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Abstract: At present, ResNet and DenseNet have achieved significant performance gains in the field
of finger-vein biometric recognition, which is partially attributed to the dominant design of cross-
layer skip connection. In this manner, features from multiple layers can be effectively aggregated
to provide sufficient discriminant representation. Nevertheless, an over-dense connection pattern
may induce channel expansion of feature maps and excessive memory consumption. To address
these issues, we proposed a low memory overhead and fairly lightweight network architecture for
finger-vein recognition. The core components of the proposed network are a sequence of sparsified
densely connected blocks with symmetric structure. In each block, a novel connection cropping
strategy is adopted to balance the channel ratio of input/output feature maps. Beyond this, to
facilitate smaller model volume and faster convergence, we substitute the standard convolutional
kernels with separable convolutional kernels and introduce a robust loss metric that is defined on
the geodesic distance of angular space. Our proposed sparsified densely connected network with
separable convolution (hereinafter dubbed ‘SC-SDCN’) has been tested on two benchmark finger-vein
datasets, including the Multimedia Lab of Chonbuk National University (MMCBNU)and Finger Vein
of Universiti Sains Malaysia (FV-USM), and the advantages of our SC-SDCN can be evident from the
experimental results. Specifically, an equal error rate (EER) of 0.01% and an accuracy of 99.98% are
obtained on the MMCBNU dataset, and an EER of 0.45% and an accuracy of 99.74% are obtained on
the FV-USM dataset.

Keywords: finger-vein recognition; densely connected; sparsified; separable convolution

1. Introduction

With the growing demand for secure identity authentication, a variety of biomet-
ric traits, including facial, speech, iris, fingerprint, and vein, to name a few, have been
emerging in recent decades [1] and gradually substituting traditional means of identity
authentication such as Tokens, Smart Cards, PINs, etc. Among them, the finger-vein (FV)
trait is a promising biometric recognition technology, which utilizes vein characteristics in
subcutaneous tissues to identify individuals. Compared with some other biometric traits,
the FV trait is more secure and stable and only relies on live detection [2]. Intuitively, the ap-
plication scenarios of finger-vein recognition (FVR) are generally open-set, which means
only a small number of categories are known in the training phase, while many unknown
category samples appeared in the testing phase. In this light, how to obtain more robust
and discriminative feature representation is particularly crucial for a FVR system [3,4].
Moreover, due to the variances of illumination, temperature, and finger position during
image acquisition, inter-class similarity and intra-class variability are prevalent, leaving
room for the improvement of FVR technologies.

Traditional handcrafted FV feature extraction approaches can be roughly categorized
as either ‘vein-level’ or ‘image-level’ [5]. Vein-level approaches are devoted to charac-
terizing topological structures of the pure vein network while ignoring the impact of
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surrounding background information. Common vein structural morphologies covered
minutia points [6,7], repeat lines [8] and wide lines [9], curvatures [10–12], as well as
anatomies [13,14] and pulsation patterns [15], etc. Image-level approaches mainly focus
on feature extraction from the whole image while not distinguishing vein and non-vein
regions. It is based on the observation that optical characteristics such as absorption and
scattering in non-vein regions are also conducive to recognition [16]. These approaches
are devoted to extracting FV features from local or global perspectives [17–21]. Table 1
illustrates a rough summary of the handcrafted approaches employed for FVR tasks, along
with corresponding test datasets and recognition results.

In a nutshell, handcrafted FV features have shown diversified research lines, but they
have some common limitations. On the one hand, the design of handcrafted features mainly
relies on expert knowledge, usually task-specific and weak generalization, and on the other
hand, most of the handcrafted features belong to shallow feature representation, which is
generally sensitive to noise, illumination, finger position, etc.

Table 1. A brief summary of handcrafted finger vein feature extraction approaches.

Feature
Method (Ref) Dataset

Performance Criteria

Type EER (%) ACC (%)

Vein-Level

Points
SVD-based Minutiae Matching [6]

HKPU [22] a 5.01 95.71
SDUMLA [23] b 2.46 98.63

Zone-based Minutia Matching [7]
HKPU [22] 0.36 99.67
SDUMLA [23] 2.61 96.27

Lines
Repeated Lines [8] own g 0.145 –

Wide Line Detector (WLD) [9] own 0.87 –

Curvatures

Max Curvature [10] own 0.0009 –

Mean Curvature [11] own 0.25 –

Enhanced Maximum Curvature [12] SDUMLA [23] 0.14 –
PKU [24] c 0.33 –

Radon-like Features (RLF) [5]
HKPU [22] 5.47 –
MMCBNU [25] d 3.33 –
FV-USM [26] e 0.93 –

Anatomies
Anatomy Structure Analysis based HKPU [22] 0.38 –
Vein Extraction (ASAVE) [14] SDUMLA [23] 1.39 –

Pulsation of Veins [15] Video data [15] f 0.8 –

Image-Level

Local Pattern
Local Directional Code (LDC) [17] MMCBNU [25] 1.03 –

Discriminative Binary Descriptor [18]
HKPU [22] 0.69 –
SDUMLA [23] 1.89 –

Filtering Guided Gabor Filter [27] SDUMLA [23] 2.24 –

Gabor Filters and Morphological [22] HKPU [22] 0.65 –

Statistical

Principal Component Analysis (PCA) [20] own – 99.0

(2D)2PCA [28] own – 99.17

Histogram of Competitive MMCBNU [25] 0.36 –Orientations and Magnitudes (HCOM) [29]

Histogram of Salient Edge MMCBNU [25] 0.9 –Orientation Map (HSEOM) [30]

HKPU [22] 1.17 –
Partial Least Squares SDUMLA [23] 2.15 97.52
Discriminant Analysis (PLS-DA) [21] MMCBNU [25] 0.63 –

FV-USM [26] 0.15 99.86
a Finger Image Database from Hong Kong Polytechnic University (HKPU). http://www4.comp.polyu.edu.hk/
~csajaykr/fvdatabase.htm, (accessed on 1 January 2021). b Homologous Multi-modal Traits Database (SDUMLA).
http://mla.sdu.edu.cn/sdumla-hmt.html, (accessed on 1 January 2021). c Finger Vein Database from Peking
University (PKU). http://rate.pku.edu.cn/, (accessed on 1 March 2019). d Finger Vein Database from Multimedia
Lab of Chonbuk National University (MMCBNU). http://multilab.jbnu.ac.kr/MMCBNU_6000, (accessed on
1 January 2021). e Finger Vein Database from Universiti Sains Malaysia (FV-USM). http://drfendi.com/fv_
usm_database/, (accessed on 1 January 2021). f Finger Vein Video Database (FV_IIITMK_VideoData). https:
//duk.ac.in/crictr/arya/sampledatapage.html, (accessed on 1 June 2022). g Some Self Built Finger Vein Databases.

http://www4.comp.polyu.edu.hk/~csajaykr/fvdatabase.htm
http://www4.comp.polyu.edu.hk/~csajaykr/fvdatabase.htm
http://mla.sdu.edu.cn/sdumla-hmt.html
http://rate.pku.edu.cn/
http://multilab.jbnu.ac.kr/MMCBNU_6000
http://drfendi.com/fv_usm_database/
http://drfendi.com/fv_usm_database/
https://duk.ac.in/crictr/arya/sampledatapage.html
https://duk.ac.in/crictr/arya/sampledatapage.html
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With the rapid penetration of deep learning into biometrics, handcrafted feature extrac-
tion modalities are swiftly altering to more generalized learning-based modalities. Among
these, deep convolutional neural networks (DCNNs) equipped with various architectures
have been migrated for FV biometrics and have delivered commendable success. In [31],
a VGGNet-based DCNN (namely ‘DeepVein’) was constructed for FV verification. In [32],
AlexNet was directly transferred for FV identification. Moreover, Capsule network [33],
Convolutional Auto-Encoder (CAE) [34], Fully Convolutional network (FCN) [35], Gen-
erative Adversarial network (GAN) [36], Long Short-term Memory network (LSTM) [37],
and Joint Attention network [38], etc., were applied to FV recognition. The classical deep
learning models above generally adopt a data-driven learning process and rely on sufficient
training samples to a great extent; thereby, some pre-training [39] and data augmentation
strategies [40] were introduced to make up for the shortage of samples.

An alternative research line is advocated to design relatively lightweight and medium-
depth semantic representation models [41,42]. It is attributed to the fact that FV images
mainly contain some low-level and middle-level characteristics, such as textures and shape
structures. In [43], a lightweight deep-learning model with two channels was exploited.
In [44], a fusion loss function was introduced into a lightweight network to pursue highly
discriminative features. In [45], a two-pathway lightweight network was built to extract
multi-scale features. Corresponding to those classical DCNNs, these lightweight deep
networks greatly diminish training costs while ensuring accuracy and are thus more
suitable for real application scenarios.

In order to enhance feature reusability, a skip connection strategy is attempted in many
network architectures, which allows the network to pass on features unimpededly from
earlier layers to later layers. Among these, ResNet [46] introduced shortcuts to sum up
a layer with multiple preceding layers, while DenseNet [47] concatenated each layer to
every other layer in a feed-forward fashion. These two advanced network architectures
alleviated gradient-vanishing, encouraged feature reuse, and gained rising attention in the
field of FVR. In [48], multimodal biometrics, including finger vein and finger shape, were
extracted from ResNet, respectively, and then fused for individual identity authentication.
In [49], a Siamese framework embedded with two ResNet-50 branch sub-networks was
used for FV verification. In [50], a pre-trained Xception network equipped with residual
skip connection was built for FV classification. In [51], two FV images were synthesized and
input into a DenseNet. In [52], vein shape features and texture features were successively
input into a DenseNet and then fused for FV recognition. In [53], a densely-connected
convolutional auto-encoder was built to learn discriminative hand vein features. Table 2
roughly summarizes deep feature learning approaches employed for FVR, along with
corresponding backbones, test datasets and recognition results.

As noted earlier, resorting to the skip connection strategy, ResNet and DenseNet can
effectively aggregate features from multiple preceding layers and promote the gradient
flow throughout the network. However, skip connections that are too dense easily lead
to channel expansion of feature maps and excessive memory overhead. It is imperative
to seek more economical connection patterns to meet the demands of lightweight mod-
els. With this consideration, we proposed a low memory overhead and fairly lightweight
network architecture. The core components of the proposed network are a sequence of
sparsified densely connected blocks with symmetric structures. In each block, a novel
connection cropping strategy is adopted to balance the channel ratio of input/output fea-
ture maps as much as possible, while not sacrificing the retention of effective information.
In this manner, the proposed sparsified densely connected network with separable convo-
lution (hereinafter dubbed ‘SC-SDCN’) model not only obtained surprising recognition
performance but also exhibited smaller model size, faster convergence rate, as well as less
training sample requirements. To sum up, the main innovative contributions of our work
are three-fold:

• First, we proposed a low-memory overhead and sufficiently lightweight network
model based on a group of sparsified dense connection (SDC) blocks. In each SDC
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block, the number of output feature channels is compressed as much as possible under
the premise of retaining efficient information of the aggregated features.

• Second, to facilitate a smaller model size and faster convergence rate, we substituted
the standard convolutional kernels with separable convolutional kernels, namely,
a sequence assembly of 1× 1 point-wise convolution and depth-wise convolution
was adopted.

• Finally, considering intra-class variation and inter-class similarity, we introduced a
more robust margin penalty to strengthen the discriminative power of a softmax loss
framework, which was defined on the geodesic distance of angular space.

The experiments are carried out on two benchmark finger-vein datasets, including
MMCBNU [25] and FV-USM [26]. The experimental results reveal the superior recognition
performance of the proposed SC-SDCN, especially when the training samples are limited.
Beyond that, our SC-SDCN model exhibits small model size and fast convergence rate, thus
more suitable for real-time FVR scenarios.

Table 2. A brief summary of deep-learning-based finger vein recognition approaches.

Category Method (Ref) Dataset
Performance Criteria

EER (%) ACC (%)

Classical

LeNet-5 CNN [54] UTM [55] a – 99.0

DeepVein (VGGNet-16) [31] FVRC2016 [24] b 2.14 –

VGGNet-16 [56] SDUMLA [23] 0.804 –

SDUMLA [23] 1.20 –
FV-Net (VGGFace-Net) [57] MMCBNU [25] 0.30 –

FV-USM [26] 0.76 –

AlexNet [32] Unknown – 91.67

CNN Competitive Order (CNN-CO) [58] SDUMLA [23] 2.37 –
MMCBNU [25] 0.74 –

Capsule Network [33]
HKPU [22] – 88.0
SDUMLA [23] – 100.0
MMCBNU [25] – 100.0
UTFVP [59] c – 94.0

Convolutional Auto-Encoder (CAE) [34] SDUMLA [23] 0.21 99.78
FV-USM [26] 0.12 99.95

Fully Convolutional Network (FCN) [60] SDUMLA [23] 3.88 –
UTFVP [59] 1.80 –

Without Fully Convolutional Network+ HKPU [22] 2.37 –
Skip Conditional Random Field (FCN+CRF) [35] SDUMLA [23] 5.83 –

Connection MMCBNU [25] 0.36 –

Generative Adversarial Networks SDUMLA [23] 0.94 –(FV-GAN) [61]

Conditional GAN [36] HKPU [22] 1.81 –
SDUMLA [23] 3.934 –

HKPU [22] 0.40 –
Triplet-classifier GAN [62] SDUMLA [23] 1.33 –

FV-USM [26] 0.14 –

Long Short-Term Memory Network own – 99.10(CNN-LSTM) [37]

Self Build Das‘s Model [63]

HKPU [22] – 95.32
SDUMLA [23] – 97.48
FV-USM [26] – 97.53
UTFVP [59] – 95.56

Lightweight

Two-Stream CNN [43] SDUMLA [23] 0.47 –
MMCBNU [25] 0.10 –

Light CNN (LCNN) [64] HKPU [22] 0.13 –

Lightweight CNN Combining MMCBNU [25] 0.503 99.05
Center Loss and Dynamic Regularization [44] FV-USM [26] 1.07 97.95

Lightweight Deep CNN [45] SDUMAL [23] 1.13 99.30
PKU [24] 0.67 99.60
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Table 2. Cont.

Category Method [Ref] Dataset
Performance Criteria

EER (%) ACC (%)

ResNet

Multimodal with ResNet-101 [48] HKPU [22] 0.83 –
SDUMLA [23] 2.43 –

SDUMLA [23] 0.66 –
ResNet+Siamese CNN [49] MMCBNU [25] 0.12 –

FV-USM [26] 0.30 –

Efficient Channel Attention HKPU [22] 1.82 99.01
Residual Network (ECA-Resnet) [65] SDUMLA [23] 2.14 98.91

With FV-USM [26] 0.89 99.42

Skip ResNeXt-101 [66] FV-USM [26] – 98.10

Connection Xception Model with SDUMLA [23] – 98.50
Depth-wise Separable CNN [50] THU-FVFDT2 [67] d – 90.0

DenseNet

DenseNet-161+Composite Image [51] HKPU [22] 0.33 –
SDUMLA [23] 2.35 –

DenseNet-161+Score-level Fusion [52] HKPU [22] 0.05 –
SDUMLA [23] 1.65 –

Densely-Connected HKPU [22] 0.228 99.67
Convolutional Autoencoder [53] SDUMLA [23] 0.025 99.98

a Finger Vein Database from VeCAD Laboratory, University Technology Malaysia (UTM). b 2nd Competition
on Finger Vein Recognition Competition (FVRC2016). http://rate.pku.edu.cn, (accessed on 1 January 2019).
c University of Twente Finger Vascular Pattern (UTFVP). http://www.sas.el.utwente.nl/home/datasets, (accessed
on 1 January 2019). d Tsinghua University Finger Vein and Finger Dorsal Texture Database (THU-FVFDT).
https://www.sigs.tsinghua.edu.cn/labs/vipl/thu-fvfdt.html, (accessed on 1 January 2021).

The remainder of this paper is organized as follows. Section 2 provides a brief overview
of related works. Section 3 details the architecture of SC-SDCN, as well as the design of
core components. Section 4 discusses the experimental results, along with the comparison
with some commonly used FVR approaches. Section 5 concludes the paper with some
remarks and hints at plausible future research lines.

2. Related Works

In this section, the pioneering work related to our proposed SC-SDCN framework was
briefly discussed. First, an overview of the skip connection and sparsified dense connection
strategies was presented. Then, the basic idea of depth-wise separable convolution was
briefly reviewed.

2.1. Skip Connection and Sparsification

During the learning of a DCNN, skip connection provides an internal features aggre-
gation capability, allowing early assembly features to be easily accessible. To the best of our
knowledge, this architecture was first adopted in the Highway network [68], in which a pa-
rameterized skip connection (called ‘gating units’) was designed to control the information
flows unobstructed from early layers to later layers. Then, ResNet [46] adopted more pure
identity mapping for skip connection, as shown in Figure 1a. Formally, let f`(·) represent a
typical convolutional transformation from layer `− 1 to `, the output of the `th layer with
the skip connection is calculated by using Equation (1).

H` = ReLU( f`(H`−1) + identity(H`−1)), (1)

where identity(·) denotes the identity mapping ReLU represents a nonlinear activation
function. The propagation rule of Equation (1) allows the gradients and features to be
transferred back and forth between layers through an identity transformation. Further on,
a Stochastic depth network [69] was proposed to transform the constant training depth
of ResNet into an expected lower-down training depth by randomly skipping a subset
of layers entirely. Compared to ResNet, the back-propagation performance and behavior

http://rate.pku.edu.cn
http://www.sas.el.utwente.nl/home/datasets
https://www.sigs.tsinghua.edu.cn/labs/vipl/thu-fvfdt.html
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of gradients further enhanced by stochastic depth, especially in the earlier layers, can be
interpreted as training an ensemble of ResNets with varying depth implicitly.

(a) ResNet (b) DenseNet (c) Log-DenseNet (d) HarDNet

Figure 1. Illustration of different skip connection architectures.

When the density of skip connections reached the extreme, DenseNet [47] appeared.
As shown in Figure 1b, each layer of DenseNet is concatenated with all preceding layers.
Consequently, the `th layer receives the feature maps of all preceding layers as input, and
the corresponding output of the `th layer can be calculated by Equation (2).

H` = ReLU( f`(H`−1) + identity(concat({H`−k : k=1,...,`}))). (2)

DenseNet naturally integrates attributes of identity mapping, diversified depth, as well
as implicit supervision, and it also allows feature reuse throughout the network. However,
since not all connections can deliver informative flows, such excessive connectivity patterns
may bring about potentially large amounts of redundancy and hinder scalability on deeper
networks. Considering this, some sparsified DenseNet variants are presented, which only
aggregate a sparse set of previous outputs at any given depth. In [70], a Log-DenseNet
architecture was designed to aggregate the preceding layers with only exponential offsets,
as shown in Figure 1c and defined in Equation (3). A similar sparsified aggregation
structure was also applied in SparseNet [71].

H` = ReLU
(

f`(H`−1) + identity
(

concat
(
{H`− 2k : k=0,...,blog(`)c}

)))
. (3)

Assuming that the network contains L layers, at this time, both Log-DenseNet and
SparseNet have a total of O(L log2 L) skip connections, which is significantly lower than
the O(L2) of DenseNet, and its adverse impact is that the maximum back-propagation
distance between layers increases from 1 to (1 + log2 L). As a compromise, they have
sought to use more convolutional kernels to compensate for the attenuation of accuracy.
The question of how to address the issues of effective feature aggregation and retention
after connection cropping is still in its infancy.

Furthermore, a novel harmonized sparse, dense connection network, called HarDNet,
was proposed in [72]. As shown in Figure 1d, the proposed HarDNet model not only
sparsifies the number of skip connections to O(L log2 L) but also keeps the output feature
maps of each layer in a harmonic manner. Specifically, in an even-indexed layer, the channel
size is controlled by a given growth rate k, while in an odd-indexed layer, a constant channel
size is maintained, and the final output of one block will only concatenate feature maps of
odd-indexed layers. Compared with Log-DenseNet and SparseNet, HarDNet can achieve
a smaller output channel size of feature maps, as well as lower memory consumption.

2.2. Separable Convolution

For an input feature map with B number of channels, the corresponding standard convolu-
tional kernels also need B channels apart from spatial width and height, making the number of
parameters to be learned inevitably huge. In this light, depth-separable convolution alleviates
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computational costs, which factorizes the standard convolutional kernel into two separate
convolutional kernels, namely depth-wise convolution and point-wise convolution. As shown
in Figure 2, in the part of depth-wise convolution, each input feature map is split into B number
of channel-level images. Then, each channel map is convolved with corresponding depth-wise
convolutional kernels of the shape k1× k2× 1, resulting in a single-channel feature map. Finally,
all channel maps are superimposed together to form the output feature maps. While in the
part of point-wise convolution, a series of convolutional kernels with a size of 1× 1× B are
iteratively performed so as to form the final convolved feature maps.

Figure 2. Schematic of the depth-separable convolution.

Depth-wise separable convolutions have been widely used in DCNNs. Nonetheless,
the accuracy gains are trivial, and this architecture breaks the interaction between the
channel dimension and the spatial dimension of the kernel and drastically reduces model
size and accelerates convergence. In GoogLeNet’s Inception modules, depth-wise separable
convolutions were used to substitute standard convolutions at higher layers [73]. Later,
MobileNet [74] further gave play to the superiority of depth-wise separable convolutions
in mobile vision applications. In [75], an efficient implementation of depth-wise separable
convolutions in the TensorFlow framework was presented.

3. Methodology

As indicated previously, DCNNs combined with skip connections have yielded sig-
nificant performance gains in the FVR tasks. However, they still have room for improve-
ment, especially in the aspects of efficient feature representation and reuse, as well as
the lightweight aspect of network architecture. Motivated by these issues, we developed
a low memory overhead and fairly lightweight convolutional network for FVR. In the
following, the overall framework of our proposed SC-SDCN model and its processing
flow when applied to FVR is firstly elaborated. Then, a detailed design of the SDC block
is presented, which stands as the backbone of our SC-SDCN model. After, depth-wise
separable convolutions are integrated into each backbone SDC block to substitute for stan-
dard convolutions. Finally, to further enhance the discrimination of features, a more robust
margin penalty-based loss metric is introduced into the softmax loss framework.

3.1. Framework of SC-SDCN Model

The overall framework of the SC-SDCN model is shown in Figure 3. It is known
as an end-to-end feature learning and matching network, which mainly consists of two
parts; one is to use the SC-SDCN module for feature learning, and the other is to use the
softmax classifier module for recognition. It should be noted that in the presented network
configuration,‘Input ROI’ represents the ROI of each input sample image, each ‘Conv’ layer
comprises a composition of convolution, batch normalization (BN), and ReLU activation
steps, the ‘DW-Conv’ layer denotes a composition of depth-wise separable convolution
followed by a batch normalization, and each ‘SDC block’ represents the core component of
each sparsified densely connected block; their detailed architecture will be presented in
Section 3.2. In addition, xi denotes the final output feature vector of the SC-SDCN module,
and W is the weight matrix in which Wyi denotes the ith column of matrix W, which can
be regarded as the ith class center vector.
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Figure 3. Overall framework of the proposed SC-SDCN model.

In the SC-SDCN part, a batch of FV sample images sized 224× 224× 3 are fed into the
first Conv layer, and each input image is convolved with 24 standard 3D convolutional ker-
nels of size 3× 3× 3 and stride 2, resulting in an output volume of size 112× 112× 24. Then,
a 112× 112× 24-sized volume is sent to the next Conv layer and convolved with 48 kernels
of size 1× 1× 24 and stride 1, thus expanding the output channel to 48-dimensional. Subse-
quently, these 48-dimensional feature maps are sent to a pooling layer to further compress
spatial resolution. Here, we adopted more efficient depth-wise separable convolution with a
kernel size of 3× 3 and stride 2 to approximate the pooling effect.

The output of the first Conv+Pooling is 56× 56× 48, which will be fed into a sequence
of SDC blocks to learn abstract semantic feature representations. Between two successive
SDC blocks, the output feature maps of previous SDC blocks will flow to a 1× 1 Conv layer for
channel expansion and then flow to a DW-Conv layer for spatial pooling and down-sampling.

Once the feature learning of sequential SDC blocks is finished, the output feature
volumes are fed into an adaptive average pooling layer to flatten into one-dimensional
feature vectors. Here, the adaptive average pooling is used to average features along
the spatial dimension and channel, thus forming an output with a fixed vector length.
Finally, the fixed encoding feature vector is fed into fully connected layers, and category
scores are calculated via the loss function. In order to enhance the discrimination of
feature representations, a more robust angular margin metric is introduced to substitute a
traditional Euclidean distance-based metric in a softmax cross-entropy loss function, and a
detailed design of the adopted loss function will be presented in Section 3.3. To elaborate,
Table 3 shows configurations of the proposed SC-SDCN model.

Table 3. Configurations of the proposed SC-SDCN model.

Layer Kernel Size Stride Input Size Output Size

Conv 3× 3 2 224× 224× 3 112× 112× 24
Conv 1× 1 1 112× 112× 24 112× 112× 48

DW-Conv 3× 3 2 112× 112× 48 56× 56× 48

SDC block

(
1× 1 Conv

3× 3 DW − Conv

)
×4 1 56× 56× 48 56× 56× 72

Conv 1× 1 1 56× 56× 72 56× 56× 96
DW-Conv 3× 3 2 56× 56× 96 28× 28× 96

SDC block

(
1× 1 Conv

3× 3 DW − Conv

)
×16

1 28× 28× 96 28× 28× 292

Conv 1× 1 1 28× 28× 292 28× 28× 320
DW-Conv 3× 3 2 28× 28× 320 14× 14× 320

AvgPool 14× 14× 320 1× 1× 320
Flatten 1× 1× 320 320

Dropout 320 320
Linear 320 1000
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3.2. Details of SDC Blocks

The design concept of the SDC block comes from two aspects, one of which refers to
the feature aggregation and reuse on a macro-architectural level. As indicated by ResNet
and DenseNet, skip connection provides an aggregation ability to transfer features of earlier
layers directly to far deeper layers. However, one intuitive argument is that too-dense
connections are prohibitively expensive, a naive implementation of DenseNet occupies
O(L2) memory, especially in the medium-depth output layers, and channel explosion
and information redundancy occur most of the time. Actually, at each down-sampling,
DenseNet halves the number of channels of previous layers to combat the scaling issue.
Nevertheless, compressing previous features and newly appended features in a completely
equal way arouses a balance issue involved in feature aggregation, which means more effort
is spent on the previously seen features, while neglecting the balanced aggregation between
current features and previous features. As a result, the contribution of newly added features
becomes smaller and smaller. How to design more efficient skip connection patterns as
well as feature aggregation strategies so as to not only alleviate over-constraining and over-
burdening, but also balance previous and current features, still remains to be addressed.
Except for the macro-architectural design, considering a micro design is also beneficial.
As noted in Section 2.2, depth-wise separable convolution is an alternative to the standard
convolutional layer that is supposed to be more efficient in computation costs.

Owing to the above factors, we introduced a specially designed sparsified dense
connection architecture called ‘SDC’. The main idea of SDC is derived from [72], in which a
novel harmonized sparse, dense connection strategy was proposed (as shown in Figure 1d).
Meanwhile, by substituting the standard convolutional kernels with depth-wise separable
convolutional kernels, we ultimately obtained a sparsified skip connection structure with
intelligent cropping and low computational complexity.

Concretely, each SDC block contains the number of layers to be an exponential power
of two. Then, all internal layers in an SDC block are marked as odd-indexed layers and
even-indexed layers, and the output features of one SDC block will aggregate all previous
odd layers, as well as the last internal layer. In order to preserve a harmonic sparsification
skip connection, we only let the `th layer connect with those layers of `− 2n, if and only if
2n can be divided by `. Thus, for each odd layer, only its nearest even layer is aggregated,
while for each even layer, not only the nearest odd layer but also parts of the previous
even layers are aggregated, leading to a considerable number of feature channels in each
even layer. The above strategy brings the first merit of SDC in that once the 2n layer has
been processed, all previous layers from 1 to 2n − 1 can be dumped out from the memory.
With this regard, though SDC maintains a connection density of L log2(L), it can obtain
less concatenation cost than Log-DenseNet.

Furthermore, in order to balance the input/output channel ratio during each skip
connection, the channel size of each layer is adjusted to an adaptive value of k × mn,
in which k is a fixed value to denote the growth rate of channel numbers in each layer, m
serves as a low-dimensional compression factor, and n is set to the maximum value that
satisfies ` divisible by 2n. With these settings, each odd-indexed layer has a constant channel
size because of n = 0, which is derived from the feature compression of its previously nearest
even layer, while for each even-indexed layer, the channel size is increased because of n > 0.

Finally, in the output of one SDC block, only the output of odd-indexed layers is
concatenated and passed on to the next layer, while the outputs of even-indexed layers have
been omitted. In this manner, we can obtain the second merit of SDC; namely, the current
layer will show more of an effect than previous layers as it occupies a larger proportion of
the aggregated features. In the meantime, maintaining a relatively appropriate value of m
yields a higher compression ratio of output feature channels.

Admittedly, each SDC block essentially contains a combination of multiple network
layers, and sparsified skip connections are used to aggregate features from different internal
layers. Considering that skip connections only exist within each block while just a single
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sequential connection is maintained between blocks, we define this structure as a sparsified
dense connection (SDC) block.

To be specific, we provided detailed parameters setting of the first SDC block in
Table 4, which contains four ’DW-Conv’ layers, and each combined layer contains a point-
wise convolution layer followed by a depth-wise separable convolution layer. The 1× 1
point-wise convolutions are used to compress channels, while the depth-wise separable
convolutions are used to learn the newly featured representations. Here, the output channel
size of the corresponding combined layer is taking an integer result of k×mn. Likewise,
Table 5 presented detailed parameter settings of the second SDC block, which contains
sixteen ‘DW-Conv’ layers. The reason why different numbers of internal layers are used in
SDC blocks of different positions is mainly due to the requirements of feature extraction at
different depths. In this sense, the first SDC block is set to retain more low-level feature
information, while the second SDC block is set to facilitate extracting high-level abstract
semantic features.

Table 4. Parameters of the first SDC block, which includes 4 combined layers, and each combined
layer contains a point-wise convolution layer followed by a depth-wise separable convolution layer.
Here, the output channel size of the corresponding combined layer is taking an integer result of
k×mn, and ⊗ in the ‘Linked Layers’ column represents channel-level concatenation.

Layers Linked
Layers Input Size Kernels Output

Size n m k

0 (Input) – – – 56× 56× 48 – – –

1 0 56× 56× 48 PW: 16× 1× 1× 48 56× 56× 16 0

1.6 16

DW: 3× 3
2 1⊗0 56× 56× 64 PW: 26× 1× 1× 64 56× 56× 26 1DW: 3× 3
3 2 56× 56× 26 PW: 16× 1× 1× 26 56× 56× 16 0DW: 3× 3
4 3⊗2⊗0 56× 56× 90 PW: 40× 1× 1× 90 56× 56× 40 2DW: 3× 3

5 (Output) 4⊗3⊗1 56× 56× 72 – – – – –

Table 5. Parameters of the second SDC blocks, which have 16 combined layers, and each combined
layer contains a point-wise convolution layer followed by a depth-wise separable convolution layer.
Here the output channel size of the corresponding combined layer is taking an integer result of
k×mn.

Layers Linked
Layers Input Size Kernels Output

Size n m k

0 (Input) – – – 28× 28× 96 – – –

1 0 28× 28× 96 PW: 20× 1× 1× 96 28× 28× 20 0

1.6 20

DW: 3× 3
2 1⊗0 28× 28× 116 PW: 32× 1× 1× 116 28× 28× 32 1DW: 3× 3
3 2 28× 28× 32 PW: 20× 1× 1× 32 28× 28× 20 0DW: 3× 3
4 3⊗2⊗0 28× 28× 148 PW: 52× 1× 1× 148 28× 28× 52 2DW: 3× 3
5 4 28× 28× 52 PW: 20× 1× 1× 52 28× 28× 20 0DW: 3× 3
6 5⊗4 28× 28× 72 PW: 32× 1× 1× 72 28× 28× 32 1DW: 3× 3
7 6 28× 28× 32 PW: 20× 1× 1× 32 28× 28× 20 0DW: 3× 3
8 7⊗6⊗4⊗0 28× 28× 200 PW: 82× 1× 1× 200 28× 28× 82 3DW: 3× 3
9 8 28× 28× 82 PW: 20× 1× 1× 82 28× 28× 20 0DW: 3× 3
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Table 5. Cont.

Layers Linked
Layers Input Size Kernels Output

Size n m k

10 9⊗8 28× 28× 102 PW: 32× 1× 1× 102 28× 28× 32 1DW: 3× 3

11 10 20× 28× 32 PW: 20× 1× 1× 32 28× 28× 20 0DW: 3× 3

12 11⊗10⊗8 28× 28× 134 PW: 52× 1× 1× 134 28× 28× 52 2DW: 3× 3

13 12 28× 28× 52 PW: 20× 1× 1× 52 28× 28× 20 0DW: 3× 3

14 13⊗12 28× 28× 72 PW: 32× 1× 1× 72 28× 28× 32 1DW: 3× 3

15 14 28× 28× 32 PW: 20× 1× 1× 32 28× 28× 20 0DW: 3× 3

16 15⊗14⊗ 28× 28× 282 PW: 132× 1× 1× 282 28× 28× 132 412⊗8⊗0 DW: 3× 3

17 (Output)
16⊗15⊗13

28× 28× 292 – – – – –⊗11⊗9⊗7
⊗5⊗3⊗1

3.3. Loss Function and Training Strategy

By means of SDC block architectures, the maximum distance of gradient back-
propagation in SC-SDCN can be controlled within the range of log L, which will shorten
the convergence time to a certain extent. However, we also need to choose or design an
appropriate loss function, as it is responsible for measuring the discrepancies between
the predicted value and ground truth and then employed for error back-propagation and
network parameters estimation.

In most FVR deep networks, a softmax cross-entropy loss function is usually adopted.
It should be noted that traditional softmax only learns a feature embedding with overlapped
decision boundaries between different classes, which leads to unreliable generalization
to unknown classes in the open-set scenarios. Considering that FV images are generally
captured with different acquisition devices, inter-class similarity and inner-class variability
are ubiquitous, and the obtained feature embeddings are sensitive to scale issues. To over-
come these drawbacks, some softmax loss variants have been designed. For the impact
of scale, L2 normalization is enforced on the feature and weight vectors, respectively, so
that the network optimization is transformed into a cosine similarity to facilitate angular
discrimination. Admittedly, transforming from Euclidean space to angular space does
not intrinsically enhance the discrimination of classes, and some margin strategies are
imposed on the angular value or its cosine value to further maximize the decision margin
in the angular space. Furthermore, in [76], an additive angular margin penalty (dubbed
‘AAMP’) loss function was proposed for deep face recognition. Firstly, the angle between
the output feature vector and the corresponding weight vector is calculated by using an
arc-cosine function. Afterward, a meticulously designed margin penalty is directly added
to the angle so as to expand the angular distance among different classes. Finally, the logit
value is obtained again by the cosine function. Corresponding to the margin strategies
that were imposed on the cosine of the angle or multiplied with the angle, AAMP has
simper differential computation and explicit geometric interpretation and thus significantly
enhances the discriminative feature embedding. Therefore, we introduce the AAMP into
our proposed SC-SDCN to substitute the Euclidean metric in the softmax loss framework.

Concretely, let xi ∈ Rd denote the output feature vector corresponding to the ith sample
image, and its class label belongs to the yi

th class. Meanwhile, let W ∈ Rd×U represent the
target category weight matrix, and its jth column is represented by Wj ∈ Rd, where d and
U are the feature size and number of classes, respectively. When computing the logit, the
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bias term is ignored for simplicity, and the activation of the final fully connected layer Fj
can be represented as follows:

Fj = WT
j xi = ‖Wj‖‖xi‖ cos θj, (4)

where θj denotes the angle between weight Wj and vein feature xi; thus, the softmax loss
function can be formulated as:

Lsoftmax = − 1
B

B
∑

i=1
log

exp(Fyi )

∑U
j=1 exp(Fj)

, (5)

In formula (5), B is the batch size. When the L2 normalization is performed on the
feature and weight vectors, the activation term in Formula (4) becomes Fj = s cos θj, being
‖Wj‖ = 1 and ‖xi‖ = s. Finally, the AAMP loss function can be formulated as

LAAMP = − 1
B

B
∑

i=1
log

exp(s cos(θyi+m))

exp(s cos(θyi+m))+∑U
j=1,j 6=yi

exp(s cos θj)
, (6)

In Formula (6), the hyper-parameters s and m are the scale factor and penalty mar-
gin, respectively. When the AAMP loss function is employed for our SC-SDCN model,
the penalty margin m is selected in the range of [0.3, 0.7] with a step size of 0.05, and the
scale parameter s is selected in the range of [16, 96] with a step size of 16.

After the SC-SDCN model has been well-trained, it will be used to predict the recog-
nition results of each input test image. Given that the output of the softmax classifier is
a sample-to-class probability value, the final prediction result will be derived from the
maximum class confidence score.

3.4. Evaluation Criteria

For quantitative evaluation, FAR (false acceptance rate), FRR (false rejection rate),
and EER (equal error rate) are adopted as the evaluation metrics of experimental results.
Among, FAR is the ratio of the number of accepted imposter claims divided by the number
of identification attempts, as shown in Equation (7), where FA_NUM is the number of false
acceptances, and IA_NUM is the number of impostor recognition attempts.

FAR =
FA_NUM
IA_NUM

× 100%, (7)

FRR is the ratio of the number of rejected genuine claims divided by the number of
identification attempts, as shown in Equation (8), where FR_NUM is the number of false
rejections, and GRA_NUM is the number of genuine recognition attempts.

FRR =
FR_NUM

GRA_NUM
× 100%, (8)

Finally, EER is the rate at which the FAR is equal to the FRR, and a lower EER exhibits
better performance in FVR. In addition, we also apply recognition accuracy (ACC) for
performance evaluation, which is the ratio of the number of correct recognition divided by
the number of total recognition.

4. Experimental Results and Discussion

In this section, to ascertain the effectiveness of our SC-SDCN model, we carried out a
comprehensive experimental analysis by utilizing two available benchmark FV datasets,
including MMCBNU [25] and FV-USM [26]. First, Section 4.1 provided a brief description
of the two FV datasets. Then, the relevant experimental settings and training procedures
were presented in Section 4.2. Next, the recognition accuracies under different splitting
ratios of training/test set, as well as the corresponding computational costs, were analyzed
in Sections 4.3 and 4.4, respectively. After, in Section 4.5, the discriminative power of AAMP
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loss function was quantitatively evaluated under two scenarios of self-learning and transfer
learning. Finally, Section 4.6 reported the recognition results of the SC-SDCN model as
compared with several mainstream FVR methods.

4.1. Finger Vein Datasets

In our experiments, two publicly available benchmark FV datasets are selected to
test the performance of the SC-SDCN model, one of which is MMCBNU [25] (available
at: http://multilab.jbnu.ac.kr/MMCBNU_6000) (accessed on 1 January 2021), and the
other is FV-USM [26] (available at: http://drfendi.com/fv_usm_database/) (accessed on
1 January 2021), their specific descriptions are shown as follows. It should be noted that
both datasets have provided well-tailored ROI images. Moreover, plenty of published FVR
approaches have provided their recognition results on these two datasets, which facilitates
the subsequent analysis and comparison.

The MMCBNU [25] database was published by the Multimedia Lab, Division of
Electronic and Information Engineering, Chonbuk National University. It collected 100 vol-
unteers from 20 countries, and each volunteer provided the index finger, middle finger and
ring finger of two hands, thus forming a total of 600 classes with 10 images for each class.
The provided ROI images are in grayscale with a size of 128× 60, and the fingertips are
horizontal to the right.

The FV-USM [26] dataset was published by the University of Sains Malaysia. It
collected finger vein images from 123 subjects in two different sessions. Each subject
provided the index finger and middle finger of two hands. Thus, there are a total of
492 classes with 12 sample images per finger class. In our experiments, we only used
images from a single session, namely, a total of 2952 images from 492 classes with six
samples per class. The corresponding ROI images are also in grayscale and with a size of
50× 150, and the fingertips are upward.

More detailed descriptions of above two FV datasets are shown in Table 6. As can be
seen, the number of samples provided by each class is very small, while the number of
corresponding classes is relatively large. Moreover, Figure 4 shows the respective pair of
images in both datasets, including the original acquired image and the corresponding ROI
image, and we will use ROI images directly in the following experiments.

(a) Raw of MMCBNU (b) ROI of MMCBNU (c) Raw of FV-USM (d) ROI of FV-USM

Figure 4. Illustration of the respective pair of sample images (original acquired image and corre-
sponding ROI image) in both finger vein datasets.

Table 6. Descriptions of the adopted finger vein datasets.

Name Subjects Fingers Classes Samples/Class Total
Samples Sessions Orientations

index
MMCBNU 100 middle 600 10 6000 1 right

ring

FV-USM 123 index 492 12 5904 2 downmiddle

http://multilab.jbnu.ac.kr/MMCBNU_6000
http://drfendi.com/fv_usm_database/


Symmetry 2022, 14, 2686 14 of 23

4.2. Experimental Settings
4.2.1. Splitting of Training/Test Set

For finger vein recognition scenarios, it is usually performed in two different configu-
rations: open-set and closed-set. In a closed-set experiment, all available classes should be
used in the training process. However, this is an unrealistic situation as samples from all
classes are hard to hold in advance. In this regard, it is more reasonable to carry out exper-
iments in an open-set scenario, namely, training with parts of available classes and then
testing on other remaining classes or even new classes. With this consideration, we adopted
an open-set configuration in subsequent experiments and kept non-overlapping of the
training and test sets. In addition, to verify the model performance in the case of a small
training sample size, we randomly split the above FV datasets into two parts according
to different ratios. For example, for the MMCBNU dataset, the ratio of 9:1 denotes 90% is
used for training, and the remaining 10% is used for testing. Therefore, 540 classes with
a total of 5400 sample images are randomly picked out for training, while the remaining
60 classes with a total of 600 images are used for testing. In the following experiments,
five different ratios are conducted, including 9:1, 8:2, 7:3, 6:4 and 5:5. For each case, we
always split the whole sample image set into 10 equal parts; then, we randomly select
a non-overlapped training set and test set according to the split ratios, and the reported
experimental results are derived from the average of multiple experiments. For example,
when the ratio is 9:1, the number of experiments is 10, with each group selected as the
test set and the remaining 9 groups as the training set. When the ratio is 5:5, only two
experiments are conducted, in which five groups are randomly selected as the training set
and the remaining five groups as the test set, and then cross-validated. Finally, all sample
images are re-scaled to a size of 224× 224, with a normalization of zero mean and unit
variance, and then fed into the SC-SDCN.

4.2.2. Network Initialization and Optimization

As mentioned earlier, the considered network is trained with the identification mode,
while at the testing stage, the outputs of the last fully connected layer are taken as feature
templates for verification purposes. For the network initialization, the initial weights of
convolutional kernels are set to a normal distribution with zero-mean and a standard
deviation of 0.01, and the biases are initialized from a normal distribution with a mean
value of 0.5 and a standard deviation of 0.01. In the fully connected layer, the weights are
drawn from a normal distribution with zero-mean and standard deviation of 0.2, and the
biases are initialized in the same way as the convolutional layers. In addition, the stochastic
gradient descent (SGD) optimizer with a batch size of 32, a learning rate of 0.01, a weight
decay of 0.01, and a momentum of 0.9 is employed for speeding up the convergence of
gradient vectors. The network is trained up to 200 epochs, and the dimension of the output
feature embedding is set to 1000 dimensions.

Finally, we would like to emphasize that all experiments were conducted by using
Python 3.8 with the PyTorch 1.8.0 framework and run on a desktop PC equipped with the
configurations of 32Gb RAM, an NVIDIA GeForce GTX 1080 Ti GPU, and an Intel Core i7
CPU (at 3.6 GHz).

4.3. Analysis of Different Splitting Ratios of Training/Test Set

In this experiment, we analyzed the performance of the SC-SDCN model on different
splitting ratios of the training/test set. Here, five ratios are tested, and the corresponding
ACC and EER results are presented in Tables 7 and 8. As observed on both datasets, more
training data and less testing data lead to higher ACC and lower EER results; namely, 9:1
results are better than those under the other ratios. However, we can observe that even
with less training data, such as in the case of 5:5, satisfactory results can still be obtained.
For the MMCBNU dataset, under the optimal network configuration, the ACC of the 9:1
ratio is 0.9998, while the ACC of the 5:5 ratio is 0.9968, just 0.3% lower. Likewise, for the
FV-USM dataset, the ratio was just 0.12% lower under the optimal configuration.
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The experimental results show that our SC-SDCN model can achieve promising recog-
nition accuracy even when the training samples are insufficient. It is because the design of
the SDC block advocates for the efficient use of compositional skip connections to shorten
the distances among feature layers during back-propagation; such cropping optimization
not only significantly reduces the number of model parameters but also synchronously
maintains a balance between the newly aggregated features and the previously incoming
features. As a result, the saliency of the newly aggregated features is enhanced. Corre-
sponding to the DenseNet or Log-DenseNet, such connection cropping strategy is not
a post-processing pruning operation, nor does it involve cutting connections arbitrarily
but advocates for a network design principle to place skip connections intelligently to pur-
sue the efficiency of feature aggregation. In addition, by introducing depth-wise separable
convolution, the number of channels in each layer is further compressed so that the overall
number of network parameters is further reduced.

Table 7. ACC and EER results on the MMCBNU dataset with a different number of SDC blocks in
the SC-SDCN architecture, in which ‘SL’ denotes a fully self-training procedure, and ‘TL’ denotes the
pre-training on the ImageNet dataset and then transfers the pre-trained parameters to the target FV
dataset for fine-tuning.

Architectures Criteria
Splitting Ratio of Training/Test Set Model

9:1 8:2 7:3 6:4 5:5 Size (M)

2 SDC+SL
ACC 0.9974 0.9968 0.9967 0.9953 0.9926

4.22
EER 0.0034 0.0059 0.0059 0.0094 0.0155

2 SDC+TL
ACC 0.9998 0.9982 0.9983 0.9981 0.9968
EER 0.0001 0.0032 0.0038 0.0031 0.0058

3 SDC+SL
ACC 0.9985 0.9961 0.9961 0.9937 0.9932

12.1
EER 0.0016 0.0066 0.0076 0.0113 0.0137

3 SDC+TL
ACC 0.9992 0.9982 0.9981 0.9963 0.9971
EER 0.0009 0.0035 0.0036 0.0067 0.0061

4 SDC+SL
ACC 0.9934 0.9926 0.9931 0.9886 0.9912

30.7
EER 0.0115 0.0125 0.0135 0.0206 0.0149

4 SDC+TL
ACC 0.9942 0.9951 0.9929 0.9896 0.9901
EER 0.0095 0.0121 0.0126 0.0194 0.0184

Table 8. ACC and EER results on the FV-USM dataset with a different number of SDC blocks in the
SC-SDCN architecture.

Architectures Criteria
Splitting Ratio of Training/Test Set Model

9:1 8:2 7:3 6:4 5:5 Size (M)

2 SDC+SL
ACC 0.9938 0.9945 0.9924 0.9902 0.9932

4.22
EER 0.0110 0.0112 0.0165 0.0234 0.0167

2 SDC+TL ACC 0.9974 0.9972 0.9963 0.9959 0.9962
EER 0.0045 0.0048 0.0069 0.0086 0.0082

3 SDC+SL
ACC 0.9880 0.9894 0.9892 0.9883 0.9894

12.1
EER 0.0201 0.0229 0.0217 0.0285 0.0269

3 SDC+TL
ACC 0.9968 0.9956 0.9923 0.9946 0.9951
EER 0.0045 0.0093 0.0108 0.0122 0.0092

4 SDC+SL
ACC 0.9885 0.9881 0.9876 0.9855 0.9857

30.7
EER 0.0203 0.0231 0.0225 0.0282 0.0279

4 SDC+TL
ACC 0.9840 0.9907 0.9898 0.9912 0.9895
EER 0.0225 0.0162 0.0142 0.0171 0.0181
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To further assess the robustness and generalization of our SC-SDCN model, we then
carried out a series of related experiments from the perspective of model architecture
design and transfer learning. In the aspect of structural design, we constructed a network
model by using a different number of SDC blocks so as to assess the impact of different
network depths. The number of SDC blocks with 2, 3, 4 are constructed and compared.
Here, the number of layers within each SDC block is set to {4, 16, 8, 4} in order. Meanwhile,
by following a 1× 1 channel-wise convolutional layer, the final number of output channels
of each block is set to {96, 320, 640, 1024}, respectively, in order. In this case, the fixed
channel growth rate of k in each SDC block is set to {16, 20, 64, 160} in order, while the
compression factor of m is set to the same value of 1.6 in all SDC blocks. In the aspect
of network pre-training, we adopted transfer learning to overcome the lack of samples
so as to evaluate the issues of limited datasets for model training as it can be mitigated
by employing stable models that have been trained on large-scale datasets. Here, we
carried out model pre-training on ImageNet and then transferred the pre-trained weight
parameters to the target FV dataset for fine-tuning.

Tables 7 and 8 also presented ACC and EER results under different compositions
of SDC block structures and with/without transfer learning. Furthermore, ‘SL’ means
self-learning on the FV dataset only, and ‘TL’ means pre-training on the ImageNet dataset
and then transferring to the FV dataset for fine-tuning. The experimental results on both
FV datasets show that the pre-trained model with the two SDC blocks structure has better
performance gains, which is also in line with the previous statements that the recognition of
finger vein images mainly relies on mid-level features, and too-abstract semantic features
can easily lead to performance degradation. Considering that the model with two SDC
blocks has a smaller parameter quantity and model size, we adopted a configuration of
two SDC blocks with transfer learning in the subsequent experiments.

Finally, for visual representation, we also provided Detection Error Tradeoff (DET)
curves of different splitting ratios of training/test set in Figure 5 and DET curves of various
compositions of SDC block structures and training strategies in Figure 6. In all DET
curves, the x-axis and y-axis are FAR and FRR, respectively. Generally, the larger the
threshold, the smaller the FAR value, and the larger the FRR value. When FAR is equal
to FRR, it is defined as EER; at this time, the smaller the EER value, the closer the DET
curve is to the x-axis and y-axis, which indicates a better model performance. As can be
observed from Figure 5, though the higher the ratio of training/test set, the better the
recognition performance, the difference between different ratios is not obvious and thus
further supports the excellent model performance in the case of insufficient samples. From
Figure 6, we can intuitively find that two SDCs are better than four SDCs, transfer learning
(‘TL’) is better than self-learning (‘SL’) on both FV datasets and even two SDC+SL is better
than four SDC+TL. This is because the FVR task does not require an overly semantic feature
representation. In addition, a very deep network often requires more training samples;
otherwise. it is more likely to overfit.
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Figure 5. DET curves of different splitting ratios of training/test set on two-finger vein datasets.
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Figure 6. DET curves of a different number of SDC blocks in the SC-SDCN architecture.

4.4. Analysis of Computational Cost

In this experiment, we analyzed the computational cost of the structural design of the
SC-SDCN model. Tables 9 and 10 have shown the model size, training time, and feature
extraction time of the SC-SDCN model on two FV datasets. Here, the training cost is
represented by the training time for each epoch. After the model has been well-trained, we
also give the feature extraction time of each image. Since the size of the MMCBNU dataset
is larger than the FV-USM dataset, the corresponding epoch training time is also longer.
Relatively speaking, since each sample image is normalized to the same size of 224× 224
before being fed into the network, the feature extraction takes almost the same time.

Obviously, fewer SDC blocks means smaller model size, in which the model size of
three SDCs has 7.88M more than two SDCs, and the model size of four SDCs has 18.6M
more than three SDCs. The model size seems to grow exponentially with the increase in the
number of SDC blocks. This is because as the number of SDC blocks increases, the number
of skip connections increases at a rate of L log2 L, resulting in an approximately exponential
growth in model size. Finally, as the number of SDC blocks increases, so does the training
time and feature extraction time. From the comprehensive analysis based on Tables 7 and 8,
the recognition results have not become better as the number of blocks increases, so we
suggest using a model containing two SDC blocks for the FVR task; in this case, the model
is more conducive to deployment and installation on embedded hardware devices.

Table 9. Computational cost of MMCBNU.

Architectures
Model Size Training Feature Extraction

(M) (s/epoch) (ms/image)

2 SDC+TL 4.22 4.4077 0.0651
3 SDC+TL 12.1 5.8126 0.0959
4 SDC+TL 30.7 6.6173 0.1122

Table 10. Computational cost of FV-USM data.

Architectures
Model Size Training Feature Extraction

(M) (s/epoch) (ms/image)

2 SDC+TL 4.22 2.0135 0.0656
3 SDC+TL 12.1 2.6914 0.0958
4 SDC+TL 30.7 3.0614 0.1118

4.5. Analysis of Loss Function

The purpose of this experiment is to verify that the AAMP loss function can enhance
the discrimination of features. As declared previously, AAMP introduced an additive
margin that was directly applied to the angle between the feature vector and the weight
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vector, thus expanding the inter-class distance as well as narrowing the intra-class distance.
Here, we choose traditional softmax loss for comparison. In the whole experimental
procedure, we kept the consistency of the feature extraction process, except for replacing
different loss functions. In addition, considering that the per-training process of transfer
learning has a positive effect on the network performance, we also provided the results
of different loss functions under the pre-training scenario, as shown in Tables 11 and 12.
Among these tables, the second and fourth columns are the results of AAMP and traditional
softmax that are equipped with pre-training model parameters. It shows that AAMP is
better than traditional softmax. While for the third and fifth columns, there are no pre-
training parameters to be used, and they are worse than the counterpart loss function
equipped with pre-training parameters.

Table 11. AAMP loss function compared with traditional softmax loss on the MMCBNU dataset.
The ACC and EER are obtained after 200 epochs.

AAMP Traditional Softmax

TL SL TL SL

ACC 0.9998 0.9974 0.9867 0.9828
EER 0.0001 0.0034 0.0180 0.0254

Table 12. AAMP loss function compared with traditional softmax loss on the FV-USM dataset.
The ACC and EER are obtained after 200 epochs.

AAMP Traditional Softmax

TL SL TL SL

ACC 0.9974 0.9938 0.9897 0.9826
EER 0.0045 0.0110 0.0165 0.0296

For visual representation, we also presented the DET curves by using AAMP or
traditional softmax loss functions on two FV datasets. As can be seen in Figure 7, the AAMP
loss function obtained significantly lower EER results than those achieved with traditional
softmax. This is because traditional softmax only recognizes samples to classes while not
considering the discrimination between classes. To solve this issue, AAMP introduces an
angular additive margin to intuitively and efficiently penalize the overlap of the decision
boundaries between different classes in an angular space.
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Figure 7. DET curves of a different number of SDC blocks in the SC-SDCN architecture.

4.6. Comparison with State-of-the-Art

In the last experiment, we compared our proposed SC-SDCN model with some main-
stream FVR methods. These compared methods can be divided into two categories. One
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category covers the handcrafted FV feature extraction methods, and we chose six meth-
ods for comparison, including local directional code (LDC) [17], histogram of salient
edge orientation map (HSEOM) [30], 2D principal component analysis (2D-PCA) [77],
and histogram of competitive orientations and magnitudes (HCOM) [29]; moreover, two
recently published methods, Radon-like features (RLFs) [5] and partial least squares dis-
criminant analysis (PLS-DA) [21] were also selected for comparison. The second category
covers the deep learning models, five representative networks are selected and compared
with our SC-SDCN model, including fully convolutional network (FCN) [78], two-stream
CNN [43], CNN competitive order (CNN-CO) [58], convolutional auto-encoder (CAE) [34],
and a lightweight CNN combining center loss and dynamic regularization (lightweight
CNN) [44]. For those handcrafted methods, after finishing the feature extraction, there
will be a template match on a pair of finger feature maps. If they are from the same finger,
they will output genuine matches; otherwise, imposter matches will be output if they are
from different fingers. For those deep network models, most of them have an end-to-end
learning procedure and directly output the category to which the sample belongs.

As shown in Table 13, the EERs obtained by deep-learning-based methods are gen-
erally better than those handcrafted-based feature extraction methods. This is because
handcrafted methods mainly extract shallow features, and these shallow features are
easily affected by noise, as well as image rotation and translation. On the contrary, deep-
learning-based methods can extract higher-level features, which are more conducive to
discrimination. In addition, of these compared deep learning methods, only lightweight
CNN [44] belongs to the lightweight network. Our SC-SDCN model obtained the smallest
EER value of 0.01% on the MMCBNU dataset, while on the FV-USM dataset, the third
lowest EER result was obtained by our model, and the lowest result of CAE [34] was
achieved in a closed-set scenario. Moreover, compared to the Lightweight CNN [44], we
obtained a better EER of 0.45%, and our model size is only 4.22M, which is also relatively
smaller than the lightweight CNN [44].

Table 13. EER (%) results compared with some finger vein recognition methods.

Category Method MMCBNU FV-USM

Handcrafted

Local Directional Code (LDC) [17] 1.03 –

Histogram of Salient Edge 0.9 –Orientation Map (HSEOM) [30]

2D-PCA [77] – 2.32

Histogram of Competitive 0.36 –Orientations and Magnitudes (HCOM) [29]

Radon-like Features (RLF) [5] 3.33 0.93

Partial Least Squares 0.63 0.15Discriminant Analysis (PLS-DA) [21]

Deep learning

FCN+Segmentation [78] – 1.42

Two-stream CNN [43] 0.1 –

CNN Competitive Order (CNN-CO) [58] 0.74 –

Convolutional Auto-Encoder (CAE) [34] – 0.12

Lightweight CNN Combining 0.503 1.07Center Loss and Dynamic Regularization [44]

Our Proposed SC-SDCN 0.01 0.45

On the whole, our SC-SDCN has shown superior recognition performance on both FV
datasets, especially when the training samples were limited. Additionally, our SC-SDCN
model has a smaller parameter quantity and model size and is thus more suitable for
real-time FVR scenarios.
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5. Conclusions and Future Research

In this paper, we have proposed a novel CNN pipeline for finger-vein recognition
called SC-SDCN. By introducing a sparsified dense connection architecture and making
full use of the pre-trained network weights, the proposed SC-SDCN achieved EERs of
0.01% on the MMCBNU dataset and 0.45% on the FVUSM dataset. Moreover, thanks to
the AAMP loss function to replace the traditional softmax loss, the SC-SDCN outperforms
some state-of-the-art FVR methods on two benchmark FV datasets.

In the experiments, though an open-set environment is maintained, we directly
adopted extracted ROI images for network training. In this regard, the training qual-
ity of the network model depends on the quality of the input ROI image samples. In the
future, we will explore the impact of the ROI image quality on the network learning so as
to further improve the generalization ability of the SC-SDCN model. Recent research has
revealed that the FVR system is vulnerable to presentation attacks. In this sense, whether
our SC-SDCN model has the ability to detect spoof attacks still deserves further exploration.
Furthermore, the fusion of multimodal biometrics has shown significant improvement
in individual traits. In the future, we will explore the capability of our SC-SDCN model
in feature-level fusion of palm vein and finger vein traits and expect better performance
in different biometric traits. Furthermore, since lightweight models are used to facilitate
deployment and application, and some novel lightweight design methods have been pro-
posed recently [79,80], we will explore these new lightweight methods and try to apply
them to finger vein recognition scenarios in the future. Finally, we will carry out experi-
ments on the other publicly available FV datasets to assess the efficiency of the pre-training
weight parameters based on transfer learning more fully.
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