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Abstract: In this paper, we introduce a generalization of the Kantrovich–Stancu-type Szasz operator
asymmetry with hybrid families of special polynomials. Additionally, we construct certain posi-
tive linear operators together with the Sheffer–Appell polynomial sequences and then obtain the
properties of convergence and the order of convergence, which is symmetric to these operators. For
applications, we consider certain explicit examples including mixed-type special polynomials.

Keywords: Kanotrovich–Stancu-type generalization of Szasz operators; modulus of continuity;
Sheffer–Appell polynomials

MSC: 33C45; 33E20; 41A10; 41A25; 41A36

1. Introduction and Preliminaries

In recent years, approximation theory has contributed to the development of different
computational techniques as it provides a crucial link between pure and applied mathe-
matics. It deals with the process of approximating the functions in the best way with much
simpler or amenable functions and methods depending on using recent approximation
processes. In this theory, positive approximation techniques play a fundamental role and
emerge in a very natural way in many problems relating to the approximation of the
continuous functions, especially when one needs further qualitative properties, such as
monotonicity, convexity, shape preservation, symmetry, and so on.

The positive estimate processes given by Korovkin [1] play out as an essential tech-
nique in order to determine several related practical and symphonic investigations, measure
hypotheses, PDEs, and probability hypotheses. In 1953, P. P. Korovkin [1] discovered per-
haps the most powerful and, at the same time, the simplest criterion in order to decide
whether a given sequence (Kn)n∈N of positive linear operators on the space C[0, 1] is an
approximation process, i.e., Kn( f )→ f uniformly on [0, 1] for every f ∈ C[0, 1]. Following
this outcome, many mathematicians have extended Korovkin’s theorem to other function
spaces or, more generally, to abstract spaces, such as Banach lattices, Banach algebras,
Banach spaces, and so on. Korovkin’s work, in fact, delineated a new theory that may be
called the Korovkin-type approximation theory. The Korovokin-type approximation prop-
erties and convergence rates have been inspected by numerous scientists, e.g., see [1–6].
Some interesting contributions to approximation theories can be found in the following
studies [7,8].

The Szasz operators [5] are popular examples of positive linear operators.
Szasz [5] proposed the following positive linear operators:

Sη( f̌ ; t) := e−ηt
∞

∑
κ=0

(ηt)κ

κ!
f
(

κ

η

)
, (1)

where t ≥ 0 and f̌ ∈ C[0, ∞) once the sum (1) converges. Many researchers have used the
generalization of Szasz operators, see for example [3,6,8,9].
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In 1880, Appell [10] established and studied ηth-degree sequences of polynomials
Aη(t), η = 0, 1, 2, · · · . These polynomials satisfy the recurrence relation

d
dt

Aη(t) = ηAη−1(t), η = 0, 1, 2, · · · , (2)

and have the generating function as follows:

A(x)etx =
∞

∑
κ=0

Aκ(t)xκ , (3)

where

A(x) =
∞

∑
κ=0

θκxκ , θ0 6= 0. (4)

Jakimovski and Leviatan [11], by virtue of the Appell polynomials Aκ(t), constructed
a generalization of Szasz operators.

Under the following assumptions:

(i) Aκ(t) ≥ 0, t ∈ [0, ∞);

(ii) A(1) 6= 0,

(iii) generating function (3) and the power series (4) converge for |x| < < (< > 1),

(5)

The positive linear operators Pη( f̌ ; t) and their approximation properties are intro-
duced by Jakimovski and Leviatan via

Pη( f̌ ; t) :=
e−ηt

A(1)
∞

∑
κ=0

Aκ(ηt) f̌
(

κ

η

)
(6)

After that, by taking the help of Sheffer polynomials sκ(t), Ismail [9] introduced a
generalization of Szasz and Jakimovski–Leviatan operators. The Sheffer sequences sκ(t) [12]
are an important class of polynomial sequences and appear in various problems of applied
mathematics, approximation theory, and multiple other mathematical areas.

The exponential generating function of sκ(t) is given by:

A(x)etH(x) =
∞

∑
κ=0

sκ(t)xk, (7)

where

A(x) =
∞

∑
κ=0

aκxκ , a0 6= 0, (8)

H(x) =
∞

∑
κ=0

hκxκ , h1 6= 0. (9)

Here we assume the following:

(i) sκ(t) ≥ 0, t ∈ [0, ∞);

(ii) A(1) 6= 0, H′(1) = 1,

(iii) generating f unction (7) and power series (8) and (9) converge f or |x| < < (< > 1).

(10)

The properties of approximation of the positive linear operators investigated by
Ismail [9] are given as

Tη( f̌ ; t) :=
e−ηtH(1)

A(1)

∞

∑
κ=0

sκ(ηt) f̌
(

κ

η

)
, η ∈ �. (11)
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Additonally, Kantorovich investigated the approximation properties of positive linear
operators defined by [13]

Kη( f̌ ; t) := ηe−ηt
η

∑
κ=0

(ηt)κ

κ!

∫ (κ+1)/η

κ/η
f̌ (x)dx. (12)

Furthermore, many authors in [6,14–16] studied the approximation properties of the
Szasz–Mirakyan–Kantorovich operators and their various propagation.

The polynomials defined in terms of the discrete convolution of known polynomi-
als are applied to analyze new classes of special polynomials. Very recently, Khan and
Riyasat [17] introduced and studied the discrete Appell convolution of the Sheffer poly-
nomials sk(x), called the Sheffer–Appell polynomials. These polynomials are denoted by
s Aκ(t) and are given with the help of the following generating function:

A(x)A(x)etH(x) =
∞

∑
κ=0

s Aκ(t)xκ , (13)

where A(x), A(x), and H(x) are given by Equation (4), Equation (8), and Equation (9),
respectively.

It is important to note that the Sheffer–Appell polynomials are actually the Sheffer
polynomials, since their generating function is of the type A∗(t)exH(t), with a suitable choice
for A∗(t). That means A∗(t) is the product of two different functions of t, one of which
corresponds to the Appell class, while the other should correspond to the Sheffer class.

In recent years, there is an increasing interest in modifying linear operators so that the
new versions reproduce some basic functions, see for example [3,6,8,15,16]. Motivated by
the works on generalizations of the Szasz operators, our aim is to construct the generaliza-
tion of Szasz operators involving the Sheffer–Appell polynomials defined by generating
function (13) and to study their approximation properties.

Since generating function (13) involves two different functions, A(x), A(x), and
H(x), therefore, we can define a new sequence of Kantrovich–Stancu-type approximation
operators. It is important to note that the Sheffer–Appell polynomials are actually the
Sheffer polynomials, since their generating function is of the type A∗(t)exH(t), with a
suitable choice for A∗(t). That means A∗(t) is the product of two different functions of t,
one of which corresponds to the Appell class, while the other should correspond to the
Sheffer class.

The present work is organized as follows. In Section 2, the Kantrovich–Stancu-type
positive linear operators together with the Sheffer–Appell polynomials are constructed,
and their qualitative and quantitative results are derived. In Section 3, certain examples are
given to demonstrate the results given in Section 2 with the help of the members belonging
to the Sheffer–Appell polynomials.

2. Construction of Operators Y (δ,ϑ)
η ( f̌ ; t) and Their Approximation Properties

In this section, a generalization of Kantrovich–Stancu operators is obtained with the
help of Sheffer–Appell polynomials s Aκ(t). These operators are generalizations of Szasz
operators (1) and Jakimovski–Leviatan operators (6). The convergence properties of these
operators will also be established.

The operators are constructed together with the Sheffer–Appell polynomials s Aκ(t)
defined by Equation (13), under the following restrictions:

(i) s Aκ(t) ≥ 0, κ = 0, 1, 2, · · · ; t ∈ [0, ∞),

(ii) A(1) 6= 0, A(1) 6= 0, H′(1) = 1,

(iii) generating function (12) and power series (4), (8), and (9) converge for

|x| < < (< > 1).

(14)
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Now, under assumptions (14), a generalized form of positive linear operators as well
as the Sheffer–Appell polynomials s Aκ(t) is as follows:

Y (δ,ϑ)
η ( f̌ ; t) =

η + ϑ

A(1)A(1)eηtH(1)

∞

∑
κ=0

s Aκ(ηt)
∫ κ+δ+1

η+ϑ

κ+δ
η+ϑ

f̌ (x)dx, (15)

where δ, ϑ are parameters satisfying 0 ≤ δ ≤ ϑ.
Here, note that for δ = ϑ = 0, Y (δ,ϑ)

η ( f̌ ; t) reduces (12).

Remark 1. For H(x) = x, (13) yields the generating function for the recently introduced 2-iterated
Appell polynomials [18]

A(x)A(x)etx =
∞

∑
κ=0

A[2]
κ (t)xη . (16)

Thus, taking H(x) = x in (15) and then denoting the resulting 2-iterated Appell polynomials
in the right-hand side by A[2]

κ (ηt), the following positive linear operators are obtained:

R[2](δ,ϑ)
η ( f̌ ; t) =

η + ϑ

A(1)A(1)eηt

∞

∑
κ=0

A[2]
κ (ηt)

∫ κ+δ+1
η+ϑ

κ+δ
η+ϑ

f̌ (x)dx. (17)

Remark 2. ForA(x) = 1, (13) provides the generating function for the Sheffer polynomials. There-
fore, taking A(x) = 1 in (15) we obtain Ismail operators (11), including the Sheffer polynomials.

Again, taking A(x) = 1 and H(x) = x in (15), we obtain Jakimovski and Leviatan operators
(6) including the Appell polynomials.

Further, for A(x) = A(x) = 1 and H(x) = x, (15) reduces to Szasz operators (1).

Korovkin [1,2] demonstrated some noticeable outcomes concerning the convergence
of sequences (Kη( f̌ , t))∞

η=1, where Kη( f̌ , t), signify positive linear operators. For example, if

Kη( f̌ , t) approaches uniformly to f̌ in the specific cases viz. f̌ (x) ≡ 1, f̌ (x) ≡ x, f̌ (x) ≡ x2,
then, at that point, it does likewise for each continuous real function f̌ . Once more, if
Kη( f̌ , t) approaches uniformly to f̌ for specific cases f̌ (x) ≡ 1, cos x, sin x, then, at that
point, it does likewise for each continuous 2π periodic real function f̌ . Shisha and Mond
in [19] concluded the rate of convergence sequences Kη( f̌ , t) in terms of the moduli of
continuity of f̌ .

Our purpose is to obtain the theorem of convergence and the order of convergence of
Y (δ,ϑ)

η ( f̌ ; t) given by (15).
First, let us mention some useful definitions and results:

Definition 1. For any function f̌ ∈ Ĉ[0, ∞) and σ > 0, w( f̌ ; σ) i.e., the modulus of continuity is
defined by

w( f̌ ; σ) := sup
u,v∈[0,∞)
|u−v|≤σ

| f̌ (u)− f̌ (v)|, (18)

where the space of uniformly continuous functions is given by Ĉ[0, ∞). Note that for any σ > 0
and each u ∈ [0, ∞), one can write

| f̌ (u)− f̌ (v)| ≤ w( f̌ ; σ)

(
|u− v|

σ
+ 1
)

. (19)

Definition 2. For any function f̌ ∈ CB[0, ∞), the second modulus of continuity is given by

w2( f̌ ; σ) := sup
0<x≤σ

|| f̌ (. + 2x)− 2 f̌ (. + x) + f̌ (.)||CB , (20)
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where the family of real-valued bounded and uniformly continuous functions on [0, ∞) is represented
by CB[0, ∞), associated with the norm

|| f̌ ||CB = sup
t∈[0,∞)

| f̌ (t)|. (21)

Definition 3. Let ǧ ∈ CB[0, ∞), then the Peetre’s K-functional of ǧ is given by

K(ǧ; σ) := inf
f̌∈C2

B [0,∞)

{
||ǧ− f̌ ||CB + σ|| f̌ ||C2

B

}
, (22)

where
C2

B[0, ∞) := { f̌ ∈ CB[0, ∞) : f̌ ′, f̌ ′′ ∈ CB[0, ∞)} (23)

and associated with the norm
|| f̌ ||C2

B
:= || f̌ ||CB + || f̌ ′||CB + || f̌ ′′||CB (see [20]).

Additionally, for all σ > 0, the following inequality holds:

K(ǧ; σ) 6 N{w2(ǧ, σ) + min(1, σ)||ǧ||CB}, (24)

where N is a constant independent of ǧ and σ.

Lemma 1 ([7]). Suppose that we have the sequence of positive linear operators f̌ ∈ C2[0, a] and
(Kη)η≥0 with the property Kη(1; t) = 1. Then,

|Kη( f̌ ; t)− f̌ (t)| ≤ || f̌ ′||
√

Kη((r− t)2; t) +
1
2
|| f̌ ′′|| Kη((r− t)2; t). (25)

Lemma 2 ([21]). Let f̌` where f̌ ∈ C[c, d] and ` ∈ (0, c−d
2 ) be the second-order Steklov function

attached to f̌ . Then, the inequalities

(a) || f̌` − f̌ || ≤ 3
4

w2( f̌ ; `), (26)

(b) || f̌ ′′` || ≤
3

2`2 w2( f̌ ; `). (27)

hold well.

In order to establish the theorem of convergence and the rate of convergence of
Y s A

η ( f̌ , t) including the Sheffer–Appell polynomials, the succeeding results are established:

Lemma 3. The Kantrovich–Stancu-type operators, defined by (15) are linear and positive.

Lemma 4. For t ∈ [0, ∞), we have the following properties of the operators Y (δ,ϑ)
η ( f̌ ; t)

Y (δ,ϑ)
η (1; t) = 1 (28)

Y (δ,ϑ)
η (s; t) =

η

η + ϑ
t +

1
η + ϑ

(
A′(1)
A(1) +

A′(1)
A(1)

)
+

2δ + 1
2(η + ϑ)

(29)

Y (δ,ϑ)
η (s2; t) =

( η

η + ϑ

)2
t2 +

η

(η + ϑ)2

(
2
A′(1)
A(1) + 2

A′(1)
A(1)

+ 2(δ + 1) + H′′(1)
)

t

+
1

(η + ϑ)2

(
A′′(1)
A(1) +

A′′(1)
A(1)

+ 2
A′(1)
A(1)

A′(1)
A(1)

)
+

δ2 + δ + 1
3

(η + ϑ)2

+2
(δ + 1)
(η + ϑ)2

(
A′(1)
A(1) +

A′(1)
A(1)

)
. (30)
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Proof. From generating function (13), it follows that

∞

∑
κ=0

s Aκ(ηt) = A(1)A(1)eηtH(1), (31)

∞

∑
κ=0

κ s Aκ(ηt) =
(
A(1)A′(1) +A′(1)A(1) + ηtA(1)A(1)

)
eηtH(1), (32)

∞

∑
κ=0

κ2
s Aκ(ηt) =

(
η2t2A(1)A(1) + ηt

(
H′′(1)A(1)A(1) + 2A′(1)A(1) + 2A(1)A′(1)

+A(1)A(1) +A(1)A(1)) +A(1)A′′(1) +A′′(1)A(1) + 2A′(1)A′(1)

+A(1)A′(1) +A′(1)A(1)
)
eηtH(1). (33)

Using operator Equation (15) and generating function (13) in Equations (28)–(30),
assertions (25)–(27) are obtained.

Lemma 5. For t ∈ [0, ∞), the following identities holds for the operators Y (δ,ϑ)
η ( f̌ ; t)

Y (δ,ϑ)
η (s− t; t) =

−ϑ

η + ϑ
t +

1
η + ϑ

(
A′(1)
A(1) +

A′(1)
A(1)

)
+

2δ + 1
2(η + ϑ)

(34)

Y (δ,ϑ)
η ((s− t)2; t) =

( −ϑ

n + ϑ

)2
t2 +

η

(n + ϑ)2

{
− 2ϑ

(
A′(1)
A(1) +

A′(1)
A(1)

)
+ 2(δ + 1) + H′′(1)

−(δ + 1/2)(
η + ϑ

η
)

}
t + 2

(δ + 1)
(n + ϑ)2

(
A′(1)
A(1) +

A′(1)
A(1)

)

+
1

(η + ϑ)2

(
A′′(1)
A(1) +

A′′(1)
A(1)

+ 2
A′(1)
A(1)

A′(1)
A(1)

)
+

δ2 + δ + 1
3

(η + ϑ)2 . (35)

Proof. In view of the linearity property of Y (δ,ϑ)
η , it follows that

Y (δ,ϑ)
η (s− t; t) = Y (δ,ϑ)

η (s; t)− tY (δ,ϑ)
η (1; t) (36)

Y (δ,ϑ)
η ((s− t)2; t) = Y (δ,ϑ)

η (s2; t)− 2tY (δ,ϑ)
η (s; t) + t2Y (δ,ϑ)

η (1; t), (37)

which on applying Lemma 4, yields assertions (36) and (37), respectively.

We denote the set of all continuous functions by CE[0, ∞) , such that | f̌ (t)| ≤ γρt for
all t ≥ 0 and for some positive finite ρ and γ.

The theorem of convergence for the operators Y (δ,ϑ)
η ( f̌ , t) is obtained by proving the

following result:

Theorem 1. Let f̌ ∈ CE[0, ∞). Then

lim
n→∞

Y (δ,ϑ)
η ( f̌ , t) = f̌ (t) (38)

uniformly for every compact subset of [0, ∞).

Proof. With the aid of Lemma 3, we get

lim
η→∞

Y (δ,ϑ)
η (si, t) = ti, i = 0, 1, 2 (39)

uniformly for every compact subset of [0, ∞). Applying Korovkin’s theorem to (36) proves
the desired result.
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Next, we determine the convergence rate of Y (δ,ϑ)
η ( f̌ , t) by using the modulus of

continuity in the form of the following result:

Theorem 2. Suppose f̌ ∈ ĈE[0, ∞). Then the following inequality

|Y (δ,ϑ)
η ( f̌ ; t)− f̌ (t)| 6 2w( f̌ ;

√
µη(t), (40)

holds for Y (δ,ϑ)
η ( f̌ , t). Here,

µη(x) := (Y (δ,ϑ)
η ((s− t)2; t). (41)

Proof. Consider

|Y (δ,ϑ)
η ( f̌ ; t)− f (x)| =

∣∣∣∣∣ η + ϑ

A(1)A(1)eηtH(1)

∞

∑
κ=0

s Aκ(ηt)
∫ κ+δ+1

η+ϑ

κ+δ
η+ϑ

(
f
( κ

η

)
− f̌ (t)

)
dt

∣∣∣∣∣
Using the fact that Y (δ,ϑ)

η (1; t) = 1 and in view of (15), we have

|Y (δ,ϑ)
η ( f̌ ; t)− f̌ (t)| 6 η + ϑ

A(1)A(1)eηtH(1)

∞

∑
κ=0

s Aκ(ηt)
∫ κ+δ+1

η+ϑ

κ+δ
η+ϑ

∣∣∣∣ f̌( κ

η

)
− f̌ (t)

∣∣∣∣dt,

which on using Equation (19) gives

|Y (δ,ϑ)
η ( f̌ ; t)− f̌ (t)| 6

(
1 +

η + ϑ

A(1)A(1)eηtH(1)
1
σ

∞

∑
κ=0

s Aκ(ηt)
∫ κ+δ+1

η+ϑ

κ+δ
η+ϑ

∣∣∣∣ κη − t
∣∣∣∣
)

w( f̌ ; δ) dt. (42)

By considering the Cauchy-Schwarz inequality for integration, we find

∫ κ+δ+1
η+ϑ

κ+δ
η+ϑ

∣∣∣∣ κη − t
∣∣∣∣dt 6

√
1

η + ϑ

{ ∫ κ+δ+1
η+ϑ

κ+δ
η+ϑ

∣∣∣∣ κη − t
∣∣∣∣2
} 1

2

, (43)

from this, it follows that

∞

∑
κ=0

s Aκ(ηt)
∫ κ+δ+1

η+ϑ

κ+δ
η+ϑ

∣∣∣∣ κη − t
∣∣∣∣dt 6

√
1

η + ϑ

∞

∑
κ=0

s Aκ(nt)

{ ∫ κ+δ+1
η+ϑ

κ+δ
η+ϑ

∣∣∣∣ κη − t
∣∣∣∣2
} 1

2

. (44)

Using Cauchy-Schwarz inequality for summation on the right-hand side of (44), we
can write

∞

∑
κ=0

s Aκ(ηt)
∫ κ+δ+1

η+ϑ

κ+δ
η+ϑ

∣∣∣∣ κη − t
∣∣∣∣dt 6

√
A(1)A(1)eηtH(1)

η + ϑ

{
A(1)A(1)eηtH(1)

η + ϑ

(
Y (δ,ϑ)

η ((s− t)2; t)
)2
} 1

2

. (45)

From the inequality in (42), we find that

|Y (δ,ϑ)
η ( f̌ ; t)− f̌ (t)| 6

{
1 +

1
σ

√
µη(t)

}
w( f̌ ; δ). (46)

By taking σ =
√

µη(t) in above equation, the assertion in Equation (40) is estab-
lished.

Theorem 3. For f̌ ∈ C[0, δ], the succeeding inequality holds:

|Y (δ,ϑ)
η ( f̌ ; t)− f̌ (t)| ≤ 2

δ
|| f̌ || l2 +

3
4
(δ + 2 + l2)w2( f̌ ; l), (47)
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where

l := lη(t) =
{
Y (δ,ϑ)

η ((s− t)2; t)
} 1

4

and w2( f̌ ; l) is the second order modulus of continuity with norm || f̌ || = maxt∈[a,b] | f̌ (t)|

Proof. Let f̌l be the second-order Steklov function of the function f . So, in view of (28),
we have

|Y (δ,ϑ)
η ( f̌ ; t)− f̌ (t)| ≤ |Y (δ,ϑ)

η ( f̌ − f̌l ; t)|+ |Y (δ,ϑ)
η ( f̌l ; t)− f̌l(t)|+ | f̌l(t)− f̌ (t)|,

≤ 2|| f̌l − f̌ ||+ |Y (δ,ϑ)
η ( f̌l ; t)− f̌l(t)|, (48)

on using (26), (48) becomes

|Y (δ,ϑ)
η ( f̌ ; t)− f̌ (t)| ≤ 3

2
w2( f̌ ; l) + |Y (δ,ϑ)

η ( f̌l ; t)− f̌l(t)|. (49)

Keeping in view that f̌l ∈ C2[0, δ], from Lemma 2, it follows that

|Y (δ,ϑ)
η ( f̌l ; t)− f̌l(t)| ≤ || f̌ ′l ||

√
Y (δ,ϑ)

η ((s− t)2; t) +
1
2
|| f̌ ′′l || Y

(δ,ϑ)
η ((s− t)2; t), (50)

now on on using (27), (50) becomes

|Y (δ,ϑ)
η ( f̌l ; t)− f̌l(t)| ≤ || f̌ ′l ||

√
Y (δ,ϑ)

η ((s− t)2; t) +
3

4l2 w2( f̌ ; l) Y (δ,ϑ)
η ((s− t)2; t). (51)

Further, the Landau inequality

|| f̌ ′l || ≤
2
δ
|| f̌l ||+

δ

2
|| f̌ ′′l ||,

combined with inequality (27) gives

|| f̌ ′l || ≤
2
δ
|| f̌ ||+ 3δ

4l2 w2( f̌ ; l). (52)

Substituting (52) in (53) and taking l = 4
√
Y (δ,ϑ)

η ((s− t)2); t, we find

|Y (δ,ϑ)
η ( f̌l ; t)− f̌l(t)| ≤

2
δ
|| f̌ || l2 +

3
4
(δ + l2)w2( f̌ ; l). (53)

Making use of (48) in (44), we arrive at (42).

Theorem 4. Let f̌ ∈ C2
B[0, ∞). If Y (δ,ϑ)

η is defined by (15), then one has

|Y (δ,ϑ)
η ( f̌ ; t)− f̌ (t)| 6 ζ||v||C2

B
, (54)
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where

ζ = ζη(t)

=

[(
ϑ

η + ϑ

)2
t2 +

η

(η + ϑ)2

{
2δ + 2 + H′′(1)− 2ϑ

(
A′(1)
A(1) +

A′(1)
A(1)

)

−
(

δ + 1/2 + ηϑ
)
(η + ϑ)

}
t +

2δ + 2 + η + ϑ

(η + ϑ)2

(
A′(1)
A(1) +

A′(1)
A(1)

)
+

2δ + 1
2(η + ϑ)

+
1

(η + ϑ)2

(
A′′(1)
A(1) +

A′′(1)
A(1)

+ 2
A′(1)
A(1)

A′(1)
A(1)

)
+

δ2 + δ + 1
3

(η + ϑ)2

]
|| f̌ ||C2

B
. (55)

Proof. In view of the linearity property of Y (δ,ϑ)
η ( f̌ ; t) and Y (δ,ϑ)

η (1; t) = 1, the Taylor’s
expansion of function f̌ can be written as:

Y (δ,ϑ)
η ( f̌ ; t) = f (x)Y (δ,ϑ)

η (1; t) + f̌ ′(t)Y (δ,ϑ)
η (s− t; t) +

1
2

f̌ ′′(ξ)Y (δ,ϑ)
η ((s− t)2; t), ξ ∈ (t, s). (56)

From Lemma 5 Y (δ,ϑ)
η (s− t; t) ≥ 0 for s ≥ t. Thus by inserting expressions (36) and

(37) in (56) and after simplification we get the required result.

Theorem 5. If f̌ is a function such that f̌ ∈ CB[0, ∞), then

|Y (δ,ϑ)
η ( f̌ ; t)− f̌ (t)| 6 2N{w2( f̌ ;

√
σ) + min(1, σ)|| f̌ ||CB}, (57)

where
σ := ση(t) =

1
2

ζη(t), (58)

where N ≥ 0 is a constant and is independent of f̌ , δ. Additionally, ζη(t) is given in Theorem 4.

Proof. If ǧ ∈ C2
B[0, ∞), then from Theorem 4, we have

|Y (δ,ϑ)
η ( f̌ ; t)− f̌ (t)| 6 |Y (δ,ϑ)

η ( f̌ − ǧ; t)|+ |Y (δ,ϑ)
η (ǧ; t)− ǧ(t)|+ |ǧ(t)− f̌ (t)|

6 2|| f̌ − ǧ||CB + ξ||ǧ||C2
B
= 2

[
|| f̌ − ǧ||CB + δ||ǧ||C2

B

]
(59)

Since the left-hand side of (59) is independent of the function ǧ ∈ C2
B[0, ∞),

|Y (δ,ϑ)
η ( f̌ ; t)− f̌ (t)| 6 2K( f̌ ; δ), (60)

where K is Peetre’s functional defined by (22). Now, by using (24) in (59), (57) holds.

Remark 3. In Theorems 3–5, ln, ξn, δn → 0 when n→ ∞.

In the next section, we consider certain examples in support of the above-derived results.

3. Examples

We establish the positive linear operators including certain members of the Sheffer–
Appell family by considering the following examples.

Example 1. The truncated exponential polynomials eκ(t) [22] are the Appell polynomials for
A(x) = 1

1−x and are defined by the generating function:

1
(1− x)

etx =
∞

∑
κ=0

eκ(t)xκ . (61)
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These polynomials have many applications in optics and quantum mechanics and
also perform a key role in the evaluation of integrals having products of special functions.

The Laguerre polynomials Lκ(t) [23] are essential members of the Sheffer family for
A(x) = 1

1−x and H(x) = −x
1−x and are defined by the following generating function:

1
(1− x)

e(
−tx
1−x ) =

∞

∑
κ=0

Lκ(t)xκ . (62)

The Laguerre polynomials arise in the quantum mechanics of the Morse potential and
of the 3D isotropic consonant oscillator, in an outspread piece of the arrangement of the
Schrödinger condition for a one-electron iota.

Taking A(x) = 1
1−x of the truncated exponential polynomials and A(x) = 1

1−x ;
H(x) = − x

1−x of Laguerre polynomials in generating function (12), the following generat-
ing function of the Laguerre-truncated exponential polynomials Leκ(t) is obtained:

1
(1− x)2 e(

−tx
1−x ) =

∞

∑
κ=0

Leκ(t)xκ . (63)

For ensuring restrictions (14), generating function (63) is modified by replacing x → x
2

and t→ − t
2 as follows:

1(
1− x

2
)2 e

(
tx

2(2−x)

)
=

∞

∑
κ=0

Leκ(−t/2)
xκ

2κ
, (64)

which yields the following explicit representation of Leκ(−t/2):

Leκ(−t/2) =
l+s≤κ

∑
l,s=0

(l + 1)(κ − l − s)s tκ−l−s

2κ−l−s(κ − l − s)!s!
. (65)

From Equation (65), it follows that

Leκ(−t/2) ≥ 0 for all t ∈ [0, ∞).

In view of generating function (64), the positive linear operators including the
Laguerre-truncated exponential polynomials are constructed as follows:

Y Le(δ,ϑ)
η ( f̌ ; t) =

1
4

e−ηt/2
∞

∑
κ=0

∫ κ+δ+1
η+ϑ

κ+δ
η+ϑ

Leκ(−ηt/2) f̌
(

κ

η

)
dt. (66)

Example 2. The polynomials denoted by gd+1
κ (t; h) [24] are called Gould–Hopper d-orthogonal

polynomial sets [25,26] of Hermite type [14]. For A(x) = ehxd+1
these polynomials are the Appell

polynomials given by the generating relation:

ehxd+1
etx =

∞

∑
κ=0

gd+1
κ (x; h)xκ . (67)

Taking A(x) = ehxd+1
of the Gould–Hopper polynomials and A(x) = 1

1−x ; H(x) =
− x

1−x of Laguerre polynomials in generating function (12), the following generating func-
tion for the Laguerre–Gould–Hopper polynomials Lgd+1

κ (t; h) is obtained:

1
(1− x)

ehxd+1
e(
−tx
1−x ) =

∞

∑
κ=0

Lgd+1
κ (t; h)xk. (68)
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For ensuring restrictions (14), generating function (68) is modified by replacing t→ x
2

and t→ − t
2 as follows:

1
(1− x

2 )
eh( x

2 )
d+1

e
(

tx
2(2−x)

)
=

∞

∑
κ=0

Lgd+1
κ (−t/2; h)

xκ

2κ
. (69)

From Equation (69), the following explicit representation of Lgd+1
κ (−t/2; h) is obtained:

Lgd+1
κ (−t/2; h) =

l+(d+1)s+v≤κ

∑
l,s,v=0

hs (κ − l − (d + 1)s− v)v tκ−l−(d+1)s−v

2κ−l−(d+1)s−v(κ − l − (d + 1)s− v)!s!v!
. (70)

Again, from Equation (70), it follows that

Lgd+1
κ (−t/2; h) ≥ 0 for all t ∈ [0, ∞).

In view of generating function (69), the positive linear operators together with the
Laguerre–Gould–Hopper polynomials are constructed as follows:

Y Lgd+1(δ,ϑ)
η ( f̌ ; t) =

1
2

e−
1
2

(
ηt+ h

2d

) ∞

∑
κ=0

∫ κ+δ+1
η+ϑ

κ+δ
η+ϑ

Leκ(−ηt/2) f̌
(

κ

η

)
dt. (71)

The methodology adopted above can be extended to find the positive linear operators
including other members of the Sheffer–Appell family, provided these polynomials obey
restrictions (14).

4. Concluding Remarks

In this article, the positive linear operators together with the Sheffer–Appell polyno-
mials are introduced. The convergence theorem and rate of convergence of these operators
are also established. The Sheffer–Appell family includes a large number of hybrid-type
polynomials as its members. Some examples are also provided to give the importance of
the operators including the Sheffer–Appell polynomials.

The error estimation for the approximation with the operators including members
of the Sheffer–Appell family can be explored. The approximation of any continuous
function f̌ (t) by positive linear operators Y s A

η ( f̌ ; t) can also be shown graphically. Finding
the Kantrovich, Durrmeyer, and Kantrovich–Stancu-type generalizations of the operators
including Sheffer–Appell polynomials will be taken in a forthcoming investigation. This
article is a first attempt in the direction of finding generalizations of the Szasz operators
involving hybrid-type families of special functions.
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3. Sucu, S.; İz, G.; Varma, S. On some extensions of Szasz operators including Boas-Buck-type polynomials. Abstr. Appl. Anal. 2012,

1–15. [CrossRef]
4. Mursaleen, M.; Ansari, K.J.; Khan, A. On (p, q)-analogue of Bernstein Operators. Appl. Math. Comput. 2015, 266, 874–882.

[CrossRef]

http://doi.org/10.1155/2012/680340
http://dx.doi.org/10.1016/j.amc.2015.04.090


Symmetry 2022, 14, 2672 12 of 12

5. Szasz, O. Generalization of S. Bernstein’s polynomials to the infinite interval. J. Res. Nat. Bur. Stand. 1950, 45, 239. [CrossRef]
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