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Abstract: Motor imagery (MI) is a domineering paradigm in brain–computer interface (BCI) compo-
sition, personifying the imaginary limb motion into digital commandments for neural rehabilitation
and automation exertions, while many researchers fathomed myriad solutions for asymmetric MI
EEG signals classification, the existence of a robust, non-complex, and subject-invariant system is far-
reaching. Thereupon, we put forward an MI EEG segregation pipeline in the deep-learning domain in
an effort to curtail the existing limitations. Our method amalgamates multiscale principal component
analysis (MSPCA), a novel empirical Fourier decomposition (EFD) signal resolution method with
Hilbert transform (HT), followed by four pre-trained convolutional neural networks for automatic
feature estimation and segregation. The conceived architecture is validated upon three binary class
datasets: IVa, IVb from BCI Competition III, GigaDB from the GigaScience repository, and one tertiary
class dataset V from BCI competition III. The average 10-fold outcomes capitulate 98.63%, 96.33%, and
89.96%, the highest classification accuracy for the aforesaid datasets accordingly using the AlexNet
CNN model in a subject-dependent context, while in subject-independent cases, the highest success
score was 97.69%, outperforming the contemporary studies by a fair margin. Further experiments
such as the resolution scale of EFD, comparison with other signal decomposition (SD) methods, deep
feature extraction, and classification with machine learning methods also accredits the supremacy of
our proposed EEG signal processing pipeline. The overall findings imply that pre-trained models are
reliable in identifying EEG signals due to their capacity to maintain the time-frequency structure of
EEG signals, non-complex architecture, and their potential for robust classification performance.

Keywords: EEG signals; empirical fourier decomposition; brain–computer interface; deep learning

1. Introduction
1.1. What is BCI?

A brain–computer interface (BCI) is a long-standing research dominion that enables a
direct communication channel between the brain and the computer. The term BCI refers to
a system that works in tandem with the brain to allow for the control of external activities
like moving a cursor or operating a prosthetic limb through the use of brain signals. The
interface establishes a line of neural communication between the brain and the controlled
object. For example, instead of the signal traveling through the neuromuscular system
from the brain to the finger on a mouse, it is sent directly from the brain to the mechanism
controlling the cursor. A BCI can help a paralyzed person write a book or operate a powered
wheelchair or prosthetic limb with only their thoughts by reading signals from an array of
neurons and translating the signals into action using computer chips and programming.
Some future applications, like prosthetic control, are likely to function automatically, but the
current generation of brain-interface devices needs conscious, intentional thought. Creating
non-invasive electrode devices and/or surgical techniques has been a significant hurdle
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in the advancement of BCI technology. In the conventional BCI concept, an implanted
mechanical device is integrated into the patient’s mental image of their body, and the patient
exercises control over the device as if it were an extension of their own body. Non-invasive
brain–computer interfaces (BCIs) are currently the subject of extensive study.

Decades of study in BCI have yielded several novel hypotheses and frameworks with
wide-ranging implications in neurological rehabilitation, prosthetics, robotics, augmented
reality, and assistive technologies [1]. The elementary bedrock of BCI is a fragile electroen-
cephalogram (EEG) signal over the cranial dermis, spawned proportionately to excitatory
or inhibitory cerebral activity, while EEG is a non-invasive mode of procuring signals,
it dominates its compeers, i.e., electrocorticography (ECoT), magnetoencephalography
(MEG), magnetic resonance imaging (MRI), functional magnetic resonance imaging (fMRI),
and positron emission tomography (PET), in several aspects such as low cost and portable
equipment, high temporal resolution, ease of setup and safe to use nature [2].

1.2. BCI Paradigms

Owing to their operational characteristics, BCI EEG is classified into three major
paradigms, namely, motor imagery (MI), event-related potential (ERP), and steady-state
visually evoked potential (SSVEP) [3]. The MI is a self-regulated cognitive endeavor where
a subject mentally rehearses a limb motion without literally performing that motion in
actual, giving rise to an active BCI. The ERP and SSVEP, on the other hand, make up a
reactive BCI architecture that requires an external stimulus to function. The task segregation
in MI necessitates robust identification of the changes in µ(8–13Hz) and β(13–30Hz) bands
called event-related synchronization/ desynchronization (ERS/ERD) [4]. As a result of such non-
stationary spectral variations, MI EEG undergoes laborious signal processing procedures in
an effort to translate the time-varying signals into actionable commands. Consequently, the
present study aims to formulate a signal-processing pipeline that could serve as a stalwart
basis for MI EEG identification.

1.3. Literature Review

The MI EEG signal processing entails a series of steps: data preparation, non-stationary
to stationary data transformation, feature extraction, and classification. Initially, the scalp-
recorded EEG signals are densely contaminated by noise artifacts such as power line inter-
ference, ambient noise, ocular noise, electrocardiogram (ECG), electromyogram (EMG), etc.
Such alienated samples make it harder to separate EEG tasks, so they need to be filtered
out before the signal is further processed. In the literature, the commonly employed data
filtering methods incorporate Bayes filters [5], Weiner filters [6], recursive least square (RLS)
strategy [7], principal component analysis (PCA) [8], independent component analysis
(ICA) [9], and sparse component analysis (SPA) [10]. However, these approaches have
certain drawbacks in their applicability, such as they do not take inter-channel correlated
characteristics into account, they have strong parametric dependencies which makes them
hard to use for a practical BCI system, they often require a reference signal to denoise
the EEG data, and they are sensitive to outliers. Recently, biological signals have made
extensive use of a hybrid dimensionality reduction method called multiscale principal com-
ponent analysis (MSPCA) [11]. Scientific investigation [12] shows that MSPCA overcomes
the shortcomings of traditional filtering techniques and achieves promising classification
performance at low signal-to-noise ratios (SNRs).

The next step in EEG data processing is to resolve non-stationary signals into stationary
sub-bands. Signal decomposition (SD) is efficacious for the time-frequency analysis of MI
EEG signals since the task-specific information occurs within the µ and β bands. For this
purpose, the contemporary studies exploited empirical mode decomposition (EMD) [13],
ensemble empirical mode decomposition (EEMD) [14], variational mode decomposition
(VMD) [15], wavelet transform, empirical wavelet transform (EWT) [16], wavelet packet
decomposition (WPD) [17], and tunable-Q wavelet transform (TQWT) [18], while each of
these techniques has its uses, they also have its share of downsides, such as the mixing
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of modes, tight spacing of frequencies, selection of mother wavelets, lack of organized
frequency bands, susceptibility to noise, computationally laborious, etc. To mitigate the
afore-stated challenges with traditional SD methods, our previous study contemplated
a hybrid empirical Fourier decomposition (EFD) method [19]. The proposed method
resolved the non-stationary EEG into a pre-defined number of intrinsic mode functions
(IMFs) without any parametric contingence and addressed the prevailing shortcomings.

Following SD, the time-frequency EEG signals are condensed into a set of meaningful
scalar values called features. The robust classification of MI EEG relies heavily upon the
type and number of extracted features. The commonly employed attribute acquisition meth-
ods in the EEG domain involve energy and entropy features [20], fractal dimensions [21],
time and statistical features [22], spectral features [19], matrix determinant [12], successive
decomposition index (SDI) [23], common spatial patterns (CSPs) [24], and graphical fea-
tures [22]. Such attributes are handcrafted and manually engineered by numerous research
studies, and their classification performance is somewhat satisfactory, yet they possess
several drawbacks such as noise sensitivity, susceptibility to the input data, ineptness for a
large number of data samples, loss of time/frequency resolution, etc. Recently, the idea
of extracting automatic features from deep convolutional neural networks (CNNs) has
been gaining immense attention [25]. Deep features are iteratively learned from the input
data while the CNN is being trained. Some standard references for deep feature extrac-
tion are AlexNet [26], GooglNet [26], ShuffleNet [27], deep ConvNet [28], EEGNet [29],
1D-ConvNet [30], etc.

1.4. Objectives and Contributions

In order to address the shortcomings with those SDs, feature extraction and classifica-
tion methods, this research synthesizes a new classification pipeline for MI EEG signals
using our previously proposed empirical Fourier decomposition (EFD) [19] in conjunction
with pre-trained convolutional neural network (CNN) modules. The proposed mechanism,
called EFD-CNN, operates under the coexistence of four distinct signal-processing modules.
First, the MI EEG data is preprocessed for artifact removal employing the MSPCA method.
Second, the EFD method is adopted to decompose the non-stationary, non-linear and
asymmetric EEG signals into several bandlimited subcomponents. Third, the decomposed
components are converted into time-frequency scalograms employing the Hilbert trans-
form (HT). Fourth, the 2D time-frequency-amplitude scalograms are fed to four pre-trained
CNN models, namely AlexNet, ShuffleNet, GoogleNet, and SqueezeNet, for automatic
feature extraction and classification. The main contributions of this study are as follows:

1. To alleviate the high complexity, extensive computational load, as well as large fluctu-
ation caused by manual feature extraction [19,31], the EFD combined with pre-train
CNN models is proposed to contrive a non-complex and automatic feature extraction
model. To the best of our knowledge and understanding, this study is the first attempt
to combine EFD with any kind of CNN model and estimate its utility for MI EEG
problems.

2. To accredit the performance invariance for changing datasets, the proposed EFD-CNN
design is validated upon four large- and small-scale binary and tertiary-class MI EEG
datasets. The deployed datasets incorporate binary class datasets IVa and IVb from
BCI competition III containing six subjects altogether, a binary class GigaDB dataset
from the GigaScience repository containing EEG data from 52 participants, and a
three-class dataset V from BCI competition III having three subjects collectively.

3. A subject-independent framework is exploited by training the EFD-CNN model over
the data from a particular group of subjects while testing it over an unseen subject.
This is particularly interesting for a real-time BCI system since it allows the subject-to-
subject transfer of learned model parameters and the reusability of the current model
for a large group of new users.

4. An extensive quantitative analysis, including an assessment of 10-fold classification
performance, the effect of a varying number of EFD modes, deep feature extraction
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from CNN models and classification with machine learning models, and comparison
with contemporary studies, are performed and validated.

The remaining sections of this article are structured as follows. In Section 2, we talk
about the datasets used in this study. In Section 3, the readers can find a list of methods
and detailed descriptions used in this framework. Section 4 narrates the experimental
arrangements. Section 5 describes and discusses the empirical outcomes for different
case scenarios. Section 6 marks the prospects and limitations of the current study. Lastly,
Section 7 concludes this study.

2. Offline Data Repositories

This study exercises four large- and small-scale EEG datasets containing binary and
tertiary MI tasks for EFD-CNN validation. Such data cohorts include binary class MI
EEG dataset IVa, IVb from BCI competition III [32], GigaDB dataset from GigaScience
repository [3], and a three-class dataset V from BCI competition III [32]. The essential
characteristics and acquisition protocols of all repositories are illustrated in Table 1, while a
brief description concerning each dataset is as follows:

1. Dataset 1: Dataset IVa includes two MI EEG tasks for the right hand (RH, class 1)
and right foot (RF, class 2). The computer-aided visual system cued five healthy
individuals named AA (A1), AL (A2), AV (A3), AW (A4), and AY (A5) for 3.5 s per
task and captured data at 1000 Hz in 118 channels using the International 10-20 system.
Each individual completed 280 experiments, including 140 trials for the right hand
and 140 samples for the right foot category.

2. Dataset 2: Dataset IVb is a single-subject EEG dataset with MI tasks for the left hand
(LH, class 1) and right foot (RF, class 2). Similar to dataset 1, dataset 2 provides the
subject (annotated as subject B) with a 3.5 s visual cue and records data at 1000 Hz
with 118 channels. A total of 210 trials were carried out, half with class 1 tasks and the
other half with class 2 tasks. Datasets 1 and 2 are downscaled to 100 Hz and filtered
with a bandpass filter ranging from 0.5 to 200 Hz.

3. Dataset 3: GigaDB is a binary class MI EEG signals database collected from 52 par-
ticipants (including 33 male and 19 female subjects). The information was gathered
using 64 Ag/AgCl electrodes in accordance with the International 10-10 standard.
Each MI task consisted of 100 or 120 trials lasting for 3 s at a sampling rate of 512 Hz.

4. Dataset 4: Dataset V has three MI EEG tasks, including imagining repetitive self-
paced left-hand movements (class 1), imagining repetitive self-paced right-hand
movements (class 2), and generating words starting with random letters (class 3).
Three subjects participated in extensive trials for different MI tasks, each last for one
second while the data was sampled at 512 Hz using 32 electrodes.

Table 1. List of the MI EEG data repositories utilized in this study.

Dataset # Dataset Name Sampling
Rate

Trial
Duration (s)

No. of
Electrodes Participants Class 1

Trials
Class 2
Trails

Class 3
Trails

Dataset 1 IVa from BCI Competition III [32] 100 35 118

A1 = AA 80 86

-

A2 = AL 112 112

A3 = AV 42 42

A4 = AW 30 26

A5 = AY 18 10

Dataset 2 IVb from BCI Competition III [32] 100 3.5 118 B 105 105 -

Dataset 3 GigaDB from GigaScience [3] 512 3 64 S1–S52 100 or 120 100 or 120 -

Dataset 4 V from BCI Competition III [32] 512 1 32

Subject 1 280 200 236

Subject 2 276 201 237

Subject 3 238 235 238
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3. Method
3.1. Step 1: Denoising with Multiscale Principal Component Analysis

The EEG signals accumulation process is densely fabricated by noise artifacts originat-
ing as a result of biological activities such as the electrocardiogram (ECG), electrooculogram
(EOG), electromyogram (EMG), systematic noise coming from within the EEG gauging
equipment, power line interference, and communication systems artifacts. The foremost
operation is to identify and filter out such alienated superpositions in order to acquire clean
signals populated with MI EEG task-specific information. We opt for a hybrid denoising
tool called multiscale principal component analysis (MSPCA) for MI EEG filtration to
attain the desired objective. The MSPCA combines principal component analysis (PCA)
and wavelet transform (WT) to sift out the noisy samples from the actual data using their
covariance property and repack the remaining data to output a denoised multichannel EEG
signal. The block diagram for MSPCA workflow is given in Figure 1, while a brief working
principal is narrated as follows:

1. Let m be the number of time samples in an EEG signal, and n be the number of
channels. The single-trial EEG signal matrix could be defined as Am×n.

2. Fragment each channel of matrix A into Q levels using wavelet transform to obtain
BiB (detailed coefficients) and AjB (approximate coefficients).

3. Normalize the wavelet coefficients at each scale and conduct the principal component
analysis (PCA). As per Kaiser’s criterion, choose the coefficients with eigenvalues
greater than the average of all eigenvalues.

4. Calculate the inverse wavelet transform of the selected coefficients.
5. Calculate the PCA of the resultant matrix to obtain the denoised EEG signals.

The MSPCA was first introduced in [33] as a dimensionality reduction tool, but its
efficiency for biological signals has been demonstrated in recent research [12,23]. In this
investigation, we used Symlets 5 mother-wavelet for WT and set the wavelet decomposition
level (Q) to five. Such parameter setting is based on best practices used in earlier studies,
and the empirical hit and trial analysis in this study also attests to best-case outcomes for
the aforementioned parameter choices.

Figure 1. MSCPA workflow illustration.

3.2. Step 2: Signal Resolution with Empirical Fourier Decomposition

The foundation of empirical mode decomposition (EFD) derives characteristics from
the Fourier decomposition method (FDM) in terms of resolving a signal using Fourier
intrinsic band functions (FIBFs) and empirical wavelet transform (EWT) for boundary
detection in a Fourier spectrum. When contrasted to EWT, EFD workflow is concise and
does not necessitate any transformation or mother wavelet selection. To begin with, the
segmentation of the Fourier spectrum and detection of boundaries is the first critical step
in calculating the EFD of a non-stationary and non-linear signal. The user specifies M
decomposition levels for a given Fourier spectrum (spanning from 0 to π), and M + 1
boundaries are ultimately required. The Q critical points (starting point and local minima)
in the spectrum are then identified and sorted in descending order. Next, the appropriate
number of critical points are stipulated considering the following two conditions:
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1. If N ≥M, where N is the maximum number of pivot points in a Fourier spectrum, the
first M − 1 points are chosen.

2. If N < M, the number of extractable modes is less than the desired decomposition
level, and hence M is automatically reset to N.

Subsequently, the position (Ωq) of such critical points is estimated provided that
1 ≤m ≤M − 1, Ω0 = 0, and Ωm = π. Lastly, the absolute minimum in the range [Ωm−1, Ωm]
is designated as border point Ωm, and the set of minima is symbolized as ωm. The entire
Fourier spectrum boundaries could be defined as:

Ωq =

{
arg min ωq, f or 1 6 m 6 M− 1
ΩM−1+ΩM

2 , f or m 6 M
(1)

The next step is to calculate the IMFs once the Fourier spectrum limits have been
found. Consider a real-valued, time-limited EEG signal z(t), which has the following
Fourier series expansion:

c0 = 2
Q
∫ t1+Q

t2
z(t)dt

cm = 2
Q
∫ t1+Q

t2
cos(qφ0t)z(t)dt

dm = 2
Q
∫ t1+Q

t1
sin(qφ0t)z(t)dt

z(t) = c0
2 + ∑∞

q=1
[
cq cos(qφ0t) + dq sin(qφ0t)

] (2)

where c and d denote the Fourier series coefficients. It is possible to express Fourier series
expansion in its Euler form as follows:

z(t) =
c0

2
+

1
2

∞

∑
q=1

[
yqe(jqφ0t) + y∗q e(−jqφ0t)

]
(3)

where yq = (cq − jdq )and y∗q = (cq + jdq). The analytic expression for FIBF could be described
as follows: {

w(t) = ∑∞
q=1 yqe(jqφ0t)

−
w(t) = ∑∞

q=1 y∗q e(−jqφ0t)
(4)

Hereby, Equation (3) can be transformed as:

z(t) =
c0

2
+ Re{w(t)} (5)

The previously specified segmentation criteria indicate that w(t) may be divided into
M − 1 segments, and the general Fourier expression for w(t) is as follows:

w(t) =
M−1

∑
i=1

Xie(jθi(t)) (6)

Ultimately, the AFIBF may be established by merging the aforementioned boundary points.

Aie(jPS(t)) =
ΩS+1

∑
ΩS

zqe(jqφ0t) (7)

where As and Ps represent the instantaneous amplitude and phase of each FIBF. For
illustration, Figure 2 shows the class 1 (C1) and class 2 (C2) EFD modes, respectively,
using channel C3 for a single trial case of subject A1. The proposed EFD method has
several advantages over other approaches, including being independent of end effect and
mode mixing issues, not requiring a specific mother wavelet or filter bank, not requiring
a complicated transition of phase between boundaries while improving performance
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under closely spaced frequencies, being robust against high-frequency noises, and being
computationally efficient [33].

Figure 2. EFD modes for a sample trial of subject A1 using channel C3. C1 denotes class 1, while C2
indicates class 2 MI EEG task signal.

3.3. Step 3: Scalogram Transformation with Hilbert Transform (HT)

Following EFD decomposition, the time-changing signals are transformed into 2D
scalogram representations. We use the Hilbert transform (HT) to obtain the Hilbert spec-
trum of time-varying signals for this purpose. The Hilbert spectrum is the result of a
two-step process in which the non-stationary EEG is first decomposed into stationary
sub-band signals, and then the HT for each sub-band is computed in order to obtain instan-
taneous frequencies. A single channel EEG signal z(t) can be described mathematically as a
linear combination of its EFD IMFs as follows:

z(t) =
M

∑
i=1

qi(t) (8)

where M is the EFD decomposition level and qi(t) is the i-th EFD IMF. Every single IMF
can be further represented as follows:

qi(t) = R
{

bi(t)e−iθi(t)
}
= bi(t) cos(θi(t)) (9)

where bi(t) is the Fourier series coefficients, and θi(t) is the phase of qi(t). The instantaneous
frequency for i-th EFD IMF could then be defined as:

Ωi(t) =
dθi(t)

dt
(10)

Consequently, the Hilbert spectrum for qi(t) can be defined as:

Hi(Ω, t) =

{
bj(t), Ω = Ωi(t)
0, Otherwise

(11)
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Finally, the Hilbert spectrum for z(t) could be constructed as:

H(Ω, t) =
M

∑
i=1

Hi(Ω, t) (12)

The singular vectors of the Hilbert transform yield transient harmonics that are time
functions, resulting in an energy distribution over frequency and time. Figure 3 illustrates
the sample EFD scalograms using the Hilbert spectrum technique. The Hilbert spectrum is
significant in several ways for the existing EFD-CNN analysis: first, it is a non-parametric
technique for converting time-dependent 1D signals into 2D time-frequency representation
without any pre-defined constraints; second, it is computationally efficient and operates
linearly over the input EEG signal; third, Hilbert spectrum gives an exceptional time-
frequency amalgamation contrary to wavelet analysis, which fails to localize the frequency
and energy robustly. Conclusively, the contemplated virtues of the HT method suggest its
efficacy be adopted in the ongoing study.

Figure 3. Hilbert spectrum for EFD modes for class 1 (C1) and class 2 (C2) activities utilizing MI EEG
recordings from participants A1–A5 and B.

3.4. Step 4: Feature Extraction and Classification with Pre-Trained Convolutional Neural
Network Models

Convolutional neural network (CNN) models have seen a meteoric rise in popularity
in recent image classification-based research due to their remarkable self-feature extraction
ability. Layers in a CNN may either be used for feature extraction or categorization. The
layered architecture of the CNN model could be classified into two distinct categories: fea-
tures extractions layers, and classification layers, based on their working functionality. The
feature extraction layers consist of convolutional, activation function, pooling, and batch
normalization layers. At the same time, the classification layers are formed by combining
fully connected, dropout, softmax, and output layers accordingly. The feature extraction
layers quantify geometrical patterns in an image, such as edges, textures, forms, and objects,
and send them to the classification layers, which make the ultimate determination about
the class label.

The downside of using CNN-based algorithms is that they are time-consuming and
computationally expensive. Pretrained networks, on the other hand, do not need training
a CNN from the start; instead, a model trained on millions of pictures may be modified
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to accommodate a new purpose. Transfer learning is fine-tuning a pre-trained network
to execute or learn an unfamiliar job. Four small- and medium-scale pre-trained CNN
models—AlexNet, SqueezeNet, ShuffleNet, and GoogLeNet—were examined in this work
to find the optimum model for motor imagery EEG categorization issues. Table 2 briefly
describes the characteristics of the four pre-trained models used in the present study.

Table 2. Summarized description of pre-trained CNN models.

Pre-Trained
CNN Model No. of Layers Input

Dimensions Replaceable Final Layers No. of Parameters
in the Replaceable Layers

AlexNet 25 227× 227 fc8, prob, output 8194

SqueezeNet 68 227× 227 Pool10, prob,
ClassificationLayer_predictions 1026

ShuffleNet 173 224× 224 Node_202, softmax,
ClassificationLayer_node_203 1090

GoogleNet 144 224× 224 Loss3-classifier, prob, output 2050

4. Experimental Arrangements

This module elucidates the empirical configuration for the devised EFD-CNN mech-
anism. Specifically, we narrate the input-output arrangements for dataset 1 EEG signals
type; however, a similar process could be extended to dataset 2, 3, and 4 signals. Figure 4
illustrates a pictorial representation of the designed EFD-CNN workflow. At first, the
single-trial EEG signals with dimension 350 × 118 (where 350 is the signal length and 118
is the number of EEG electrodes) is subjected to MSPCA denoising, yielding a denoised
350 × 118 matrix. Since the denoising process solely affects the magnitude of signals, there
is no dimensional alteration between the input-output matrices. Next, the excessive number
of channels is discarded by selecting the 18 most significant channels. Those channels
are C5, C3, C1, C2, C4, C6, CP5, CP3, CP1, CP2, CP4, CP6, P1, P3, P1, P2, P4, and P6, accordingly.
Since the sensory-motor cortex of the brain is where the MI EEG is expressed chiefly, it
is crucial to choose a small number of electrodes that will contribute the most to the seg-
regation of the MI EEG tasks. Our prior essay outlined the rationale and importance of
choosing these 18 channels [25].

After channel selection, the remaining single-trial EEG data matrix has the dimension
350 × 18. Next, the EFD is rendered for each channel of the resulting EEG matrix, where
every column is decomposed into ten stationary intrinsic mode functions (IMFs). The
decomposition level is obtained empirically by testing with a variable number of IMFs and
evaluating their categorization ability. Further specifics about the EFD decomposition level
selection will be explored in the results and discussions section. The EFD decomposition
step gives a 350 × 10 × 18 tensor. Following, each 350 × 10 × C tensor (where C is a scalar
value denoting the channel index) is subjected to HT to convert the time-varying signals
into time-frequency scalograms, where each scalogram is an RGB image with dimension
543 × 429 × 3. Likewise, we retrieve 18 scalograms for a single trail EEG signal. The
aforesaid process is iterated for all trails belonging to different classes until all the time-
varying signals are transformed into RGB scalograms. Finally, the scalograms are reshaped
according to the input requirements of each pre-trained CNN model, and then the AlexNet,
ShuffleNet, SqueezeNet, and GoogleNet models are iteratively fine-tuned over the EFD
scalograms. As per the best practices explored by our previous study [25] and another
well-reputed research [34], the fine-tuning parameters are designated as follows: learning
rate = 1× 10−4, optimizer = root mean square propagation (RMSProp), batch size = 64, and
no. of epochs = 15.

The classification performance is gauged using the accuracy, f1-score (f-measure), and
Cohen’s kappa coefficient metrics. The accuracy of a classification system is measured as
the percentage of correct classifications relative to the total number of examples. This is
an essential metric for assessing a classification model’s overall performance; however,
it is insufficient when dealing with lopsided and skewed datasets. The f-measure is a
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performance statistic calculated by taking the harmonic mean of the precision and recall
measures. The f-measure considers the data imbalance and makes an unbiased judgment.
A higher f1-score indicates improved categorization performance and vice versa. Cohen’s
kappa, or simply kappa, is a qualitative attribute for measuring the inter-rater reliability of
the classifier. The kappa coefficient helps determine the validity of various classification
and testing methods.

The computational setup for the experimental procedure involves Intel (R) i7-9750H
CPU @ 4.5GHz processor, Windows 11 64-bit operating system with 16GB RAM, and Nvidia
RTX 2060 GPU with 6GB GDDR6 type memory using MATLAB R2022a software. All the
experiments in this research study are conducted exercising the 10-fold cross-validation
strategy in which the entire dataset is subdivided into ten equal portions. Nine data seg-
ments are combined to form a training set, while one segment is kept for model evaluation.
In this way, every single trial acts both as a training and testing sample subsequently.

Figure 4. Block diagram of the proposed EFD-CNN framework.

5. Results and Discussions

This section describes the empirical examination of the proposed EFD-CNN frame-
work. To assess the robustness of the suggested approach, we created several subject-
dependent and independent case scenarios across four large- and small-scale datasets. It
should be noted that, unless otherwise stated, the classification performance for the best-
case AlexNet CNN model upon dataset 1 and 2 subjects is presented for general evaluation.

5.1. A. 10-Fold Performance Evaluation

This section evaluates the quantitative results for the proposed EFD-CNN scheme
pertaining to accuracy, f1-score, kappa, and confusion charts. Figure 5 shows the statistical
evaluation of classification results in the form of box plots. The box plots are essential for
illustrating the generic group response of a data distribution, where the center line in the
box depicts the median value, the lower and upper boundaries of the box illustrate the 1st
and 3rd quartiles, while the side whiskers denote the minimum and maximum values of
the distribution.

First, we quantify the 10-fold accuracy, f1-score, and kappa coefficient employing the
box plot practice. It can be seen that the median accuracy and f1-score for all subjects
is >96%, while the kappa coefficient is >95% for subjects A1–A5 and >92% for subject B.
Next, the interquartile range (IQR) considering the accuracy and f1-score metric for subjects
A1–A5 is <3%, and for subject B is <4% without any considerable side whiskers (extrema),
indicating a low heterogeneity across the 10-folds. The IQR variations for the kappa
coefficient are <5–6% for all subjects, demonstrating a strong inter-observer agreement.
Furthermore, the mean accuracies for subjects A1–A5 and B are 99.10%, 98.70%, 98.80%,
97.50%, 99.05%, and 96.03% accordingly. Similarly, the mean f1-score values are 99.10%,
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98.70%, 98.73%, 97.45%, 99.06%, and 96.36%, respectively. Lastly, the average kappa scores
are 98.20, 97.40%, 97.57%, 94.91%, 98.08%, and 92.65% accordingly.

Figure 5. Box plot of 10-fold performance metrics obtained from the devised classification model for
all subjects of datasets 1 and 2.

The confusion matrices pertaining to the classification performance of dataset 1 and
2 subjects employing the proposed EFD-CNN method are illustrated in Figure 6. A confu-
sion matrix is distinctively efficacious for performance evaluation since it gives adequate
exposure to the classification outcomes of imbalanced datasets. The figure shows that the
false positive (FP) and false negative (FN) rate is <3% for subjects A1, A2, A3, A4, and
B, whereas for subject A5, it is <4%. This is because subject A5 only has 27 classification
instances, while only one sample was misclassified. The sensitivity, specificity, and pre-
cision coefficients are >96% for all subjects, testifying to the robustness of the envisaged
EFD-CNN model. The accumulative quantitative analytics reveals that our method has
achieved promising classification performance with interrater reliability, a non-complex
and automated signal processing model capable of dealing with balanced and imbalanced
EEG datasets simultaneously.

Figure 6. Confusion charts based on the classification results obtained from proposed EFD-CNN for
all subjects of dataset 1 and 2.

5.2. B. Effect of Varying Number of EFD Modes

This section unravels the EFD decomposition level (M)’s impact on the classification
success rate. As described in section III.B, the EFD method has a single tunable parameter M,
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which defines the number of decomposed stationary sub-bands or simply IMFs. The IMFs
are arranged in ascending order of frequency, each containing a band-limited stationary
signal. A lower value of M denotes a low decomposition level and wideband IMFs, while a
higher value indicates a greater decomposition and narrowband IMFs. We are interested to
see whether the M-factor contributes to increasing or decreasing the classification outcomes.
Figure 7 illustrates the empirical results for this particular scenario, where the M-factor in
the EFD-CNN framework is tuned between [1, 50] for all subjects of datasets 1 and 2, and
the classification accuracy is observed for each case.

It can be seen in Figure 7 that the average accuracy undergoes a slight increment
for the range 1 ≤M < 20. For M ≥ 20, the accuracy diminishes by 3% on average for all
subjects, escalating the misclassification rate. It is also observed that the success rate varies
<1% between the range 10 ≤M ≤ 20. Since a higher decomposition level requires more
time to calculate IMFs and also the average accuracy is stable between the interval [10,20];
therefore we choose M = 10 as a tradeoff value between the classification performance and
computational expense. The performance diminution for M ≥ 20 is that the bandwidth
for each IMF keeps getting narrower upon the increase in M-factor. The Hilbert spectrum
fails to adequately maintain the ERD/ERS information of the signals, resulting in a blur-
ring of the classification boundary between two MI EEG tasks and worse classification
performance. The current experiment also validates our previous study [19], in which
a similar experiment was carried out utilizing traditional signal processing methods. A
similar conclusion was reached in that example, where classification accuracy decreased
as the decomposition level increased. This study also confirms that the same conclusion
holds for time-frequency images and that EFD performance is insensitive to the input
signal transformation.

Figure 7. Effect of changing EFD decomposition level (M) on subject categorization in datasets 1
and 2.

5.3. C. Performance Comparison with Other SD Methods

We further compare the acquired findings with various benchmark signal decom-
position (SD) methods in the EEG domain in order to accurately assess the proposed
EFD-CNN model classification performance. Such techniques incorporate variational mode
decomposition (VMD), multivariate variational mode decomposition (MVMD), empirical
mode decomposition (EMD), empirical wavelet decomposition (EWT), tunable-Q wavelet
transform (TQWT), and wavelet packet decomposition (WPD). Although they each have
their own unique set of clinical drawbacks, these techniques have found widespread use in
EEG data analysis for various purposes. To provide a more accurate comparison between
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these techniques and our proposed EFD-CNN scheme, we merged them with the AlexNet
CNN model in this section.

The classification accuracy for various SD-CNN techniques is shown in Table 3. It has
been found that the suggested EFD-CNN technique surpasses all other SD-CNN methods
conclusively, resulting in an average accuracy of 98.2% for all subjects of datasets 1 and 2.
Subsequently, VMD is placed second with an average success rate of 97.7%. The difference
between EFD-CNN and VMD-CNN is only 0.42%, which is minor; nonetheless, the inherent
disadvantage of VMD (as explained in the introductory section) makes it unsuitable for MI
EEG analysis. The average success score for MVMD-CNN, EMD-CNN, EMD-CNN, and
TQWT-CNN is greater than 90%; however, the performance gap between these methods
and our suggested technique is greater than 2%, which is a significant account. Finally, the
WPD-CNN model earned the lowest average classification score of 88.5%, roughly 10%
lower than the recommended EFD-CNN. Overall, the EFD method outperforms classic SD
methods in qualitative and quantitative outputs.

Table 3. EFD-CNN performance comparison with other SD-CNN methods for all subjects of dataset
1 and 2.

SD. Methods A1 A2 A3 A4 A5 B Average

EFD-CNN 99.10 98.70 98.80 97.50 99.05 96.03 98.20
VMD-CNN 99.91 98.61 97.93 97.41 98.68 95.13 97.78

MVMD-CNN 96.38 96.25 96.76 95.46 96.21 94.00 95.84
EMD-CNN 96.06 95.19 95.60 93.64 95.47 92.95 94.82
EWT-CNN 94.89 94.66 94.46 92.54 94.90 91.96 93.90

TQWT-CNN 92.78 92.46 92.54 90.89 92.71 89.20 91.76
WPD-CNN 89.81 88.73 89.08 87.55 89.15 86.85 88.53

5.4. D. Results with Other Pre-Trained CNN Models

In addition to selecting an acceptable EFD decomposition level, selecting an appropri-
ate pre-trained CNN model is critical for effective MI EEG categorization. The selection
criteria for such models include improved classification accuracy and minimal compu-
tational complexity. Our earlier study in [25] examined ten large- and small-scale CNN
models for MI EEG segregation, and it was determined that the AlexNet, ShuffleNet,
SqueezeNet, and GoogleNet CNN frameworks serve our two principles for model selection.
Figure 8 exhibits comparison bar graphs for classification accuracy using the pre-trained
models. It is observed that AlexNet achieves the highest success score of 99.1%, 98.7%, and
98.8% for subjects A1, A2, and A3, respectively, while for subjects A5 and B, ShuffleNet
yields the highest classification accuracy of 99.5% and 96.8%. However, the difference
between ShuffleNet and AlexNet classification performance is <1%, which could be ne-
glected. The minimum success rate was obtained with GoogleNet, yielding 97.6%, 96.9%,
96.3%, 96.8%, 99%, and 94.6% accuracies for dataset 1 and 2 subjects. Most of the outcomes
are >90% and demonstrate MI EEG signals to have a promising capacity for classification.
AlexNet has been chosen as the best-performing model and is generally considered for the
entire analysis in this study due to its low complexity, and fewer layers.

5.5. E. Deep Features Extraction and Classification with Machine Learning Methods

The capacity of CNN models to extract their own features has dramatically increased
the idea of deep feature extraction from CNN models and categorization with machine
learning. This section aims to examine a case scenario in which the deep EFD features are
extracted from a fine-tuned AlexNet model and classified with four machine learning (ML)
classifiers, including support vector machine (SVM), k-nearest neighbor (kNN), decision
tree (DT), and logistic model tree (LMT) classifiers, respectively. The parameters for the
aforementioned ML classifiers have been left unchanged from those examined in our prior
study [22], where a thorough performance comparison in conjunction with the varied ML
model parameters was carried out.



Symmetry 2022, 14, 2677 14 of 23

The differences in classification accuracy between the proposed EFD-CNN model and
the other four EFD-ML approaches are shown in Figure 9. It is clear that our suggested
strategy performs better than other ML models by a margin of at least 9%. EFD-SVM had the
best accuracy of any ML model, with success scores of 90.7%, 90.5%, 89%, 89.3%, 90.3%, and
86.2% for subjects A1–A5, and B, respectively. EFD-SVM is followed by EFD-kNN relenting
88.6%, 88.7%, 89.7%, 88.4%, 88.3%, and 86.9% classification scores, respectively, for the
aforesaid subjects. The minimum accuracy is reported by EFD-LMT, giving 87.1%, 87.1%,
86.6%, 84%, 87.2%, and 84.3% success scores for dataset 1 and 2 subjects. According to the
overall empirical findings, fully connected layers in the AlexNet-CNN model accurately
estimate the input-output mapping function for multitask MI EEG EFD scalograms and
pinpoint the real boundary between the deep features. However, the ML models are
unable to achieve this either due to the high dimensionality of the deep features or the
enormous volume of training data. If the goal is features analysis rather than classification
performance, however, several dimensionality reduction methods [8] and post-processing
approaches [22] could be used to examine the deep features and draw conclusions about
the MI EEG signals.

Figure 8. Performance comparison for various pre-trained CNN models in combination with EFD
method using dataset 1 and 2 subjects.

Figure 9. EFD-CNN evaluation against deep features extracted from AlexNet CNN model and
classified with different machine learning classifiers.
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5.6. F. Comparison with Other State-of-the-art Studies

To further investigate the performance and utility of the proposed EFD-CNN scheme,
the classification accuracies of dataset 1 subjects are contrasted against well-reputed con-
temporary methods. Table 4 catalogs 14 studies that employed either conventional signal
processing techniques or automated deep learning frameworks for dataset 1 MI EEG clas-
sification. It can be seen that the proposed EFD-CNN method ranks second among our
comparative studies with an overall average accuracy of 98.6%, whereas our previous
study [19] is positioned at the top of the list with an average success score of 99.8%. The per-
formance discrepancy is merely 1.2% which is not significant considering the utilities of the
EFD-CNN model, such as simplex architecture, automatic feature extraction, performance
invariance for multiple datasets, and promising performance for subject-independent case
scenarios. Advancing, the study in [35] exploited an AlexNet-based classification frame-
work incorporating Fourier transform (FT), common spatial patterns (CSP), discrete cosine
transform (DCT), and empirical mode decomposition (EMD) for 3D scalogram construction.
The proficiency of such a model is satisfactory, with an average accuracy of 98.5%. Yet, the
adopted architecture is too complex and necessitates multiple time-frequency resolution
methods to attain an identical performance that we achieved with a single SD technique.

The studies in [16,34,36–38] embraced conventional signal processing methods with
handcrafted features in order to achieve >95% classification scores. Nevertheless, their
difference in accuracy with the proposed scheme is >2%; also, the processing frameworks
are complicated to perceive. The studies in [39,40] also deploy CNN-based architectures;
however, they produce an accuracy deficit of 5.4% and 8.6%, respectively. The minimum
classification accuracy in the entire table was reported by [41], which is 63.6% using the
discrete wavelet transform (DWT), statistical features, and kNN classifier. We observe that
our model achieves a maximum of 35% increment in classification performance compared
to the lowest-performing model, which is a significant improvement considering a non-
complex and fully automated architecture. We would like to clarify that the existing
comparative study does not discuss a 1D-CNN model or those deep learning methods
explicitly designed for EEG problems, such as EEGNet [29], deep ConvNet [28], and 1D
ConvNet [30]. This is because those models are still in the research phase and do not yield
promising classification performance despite being physiologically significant for MI EEG
signals. The overall analysis concludes that our EFD-CNN model subjugates other existing
signal processing models in terms of classification performance and simplex architecture.

Table 4. EFD-CNN performance comparison with state-of-the-art studies for dataset 1.

Authored by Proposition A1 A2 A3 A4 A5 Average

Our Previous Study [19] EFD + IEFD + Welch PSD + FFNN 99.9 99.8 99.9 99.8 100 99.8
This study EFD-CNN 99.1 98.7 98.8 97.5 99 98.6

Taheri et al. [35] FT + CSP + DCT + EMD + AlexNet 100 97.6 98.8 96.4 100 98.5
Sadiq et al. [34] MEWT + JIA + LS-SVM 95 95 95 100 100 97
Siuly et al. [36] EMD + AIMF Features + LS-SVM 97.7 98.8 96.6 98.8 95.5 97.5
Siuly et al. [37] OA + NB 97.9 97.8 98.2 94.4 93.2 96.3
Siuly et al. [38] CC + LS-SVM 97.8 99.1 98.7 93.4 89.3 95.7
Sadiq et al. [16] EWT + IA2 + LS-SVM 94.5 91.7 97.2 95.6 97 95.2
Fang et al. [39] ESI + CWT + CNN 89.9 98.8 90.6 95.6 91.2 93.2

Miao et al. [40] CNN based on frequency
characteristics of MI EEG 100 90 90 90 80 90

Kevric et al. [41] WPD + Statistical Features + kNN 77.1 72.2 75.2 85.6 86 79.2
Lotte at al. [42] SSRCSP 70.5 96.4 53.5 71.8 75.3 73.5
Lotte et al. [42] TRCSP 71.4 96.4 63.2 71.8 86.9 77.9
Lotte at al. [42] WTRCSP 72.3 96.4 60.2 77.4 86.5 78.6

Kevric et al. [41] DWT + Statistical Features + k-NN 56.6 60.7 55.9 55.1 90.1 63.6
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5.7. G. Empirical Results for Dataset 3

One predominant problem connected with such MI EEG classification models in con-
temporary research is that they are highly prone to inter-subject variations and acquisition
techniques, and their application is restricted to small datasets with a few subjects. We
investigate the usefulness of our proposed EFD-CNN model for a large dataset 3 with
52 participants to demonstrate its robustness against inter-subject variations. The dataset
contains MI EEG signals from 38 well-discriminative and 13 less-discriminative participants,
giving rise to a challenge of inter-subject variance and the hypersensitive classification
ability of the designed framework.

The empirical findings for dataset 3 participants using the EFD-CNN model are given
in Table 5. A detailed analysis of the results shows that the proposed model produces an
overall f1-score and average accuracy of 89.9%. The kappa coefficient is 79.8%, significantly
higher than the minimum threshold of 70% required for a BCI system. Further analysis
reveals that the accuracy rate is >90% for 26 participants, between 85 and 90% for 17 subjects,
and 80–85% for 11 participants, respectively. This is especially intriguing when compared
to the results of other investigations. We notice that the study in [25] produced an average
accuracy of 87.6%, with only 18 people scoring above 90%, 12 subjects scoring between 85
and 90%, and 19 participants scoring between 80 and 85%. The minimum results obtained
by EFD-CNN for any subject in dataset 3 are 80.03%, compared to 78.54% [25], 73.06% [43],
72.15% [31], and 25.42% [44] reported by its counterparts. This section concludes that the
EFD-CNN method is independent of inter-subject transfer and robust for a wide range of
MI EEG datasets with different acquisition protocols.

Table 5. EFD-CNN performance evaluation and comparison for all subjects of dataset 3.

Subjects
Performance Metrics Performance Comparison

Accuracy F1-Score Kappa Sadiq Sadiq Yu Kumar
(%) (%) (%) et al. [25] et al. [43] et al. [31] et al. [44]

S01 94.17 94.57 88.27 90.79 87.69 82.5 80
S02 85.83 85.95 71.67 91.38 90.6 85.48 52.33
S03 99.17 99.22 98.32 94.88 95.68 95.71 94
S04 93.33 93.44 86.72 91.58 87.68 83.52 78
S05 100 100 100 100 99.06 98.58 99
S06 96.67 96.67 93.34 92.69 89.03 86.51 82.33
S07 82.5 80.37 64.71 84.71 81.83 79.5 52.78
S08 87.5 86.73 74.92 82.55 79.85 78.55 55.67
S09 89.17 86.02 77.18 82.17 79.23 82.55 56.4
S10 92.5 93.13 84.88 89.65 86.65 80.52 73
S11 82.5 82.05 64.98 82.75 76.03 75.56 57.33
S12 90 91.18 79.64 83.22 78.44 80.53 67.17
S13 94.17 94.31 88.33 91.21 89.01 94.58 84.5
S14 100 100 100 100 98.02 97.57 96.5
S15 89.17 87.85 78.09 90.98 87.2 75.57 64.67
S16 83.33 85.07 66.22 82.85 77.49 81.54 47.5
S17 83.33 81.13 66.24 78.54 73.06 79.56 49.67
S18 80.83 82.44 61.37 81.31 77.07 77.58 53.33
S19 87.5 86.73 74.92 84.1 78.26 80.56 57.17
S20 91.67 91.38 83.32 88.8 85.42 77.53 72.83
S21 90.83 90.43 81.64 91.05 88.21 74.51 66
S22 87.5 87.8 75.03 82.91 79.03 78.58 58.67
S23 94.17 94.31 88.33 87.82 87.84 87.5 84.17
S24 84.17 83.76 68.33 81.94 78.22 79.55 60.67
S25 83.33 84.38 66.53 82.59 78.65 72.51 53
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Table 5. Cont.

Subjects
Performance Metrics Performance Comparison

Accuracy F1-Score Kappa Sadiq Sadiq Yu Kumar
(%) (%) (%) et al. [25] et al. [43] et al. [31] et al. [44]

S26 99.17 99.2 98.33 100 99.04 98.56 96.83
S27 81.67 82.54 63.28 82.49 76.49 76.54 44.67
S28 95 95 90 92.23 91.43 78.6 80.83
S29 85 83.64 69.82 79.82 74.8 91.54 43
S30 87.5 86.24 74.83 87.78 86.64 76.51 55.5
S31 86.67 85.71 73.28 86.09 84.43 78.52 62.33
S32 88.33 88.71 76.64 86.12 83.66 77.56 50.57
S33 87.5 88.37 74.9 83.24 79.6 73.59 55.67
S34 85.83 85.95 71.67 84.09 77.65 80.52 58
S35 94.17 94.74 88.2 90.57 91.67 85.54 81.83
S36 88.33 89.55 76.34 84.88 83.7 82.53 69.5
S37 92.5 91.74 84.88 91.12 90.42 83.52 77
S38 84.17 84.55 68.42 83.1 79.1 77.6 48.5
S39 91.67 91.53 83.33 86.57 86.21 80.51 73
S40 83.33 83.33 66.68 82.51 75.81 77.54 51.17
S41 94.17 94.66 88.24 89.7 87.64 92.59 85.33
S42 86.67 85.45 73.18 81.4 74.64 75.54 48.33
S43 100 100 100 98.08 99.04 99.53 95.83
S44 97.5 97.3 94.97 92.85 93.29 94.53 89.17
S45 86.67 84.62 72.86 84.57 82.29 82.58 52.5
S46 85 86.15 69.82 79.49 75.89 85.57 25.42
S47 91.67 91.53 83.33 88.48 89.08 88.57 74.17
S48 91.67 92.96 82.76 89.67 89.21 90.53 78.17
S49 97.5 97.48 95 94.73 93.41 91.54 87.5
S50 100 100 100 99 100 98.58 100
S51 84.17 85.27 68.26 85.06 84.04 89.56 53.17
S52 89.17 89.6 78.3 85.71 82.69 84.54 61.83

Average 89.97 89.9 79.81 87.68 85.02 83.83 67.24

5.8. H. Empirical Results for Dataset 4

Further evaluation for the inter-subject invariance of the EFD-CNN is carried out
using a three-class mental imagery EEG dataset 4, having distinct acquisition standards.
The dataset has three participants, each performing three cued tasks repetitively. To further
assess the relative performance of each class, we changed the multi-class classification issue
into a binary class problem, as practiced by [19,45] . Table 6 depicts various case scenario
arrangements in which each class is contrasted with the remaining two classes for each
subject. As a result, nine different cases are formed, the empirical results of which are
shown in Table 7.

It can be seen that the proposed method achieves an average accuracy of 93.8%,
which is greater than the previously reported classification accuracies of 61.1% and 91.8%
by [12,45], respectively. The results further highlight the suitability of the EFD-CNN method
in terms of individual case outcomes, where our method significantly exceeds the prior
studies. In some instances, previous approaches were more accurate than ours; nonetheless,
the difference is less than 2%, which is regarded as inconsequential. In addition, the results
reveal consistency between other performance measures and the accuracy metric. As can be
observed, the mean, f1-score, and kappa coefficient are 93.7 and 86.6 percent, respectively.
These findings validate our strategy’s consistency and inter-rater reliability for analyzing
datasets with an uneven distribution. A closer look at the gathered results reveals that the
f-measure and kappa coefficient are in perfect agreement with the classification accuracy.
The current analysis concludes that the EFD-CNN framework is robust for the mental
imagery EEG dataset in terms of above-average classification performance, surpassing
previously reported results and stable outcomes for skewed datasets.
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Table 6. List of binary class combinations for dataset 4 subjects.

Subjects Cases Combinations

Subject 1

Case 1 Class 1 vs. Class 2

Case 2 Class 1 vs. Class 3

Case 3 Class 2 vs. Class 3

Subject 2

Case 4 Class 1 vs. Class 2

Case 5 Class 1 vs. Class 3

Case 6 Class 2 vs. Class 3

Subject 3

Case 7 Class 1 vs. Class 2

Case 8 Class 1 vs. Class 3

Case 9 Class 2 vs. Class 3

Table 7. EFD-CNN performance evaluation and comparison for all subjects of dataset 4.

Cases

Performance Metrics Performance Comparison

Accuracy F1-Score Kappa Siuly Sadiq
(%) (%) (%) et al. [45] et al. [12]

Case 1 96.42 96.29 92.85 65.88 94.58
Case 2 92.85 95 82.5 75.35 91.16
Case 3 85.71 84.61 71.42 62.68 81.17
Case 4 98.98 97.97 95.99 58.95 100
Case 5 100 100 100 73.04 100
Case 6 85.71 81.81 70.05 62.35 82.15
Case 7 96.42 97.14 92.39 47.84 97.46
Case 8 99 99.01 97.99 51.47 99.16
Case 9 89.28 91.89 76.13 52.71 80.54

Average 93.81 93.74 86.65 61.14 91.8

5.9. I. Subject-Independent Case Results

Subject-independent (SI) BCI systems emerged due to their remarkable capacity to
generalize training information obtained from a specific set of subjects to a new user
without the necessity for that user’s training data. Subject-dependent BCI systems provide
several challenges in their implementation, such as computational complexity, portability,
operational hassles, data collecting and training a model from scratch for a new user, etc.
In this section, we extend the applicability of our EFD-CNN model to SI classification. For
this purpose, dataset 1 is initially denoised with MSPCA, and 18 motor cortex channels
are selected, similar to the subject-dependent case scenario. The subsequent dataset is
then subjected to EFD decomposition, where ten EFD modes are extracted from every
channel. Afterward, the 1D signals are transformed into 2D scalograms employing the HT
method. Lastly, the scalograms are fed to the AlexNet pre-trained model for fine-tuning
and classification. In this study, the AlexNet model is trained using 30 permutations of five
subjects (A1, A2, A3, A4, and A5), and testing is carried out using the leave-one-subject-out
(LOSO) strategy.

Table 8 illustrates the classification accuracies concerning the SI case scenario for
dataset 1. It can be seen that subject A2 attains the maximum success rate of 87.02% for
the target subject A5. Subjects A2, A3 (as source) and A1 (as target), A4, A5 (as source)
while A1 (as target), A5 (as source) and A4 (as target), A2, A4 (as source) while A3 (as
target) achieves approximately identical classification accuracy of 86+%. The minimum
segregation outcomes of <70% were observed in the case of subjects A1, A3 (as source) and,
A5 (as target), A5 (as source) while A2 as the target. All other combinations yield above
70% accuracy for all source subjects. To further extend the analysis, Figure 10 compares
the average success scores achieved by individual combinations in Table X and the ones
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reported by our previous study [19] utilizing EFD+spectral features. For better clarity,
the current outcomes are arranged in descending order of their achieved accuracies. In
29 instances, the suggested EFD-CNN model performs better than its predecessor. The
EFD+spectral features model only produces one result with a score greater than >80% for
Comb. 26, while it scores <70% in all other instances. Furthermore, the difference between
the maximum and minimum performance scores by the EFD-CNN model is only 14.03%
which is 2.8 times less than the EFD-spectral features model (having a 39.60% discrepancy
between extrema).

Figure 10. Performance evaluation and comparison of SI case with previously reported Ref. 1: [19] results.

The findings of SI classification demonstrate that certain combinations of individuals
sacrifice outstanding classification performance while others do not achieve equivalent
results. This is because SI-EEG categorization hinges on inter-subject correlated features. In
certain circumstances, the correlation between two subjects is high, whereas, in others, it is
poor. When strongly correlated individuals are combined to form a training dataset, the
classification performance of the resulting set improves. Conversely, when uncorrelated
subject data is combined with correlated subject data, the aggregate redundancy of the
training set increases, resulting in a reduction in classification accuracy. The overall SI
results produced with the EFD-CNN framework are more significant than the benchmark
(>70%); nonetheless, there is still potential for improvement that could be further improved
in future studies.
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Table 8. Subject independent case results for different training and testing data combinations using
dataset 1 subjects.

Combination # Subject A1 A2 A3 A4 A5Combinations

Comb. 1 A1 - 77.74 72.9 83.46 79.79
Comb. 2 A2 82.24 - 83.08 83.62 87.06
Comb. 3 A3 69.89 79.24 - 72.03 74.82
Comb. 4 A4 86.02 83.43 84.82 - 86.46
Comb. 5 A5 82.27 69.82 72.45 86.78 -
Comb. 6 A1, A2 - - 75.24 82.94 79.65
Comb. 7 A1, A3 - 72.56 - 85.64 69.11
Comb. 8 A1, A4 - 71.31 74.96 - 83.32
Comb. 9 A1, A5 - 86.7 83.63 72.47 -
Comb. 10 A2, A3 86.97 - - 71.53 79.91
Comb. 11 A2, A4 83.17 - 86.74 - 71.86
Comb. 12 A2, A5 74.19 - 72.83 76.48 -
Comb. 13 A3, A4 81.55 81.86 - - 77.55
Comb. 14 A3, A5 80.7 80.5 - 83.1 -
Comb. 15 A4, A5 86.81 78.37 86.12 - -
Comb. 16 A1, A2, A3 - - - 80.55 74.22
Comb. 17 A1, A2, A4 - - 73.5 - 71.77
Comb. 18 A1, A2, A5 - - 75.43 76.09 -
Comb. 19 A1, A3, A4 - 80.08 - - 80.36
Comb. 20 A1, A3, A5 - 78.68 - 72.45 -
Comb. 21 A1, A4, A5 - 70.02 72.27 - -
Comb. 22 A2, A3, A4 83.57 - - - 79.51
Comb. 23 A2, A3, A5 73.54 - - 73.55 -
Comb. 24 A2, A4, A5 74.5 - 78.17 - -
Comb. 25 A3, A4, A5 81.49 78.19 - - -
Comb. 26 A1, A2, A3, A4 - - - - 74.04
Comb. 27 A1, A2, A3, A5 - - - 76.11 -
Comb. 28 A1, A2, A4, A5 - - 73.39 - -
Comb. 29 A1, A3, A4, A5 - 74.51 - - -
Comb. 30 A2, A3, A4, A5 74.61 - - - -

6. Future Work

The existing report scrutinized the efficacy of EFD-CNN for MI EEG signals, and it was
deduced that the contemplated method has the potential to form a promising BCI system.
However, certain prospects are worth investigating for future studies: (1). the idea of
multidomain EEG systems is getting immense attention owing to their exceptional ability to
provide a one-window solution to diverse EEG problems. There are efforts [22], addressing
this challenge; however, once again, the catalyzed architectures were too complex and
based on the conventional signal processing methods. The current investigation rectifies
the drawbacks associated with existing signal processing methods and could be extended
to developing a multidomain EEG classification system. (2). In this study, the selection of
the number of channels is made manually based on the prior recommendations by other
studies. A research study could be conducted to automate the channel selection process and
select the minimum number of clinically relevant electrodes for classification performance
augmentation. (3). The selection of EFD decomposition level was empirically determined
to be ten as per the accuracy contribution rate experiment. However, this process could
be further automated by altering the EFD method in order to achieve a self-operating BCI
system without any considerable human intervention.

7. Conclusions

In conclusion, this paper proposes a robust and non-complex signal processing frame-
work by amalgamating the EFD and pre-trained CNN models for MI EEG task identification.
The objective of this study was to evaluate the newly proposed EFD method in tandem
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with deep learning methods to devise an automated and self-feature extracting mecha-
nism. The new EFD-CNN framework operated over four large- and small-scale binary and
tertiary-class MI EEG datasets for performance validation. Experimental outcomes revealed
superior classification performance for multiple case studies under subject dependent cri-
terion, outperforming the contemporary studies by a fair margin. Further experiments
under the subject-independent paradigm showed a highly improved model compared to
the previously proposed prototype, indicating the large-scale utility and subject-to-subject
transfer of the trained model. The suggested EFD-CNN architecture improves upon the
limitations of prior approaches to time-frequency resolution, provides a simple signal
processing pipeline, and offers a robust solution for MI EEG signals, can be adopted as a
reliable BCI system.
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