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Abstract: We established some new a-conformable dynamic inequalities of Hardy-Knopp type. Some
new generalizations of dynamic inequalities of a-conformable Hardy type in two variables on time
scales are established. Furthermore, we investigated Hardy’s inequality for several functions of «a-
conformable calculus. Our results are proved by using two-dimensional dynamic Jensen’s inequality
and Fubini’s theorem on time scales. When & = 1, then we obtain some well-known time-scale
inequalities due to Hardy. As special cases, we derived Hardy’s inequality for T = R, T = Z and T =
hZ. Symmetry plays an essential role in determining the correct methods to solve dynamic inequalities.
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1. Introduction

The renowned discrete Hardy’s inequality [1] states that:

Theorem 1. If {b,} is a nonnegative real sequence and p > 1, then

o p

1 n p p oo p
L (o < (%) AR M

n=1

Hardy discovered this inequality while attempting to sketch an easier proof of Hilbert’s
inequality for double series, which was known at that time.

Using the calculus of variations, Hardy himself in [2] gave the following integral
analogous of inequality (1).

Theorem 2. If ¢ is a nonnegative integrable function over a finite interval (0, x) such that
¢ € LP(0,00) and p > 1, then

o/ X p .
0/ ;O/‘P(%)d% dy < (ppl)po/‘PP(X)dX- @)

It is worth mentioning that inequalities (1) and (2) are sharp in the sense that the
constant (p/p — 1)? in each of them cannot be replaced by a smaller one.

In [3], Hardy and Littlewood extended inequality (1) and obtained the following two
discrete inequalities.
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Theorem 3. Let {b,} be a nonnegative real sequence.

(@) Ifp>1landc > 1, then

bh. (3)

@) Ifp >1andc <1, then

[ee] o0 p (o]
Y ;(Z bk) <K(p,7) ), %bﬁ, (4)

n=1
where K(p, ¢) in inequalities (3) and (4) is a nonnegative constant depending on p and c.

In [2], Hardy established the continuous versions of inequalities (3) and (4) as follows:

Theorem 4. Let ¢ be a nonnegative integrable function ¢ on (0, c0).

@) Ifp >1land m > 1, then

o X p 0
1 ) Ak p 4 1 .
O/Xm (O/GD(\S)d\S) dx < (m—l) / mepﬁbp(?()d)(/ ®)

0

(i) Ifp > 1land m < 1, then

oo (e ) 14 0
L owus AL
O/Xm (X/ Gb(d)d\s) dx < (l—m) O/megbp(?()d?(‘ ©)

The reverse of inequality (2) was proven by Hardy and Littlewood in [3]. Their result
can be written as:

Theorem 5. If 0 < p < 1 and ¢ is a nonnegative integrable function on (x,o0) such that
¢ € LF(0,00), then

[e) 00 p o
/(;/fP(%)d%) dyx > <1fp>p/<p”()()dx. @)
0 X 5

In the same paper [3], the authors proved the following sharp inequality.

Theorem 6. If p > 1and ¢ is a nonnegative integrable function on (), co) such that ¢ € LP(0,0),

then )
oo 1 (e [o9)
/ (X / ¢(%>d%) dx < p" [ 9" (dx, ®
0 X 0

which by a trivial transformation can be written as
[ee] o p [ee]
/ ( / ¢<%>d%) dx < p" [ (xf(0)dx. ©)
0 \x 0

The discrete version of inequality (9) was given in [4] as follows:
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Theorem 7. If {b,} is a nonnegative real sequence and p > 1, then

n=1 n=1

[0 9) [e9) p [e9)

) (Z bk> <pP Y (nay)P. (10)
k=n

Hardy [5] generalized (1) and proved the following result.

n
Theorem 8. If p > 1,b, > 0,A, > 0forn > 1land Ay, = Y Ay, then
k=1

A () < (2) 5 11
nZlAg(kZi kk>_<p_1>nzlnn- (11)

The study of Hardy type inequalities has attracted the attention of many researchers.
Over several decades, many generalizations, extensions, and refinements have been made
to the above inequalities; we refer the reader to the papers [1,2,5-10], the books [4,11], and
the references cited therein.

Time-scale calculus with the objective to unify discrete and continuous analysis was
introduced by S. Hilger [12]. For additional subtleties on time scales, we direct the peruser
to the books by Bohner and Peterson [13,14].

In [15], Rehak has given the time scales version of Hardy’s inequality as follows:

(&3

Ny

Theorem 9. Let T be a time scale and € C,4([a,00)1,[0,00)), A(F) = [¢P(J)AT for S €

a

]O(M(%))’Z% < (ﬁfl)ﬁ]"wﬁ(g)m, £>1, 12

o(Y) —a

[a,00)T.

unless P = 0.
Furthermore, if u()/ — 0as & — oo, then inequality (12) is sharp.

In [16], Saker and O’Regan established a generalization of Rehék’s result in the follow-
ing form.

Theorem 10. Let T be time scaleand 1 < ¢ < k. Le

~~

X(S) = /a As)As (13)

for any § € [a, 00)T and define

0(3) = [ AE)E(s)As (14)

for any S € [a, ). Then

[ e @an < K [T @@ o) as

and
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Theorem 11. Let T be a time scale and k > 1 and 0 < ¢ < 1. Let x be defined as in (13) and define

and

Recently, in 2017, Agarwal et al. [17] gave the inequality.

Theorem 12. Suppose T is a time scale such that 0 € T. Further, assume 1 is a nonincreasing
nonnegative function on [0, c0). If p > 1, then

o 1 R p 0
— A A > P(S)AS. 1
[ ([ nons) as > 20 [ pr@)as as)
In 2020, El-Deeb et al. [18] established a generalization of inequality (15).

Theorem 13. Suppose that T is a time scale with 0 < a € T. Moreover, assume that y and A are
nonnegative rd-continuous functions on [a, o) with n nonincreasing. If p > 1 and y > 1, then

/u WA%> %/ A(S)APTT(I)nP (3)AS, (16)

where

x

¥(3) :/; As)p(s)as  and  A(S) —/f)L(s)As.

In 2020, Saker [19] proved the following theorem.

Theorem 14. Assume that T is a time scale with w € (0,00)7. If m < 0 < h < 1, x(Q) =
J5 A(s)As and ©(S f A(s)E(s)As, then

[ A (@r(3)) a5 > (h)h /w RICHIOPEIOI

w X™(3) 1—m

=
o
A\
=
A\
—_
AN
3
=
\(:2
T
i
=
195)
)
=
[
@

f ~ s)As, then

/ TAR)FQNT(9)S,

w

where

In [20], Ozkan and Yildirim gave the following result among many other results.
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Theorem 15. Let a € [0,00)p and u,@ € Cq([a,blr,Ry) such that the delta integral
b

X/ = a;l((f()%) — AS converges. If p € Cpy([a, blr, (6,B)) and ¥ € C((6, B),R) is convex,
then
o(x)

b | 9(I)AS b b
u(x) 2 u(<y) o
/Xfa‘f’ = Axsu/‘f(tp(x))(xf = (U(%)Q)Ao> Ax.

Benkhettou et al. [21] introduced a conformable calculus on an arbitrary time scale,
which is a natural extension of the conformable calculus.
We define the forward jump operator o : T — T by

o(t):=inf{s € T:s > t}, teT (17)
and the backward jump operator p : T :— T is defined by
p(t) :=sup{s € T:s < t}, teT. (18)

Definition 1. Let 7 : T — R, t € T, and a € (0,1]. For t > 0, we define T2 (17)(t) to be the
number (provided it exists) with the property that, given any € > 0, there is a 6-neighborhood
Uy C Toft,d > 0, such that

(e () = ()]~ = T () (Do () —s]| <elo(t) —s|,

for all s € U;. We call T2 () (t) the conformable derivative of 11 of order « at t, and we define a
conformable derivative on T at 0, as T2 (17)(0) = lim;_o4 T2 (n)(#).

Remark 1. If « = 1, then we obtain from Definition 1 the delta derivative of time scales. The
conformable derivative of order zero is defined by the identity operator TS (17) = 1.

Theorem 16. Let a € (0,1] and T be a time scale. Assume 17 : T — Rand t € T*. The following
properties hold.

(i) If n is conformable differentiable of order w at t > O, then 1 is continuous at t;

(i))  If y is continuous at t and t is right-scattered, then 1 is conformable differentiable of order « at

e (w() (8
t)) —n(t) 41—
™ (1) = T\ e,
Bt = TES
(iii) If t is right-dense, then 1 is conformable differentiable of order « at t if and only if the limit

() =1(s)
t—s

limg__; 1% exists as a finite number. In this case,

A ()(1) = tim 1 =16 e,

s—t t—s

(iv) If n is differentiable of order o at t, then
(o (t)) = n(t) +u(O)t " T () (1)
The conformable derivative has the following properties.

Theorem 17. Assume 1,§ : T — R are conformable differentiable of order a € (0, 1], then the
following properties hold:
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(i)  Thesumn + ¢ : T — Ris conformable differentiable with

T (n +8) = To () + T2 ©Q);

(i) Foranyk € R, ky : T — R is conformable differentiable with
Ty (ki) = KT (1);

(iii) If n and ¢ are continuous, then the product ¢ : T — R is conformable differentiable with
T (1) = T2 (N§ + 17T (§) = To (1)&” + 1T (8);

(iv) If y is continuous, then 1/ is conformable differentiable with
A (1> _ —TR(n)
“\n/) o (oo

valid at all points t € TX for which y(y o 0) #0;
(v) Ifyand ¢ are continuous, then 1/ is conformable differentiable with

A1 _ Te()g —nTR (@)
T”‘(€>_ &

valid for all t € T for which && # 0.

Definition 2. Let i1 : T — R be requlated function. Then, the a-conformable integral of 17,0 <
« < 1, is defined by
/U(t)A,Xt = /q(t)t‘HAt.

Definition 3. Supposen : T — Risa regulated function. Denote the indefinite x-conformable
integral of i of order a, & € (0,1], as follows: Fy(t) = [ n(t)Aqt. Then, for all a,b € T, we define
the Cauchy a-conformable integral by

/abn(t)Aat — Fu(b) — Eu(a).

A few years ago, by using conformable calculus, a lot of papers were published
on conformable inequalities and several authors investigated several new conformable
inequalities of Hardy type. For example, in 2020, Saker et al. [22] gave an a-conformable
version of Theorems 10 and 11 on time scales as follows:

Theorem 18. Let T be time scales and 1 < ¢ < k, define

x(x) = /x/\(s)A,xs and O(x) = /X A(5)E(8)Ays.
If ©(o0) < o0 and
T M) A
| Grrmmte <=

then
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Theorem 19. Let T be time scales and 0 < ¢ < 1 and k > 1, define

[0}

x(x) :/ax/\(s)Aas, and O(x) :/x A(s)C(s)Ags.
If ©(o0) < o0 and
© M) N
e

then

00 )\(x) - k k k 00 ” e
/“ W(G) () Bax < (c—oc) /a (X7 () I (x) 8 () Aax.

X

In 2021, Zakarya et al. [23] gave an a-conformable version of Theorem 14 on time
scales as follows:

Theorem 20. Assume that T are time scales with w € (0,00)1,k <0 < h < land a € (0,1].
Define

R

X(3) :/MA(S)ARS and O(3) :/ A(5)E(s) Dus.

i w

Then,

h

a—m

L )A%l)(g)@”(%))%% > ( )h [TA@@ @@,

Theorem 21. Assume that T are time scales with w € (0,00)p,0 < h <1 < kand a € (0,1].
Define

e )

x(S) = /oo A(8)Ays and O(S) :/ A(s)E(8)Ags

R} R}

such that
X7 (S)

0.
st x(3)

V

Then,

© & . k—a+1 ©
/. M(@(%»”Aaw (”ﬁf_;) [ A @ @),

As the same proof of Theorem 10, we can write the conformable version as follows:

Theorem 22. Let a € [0, c0)p and define, for S € [0, 00)T,

R Ri

O(3) = [MOg@Bs  and  AQ)i= [AQ)BeL:

a a

Ifp>c>1,then

T @7 o (P N T e AT Y
H/A(J)WAa\yg(q_l) /A(J)gp(omw. (19)

In this paper, we prove some generalizations of Hardy type dynamic inequalities
that were given recently by Ozkan and Yildirim in [20]. The obtained results extend some
known Hardy type integral inequalities and unify and extend some continuous inequalities
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and their corresponding discrete analogues. The paper is arranged as follows: In Section 2,
we state and prove the main results. In Section 3, we state the conclusion.

Lemma 1. [24] (Fubini’s Theorem on time scales) Let ¢ be bounded and A-integrable over
R = [a,b) X [c,d) and suppose that the single integrals

d b
19)= [9(8.080  and K@) = [9(3,09

exist for each S € [a, b) and for each { € [c,d), respectively. Then, the iterated integrals

b d
[a3]
a c

<

d
S08;  and [a7 [9(3,0a9

exist and the equality

/b A%/d (S 0)AL = /d Az [ 9(3,0)83

c a

holds.

Lemma 2. [25] (Dynamic Jensen’s Inequality) Suppose that a,b € T with a < b. Further, let
€ Cry([a,b]r, (0, B)) and ¢ € Cq([a, bl7, Ry). IfY € C((6, B), Ry.) is convex, then

b
[ o@)p(2)Aag
1{; a

y /b POY(P(D)Dl 20
b - b
[o@ad | 7 [e@nad

We need the following lemma, which gives a two-dimensional dynamic Jensen’s
inequality, in the proof of our main results.

Lemma 3 ([25]). Suppose that a,b,c,d € T with a < b and ¢ < d. Further, let

Y € Cullab)r x[cd]r, (0,8),¢ € Cu(ledr,Ry) and ¢ € Cu(la,b)r,Ry). If
Y € C((6,B),Ry) is convex, then

Re—m =
O t—a
=q
\6,2
=
o
=
®
D/
>
=
&0
>
s
™~
fand
:..

< [ [0 EDINNG y,

2. Main Results
Theorem 23. Let a € [0,00)p and u,@ € Cyy([a,b), Ry) such that the delta integral

/b Q@) g
X
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converges. If p € Cyy([a, b)), (8,0)) and ¥ € C((6,9),R) is convex, then
o(x) A
b (S I)ALS
| ot it I
X o(x) ‘
i [@(3)8.S fX O(3)AeS
/ b ()
< [ ¥ e 8 | Bare 22)
X

fCO(x)Aax [ @(x)dax

Proof. Employing the dynamic Jensen inequality (20) and Fubini’s theorem on time scales,

we obtain
a(x) A
b ) (I)A,S
| ot i I
a(x)
a af@(%)Aa%‘ [ @(3)AS
b o()u(y) a(x)
< [ — AL | @S¥((E)AS | Aax
a af@(%)Aa% af @(I)AS \ ?
b b u( )
:a/a)(%)‘ff(l/](%)) ! Zf;o Aax | A3,

which is our desired result. O

Remark 2. If we put @() = 1, & = 1 in Theorem 23, then we recapture Theorem 15.

Below, we present various applications of Theorem 23.

(1) In Theorem 23, if u(x) = 1 and b is finite, then inequality (22) reads

P o@pa

@(IP(F)ALS

. o) uam Aux

* [ o)A [ @(3)A:S
: 1 1

< [ (0¥ (o) | 5 -5 Bot 23)
a f @(0)Al [ @(0)Aal

aX- (24)
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L

X=a

(2) If we take ¥(u) = uP, where B > 1is a constant, then inequalities (23) and (24) are,

respectively,
a(x) A P
b % RS
[ ow [ e@)p3)ns -
X o(x) '
a afw(%)Aa% [ @(3)AS
/ 1 1
< [ @G0 | 5 -5 e 25)
; Jo@)8d  [0(0)Ad
and
o(x) P

px s [COPW,

1 [@(Z)Aul

a

(3) If we take ¥(u) = exp(u) and replace ¢ by In, then inequalities (23) and (24) are,

respectively,
o) mp@)s
@(3) InP(F)A, S
. (O(X) exp a e A!XX
e [ ()AL [ @(3)A:S
1 1
< /@(x)llﬂ(x) T -5 Dax
a {w(é)Aaé J@(D)Al
and
") ng(@)a
@ () In & aS 0
Q) op| - - Aux < / f(x)lP(x) Aux.

a {@(C)Aaé

4) If T = Rand & = 1 in Theorem 23, then inequality (22) reduces to

oniy, [ Joom@n) o
/X X - 5/ /}(%7% dx.
a fw (S)dt afco(%)d Jo(x)dx

(5) If T = hZ and « = 1 in Theorem 23, then inequality (22) reduces to

S ome)pme)) .

): @ (he) égﬂfﬂ(hé‘) x=a

)y | = < Yoty | ¥ | @)

6= "quw(hx) L @(hy)
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(6) If T = Z, we simply take in (27), then inequality (22) reduces to
- £ o@9®)) 4 -
— @(x)u S—g — — u(y
y 0y | s <Y oy | ¥ —8L
=N () L @) = =Y o(x) ©o@x)
S=a S=a x=a y=a

Theorem 24. Suppose that a,c € [0,00)T,9p € Cpy([a,b)r X [c,d)1,R), ¢ € Cry([c,d)T, R4)
and ¢ € Cpy([a, b)r, Ry). IfY € C((6,9),Ry) is convex, then

o(x) o(n) oA

b d S 3, 0)ASA,
RO [ 0@)p0p(3, 0030 .

X1 a(x) o alfBa
we [eewossad | T pee0asad

b d a Cc
< [ [o(3)0@¥(w(3,2)
X

R}

7 % - ASALL. (28)
f‘P(T)AaT f‘P(T)AaT P(T)AuT f¢(T)AaT

c

Proof. Using the two-dimensional dynamic Jensen inequality (21) and Fubini’s theorem
on time scales, we get

a(x)o(n)
x I, ) ALSA,
b d 2(00(n) f Cf¢(d)¢(€)¢(d 0)ASAL
/ / X b ey Bal] Bax
ac [ [o(3)9(0)DaSAL [ 0(9)9(0)ASAL
b d
P(xX) (1)
Sa//a(x)a(n) a(x)o(n)

[ P(X) (1) AantAax
<1/ Z X o) o) BaSBal
CS [ 1o()00)8SAL [ [ ¢(3)9()DaSAL
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0)

Q\w
C St —a
‘6-

('Q

1 1 1 1
x - - = AuS AL

3 b 5
[ o(t)Aut {(P(T)Aﬂ qub(r)Aar LC[¢(1~)A,g

This concludes the proof. O

Remark 3. If we put () = ¢(S) =

=1, and o« = 1 in Theorem 24, then we recapture ([20],
Theorem 3.2).

(1) In Theorem 24, if we take ¥ (u) = uP, where B > 1is a constant, then we have
/h
d

b
g/ Q)9 (S,0)

o(x) oy P

 o()e(D)9(S,0)ASAL

)
7 e Autthux
Cfsb 3)9(0)DaSAG [ [ 0(S)p(0)ASAL

° =
R,

[—x

2

1 1 B 1

4 R} d
[ o0 fqv aer [\ Jomaa [omaa

AuS AL

(2) In Theorem 24, if we take ¥ (u) = exp(u) and replace i by In 1, then we have

o(x) (i)
)1 AP 7AW
I [ [o0romsonsas
X1 a(x) o(y) e
@ [ [ e()(0)AaSAL fx jﬂ P(3)P(0)DSDL
[ N N 1 1 1 1 N
< [ [o®e@w(3,0)| - -5 . - DAL

R d
[ o(t)Aut af(p(T)AaT Cf(/)(T)AaT Cf(P(T)AaT

(3) If T = Rand & = 1 in Theorem 24, then inequality (28) reduces to

xn
- I [ e(®)e(Q)w(S,¢)dtds
//HcP(x)(P(W) T paaa dyds
ac {[¢(%)¢(C)dtds af{qb(%)(p(é)dtds
b d . ) ) :
< [ [o®)0o@¥w(s,0)| - - : dids
“e [ o(v)dr afqv(f)dr {¢(T)dr Ef(,b(T)dT

4) If T = hZ and « = 1 in Theorem 24, then inequality (28) reduces to
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—-17-1 X 1
e o $(hS)p(hQ) x L ¢U)ent)
b—1d-1 1 1 1 1
<Y X 9 (9(hS, hD)) |+ - = - — : (29)
U Lomt) X o) |\ Lot ¥ k)

(5) If T = Z, we simply take h = 1 in (29), then inequality (28) reduces to

L L Qe L X ¢()e(0)

b—1d-1

<Y Y o@e@¥S )| e | s
e Lo Le@ |\ L@ Lé

Our aim in the following theorem is to establish a dynamic Hardy inequality for
several functions.

Theorem 25. Assume that a € [0,00) and @, 1,4, ..., Pu € Cuy([a,00)p,Ry). Define

A(S) := f@(@)Aag and F.(J) fc@ (O(Q)Axl fork=1,2,...,n. If 0 > v > 1, then
[ o) EOEQ) - EEQ)"
/ %) AU(%))’V Ba

o/ 7(B-1)
< () /”” D —((®)+ () #4383 @D

Proof. Utilizing the discrete Jensen inequality, we have

Y FO(S)
(F(Q)F(3) -+ F(3)/" < F= e
and thus P
(iq@ﬂ
(F () Q)+ FI ()" < F5—pte (31)

Multiplying both sides of (31) by @(SJ)/(A(J))” and integrating the resulting inequality
over J from a to co yield

B
7@(%) (F{T(%)Fiﬁ)@)ﬁg( ﬁ/n 1ﬁ/°° (Z FU(%)> \EE)

a
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Applying inequality (19) to the right-hand side of the last inequality implies

AN

/°° S)EL(S) -+ FY(S))P"
(A%(S))T

(S) 7(B-1)
— <1’lq1’l> /(D A‘B,}, 1\;2\ (lpl(s)+lp2(%>++lpn(§))ﬁAa%

(3)
The proof is complete. [
Remark 4. If we put @ () = 1and « = 1 in Theorem 25, then we recapture [20] (Theorem 1.4).

Below, we present various applications of Theorem 25.

(1) If T = Rand & = 1 in Theorem 25, then inequality (30) reduces to

7’(@(%) GIOLACBNAC)

A(S)
‘B [e.9)
= <nqﬁ n> ﬂ/‘f’(%)/\“(%)(%(%) () 4+ ()Pt
where A(SJ) := ? @({)ds and Fi (S f(i) {)dsfork=1,2,.

(2) If T = hZ and a = 1 in Theorem 25, then inequality (30) reduces to

(=) & B/n
b A(hS +1))7ED
<(55) L2 Sl(h%))) (1 (B) +92(13) -+ 9a(19))F, )

o

where A(hS) := h%ilco(g) and F.(h) = h JZ @(Q)Pr(Q) fork =1,2,...,n.

{=a {=a

(3) If T = Z, we simply take i = 1 in (32), then inequality (30) reduces to

© F1 \S+1)F2(\Y—|—1) -F, (%_i_l))/g/n

\‘sz—: AY(S+1)

(B Ve a®mE+)) Y . o
- (nq—n) QZ:; A T(g) ) Q) ()

where A(Q) := %ilw(g) and F(Q) = %ilw(g)¢k(g) fork=1,2,...,n
{=a

3. Conclusions, Discussions, and Future Work

There are several applications for Hardy type inequalities and they are subject to
strong research; see [3,7,15,16]. In this manuscript, by employing the dynamic Jensen’s
inequality and Fubini’s theorem on time scales, we extended a number of a-conformable
Hardy type inequalities to a general time scale. Several new Hardy type inequalities were
proved. The results extend several dynamic inequalities known in the literature, being
new even in the discrete and continuous domains. In future work, we will generalize these
results by using a-conformable fractional calculus.
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