obtained as in Equation (A20).

γ̂ =
[(

JT − 2
)

VJT(λ)−VT(λ)
]−1[(

I− JT
)

V(I− J)
]
y. (A20)

Equation (A20) can be rewritten in the following form:

γ̂ = K−1Ly (A21)

where K =
(
JT − 2

)
VJT(λ)−VT(λ) and L =

(
I− JT)V(I− J).
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Finally, the regression curve estimation for the truncated spline component is obtained
by substituting Equation (A21) into the truncated spline estimator component as in Equation
(A14), which is given by

f̂(λ,h)(t,x) = T(λ)γ̂
= T(λ)K−1Ly

(A22)

Appendix E

Table A1. Knot location for each subject of the best model.

Subject
Knots Location

Subject
Knots Location

λ1 λ2 λ1 λ2

Subject 1 46.36 76.44 Subject 6 36.89 69.97
Subject 2 35.54 78.41 Subject 7 45.06 79.98
Subject 3 45.47 67.80 Subject 8 49.91 77.73
Subject 4 55.74 80.09 Subject 8 43.98 77.67
Subject 5 50.53 78.84 Subject 10 7.98 23.92

Appendix F

Table A2. The best model parameter estimation results.

Subject Parameter
Notation

Estimated
Value Subject Parameter

Notation
Estimated

Value

Subject 1

θ01 −6.7469

Subject 6

θ06 −1.5656
θ11 0.1778 θ16 0.0207
α11 −0.1705 α16 −0.0142
α21 0.0721 α26 −0.0162
β01 2.2127 β06 2.5207
β11 −0.1967 β16 −0.4925

Subject 2

θ02 5.1266

Subject 7

θ07 −3.5361
θ12 −0.0022 θ17 −0.0593
α12 0.0226 α17 0.0017
α22 −0.0953 α27 0.1892
β02 −3.2662 β07 7.9063
β12 −1.0230 β17 −1.6067

Subject 3

θ03 1.4510

Subject 8

θ08 1.1165
θ13 −0.1051 θ18 −0.0094
α13 0.1202 α18 0.0138
α23 0.0197 α28 0.0050
β03 5.1926 β08 1.2300
β13 0.0526 β18 −0.5594

Subject 4

θ04 8.5899

Subject 9

θ09 3.4895
θ14 −0.2437 θ19 −0.0491
α14 0.3035 α19 0.0727
α24 −0.1710 α29 −0.0930
β04 8.0732 β09 −0.1362
β14 −0.5480 β19 0.7152

Subject 5

θ05 2.0107

Subject 10

θ010 −1.2430
θ15 0.0535 θ110 0.3772
α15 −0.0766 α110 −0.2532
α25 0.1059 α210 −0.3447
β05 −1.4896 β010 2.8213
β15 −1.4033 β110 1.3042
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